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ABSTRACT

Neural implicit surfaces have attracted much attention in the 3D reconstruction
field. Equipped with signed distance functions (SDFs), neural implicit surfaces
significantly improve geometry reconstruction quality compared to neural radi-
ance fields (NeRFs). However, compared with NeRFs, training SDFs is more
challenging and time-consuming because it requires large sample counts to sample
the thin edges of implicit surface density functions. Up till today, error-bounded
sampling is the sole volume importance sampling technique dedicated to implicit
SDFs, which theoretically bounds the errors of sample weights and thus prevents
missing important thin surface edges, but at the cost of large sample counts. In
this work, we introduce an efficient edge-sampler technique to significantly re-
duce the required sample counts by up to 10x while still preserving the theoretical
error bound by reducing Riemann integral bias. Specifically, the technique first
proposes a double-sampling strategy to detect the thin intervals of surface edges
containing all valid samples. Then, it fits the density functions of the intervals
with bounded cumulated distribution functions (CDF) errors and produces the fi-
nal Riemann sum with sparse uniform samples. Extensive results in various scenes
demonstrate the superiority of our sampling technique, including improving ge-
ometry reconstruction details, significantly reducing sample counts and training
time, and the capability to be generalized to various implicit SDF frameworks.

1 INTRODUCTION

3D reconstruction from multi-view images is a classic research area in both computer vision and
computer graphics. Recently, neural radiance field (NeRF) (Mildenhall et al., 2020) and its subse-
quent works have demonstrated great potential for static or dynamic scene reconstruction. However,
due to the lack of effective constraints on geometry, the reconstructed geometry of NeRFs gener-
ally suffers from discernible noise and artifacts. Neural implicit surfaces (Yariv et al., 2021; Wang
et al., 2021) significantly improve the reconstruction results by constraining the scene to SDF fields,
thus achieving SOTA geometry reconstruction quality. However, the implicit SDF reconstruction
requires hours to train multi-layer perceptron (MLP) networks via dense sampling algorithms, lim-
iting its applications in practice. Some acceleration methods have been proposed to cope with this
problem, which mainly focuses on two aspects: sophisticated spatial coding algorithms for reduc-
ing network parameters and accurate sampling for faster convergence speed. While the adaption of
several effective spatial coding algorithms (Takikawa et al., 2021; Barron et al., 2021; Müller et al.,
2022) to SDF have produced promising results, fast sampling algorithms dedicated to neural implicit
surfaces are still not well-studied.

Representatively, VolSDF (Yariv et al., 2021) proposed an error-bounded sampling method dedi-
cated to Laplace distribution-based neural implicit surfaces by mapping the SDF values to density
values. They first derived the maximum Riemann sum error of the weights along rays, and itera-
tively increased the number of sampling points until the maximum error was less than a preset value.
As long as the sampling is dense enough, weights estimated using the SDF values of the sampling
points are close to the true value. Then, it utilizes the weights as PDFs to sample points for training
the SDF. Thanks to the error-bounded sampling strategy, this method converges fast and will not
miss thin surface edges. However, this approach has two major drawbacks. First, it requires plenty
of sampling points that need to query MLP to obtain SDF values. The typical number of MLP
queries per ray is over 700, making the sampling process relatively slow. Second, their method can-
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Figure 1: The overview of our edge-sampler algorithm. First, a double-sampling strategy (SDF clip
and weight clip) is designed to determine the valid compact interval. Then, the maximum error of
integrated weights is calculated to guide the interpolation of the density of interval sparse sampling
points (density interpolation). Finally, estimate the weight function as sampling PDF with all density
values, and perform final inverse sampling of CDF (PDF sampling).

not handle neural implicit surfaces for non-Laplace distribution-based mapping like NeuS (Wang
et al., 2021).

