

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS AUTONOMOUS EXPERIMENTATION: BIOPROBENCH, A CORPUS AND BENCHMARK FOR BI- OLOGICAL PROTOCOL COMPREHENSION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
The automation of scientific experimentation is critically hindered by the inability of Large Language Models (LLMs) to reliably comprehend the specialized, accuracy-critical, and procedural nature of biological protocols. To address this fundamental challenge, we present **BioProBench**, a comprehensive resource for procedural reasoning in biology. BioProBench is grounded in a foundational BioProCorpus of 27,000 human-written protocols. From this corpus, we systematically constructed a dataset of over 550,000 task instances, partitioning it into a large-scale training set and a rigorous benchmark with a held-out test set and novel evaluation metrics. Our comprehensive evaluation of 10 mainstream LLMs on the benchmark reveals a critical performance gap: while models excel on basic comprehension tasks, they underperform on tasks requiring deep procedural logic, quantitative accuracy, and safety-critical reasoning. To demonstrate the value of BioProCorpus in mitigating these issues, we developed **ProAgent**, a Retrieval-Augmented Generation (RAG) agent. Grounded in our corpus, ProAgent substantially advances the state-of-the-art. BioProBench thus provides both a rigorous diagnostic benchmark and a foundational resource for developing the next generation of reliable AI for science. The code and data are available at: <https://anonymous.4open.science/r/Anonymization-112358>.

1 INTRODUCTION

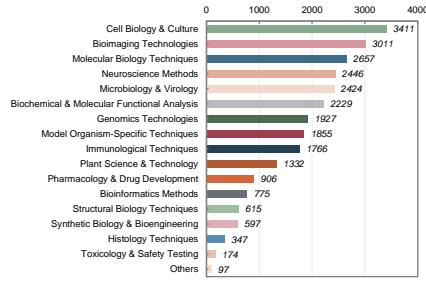
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Biological experimental protocols, comprehensive documents detailing reagents, instruments, and crucially, step-by-step procedures, form the backbone of life science research. With laboratories increasingly adopting high-throughput automation (Murthy & Lim, 2024) and cloud-based execution platforms (Boiko et al., 2023), the demand for reliable, automated interpretation of these protocols has become critical (Ren et al., 2025). However, the procedural, causal, and safety-critical nature of this domain presents a formidable challenge for Large Language Models (LLMs). Minor misinterpretations can lead to experimental failure, resource wastage, or unsafe laboratory conditions.

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
While LLMs have shown significant progress in general biomedical text mining, existing models and benchmarks (Nori et al., 2023; Thirunavukarasu et al., 2023; Liévin et al., 2024; Yang et al., 2024; Singhal et al., 2025) primarily focus on declarative knowledge (e.g., summarizing research findings from articles). Specialized models like BioBERT (Lee et al., 2020), BioGPT (Luo et al., 2022), and BioMedGPT (Luo et al., 2023) demonstrate domain-specific adaptation by fine-tuning on biomedical corpora. Existing biomedical text processing benchmarks, including BioASQ (Tsatsaronis et al., 2015), PubMedQA (Jin et al., 2019), LAB-Bench (Laurent et al., 2024) and BixBench (Mitchener et al., 2025) primarily focus on question answering and data interpretation. They often fall short in comprehending procedural knowledge, the structured, causal, and conditional logic that defines an experiment. This gap is a primary bottleneck for true scientific automation.

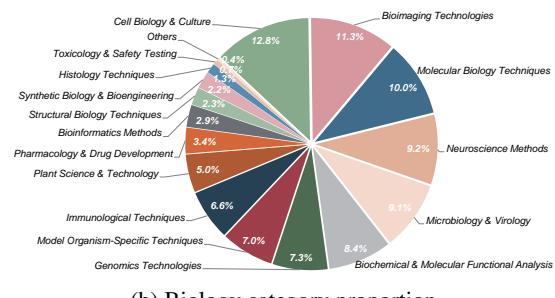
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
To fill this critical gap, we first introduce the **BioProBench**, a comprehensive resource for evaluating and improving procedural reasoning in biological contexts (Figure 1). BioProBench contains: (1) a foundational **corpus** of 27,000 professionally authored protocols; (2) a structured **dataset** of over 550,000 instances derived from this BioProCorpus, which is partitioned into a training set to facilitate model fine-tuning and a held-out test set; and (3) a rigorous **benchmark** with a novel, domain-

