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Abstract

Image feature matching, which aims to establish correspondence between two images, is an important task in computer vision.
Among image feature matching, the removal of mismatches is crucial to ensure the correctness of the matches. In recent years,
machine learning has become a new perspective for mismatch removal. However, existing learning-based methods require a
large amount of image data for training, which shows a lack of generalizability and is hard to deal with cases with high mismatch
ratio. In this paper, we induce the triangular topology constraint into machine learning, where topology constraints around
the matching points are summarized; combining with the idea of sampling, we achieve the task of removing mismatches.
Topology constraints are studied in spite of the image input; our LTM (learning topology for matching) just needs fewer than
20 parameters as input, so that only ten training image pairs from four image sets involving about 3,000 matches are employed
to train; it still achieves promising results on various datasets with different machine learning approaches. The experimental

results of this study also demonstrate the superior performance of our LTM over existing methods.

Keywords Topology constraints - Machine learning - Probability sampling - Mismatch removal

1 Introduction

Feature point matching is a fundamental and critical aspect
of machine vision that plays a significant role in wide appli-
cations, including object detection, image registration and
fusion, tracking, and pose estimation.

Generally, feature point matching consists of two key
steps: the first step is to get initial feature matches. It first
extracts feature points that describe local information, for
which many methods have been proposed such as SIFT
(scale-invariant feature transform) [1], SURF (speeded up
robust features) [2], and ORB (oriented FAST and rotated
BRIEF) [3], or deep learning-based, such as LIFT (learned
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invariant feature transform) [4] and SuperPoint [5]. After fea-
ture extraction, a one-to-one matching relationship between
feature points in different images can be established, using
methods such as brute force, constructing K-nearest tree, etc.

However, despite the optimization of establishing initial
matches, it is inevitable to produce mismatches. Therefore,
the second step is the removal of mismatching, which is of
great importance.

The existing methods to remove mismatches can be
mainly divided into resampling-based, geometry-based, and
learning-based methods. Resampling-based methods contin-
ually sample points to generate a transformation matrix for
two images, while geometry-based methods rely on distance
or angle constraints to identify mismatches, some learning-
based methods have been proposed recent years, which apply
machine learning to image matching. However, as the number
of mismatches increases, resampling-based methods may not
converge, and geometry-based methods become more com-
plex to solve, resulting in poor performance, and for images
with non-global homographic transformations, these meth-
ods often manage to filter out a certain portion of correct
matches, which reach better performance. Though learning-
based methods achieve better adaptability to the situations,
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most of them have limited generalizability and need lots of
training data.

To address the issues above, our paper proposes a novel
approach, LTM (learning topology for matching). It first seg-
ments the matches based on the clustering relationship of the
matched feature points, which results in match subsets and
discrete matches. For the match subsets, we construct both a
triangular topology network and a reconnection network and
obtain the mismatch probability for each match by machine
learning based on the distortion of reconnection network,
then use the mismatching probability as a prior probability
for sampling to calculate the transformation matrix for each
subset, and finally remove the outliers in the subset. For the
discrete points, they are judged based on their topological
relationship with surrounding neighbor points.

The contributions of this paper are twofold:

(1) A novel framework for image feature matching is pro-
posed. Despite relying on purely data-driven learning
with large models, we first extract topological informa-
tion and then use the processed information as input for
small models to calculate the mismatching probability
for each match. Based on this probability, we further
remove the mismatches with sampling.

(2) A method for mismatch probability based on machine
learning and triangular topology network constraints
is proposed. It firstly segments the matches to some
subsets and discrete matches by triangulation and then
constructs reconnection network; the distortions of
reconnection network of matching points and their
neighboring points are inputted to learning approaches.

The remainder of this paper is organized as follows.
Section 2 describes related work of mismatch removal. In
Sect. 3, we introduce the principle of our method. Section 4
illustrates the performance of our method compared with
other state-of-the-art methods on different experiments. Then
we conclude our work in Sect. 5.

2 Related works

The current study includes three categories: resampling-
based methods, geometry-based methods, and learning-
based methods.

2.1 Resampling-based methods

The basis of the resampling-based methods is the princi-
ple that the correct matching points conform to a transform
model, the outliers (the points do not conform to the model)
are mismatches and be removed them. The resampling-based
method is to find a transform model that makes the maximum

@ Springer

number or more than a certain number of matches that meet
which.