To overcome these drawbacks, we propose edge sampler, a novel sampling method for fast train-
ing neural implicit surfaces, see Figure 1. Our method is designed based on three objectives: (1)
Accuracy. Whether neural radiance fields or neural implicit surfaces, the distribution of the final
sampling points on a ray should conform to the weight function as much as possible. To achieve this
goal, VolSDF densely samples the ray to calculate the maximum weight errors and then integrates
the errors to for sampling density control. However, applying Riemann integration to the weights
error creates a biased and over-conservative weight error bound, as we demonstrate in Section 4.3.
Instead, we propose to calculate an error bound on the integration of weights, leading to a tighter
error bound and producing better sample distributions. (2) Efficiency. We first design a coarse-to-
fine sampling strategy called double-sampling to calculate the valid sampling interval for each ray
expeditiously, which aims to include all valid weights in an interval as small as possible. Then, only
a few queries of uniform sampling points that are distributed in the sampling interval can obtain
accurate weights. Different from (Mildenhall et al., 2020), our coarse-to-fine strategy does not need
to train a coarse network and can be directly calculated from the sampling interval. (3) Universal-
ity. Our method is applicable to all neural implicit surfaces with equations mapping SDF values to
density values under the volume rendering framework. Specifically, we evaluate common mapping
equations, including the Laplace distribution and the logistic distribution in practice.

Through experiments, we illustrate that our method can achieve better geometry reconstruction re-
sults while accelerating the training of neural implicit surfaces. Specifically, compared with VolSDF,
our sampling method achieves an acceleration of more than 10X at most. The total training time of
scenes on DTU dataset (Aanæs et al., 2016) is reduced by 60% at most compared to VolSDF with
hash encoding, and 79% at most compared to original VolSDF. In the qualitative results, our recon-
structed meshes acquire richer details compared to proposal sampling methods and occupancy grid
sampling methods. The main contributions of our work are summarized as follows:

• We propose edge sampler, a fast, accurate, and generalized sampling method for high fidelity
neural implicit surfaces models training acceleration.

• We derive the maximum error of integrated weights to guide the sampling process, which ensures
the accuracy of our sampling method.

• We propose several novel training strategies, including a double-sampling strategy for fast sam-
pling interval calculation, piecewise fitting and Gaussian Process strategies for density interpolation,
and an error-guided ray sampling strategy for improving color reconstruction quality.

2 RELATED WORK

Neural implicit surfaces. VolSDF (Yariv et al., 2021) and NeuS (Wang et al., 2021) are two
classic methods of neural implicit surfaces which both have a series of follow-up work. They are
both designed under NeRF’s volume rendering framework, but VolSDF applies Laplace distribution
mapping SDF values to density values, while NeuS uses logistic distribution. Meanwhile, the density
mapping method of NeuS is unbiased in planar scenes, compared with VolSDF. (Fu et al., 2022;
Yu et al., 2022) improve reconstruction by introducing geometric cues. (Ge et al., 2023) focus on
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reconstructing objects with strong reflection. (Fan et al., 2023) not only achieves the reconstruction
of glossy objects, it also estimates the illumination and material. Similarly, (Yariv et al., 2023) also
reconstructs the material with geometry and even achieves real-time rendering. (Jiang et al., 2023;
Azinović et al., 2022) replace RGB inputs with RGB-D inputs which naturally results in higher
reconstruction quality. In order to speed up training, (Rosu & Behnke, 2023) replaces the voxel
hash encoding with a permutohedral lattice which optimizes faster. Recently, (Wang et al., 2023)
deeply combining NeuS with instant-ngp (Müller et al., 2022) which also significantly reduces
the training time of original NeuS. In the popular AIGC field, implicit SDFs can also generate 3D
content (Xu et al., 2023; Zheng et al., 2022).