# Link	# Source	# Counts
Protocols.io	protocols.io	9,585
Bio-protocol	bio-protocol	4,159
Protocol-exchange	protocolexchange	1,242
JOVE	JOVE JOURNAL	8,947
Nature Protocols	natureprotocols	2,829
MorimotoLab	Morimoto Lab	170
Total		26,933

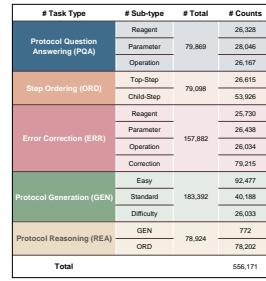
(a) BioProCorpus Sources and Counts



(c) Biology Category Counts



(b) Biology category proportion



(d) Task and Sub-Task Counts

Figure 1: Overview of the BioProBench.

specific metrics to evaluate procedural understanding, such as **keyword-based content metrics** and **embedding-based structural metrics**, to accurately quantify procedural knowledge. Our evaluation of 10 state-of-the-art LLMs on the BioProBench benchmark reveals that the top-tier models excel at basic comprehension, yet their effectiveness degrades significantly on tasks requiring deep procedural logic. We further demonstrate the BioProCorpus’s practical utility by developing **ProAgent**, a retrieval-augmented agent that substantially improves reasoning accuracy and procedural step recall, charting a path toward more reliable AI for science.

Overall, our contributions are summarized as follows:

- We present **BioProBench**, the first large-scale resource dedicated to *procedural reasoning in biological experimental protocols*, containing a BioProCorpus of nearly 27,000 protocols and over 550,000 structured instances, covering diverse subfields of biology.
- We design five task families (**Protocol Question Answering**, PQA; **Step Ordering**, ORD; **Error Correction**, ERR; **Protocol Generation**, GEN; and **Protocol Reasoning**, REA) that systematically capture the unique challenges of real-world protocols, from strict step ordering to quantitative, and safety-critical reasoning.
- We establish a comprehensive evaluation with novel domain-specific metrics to conduct a fine-grained assessment of 10 LLMs, revealing systematic weaknesses in their ability to understand, reason about, and generate scientific procedural text.
- We further develop and evaluate **ProAgent**, a retrieval-augmented agent that leverages BioProBench to substantially improve both performance and reliability in protocol-related tasks, demonstrating the practical utility of the benchmark.

2 DESIGN AND CONSTRUCTION OF BIOPROBENCH

2.1 BIOPROCORPUS COLLECTION AND CLEANING

The foundation of BioProBench is a new, large-scale corpus comprising 26,933 full-text protocols collected from six authoritative resources: *Bio-protocol*, *Protocol Exchange*, *JOVE*, *Nature Protocols*, *Morimoto Lab*, and *Protocols.io* (details in Appendix D). The corpus spans 16 biological subfields, including Genomics, Immunology, and Synthetic Biology. This broad distribution, as illustrated in Figures 1(b) and (c), reflects the interdisciplinary nature of modern life science and ensures the benchmark’s generalizability across diverse experimental contexts.