The most popular method in the area of mismatch removal
is using RANSAC (random sample consensus) to calculate
the transform matrix [6, 7], it estimates the optimal matrix
of two images, and the outliers of the matrix model are
considered the mismatches. However, the efficiency and the
probability to find the solution will be reduced when there
are more than 50% mismatches [40, 43].

Therefore, a lot of variations are proposed to improve
RANSAC. PROSAC (progressive sampling consensus)
firstly obtains the probability of each data being an inlier
and then preferentially extracts the data with high proba-
bility in the random process [8]. GroupSAC firstly groups
all of matches, the group with more matching points is
preferred when in the sampling [9]. R-RANSAC (random-
ized RANSAC) and SPRT-RANSAC (randomized RANSAC
with sequential probability ratio test) will judge whether it is
the correct model first after finding the model and will con-
tinue to sample and iterate if not [10, 11]. DL-RANSAC
(descendant likelihood-RANSAC) introduces descending
likelihood to reduce the randomness so that it converges faster
than the conventional RANSAC [12]. SESAC (sequential
evaluation on sample consensus) sorts the matches based on
the similarity of the corresponding features and then selects
the samples sequentially and the get the model by least
squares method, which performs better than PROSAC [13],
and Wu et al. proposed fast sample consensus, improving the
efficiency of RANSAC [41].

Over the past few decades, these methods had continued
to be considered the effective solution for selecting accurate
inliers and robustly estimating models, so that they are widely
used in rigid feature matching. Generally, it performs well in
ordinary scenes, where the mismatch ratio is not high. How-
ever, it is challenging for it to deal with the high mismatch
cases.

2.2 Geometry-based methods

Many researchers focus on the geometry of the matching
points to construct the geometric or topological constraint
between the matching points to remove mismatches.

GTM (graph transformation matching) [14], proposed by
Aguilar et. al., is a typical method based on geometry, which
constructs the KNN (k-nearest neighbors) undirected graph
based on matching points, then removes the mismatches and
reconstructs the KNN graph until two images have similar
graph. Zhang et al. also relied on the k-nearest neighbors
with triangle-area representation to identify mismatches [39].
GMS (grid-based motion statistics) [15], based on theory of
motion statistics, can separate true matches from mismatches
especially at the image pairs with high-speed transform.
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LPM (locality preserving matching) [16], LGSC (local
graph structure consensus) [17], LOGO (locality-guided
global-preserving optimization) [33], and PSC (progres-
sive smoothness consensus) [34], all proposed by Ma, use
the principle that the local neighborhood structures of true
matches will maintain in different images. Meanwhile, Liu
et al. combined the local neighborhood structures and global
information to find out correct matches [38].

In [18], we proposed a robust method based on compar-
ing triangular topology and distance constraint of feature
points. Luo et. al. analyzed the relationship of Euclidean dis-
tance between the matching points then correct the mismatch
based on angular cosine [19], Zhao et al. removed the mis-
matches according to the constraints that matching distances
tend to be consistent [20]. Jiang et al. [22] removed the mis-
matches based on the descriptor similarity, which casts the
feature matching into a spatial clustering problem achieved
by DBSCAN. Shao et al. [23] proposed MRME which cal-
culates the minimum relative motion entropy to improve the
accuracy of matching. Recently, Cavalli et al. [24] proposed
a hierarchical pipeline for effective mismatching detection
based on the local affine consensus.

These methods can detect mismatches more efficiently
compared with resampling-based method because it avoids
the iteration of sample. However, although these methods
have better results, they cannot perform well when outliers
are dominate, because it will fail to construct the correct
constraints.

Recently, few geometry and resampling-combining meth-
ods have been proposed, which aim to integrate sampling and
geometry constraints to take both advantages, such as Zhu
et al. [21] proposed improved RANSAC and Lan et al. pro-
posed GMS-RANSAC [22]. Furthermore, Li et al. combined
sampling with the affine invariance of the triangle-area rep-
resentation, which enhances the robustness and accuracy in
remote sensing image matching [40], while H. Zhang et al.
also relied on them with a circle descriptor to improve the
performance [42]; however, such a simple combination of
geometry constraints and sampling shows a limited improve-
ment.

In [23], an effective combination of geometry and resam-
pling is proposed, which calculates the mismatch probability
of each matching point through triangulation constraints
and calculates the transformation model of the image pairs
through probability sampling. The method shows a good per-
formance especially in a high mismatching rate compared to
the existing methods. However, its application is limited to
homography or approximate homography transformations.