Sampling methods. In general, sampling methods for neural implicit surfaces can be classified into
4 categories: error-bounded (VolSDF) method, coarse-to-fine method, voxel-surface guided method,
sampling network method, and occupancy grid method. Except error-bounded method which has
already introduced above, the rest are sampling algorithms derived from NeRFs. The coarse-to-fine
method (Mildenhall et al., 2020) guides sampling by training a coarse network. They sample uni-
formly on the coarse network and consider the density value of the sampling point as PDF to guide
sampling on the fine network. This sampling method is inefficient due to training an additional net-
work. Occupancy grid method (Li et al., 2022; Müller et al., 2022) discretizes the scene into voxels,
and query the grid to determine whether the sampling point contributes to the color of rays, thereby
skipping invalid areas and achieving sampling acceleration. However, the accuracy of the query
depends on the grid resolution. High-resolution grid takes up extra GPU memory. Also, occupancy
grid requires a large number of MLP queries when updating, and low update frequency greatly
reduces query accuracy. Voxel-surface guided method (Sun et al., 2022) is an efficient sampling
algorithm which combines occupancy grid with surface guided sampling. However, their method
requires pre-reconstructed point clouds, which limits the applicable scenarios of the algorithm. Sam-
pling network methods (Lindell et al., 2021; Piala & Clark, 2021; Barron et al., 2022; Kurz et al.,
2022) train neural networks to directly sample or guide sampling alone rays with end-to-end or pre-
training manners. For end-to-end training methods, e.g. proposal networks, gradients calculation
and backpropagation consume additional time. For pre-trained methods, network predictions for
unknown scenes are unreliable.

3 PRELIMINARIES

Neural implicit surfaces share the same framework with NeRF (Mildenhall et al., 2020), which
represents a scene by a neural network (usually a MLP). For any ray parametrized as r(t) = o+ td
passing through the scene, the classic volume rendering equation takes density σ and color c of
samples predicted by the neural network to provide a solution for ray color:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
, (1)

where C(r) denotes the predicted color of the ray, σ(r(t)) denotes the volume density of point r(t),
tn and tf are the near and far sampling distances, T (t) denotes the accumulated transmittance along
the ray from tn to t. However, directly predicts the density of samples lacking geometric constraints.
Therefore, neural implicit surfaces utilize the network to predict SDF values of samples and map
SDF values to density values through the mapping function. CDF of the Laplace distribution with
zero means and β scale is one of the commonly used equations proposed by VolSDF (Yariv et al.,
2021):

σL(r(t)) = αΨβ (−dΩ(r(t))) , where α =

(
1

β

)
, (2)

Ψβ(s) =


1
2 exp

(
s
β

)
if s ≤ 0

1− 1
2 exp

(
− s

β

)
if s > 0

, (3)

where dΩ denotes the predicted SDF value of a sampling point. β is a learnable parameter that
approaches zero during training. However, this mapping function is biased because Ψβ does not
reach a global maximum where the SDF value is zero, i.e., sampling points on the surface. Therefore,
NeuS (Wang et al., 2021) proposed an unbiased mapping function — logistic distribution:

σl(dΩ(r(t))) = se−sdΩ(r(t))/
(
1 + e−sdΩ(r(t))

)2
, (4)
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where s is the reciprocal of standard deviation of σ, which also approaches to zero during training as
a trainable parameter. This mapping function cannot be applied directly because it is not occlusion-
aware. Under the assumption of a planar scene, the final mapping equation is derived as follows:

σl(dΩ(r(t))) = max

(
−dΦs

dt (dΩ(r(t)))

Φs(dΩ(r(t)))
, 0

)
, (5)

where Φs denotes the Sigmoid function, i.e., σ(x) = Φ′(x).

In practice, the continuous function integral in Equation 1 is converted into a discrete Riemann sum.
N points {pi = o+ tid | i = 1, . . . , N} is sampled along the ray to approximate pixel color:

Ĉ(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci, where Ti = exp

−
i−1∑
j=1

σjδj

 , (6)

δi denotes the length of interval si from δi to δi+1, αi = (1− exp (−σiδi)) is the alpha value of
interval si, Tiαi is called the weight of a sampling point by convention, denoted by ωi. It is obvious
that the expected ray color is estimated by ωi, and thus the optimal sampling distribution should be
proportional to ωi. Neural implicit surfaces consider {ωi | i = 1, . . . , N} as a piecewise function of
sampling PDF:

PDF (x) =
ωi∑N
i=1 ωi

, x ∈ [ti, ti+1). (7)

The CDF obtained by integrating this PDF is used as the final inverse sampling.