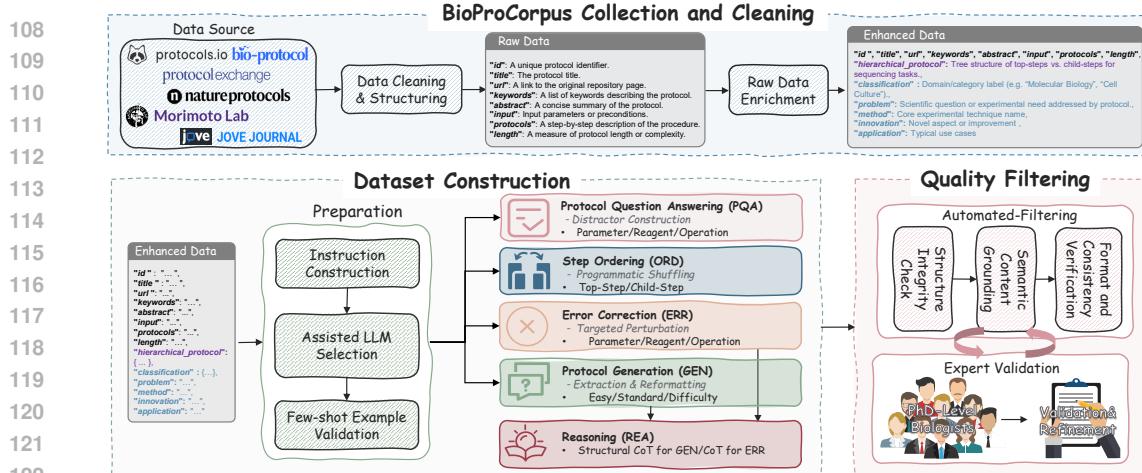


Figure 2: The construction pipeline for the **BioProBench**. The process comprises three core stages. First, a structured BioProCorpus is created by collecting, cleaning, and enriching raw scientific protocols. Second, five distinct tasks are constructed from this corpus. Finally, the benchmark goes through the quality filtering process, combining automated filtering with validation by experts.

To transform this corpus into a structured foundation, we employed a two-stage processing pipeline. The first stage involved data cleaning, including deduplication and the removal of formatting artifacts (e.g., HTML tags) via regular expressions. The second stage performed structured extraction of key elements such as protocol titles, keywords, and operational steps. To preserve the inherent procedural hierarchy crucial for this work, we applied parsing rules based on indentation and symbolic cues to resolve complex nested structures like sub-steps. This process yielded a high-fidelity, structured representation of each protocol, establishing a robust basis for all subsequent task formulation. The overall workflow is illustrated in Figure 2, with further details in Appendix A.

2.2 DATASET AND BENCHMARK CONSTRUCTION

From the BioProCorpus, we constructed a large-scale, multi-task dataset designed to probe distinct facets of procedural reasoning. This dataset is partitioned into a large training set and a rigorously curated benchmark (held-out test set). Our methodology adheres to a strict principle: **all scientific facts, procedural steps, numerical values, and ground-truth answers are extracted programmatically and directly from the human-authored source protocols**. To augment the dataset, the LLM’s role was strictly confined to functioning as a highly constrained tool, for instance, generating plausible distractors or applying minimal perturbations under programmatic control. To ensure the benchmark’s scientific quality, all instances designated for the test set underwent a meticulous human expert review to verify their accuracy, remove potential artifacts, and confirm their relevance. The resulting dataset comprises 556,171 structured instances, illustrated in Figure 1(d) and Figure 3. Specifically, 380,697 instances originating from publicly licensed resources are released.

Protocol Question Answering (PQA). This task assesses high-precision information retrieval across three dimensions: reagent dosages, parameter values, and operational instructions. To mirror real-world challenges, we construct multiple-choice questions targeting ambiguous text segments. A ground-truth answer is first extracted directly from the source text; the LLM’s role is then strictly confined to generating syntactically plausible but semantically incorrect distractors around this fixed anchor. For instances in the benchmark, every distractor was rigorously verified by experts to ensure it represents a meaningful and non-trivial challenge. Details are provided in Appendix C.1.

Step Ordering (ORD). This task evaluates the understanding of procedural hierarchy and causal dependencies. We designed two formats targeting global (Top-Step) and local (Child-Step) coherence. Instances are constructed by programmatically shuffling original protocol steps according to predefined rules. This deterministic process ensures the task’s integrity as an objective measure of procedural logic reconstruction. The format is described in Appendix C.2.