2.3 Learning-based methods

Learning-based matching methods leverage the advantages
of learning to induce geometric features for improving the
effectiveness of mismatch removal.

Yietal. [30] first attempted to remove mismatches with the
depth neural network, which is based on multilayer percep-
tion for binocular vision. However, its effect depends on the
input of camera intrinsic parameters. PGFNet [35] designs
a novel iterative filtering structure to remove mismatches
and get the camera position. SuperGlue [31] combines the
inferred matching and outlier removal based on graphic
neural network (GNN), which has a good result combined
with SuperPoint [5]. Recently, Zhang et al. [32] used order-
aware networks (OAnet) to learn binocular stereo geometry.
However, the dependence on training data greatly impacts
the universality of these learning-based methods. Therefore,
there is an urgent need for an efficient and more practical
method learning geometric information rather than image
information to obtain a more universal solution.

Ma et al. [36] proposed an innovative two-class classi-
fier LMR for removing mismatch data with a linear time
complexity, which is more universal compared to the afore-
mentioned learning-based approaches. However, it tends to
preserve outliers when images undergo structural deforma-
tions or in the presence of high mismatch rates.

Despite the effectiveness of learning-based methods, real-
world visual tasks still encounter numerous challenges. Due
to the typically unpredictable and complex nature of the
transformation types between image pairs, more universal
methods are required.

3 Methodology

Given the current challenges in the field, we propose a learn-
ing and geometry combined mismatch removal approach by
employing a learning approach based on triangular topology.
As shown in Fig. 1, the method segments the matches based
on a triangulation topology network and applies topological
constraints to machine learning to obtain the mismatch proba-
bility, calculation a transformation model through probability
sampling, finally achieving the removal of mismatches. Each
stage will be introduced in Sects. 3.1-3.3.

3.1 Feature match clustering.

Generally, the position and shape of objects in two images
conform to a set of transformation relationships, such as
affine and homographic transformations. When an object
undergoes a transformation, the position of the object in the
image changes, but the topological relationships of its con-
stituent parts remain the same. Therefore, as for the points
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Fig. 1 Flowchart of the proposed method. * The stage 2 for discrete matches should construct network with neighbor points and then continue the

process as subsets

pairs on two images of an object, the correctly matched points
in the two images will have similar topological relationships,
while the incorrectly matched points will not, as they do not
conform to the transformation relationship.

However, in many cases, a pair of images contains multi-
ple objects, each of which may have their own transformation
different from each other. For example, in binocular vision,
the objects at different depths correspond to different homog-
raphy transformations, as shown in Fig. 2. The topological
relationships between different objects may not remain con-
sistent. However, though sometimes the entire image does
not conform to a single transformation relationship. Locally,
each object’s surface conforms to a homography transforma-
tion, and the topological relationships of the points on the
surface are preserved.

Therefore, in this paper, all matches are first segmented
based on their neighbor relationships and divided into many
"localities", which we refer to as subsets, the matching points
which usually reflect the same object and may conform to the
same transformation. Thus, in each local subset, mismatches
can be judged and removed based on topological constraints.

The specific details are as follows:

(a) Firstly, the matching points on one image (called image
P) is triangulated to construct a triangular topology
network. As shown in Fig. 3(a), each feature point is
connected to its neighboring feature points by topologi-
cal edges. In regions with dense feature points, the edges
are relatively short, while in regions with sparse feature
points, the line segments are relatively long. Then, we
calculate the lengths of the line segments, remove some
longest edges, and we divide matches into some subsets
according to whether their matching points in image P
are connected. The red dotted lines in Fig. 3(b) indicate
the removed edges.

(b) Next, we use a growth-based approach to create and
merge local subsets. We select the end of the topological
edges that are mutually the shortest as the starting point
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for the feature match subset growth, and then expand
outward to its neighborhood points. If the expansion
reaches the feature points of another subset, we compare
the length of edge around this point with the average
edge length of two subsets. If it is closer to the average
edge length of one subset, this matching point will be
assigned to that subset, as shown in the point in purple
circle in Fig. 3(c), whose outgoing edge length of is
closer to the subset below, so it is assigned to the subset
below.

(c) Lastly, there may be matches that do not belong to any
subset, which we refer to as discrete match. These are
the three matching points in the lower right corner of
Fig. 3(c—d). Unlike the matching points in subsets, these
discrete matches cannot be removed using the sampling
methods. Therefore, a special method for them is intro-
duced in Sect. 3.3.