To optimize the network, the color loss Lcolor is defined as:

Lcolor =
∑
r∈R

∥C ′(r)− C(r)∥1, (8)

where R denotes a batch of training rays.

4 METHOD

4.1 OVERVIEW

Given an arbitrary ray passing through the scene, our goal is to accurately estimate the weight
distribution of the ray with fairly low computational cost, making the distribution of sampling points
and the sample weights as close as possible. This is a difficult task because SDF density functions
converge to an indicator function, which means valid weights are distributed in a tiny interval very
close to the surface. Without dense sampling, tiny intervals can easily be missed, which leads to
inaccurate estimation of equation 6 and loss gradient. To cope with this challenge, we designed a
four-step sampling technique, as shown in Figure 1. Each step is discussed in detail in the following
sections. Besides, a novel ray sampling strategy for improving color reconstruction quality is also
mentioned.

4.2 DOUBLE-SAMPLING STRATEGY

The key idea of the double-sampling strategy is to replace the dense sampling used to find the
tiny edge interval with two passes of sparse samplings and thus reduce the calculation cost while
ensuring accuracy. First, we sparsely sample a given ray over its near and far ends and evaluate the
SDF values of these sampling points by querying the MLP. The sampling points are then clipped
based on the valid SDF bound as formerly defined later. Benefiting from the mapping function, we
can analytically calculate an SDF bound that satisfies density equals to a small constant ϵ, which
provides a new direction for dedicated neural implicit surfaces sampling. Due to the monotonicity
of the mapping function, the density of any SDF greater than this value will be less than this ϵ, which
can be ignored. Thus skipping meaningless areas. Here we take Laplace distribution as an example
to calculate the SDF bound:

SDFbd = |β log (2ϵ)| . (9)
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𝛽 = 0.1 𝛽 = 0.01 𝛽 = 0.001
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Figure 2: Weights and intervalf of a ray under different β.As β decreases, intervalf always
surrounds the valid weights. Notice that the length of intervalf is only 0.03 when β is 0.001, while
the ray length is 6.

During training, SDFbd decreases as β decreases, which is getting closer to the surface. To avoid
skipping the thin surface edge, we first traverse all sampling points forward, find the first sampling
point samplei whose SDF value is smaller than SDFdb, and discard sample1 to samplei−2 (in-
cluded), which determines the lower bound samplel. If SDF values of all sampling points are
greater than SDFdb, no samples will be discarded. Then, sampling points are traversed inverse with
a similar operation which determines the upper bound sampleu. samplel and sampleu determine
the coarse interval intervalc, see SDF Clip in Figure 1.

Equipped with intervalc, we can skip most of the zero-valued sampling intervals. However, this
interval is not small enough to closely surround surface edge, especially when β (in equation 3) or s
(in equation 4) is small, T (in equation 1) quickly converges to zero, although the density value is still
valid. Thus, We perform another sparse sampling in the intervalc, and query their SDF values to
calculate the valid weight bound to further clip the interval. The coarse weights are calculated using
these SDF values, and the weight bound is determined by the maximum value of coarse weights.
Then, approaches similar to SDF Clip are applied to find the fine interval intervalf . Please refer to
Weight Clip in Figure 1.

The intervalf specifies the compact interval of the surface edge. During training, it can be reduced
to one over two hundred of the total ray sampling interval as illustrated in Figure 2.

4.3 ERROR-BOUNDED WEIGHT SAMPLING

Given that intervalf is compact enough, we uniformly distribute sparse samples to fit a PDF under
a bounded error. Different from the error-bounded sampling method that only bounds the error of
weight of individual points, we prove that our method can bound the accumulated weight error to
any small value.