Error Correction (ERR). This task assesses the critical ability to identify steps that pose safety or validity risks. Instances were created by introducing subtle errors into correct protocol steps. The

PQA	ORD	ERR	GEN	REA
<p>Question: Place a droplet (100μl) of water-suspended fixed nematodes onto the LbL-coated glass slides and wait ____ min for settling and attaching the animals to the LbL polyelectrolyte film.</p> <p>Choices: ["50", "20", "10", "40", "30"]</p> <p>Task Instructions: Choose the correct answer for the blank from the choices.</p>	<p>Question: Please sort the following steps titled Cell Washing and Red Blood Cell Lysis in correct order.</p> <p>Steps: The steps are:</p> <ol style="list-style-type: none"> 1.Wash the spleen cells ... 2.Stop the lysis reaction ... 3.Discard the supernatant ... 4.Incubate for 5 minutes ... <p>Task Instructions: Output the correct order as a list of original indices (start from 0).</p>	<p>Question: Determine whether the following target step in a protocol is True or False:</p> <p>Resuspend the cell pellets in 10ml. of culture media (RPMI 1460, ...).</p> <p>Context: Prepare culture media for bone marrow cell suspension., prior_step: Red blood cell lysis and washing., next_step: Addition of GM-CSF for cell culture.</p> <p>Task Instructions: Output True or False based on validity in context.</p>	<p>System Role: Expert in CRISPR protocols.</p> <p>Question: To design sgRNAs for targeting genes in a CRISPR competition assay, what are the key steps?</p> <p>Instruction: Please describe the protocol in a single-level list format.</p> <p>Format Requirements: Each step must on separate line.</p> <p>Ground Truth:</p> <ol style="list-style-type: none"> 1. Identify target sites ... 2. Design sgRNAs ... 3. Clone sgRNAs into... 4. Use online tools like Benchling ... 5. Target functional protein domains ... 	<p>System Role: Expert in CRISPR protocols.</p> <p>Question: To design sgRNAs for targeting genes in a CRISPR competition assay, what are the key steps?</p> <p>Instruction: ...</p> <p>Format Requirements: Generate steps, including Chain of Thought and specific output tags format.</p> <p>CoT Instructions Format: Let's think step by step: <Objective> [...] </Objective>, <Precondition> [...] </Precondition>, <Phase> [...] </Phase>, <Parameter> [...] </Parameter>, <Structure> [...] </Structure>.</p> <p>CoT: Let's think step by step:</p> <p>First, <Objective>designing sgRNAs for ...</Objective>.</p> <p>To achieve this, <Precondition> gene sequence...</Precondition>.</p> <p>The protocol <Phase>1) Identifying target sites ... 2) Designing ... 3) Cloning sgRNAs ... and 4) Optimizing sgRNA ...</Phase>.</p> <p>Parameters are <Parameter>a 20 base pair ...</Parameter>.</p> <p>Finally, <Structure>as a single-level list ...</Structure>.</p> <p>Ground Truth: ...</p>
Ground Truth: 30	Ground Truth: [0, 2, 3, 1]	Ground Truth: False		

Figure 3: Representative samples for each task in the **BioProBench** benchmark.

LLM’s function was limited to performing targeted, minimal perturbations (*e.g.*, altering a numerical value) under strict constraints, where the scientific context and the nature of the error were entirely predefined by the original protocol. Details on the format are in Appendix C.3.

Protocol Generation (GEN). This task evaluates the synthesis of coherent, long-form procedures. The process is fundamentally a task of instruction-following and content assembly, not *de novo* creation. Based on key information extracted from the source text, the LLM is prompted to structure a complete protocol. This requires organizing and connecting steps that are all explicitly present in the provided context, with difficulty defined by the complexity of the required procedural structure. The format is detailed in Appendix C.4.

Protocol Reasoning (REA). This task extends the GEN and ERR formats to include structured **Chain-of-Thought (CoT) prompting** (Wei et al., 2022), making the model’s reasoning process explicit. For the GEN task, a template guides the model to first outline the experiment’s objective, pre-conditions, and phases before generating the final steps. This allows for a fine-grained evaluation of whether the model’s internal plan is coherent and scientifically sound, as detailed in Appendix C.5.