3.2 Topology constraint-based mismatching
learning

As feature matches have been divided into subsets, in each
subset, the feature matches will more likely present the same
object, conform to the same transformation, and will preserve
the topology relationship in two images.

In this subsection, we input the feature matches in a subset
and construct the reconnected network in image Q, finally
we calculate the mismatching probability for each feature
match based on machine learning according to the principle
of topology constraint, as shown in Fig. 4.

3.2.1 Topological constraint construct

According to the geometry of camera model and triangles, the
two projections of an object in space satisfy the same homog-
raphy transformation, where their coordinate distances and
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Fig.2 An example of stereo
vision, where objects at different
depths correspond to different
transformation models. The
image is taken from the
SceneFlow dataset [37]

(b)

Fig.3 An example of segmentation. a presents the triangular topology
network in the image; b presents the result after removing the longer
edges (colored in red); ¢ and d shows the result of segmentation, the
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Fig.4 Illustration of obtaining the probability of false matches

angles between the two images may change, but their topo-
logical relationships usually remain the same.

In the triangulated network, the topological relationship
can be specifically expressed as follows: the inclusion rela-
tionship between a feature point and the triangle composed
of the other three feature points remains unchanged. In other
words, the feature point will remain inside or outside the tri-
angle after transformation. If a point’s inclusion relationship

normalization | @,

changes before and after transformation, it is an incorrect
point, and its connection edge with one of the endpoints and
the triangle edge will across, which cause a network distor-
tion.

In the previous section, we have performed triangulation
on the feature points in one image (image P). Then we recon-
nect the corresponded feature in another image (image Q)
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similar to the connection in image P, which called recon-
nected work.

Therefore, if some feature points are not correctly
matched, these points will cause distortion in the reconnected
network. The orange points pair in Fig. 5 is a mismatch, it
causes distortion in the reconnected network in image Q.

3.2.2 Topological constraint process for learning

The quantification of distortion in reconnected network is still
a challenging task before calculate mismatching probability
based on it.

In this paper, the distortion in the reconnected network is
represented by the intersection times of the edges. If there is
no intersection, it means that the network is essentially con-
sistent, and all matches can be considered correct. If there
are partial intersections in the network, it indicates the pres-
ence of some mismatches. Generally, if there are numerous
intersections around a particular matching point, this match
is more likely to be a mismatch. However, the number of
intersections is not solely indicative of the probability of a
mismatch. For instance, a point near the mismatched point,
there are also number of intersections around which. There-
fore, this paper considers more topological information, such
as the intersection times of neighboring points and constraints
of length, to represent distortion better. This is also the rea-
son we do not directly rely on this for mismatch removal, but
instead assigned them a mismatching probability.

For feature matches in subset input, let P = {P;, P> ...}
be the set of feature points in image P, and let 0 =
{Q1, O3 ...} be the set of feature points in image Q, where
Py — Qg presents a feature match.

For each feature match Py — Qj, we use the following
specific topological information to quantify the distortion
condition of the network caused by it. Here n presents the
number of neighboring points;

N: the total number of intersections on emanating edges
of Oy

A: the average number of intersections per emanating edge
of O

Ni: N of the i-th neighboring point

Ai: A of the i-th neighboring point

Ci: the distance change ratio, it can be calculated as fol-
lows:

Ci =1Q; Qkl/|P; Pl (1)

Then, we can fit a function model f which makes values
of above parameters for calculating mismatching probability
for each match. It can be written as:

p:f(N7 A»Nl’Al’ Cl"'NVl’ A}’h CVl) (2)
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We can easily get the dimensionality of the input parame-
ters is 3n 4 2. For this function f, there is no common function
or combination of functions that can represent it well. There-
fore, we use machine learning to fit it as closely as possible to
the actual mismatch situation and obtain mismatching prob-
abilities.

3.2.3 Mismatching probability from machine learning

In this paper, we use classification network and a normal-
ization to get mismatching probability. Here we define the
labels of classification network as “correct” and “incorrect”.
It firstly calculates the probability of being “correct” p. and
being “incorrect” py,, based on the topological information,
then normalizes these two probabilities as follows to get mis-
matching probability.

P = Pm/(Pc+ Pm) 3)

The training process of this classification network is sim-
ple. We select various types of image pairs from dataset,
perform feature extraction and match them. Then we label
the each match based on the ground truth, which is created
based on transform matrix provided by dataset; if the match
is correct, we label this match as “correct”, if it is a mismatch,
it will be labeled as “incorrect”. Then we calculate the topo-
logical information above for each match as in Sect. 3.2.2
and train the network.