Figure 3: Schematic diagram of the Riemann sum
error. For a monotonically increasing interval, the
Riemann sum is always greater than the true inte-
gral value.

Riemann sum error estimation. Suppose
we sample N points, sample1 to sampleN ,
through intervalf , the distance between each
intervali (samplei and samplei+1) is disi
ωi denotes the corresponding weight of each
sample and ω1 = 0. The estimate the
(left) Reimann sum of weight function Ω in
intervalf is:

Rei(Ω) =

N∑
i=2

ωidisi−1. (10)

Now we consider the error between the Rie-
mann sum and the integral on each intervali.
Assume that Ω is monotonically increasing
within intervalf , as shown in Figure 3, the
Riemann sum value is always greater than the
true integral value. Due to the monotonicity of
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Ω, the minimum value within each intervali is
ωi (the gray dashed line). Therefore, the maxi-
mum error in each intervali is (ωi − ωi−1) disi−1 (the green square). The total max error through
intervalf is:

ErrorMaxincrease =

N∑
i=2

(ωi − ωi−1) disi−1 (11)

=

N−1∑
i=2

ωi (disi−1 − disi) + ωndisn−1 − ω1dis1. (12)

While applying a uniform sampling to estimate the final integration, in which all disi equal to disu,
equation 12 can be simplified to a simple formula:

ErrorMaxincrease = ωndisu, (13)
where disu is the length of each interval. Obviously, for a monotonically increasing function, the
max error is positive and also monotonically increasing. With a similar approach, we can also
prove that for a monotonically decreasing function, the max error is negative and monotonically
decreasing:

ErrorMaxdecrease = −(ω1 − ωn)disu. (14)
Whether the weight functions are based on Laplace distribution or logistic distribution, they are
all bell-shaped functions, i.e., first monotonically increase to reach the maximum value and then
decrease monotonically to zero. Therefore, we divide it into two monotonic functions and analyze
them separately. Assume that the weight function takes the maximum value Ωmax at post, then the
absolute values of ErrorMaxincrease and ErrorMaxdecrease are all equal to Ωmaxdisu due to
equation 13 and equation 14.

Error bound of integrated weights. Suppose that the true integral value of the whole weight
function is W, then the maximum and minimum value of the Riemann sum is W +Ωmaxdisu and
W − Ωmaxdisu. Meanwhile, the maximum error is Ωmaxdisu at post.

Multiply the numerator and denominator of the equation 7 by disu, the PDF and CDF function is
converted into Riemann sum form:

PDF (x) =
ωidisu∑N
i=1 ωidisu

, x ∈ [ti, ti+1). (15)

CDF (x) =
∑

PDF (x) (16)

=

∑i
j=1 ωjdisu∑N
i=1 ωidisu

, x ∈ [ti, ti+1). (17)

Obviously, the denominator of CDF is the Riemann sum of Ω, and the numerator is the Riemann
sum up to samplei. According to the above analysis, the maximum error value of the numerator is
Ωmaxdisu, and the minimum value of the denominator is W−Ωmaxdisu. Thus, the error bound
of integrated weights is:

ErrorMax(disu) =
Ωmaxdisu

W − Ωmaxdisu
, (18)

which is a monotonically increasing function of disu. When disu is small enough, that is, the
sampling is dense enough, it converges to zero. In practice, Ωmax is hard to get, so we approximate
it by the maximum value ωmax among ωi.