2.3 QUALITY FILTERING

To ensure the scientific fidelity and reliability of the entire dataset, we implemented a multi-stage quality assurance process. This process combines a scalable, automated filtering pipeline with large-scale manual validation by domain experts. The three-stage automated pipeline, applied to all 556,171 instances, includes:

1. Structural Integrity Check: A rule-based check validates structural integrity of each instance, flagging malformed data, incorrect step indices, or mismatches between Q&A.
2. Semantic Content Grounding: A semantic similarity test filters out instances that deviate significantly from source protocol text, thereby mitigating potential content hallucination.
3. Format and Consistency Verification: A template-based check ensures adherence to task-specific formats and other logical constraints.

To validate the effectiveness, an extensive random sample of over 55,000 instances (10% of the dataset) was subjected to rigorous manual review by five PhD-level biologists. For the held-out test set served as the benchmark, every instance was scrutinized. The expert review focused on scientific validity, accuracy of terminology, procedural logic, and safety constraints. Hybrid quality assurance strategy allows us to achieve the scale necessary for a comprehensive benchmark while maintaining high degree of fidelity required for scientific evaluation.

3 EVALUATION METRICS

Evaluating the procedural and semantic correctness of scientific protocols requires metrics beyond standard lexical overlap. Generated protocols may be lexically similar to references but exhibit operational flaws, such as omitting key steps or introducing unsafe parameters. To address this shortcoming, we propose a hybrid evaluation framework that combines standard NLP metrics with two sets of domain-specific metrics designed to assess scientific content and procedural fidelity. An overview is provided in Table 1, with standard metrics detailed in Appendix F.

216 Table 1: Evaluation metrics for the BioProBench framework. The arrow indicates the preferred
 217 direction for each metric (\uparrow for higher is better, \downarrow for lower is better).

Task	Standard Metrics	Domain-specific Metrics
PQA	<i>Accuracy (Acc.)</i> \uparrow , <i>Brier Score (BS)</i> \downarrow , <i>Failed</i> \downarrow	-
ORD	<i>Exact Match (EM)</i> \uparrow , <i>Kendall's Tau (τ)</i> \uparrow , <i>Failed</i> \downarrow	-
ERR	<i>Accuracy (Acc.)</i> \uparrow , <i>Precision (Prec.)</i> \uparrow , <i>Recall</i> \uparrow , <i>F1</i> \uparrow	-
GEN	<i>BLEU</i> \uparrow , <i>METEOR</i> \uparrow , <i>ROUGE-L</i> \uparrow	<i>Keyword Precision</i> \uparrow , <i>Keyword Recall</i> \uparrow , <i>Keyword F1</i> \uparrow , <i>Step Recall (SR)</i> , <i>Step Precision (SP)</i> \uparrow
REA	<i>Accuracy (Acc.)</i> \uparrow , <i>Precision (Prec.)</i> \uparrow , <i>Recall</i> \uparrow , <i>F1</i> \uparrow , <i>Failed</i> \downarrow	<i>LLM-as-a-Judge Consistency (Consist.)</i> \uparrow

224 **Keyword-Based Content Metrics.** The accurate inclusion of critical domain-specific terminology (e.g., reagents, equipment) is paramount for the scientific validity of a biological protocol. To
 225 quantify a model’s ability to generate semantically relevant content, we employ a keyword-based
 226 analysis. We use KeyBERT (Grootendorst, 2021) to extract the top $k = 64$ keywords from both
 227 the reference (K_{ref}) and generated (K_{gen}) texts. From these sets, we compute **Keyword Precision**
 228 ($P_K = \frac{|K_{ref} \cap K_{gen}|}{|K_{gen}|}$), **Keyword Recall** ($R_K = \frac{|K_{ref} \cap K_{gen}|}{|K_{ref}|}$), and **Keyword F1** ($F1_K = \frac{2 \cdot P_K \cdot R_K}{P_K + R_K}$).
 229 This provides a targeted measure of whether the core scientific entities are correctly generated.
 230