In this paper, the classification network (we referred it
as learning approach in following text) and the number of
neighboring points for input (the value of n) are not specified;
they have corresponding effects on the results. In this paper,
we also conducted experiments on different machine learning
approaches and different value of n in Sect. 4.

Compared with end-to-end networks, our method does
not adopt images as inputs, but uses a more general topolog-
ical information which exists in each pair of image matches
instead. It greatly increases the generality of the method,;
moreover, the input parameters of our method are less than
20, so that it can achieve good results using simple machine
learning methods.

Now, the mismatching probability of all matches in each
subset has been calculated. For the matches that are not in any
subset, i.e., the discrete matches, their mismatching proba-
bility is obtained after the mismatch removal of the matches
in subsets, which will be explained in detail in Sect. 3.3.2.

3.3 Mismatch removal

In the previous section, feature matching has been divided
into multiple subsets and a small number of discrete matches.
Furthermore, each match in subset contains a mismatching
probability of obtained above. Here we perform mismatch
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Fig.5 A mismatch (colored in orange, the correct match colored in blue) causes some distortion in the reconnection network in image Q

removal through probability sampling for matches in subsets
and use geometric topological constraints to remove discrete
points.

3.3.1 Mismatch removal in subset

To improve the performance of the method, we introduce
the idea of sampling, especially in case of large number of
matches, sampling-based method can enhance the efficiency.

The random sample consensus algorithm (RANSAC) is a
typical sampling-based approach for removing mismatches.
RANSAC calculates a model by sampling a small amount
of data and then fits the model to all data points, comput-
ing the number of data points that conform to the model.
Finally, the model that conforms to the most data points
is considered as the optimal model. In the application of
mismatch removal, the model to be computed is the transfor-
mation matrix between two images. When the main content
of the image lies on a plane, the homography matrix H
(perspective transformation matrix) is usually used as the
transformation matrix, which assumes that the points on the
two images conform to the homography transformation (per-
spective transformation).

Specifically, the algorithm randomly samples four pairs
of matched points and computes the transformation matrix.
The points on the image should satisfy Eq. 4.

x'FxT = 0orx’ = Hx 4

In practical situations, taking into account other factors
such as camera distortion, rounding errors of pixels, etc., it
is generally considered to meet Eq. 5.

x'FxT < threshold or |x’ — Hx| < threshold (5)

After calculating the transformation matrix, if a pair of
matching points satisfies the above conditions, the corre-
spond match is considered correct. If not, it will be removed.
However, due to its strong randomness, RANSAC is difficult
to converge in situations with a large number of mismatches.

Therefore, in each subset, we can assign a sampling prob-
ability, ps, for each pair of matches based on the mismatch
probability p, which calculated in Sect. 3.2. The relationship
between the two can be expressed by Eq. 6. In other words,
the higher the correct probability p, the higher the probability
of being sampled.

psi=pi/ Y pj (6)
J

After obtaining the sampling probabilities ps, we sam-
ple matches according to which. Four pairs of matches are
sampled each time, and the homography matrix H, between
image P and Q is calculated. Similarly, the sampling opera-
tion is performed for each subset, and each subset can obtain
its own homography matrix.

When homography matrix between two subsets is funda-
mental similar, it can be inferred that the two subsets are likely
to be matched points of a same object or that the matched
points on the two subsets are essentially on a same plane.
Therefore, it can be deduced that they should conform to a
same homographic transformation. Consequently, we merge
these two subsets and repeat the procedure above.

Then, combining the transformation matrix obtained
above, we can filter the inlier of the model (the matches
that have a low reprojection error under this transformation
matrix), those we consider to be the correct matches.

With probability sampling, the matches with less mis-
matching probability will be sampled more probably, thus
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transformation model can be calculated more efficiently, and
we can correct the mismatches according to this transforma-
tion matrix easily.

3.3.2 Mismatch removal for discrete matches

As for the discrete matches, which refer to the matches that
are not divided into subsets, we consider two possibilities
caused for. The first is that there are too few feature points
on an object to form a subset. The second is that an object is
too large that some points are too far away from other points,
causing it to become discrete during segmentation.

However, due to the sparsity of the discrete matches, it is
impossible to calculate the homography matrix solely based
on them. Therefore, we need to find alternative methods to
judge the correctness of the matches.