However, the above analysis is based on the accuracy of ωi, which is also biased for Laplace
distribution due to equation 6, where Ti is determined by the Riemann sum of density σi. Therefore,
we analyze the error bound of weights in a similar manner. Density functions (equation 3 and
equation5) are all monotonically increasing functions, thus assuming the true density interval up to
densityi is Di, the max error can be directly derived from equation 13:

ErrorMaxTi
= exp(−Di)− exp(−(Di + σidisu)). (19)

When disu is small enough, it converges to zero. Notice that equation 19 is always positive, which
means weightmax is smaller than the true value. Therefore, the weight bias should be taken into ac-
count when calculating equation 18. For logistic distribution, ωi is obtained by analytically solving
the integral of T in equation 1. Therefore, only the error of integrated weights need to be considered.
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4.4 SAMPLES INTERPOLATION

Now we can estimate the Riemann sum error for any uniform sampling through intervalf . Assume
that N points are sampled, the corresponding interval length is disn, and the Riemann sum of density
function up to samplei is RieDi. For Laplace distribution, we first calculate the max error of ωi by
equation 6 and 19:

ErrorMaxweight = max
i∈[N ]

(|αi(exp(−RieDi)− exp(−(RieDi − σidisn)))|). (20)

Then we calculate ωi by equation 6 and modify the ωmax with ErrorMaxweight: ωmax = ωmax+
ErrorMaxweight. Finally, we substitute ωmax to equation 18 and get the max integrated weights
error equation subject to disn:

ErrorMax(disn) =
ωmaxdisn

RieW − ωmaxdisn
, (21)

where RieW is the Riemann sum of the entire Ω. For logistic distribution, ωmax is not modified,
and equation 21 also holds true. Set equation 21 equals to a tiny constant ϵ, disn can be solved,
which means N is determined. However, directly sampling N samples in intervalf is still time-
consuming, since N is usually greater than 100 during training. Thus, we present two approaches
to interpolate densities from sparse sampling. We interpolate the density function because Ti is
determined by the Riemann sum of density.

Piecewise fitting (linear interpolation) is a direct and efficient method for interpolation. Through ex-
periments, sampling 16 points can usually ensure the accuracy of the interpolation result. However,
the interpolation result is not smooth enough when the derivative of the function is relatively large.
Gaussian Process (GP) fitting can handle complex functions that have multiple extreme points with
the same 16 sampling points. Their interpolation results are smoother and more accurate than linear
interpolation. However, the computational complexity of GP fitting is greatly increased compared
to linear interpolation due to the operation of inverting a huge matrix. Please refer to the ablation
study section for a detailed analysis.

4.5 ERROR SAMPLING

Although neural implicit surfaces mainly focus on geometry reconstruction, image synthesis is also
an important application. Due to strong geometric constraints, the quality of image synthesis is not
comparable to NeRFs. To address this problem, we propose an important ray sampling method to
enhance the image synthesis ability. In each iteration, we sort the RGB errors of all iterated rays
in descending order and select the top 1024 rays. These rays are distributed in different pictures
and represent the most difficult samples for the current network to predict so far, which are sent to
the next iteration as additional rays. Compared with maintaining an error map for each image, our
method is more memory-saving. At the same time, the rays for each iteration come from different
images, which pay more attention to the global error. The disadvantage of this method is that it
will slow down the training, and the geometry reconstruction may become worse. Therefore, error
sampling is only turned on during image synthesis tasks.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

We use the DTU Jensen et al. (2014) dataset, which contains multi-view images of different objects
and chamfer distance to evaluate our method. We sample 64 or 128 points in the double-sampling
stage (32 or 64 for a single pass) and additionally sample 16 points for interpolation. The final
samples of our method include 16 CDF inverse samples and 32 uniform samples which will decay
to 16 during training. The batch size of all experiments is 8, and the number of sampling rays in
each batch is 1024. For the Laplace distribution, we compare the reconstruction quality and training
speed with the original VolSDF, i.e., error-bounded sampling (EB), as well as the VolSDF with hash
encoding (EB w/ Hash), and the SDF grid method which is integrated into our sampling framework
(Grid32) to replace MLP queries. For logistic distribution, we compare to the original NeuS, and
NeuS with hash encoding (NeuS w/ Hash) methods.
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Figure 4:

5.2 EVALUATION

Sampling time comparison. We compare our sampling time of 8192 rays with various methods in
Table 1. ”L” and ”GP” denote linear interpolation and Gaussian process. ”Proposal” is a network
sampling method proposed by MipNeRF360 Barron et al. (2022). We also implement our sampling
method on logistic distribution (Edge32 w/L for NeuS). Our Edge32 w/ L method is 10 times faster
compared to EB, meanwhile, our Edge32 w/L for NeuS method also achieves a faster sampling
speed compared to original NeuS.