232 **Embedding-Based Structural Metrics.** We introduce step-level metrics to evaluate the structural
 233 fidelity of generated protocols, a critical aspect that lexical metrics fail to capture. A usable protocol
 234 must contain all necessary steps while minimizing extraneous or redundant ones. We represent
 235 the reference protocol as a sequence of steps $S_{ref} = [s_1, \dots, s_{n_{ref}}]$ and the generated protocol
 236 as $S_{gen} = [s'_1, \dots, s'_{n_{gen}}]$. Each step is embedded by “all-mnlp-base-v2” SentenceTransformer
 237 model¹, and **similarity is measured by cosine similarity $\text{Sim}(s, s')$ in Appendix F**. We then compute:
 238

239 1) **Step Recall (SR)** quantifies completeness by measuring the proportion of essential reference steps
 240 that are semantically captured in the generated output, using a similarity threshold $\delta = 0.7$. This
 241 threshold was not chosen arbitrarily but was justified through extensive sensitivity and qualitative
 242 analysis (detailed in Appendix F.2), which confirmed that this value robustly distinguishes between
 243 semantically relevant and irrelevant procedural steps.

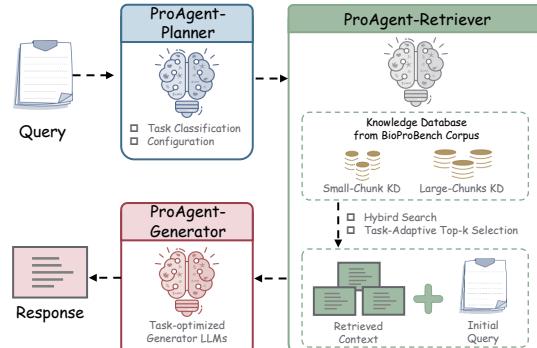
$$SR = \frac{|\{s \in S_{ref} : \max_{s' \in S_{gen}} \text{Sim}(s, s') \geq \delta\}|}{|S_{ref}|}. \quad (1)$$

244 2) **Step Precision (SP)** quantifies conciseness and relevance by measuring the proportion of generated
 245 steps correspond to a reference step. Higher **SP** indicates fewer spurious or irrelevant steps.
 246

$$SP = \frac{|\{s' \in S_{gen} : \max_{s \in S_{ref}} \text{Sim}(s, s') \geq \delta\}|}{|S_{gen}|}. \quad (2)$$

252 4 PROAGENT: ACTIVATING THE CORPUS FOR HIGH-FIDELITY REASONING

253 To demonstrate the practical utility of the
 254 BioProBench corpus and to establish a strong
 255 baseline for future research, we developed
 256 **ProAgent**. The objective of ProAgent is not
 257 to introduce a novel agent architecture, but
 258 rather to serve as a standardized validation of
 259 our central hypothesis: that grounding LLMs
 260 in a high-fidelity, procedural knowledge
 261 corpus can directly and substantially address the
 262 critical weaknesses identified by our
 263 benchmark. Its implementation leverages a robust
 264 RAG framework to transparently measure the
 265 impact of the corpus itself.



266 Figure 4: The architecture of ProAgent.

267 As illustrated in Figure 4, ProAgent operates as a task-adaptive agent that dynamically configures
 268 a specialized workflow for each query. A planner first classifies the input task (e.g., PQA, GEN),
 269