We consider several matching situations here. Firstly,
when two images are obtained from the perspective trans-
formation of an object, the relative position of the object
compared to the surrounding objects does not change signifi-
cantly, and the topological relationship between the matching
points and the topology relationship around them will not
change significantly. Secondly, when two frames of images
are captured by a camera to record the position changes of
objects in the scene, the interval between the two frames is
generally not enough to cause a significant change in the
relative position between the objects. Hence, the topologi-
cal relationship between the feature points on the object and
their surroundings will also not change significantly.

Therefore, we focus on the topological relationship
between the matching and the neighboring matching points
in the two images. We connect the matching points with
other matching points in surrounding subset in one image
and reconnected in another image. It should be noted that, to
increase the correctness of the method, the subsets need to go
through the mismatch removal in step 3.3.1 before connect-
ing with the surrounding points to ensure the correctness of
the neighborhood points. Then, similar to 3.2, we count the
number of crossings and calculate the mismatching probabil-
ity. If the probability of error matching is low, it is considered
correct; otherwise, it will be removed.

4 Experiment

To evaluate and analyze the performance of our method,
we conduct extensive experiments. Firstly, we measured the
effect of different machine learning networks on the results
of this method. Secondly, we use our LTM in feature match-
ing tasks and compare it with other state-of-the-art methods,
under different feature descriptors. Finally, we conduct the
transform matrix estimations on large datasets to reliably
evaluate our method.

@ Springer

Environment The experiments are performed on Windows
11 operating system with an Intel Core i5-12,400 processor
and 16-GB RAM. All the algorithms in this paper are written
in Python. And in all experiments, the correspondences are
computed from the ORB and SIFT keypoints.

Parameters The threshold of reprojection error we used
is 4 pixels, the matches with error larger than 4 pixels we
consider mismatches. The max iteration times of sampling
process is set to 200 (for TSAC, RANSAC, LTM). The train-
ing data for LMR is about 7500 matches (data provided by
author), and for our LTM is 3,000 matches.

Datasets For qualitative comparison we used the database
of SceneFlow [37]. For quantitative comparison, we used the
database of Mikolajczyk [24], one of the most widely used
database. The dataset contains 40 image pairs, and the image
pairs in the dataset always obey homography, where ground
truth homography matrixes are suppled. Also, we carried
out the experiment on the dataset of HPatches [25], and han-
nover [26], which contains several scenes of images and their
groundtruth transform matrix. In order to reduce the contin-
gency of random processes, we catried out experiments for
ten times on each pair of images.

Evaluation indicators The main indicators of the exper-
iments are precision, recall, and F-score. We define the
accuracy as the proportion of correct matches in the matches
extracted by mismatch removal method; And Recall is
defined as the proportion of correct matches after extrac-
tion in whole correct matches. Generally, different value of
thresholds will lead to an increase or decrease in the preci-
sion and recall, which are negatively correlated. Therefore,
F-score is usually used to measure the whole performance of
the methods for mismatch removal, which is define as Eq. 7:

2 x precision * recall
F — score = — (7N
precision + recall

4.1 Experiments under different machine learning
approaches

Here we consider the influence of using different machine
learning methods to study topology constraints and calcu-
late mismatching probability. We chose three widely used
supervised learning techniques SVM, BPNN, DenseNet and
Transformer and feature descriptors SIFT. For this sub-
experiment, we use the Mikolajczyk dataset involving all the
40 image pairs.

For the input of machine learning, we consider the number
of neighborhood points n to be 2,4,6, so when building the
network, we set the corresponding input dimension to be
8,14,20. The dimension of output layers is 2, which indicates
2 class (correct match and mismatch).
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Table 1 The result of different learning approaches and the number of neighborhood points n

Approach Proposed method with Proposed method with Proposed method with Proposed method

SVM BPNN DenseNet with Transformer
N 2 4 6 2 4 6 2 4 6 2 4 6
Precision 0.862 0.886 0.892 0.899 0.908 0.912 0.904 0.912 0.913 0.900 0.912 0914
Recall 0.855 0.868 0.916 0918 0.935 0.944 0.923 0.937 0.944 0.922 0.939 0.944
F-score 0.858 0.877 0.904 0.908 0.921 0.928 0.913 0.924 0.928 0.912 0.925 0.928

For the training samples of machine learning, we only
used 2700 matches from different images in the Mikolajczyk
dataset. Then, we selected 1,000 matches from four sets of
images in the HPatches dataset as the test set, and the exper-
imental results are shown in Table 1.