Table 1: Sampling time for multiple methods in seconds.

EB Edge32 w/ L Edge64 w/ L Edge32 w/ GP Edge32
0.335 0.031 0.052 0.058 0.029

Grid32 (Sample) Grid32 (Update) Proposal NeuS Edge32 w/ L (NeuS)
0.060 0.089 0.104 0.029 0.024

Comparison based on Laplace distribution methods. Our sampling method is not only efficient,
but also maintains high-quality geometric reconstruction. Here we compare our method with EB,
SDF grid methods, which are all based on Laplace distribution. As shown in Table 2, our Edge32
w/ L method has the shortest training time and considerable reconstruction quality.

Table 2: Comparison of our Laplace distribution-based sampling method with other methods. We
use chamfer distance to measure the accuracy of geometry reconstruction. Our methods achieve the
lowest chamfer distance in each scene which represents the best reconstruction quality.

EB EB w/ Hash Edge32 w/ L Edge64 w/ L Grid32 w/ L
Chamfer Time Chamfer Time Chamfer Time Chamfer Time Chamfer Time

Scan65 1.26 22673 0.87 12684 0.84 6130 0.90 6284 0.82 6309
Scan83 1.54 27162 1.36 14763 1.48 7550 1.32 7844 1.49 7913

Scan106 0.81 27793 0.64 13951 0.58 7329 0.64 7695 0.83 8132
Scan114 0.70 27568 0.64 14482 0.46 5804 0.55 7626 0.64 7708

Comparison based on logistic distribution methods. Here we compare our method with Neus,
Neus w/ hash encoding. As shown in Table 3, our Edge32 w/ L method has the shortest training
time and relatively high quality.

8



Under review as a conference paper at ICLR 2024

Table 3: Comparison of our logistic distribution-based sampling method with other methods.

NeuS NeuS w/ Hash Edge32 w/ L
Chamfer Time Chamfer Time Chamfer Time

Scan65 0.95 13072 0.78 8970 0.87 7183
Scan106 0.75 14401 0.78 7819 0.63 6476
Scan114 0.45 15624 0.44 9600 0.44 7482

Error sampling result. In Figure 5, we present our RGB error-based importance ray sampling
method (ES) which enhance the image synthesis ability. The light source in the upper left corner is
a difficult feature to synthesis. Compared with other methods, our ES method has a leading result.

Figure 5: Comparisons of using error
bounded (EB), RGB error importance sam-
pling (ES), and our edge-sampler approach
on DTU Scan106. Compared with other
methods, ours can better recover the shape
details while using significantly less training
time.

Figure 6: Comparisons of our three fitting
methods, linear interpolation (L), Gaussian
Process (GP), and no interpolation. The lin-
ear interpolation method produces the best
results numerically and visually.

5.3 ABLATION STUDY

In addition, we conduct ablation an ablation study on the fitting strategies in Figure 6, which verifies
the choice of linear interpolation in our full model. Notably, linear interpolation does not only
produce the best results but also runs faster than the Gaussian Process method.

6 CONCLUSION

In general, we proposed an efficient and accurate sampling method dedicated to neural implicit
surfaces based on Laplace distribution and logistic distributions. The key contributions include an
efficient double-sampling strategy to search the tight surface edge, a more accurate integrated weight
bound for distributing weight samples, and the evaluations of various fitting approaches. All these
technologies come together to increase the training speed by 2x to 3x, and further achieve the SOTA
geometry reconstruction quality among existing neural implicit surfaces methods.
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