From the result, it can also be seen that the performance
using BPNN, DenseNet and Transformer is basically sim-
ilar, while the performance of SVM is slightly worse. For
the number of neighboring points n, the best performance is
achieved when n = 6, but also comparable when n =4, and it
requires less data and has faster training efficiency. Therefore,
we selected BPNN as the machine learning method with four
neighboring points as input in the subsequent experiments 4.2
and 4.3.

4.2 Qualitative comparative experiment

For this sub-experiment, we test our method on several rep-
resentative image pairs in different types of transformations,
including affine (e.g., Fig. 6a), homography (e.g., Fig. 6b—c),
binocular stereo vision from SceneFlow (e.g., Fig. 6d—e). We
present some intuitive results on the matching performance
of our LTM and also compared with other state-of-art meth-
ods.

From the results above, we can see that there are very
few matches are misjudged on all of test image pairs, which
indicates that our method has a strong ability on mismatch
removal under different types of transformations.

Here we also test our method on the images with higher
ratio of mismatches. Here we exhibit some examples of this
case. Figure 7(a-b) contains repetitive textures (Squares in
7(a) and circles in 7(b)), the feature descriptor of textures are
nearly similar, which causes lots of mismatch between them.
Figure 7c contains large viewpoints transform and Fig. 7(d)
contains large illumination change, where feature descriptor
of the same object will be different inevitably more or less, it
is hard to match them correctly. Figure 7(e) contains similar
element composition, the image pairs are composed of sketch
lines, in this case, the feature descriptors may focus more on
features of lines (such as crossing angles) and ignore the
image features reflected by lines. From the images, we can

find that the proposed method exhibits superior adaptability
toward images with high mismatch ratio.

However, in some cases, our method may still produce
some incorrect matches. As shown by the red matches in
Fig. 8, after the mismatch removal process in this paper,
some mismatches persist. It is evident that this is not caused
by errors from calculating transform matrix. Instead, it is a
discrete match, but due to the large distance to its neigh-
boring points, our computed topological information cannot
effectively reflect its correctness.

4.3 Quantitative comparison on dataset

To provide quantitative comparisons with state-of-the-art
competitors, we conduct experiments on three datasets,
Mikolajczyk [24], HPatches [25], and hannover [26].

Here we compare the method proposed with the geometry-
based state-of-the-art methods such as LPM proposed by
Ma [16], GTM proposed by Wendy [14], GMS proposed by
Bian [15], resampling-based method RANSAC, resampling
and geometry combined method TASC[23], leaning-based
method OANet[32], and LMR[36].

Here we use table of average value on three indicators and
cumulative distribution curves to reflect the characteristics
of each method in the dataset. As for cumulative distribution
curves, the faster the corresponding curve rises means that the
method has better performance in the dataset. In the cumu-
lative distribution curve graph, for a method, the smaller the
horizontal ordinate (cumulative proportion) under a certain
vertical ordinate (value of the indicator), the larger proportion
of images have reached the value of the indicator.

In order to reduce the contingency of random processes,
we carried out experiments for ten times on each pair of
images. The result of each dataset is shown in Fig. 9 and
Tables 2, 3 and 4.

From the results, we can observe that GMS performs not
so accurate, while RANSAC has a better performance on
precision but tends to have a low recall, GTM performs not
so well, LPM always performs well on recall especially in
change of viewpoints, but the precision is lower than the
resampling-based method. For our previous research TSAC,
it performs little better than LPM.

@ Springer
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Fig.6 The result of matching. In each image pair, the image above
presents the initial matches, and the image below shows the result of
our LTM. The matches colored in green presents correct matches while

As for learning-based methods, LMR, OANet, and our
LTM, they improve the performance on all these datasets,
especially in HPatches. It can also be found that they have
great enhancement on recall. Compared with LMR and
OANet, our LTM shows more accurate, and the perfor-
mance of it tends to declines more slowly when outlier ratio
increases in image pairs.

In order to test the adaptability of our method in high
mismatching environments, we selected some challenging
images from three datasets for testing. The selected images
have a low inlier rate of less than 30%, with an average inlier
rate of 18% and a minimum inlier rate of 6%. The results are
shown in Fig. 10 and Table 5.

In the comparative analysis, LMR, TSAC, OANet, and
LPM demonstrate superior performance, while the remaining
methods struggle to function properly in high mismatching
ratio environments. Among them, LTM and LMR exhibit
higher recall rates, but LMR has lower precision compared
to LTM. TSAC and LPM achieve similar results, with TSAC
perform better in precision. Overall, the proposed method
LTM exhibits the best performance.

@ Springer

red for mismatches. Image pairs in a—e present different transforma-
tions, a for affine, b—c for homography, d—e for binocular stereo vision

5 Conclusion

In this paper, a robust method LTM for mismatch removal
is proposed. It segments the matches to subsets and dis-
crete matches, and calculates the mismatch probability by
machine learning on the basis of topology constraint, and
then inputs the probability into process of the sampling so
that the mismatches can be detected and removed more eas-
ily and efficiently. It is proven by the experiment that it has
high accuracy and a good adaptability to high mismatching
ratio conditions.

The proposed method LTM has achieved good results as
a geometry and learning combined method, with few param-
eters as input and only few images needed to train, which
shows the method learning from geometry constraint has a
huge potential in the fields of mismatch removal.
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Fig.7 The result of matching in high mismatching ratio. In each image different cases, a—b for repetitive texture, ¢ for large viewpoints trans-
pair, the image above presents the initial matches, and the image below form, d for large illumination change, e for similar element composition
shows the result of our LTM. The matches colored in green presents (sketch lines in the image)

correct matches while red for mismatches. Image pairs in a—e presents

e

Fig.8 An example that the proposed method cannot deal with. In each image pair, the image above presents the initial matches, and the image
below shows the result of our LTM

@ Springer
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Fig.9 The experimental results of the dataset. The subfigures a—c present results of the dataset hannover [26], Mikolajczyk [24], and Hpatches
[25], each consists of the cumulative distribution graph of the inlier rate, precision, recall, and F-score in the dataset

@ Springer



LTM: efficient learning with triangular topology constraint ... Page130of 16 130

0.8 . r . . 18
57 09}
0.8}
0.6
0.7
o
%05 s
= 2os
5 8
04 s

4
»n

e
>

e
w

—6~—Inlier Ratio

N L 0.2 N L
0 5 10 15 20 25 5 10 15 20 25

Cumulative Distribution Cumulative Distribution

5 10 15 20 25 5 10 15 ) 20 25
Cumulative Distribution Cumulative Distribution

Fig.9 continued

Table 2 The result of Mikolajczyk datasets

inlier ratio Indicators RANSAC GMS GTM LPM TSAC LMR OANet LT™
0.412 precision 0.818 0.575 0.731 0.851 0.899 0.880 0.910 0.936
recall 0.628 0.759 0.400 0.793 0.848 0.931 0.899 0.950
F-score 0.692 0.633 0.489 0.806 0.863 0.901 0.901 0.938

Bold represents the best performance in each indicator among all of mismatch removal methods

Table 3 The result of Hpatches dataset

inlier ratio Indicators RANSAC GMS GTM LPM TSAC LMR OANet LT™M
0.394 precision 0.728 0.495 0.491 0.790 0.884 0.860 0.896 0.918
recall 0.587 0.744 0.233 0.850 0.818 0.963 0.919 0.971
F-score 0.656 0.576 0.296 0.817 0.845 0.905 0.903 0.942

Bold represents the best performance in each indicator among all of mismatch removal methods
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Table 4 The result of hannover dataset

inlier ratio Indicators RANSAC GMS GTM LPM TSAC LMR OANet LTM

0.413 precision 0.725 0.457 0.610 0.711 0.793 0.738 0.809 0.859
recall 0.584 0.593 0.459 0.731 0.726 0.876 0.799 0.866
F-score 0.632 0.489 0.451 0.713 0.754 0.788 0.797 0.851

Bold represents the best performance in each indicator among all of mismatch removal methods
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Fig. 10 The experimental results of high mismatching ratio, which consists of the cumulative distribution graph of the inlier rate, precision, recall,

and F-score in the dataset

Table 5 The result of high mismatch ratio (mismatch ratio > 70%)

inlier ratio Indicators RANSAC GMS GTM LPM TSAC LMR OANet LT™M
0.176 precision 0.417 0.261 0.271 0.622 0.654 0.679 0.767 0.840
recall 0.196 0.608 0.142 0.628 0.496 0.822 0.739 0.805
F-score 0.260 0.346 0.172 0.614 0.552 0.726 0.744 0.808

Bold represents the best performance in each indicator among all of mismatch removal methods
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