¹<https://www.sbert.net/>

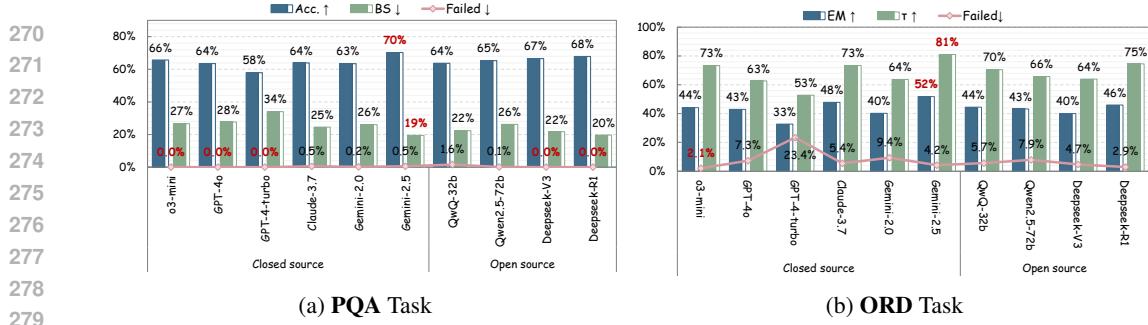


Figure 5: Performance Comparison on (a) the PQA Task, measured by Accuracy (Acc) and Brier Score (BS), and (b) the ORD Task, measured by Exact Match (EM) and Kendall’s Tau (τ). The best value for the primary metric in each task is highlighted in red.

a decision that subsequently guides a task-adaptive retriever. This retriever selects from knowledge bases with varying chunk granularities, employing concise chunks for fact-centric tasks (PQA, ERR) and more contextual chunks for procedural ones (ORD, GEN). It utilizes a hybrid search algorithm combining semantic and lexical signals to ensure optimal context retrieval. Finally, the retrieved context is synthesized by a generator, which utilizes the best-performing baseline LLM identified for each specific task. This modular, adaptive design ensures an optimally configured response for any given procedural challenge. Detailed hyperparameters are provided in Appendix E.3.

5 EXPERIMENTS

We evaluated several Large Language Models (LLMs) on the BioProBench benchmark to establish a comprehensive view of their capabilities on procedural biological tasks. Our evaluation included 10 state-of-the-art general-purpose models, spanning both closed-source and open-source categories. Additionally, we assessed several smaller-scale, domain-specific Bio-LLMs; due to their distinct architectural and training paradigms, a detailed analysis of their performance is provided in Appendix G.6. Our evaluation of Bio-LLMs indicates they struggle with the procedural reasoning in BioProBench, suggesting this capability is an emergent property of larger models not fully captured by domain adaptation at this scale. A granular analysis further reveals nuanced performance, with models exhibiting unique strengths in specific sub-domains, which underscores BioProBench’s utility for fine-grained capability assessment. For the main evaluation, we used a held-out test set of approximately 1,000 instances per task. Full implementation details are provided in Appendix E.

5.1 LLM PERFORMANCE ON THE BIOPROBENCH BENCHMARK

Protocol Question Answering (PQA). This task revealed varied comprehension abilities (Figure 5(a)). The top-performing closed-source model, Gemini-2.5-pro-exp, achieved the highest accuracy (70.27%), while leading open-source models like Deepseek-R1 (67.83%) demonstrated highly competitive performance. We observed a strong correlation between accuracy and confidence calibration (**BS**), where top performers also exhibited the most reliable confidence estimates. Further analysis, detailed in Appendix G.2, reveals a consistent trend across models: they perform best on qualitative tasks like identifying procedural steps (‘Operation’ questions) but struggle with quantitative details (‘Parameter’ questions), suggesting a key limitation in precise numerical comprehension.

Step Ordering (ORD). The ORD task proved challenging for all models, exposing significant limitations in reasoning about procedural dependencies (Figure 5(b)). Performance on **Exact Match (EM)** was low, with the best model achieving only 51.80%, indicating a failure to reconstruct the correct global sequence in nearly half of cases. However, higher **Kendall’s Tau (τ)** scores (0.81 for the top model) suggest most models possess a reasonable grasp of local, pairwise step relationships. A high failure rate across models, primarily due to missing or extra steps in the output, reveals a fundamental struggle with maintaining structural constraints (details in Appendix G.3). This difficulty is exacerbated as the sequence length increases, leading to a sharp decline in performance and a higher failure rate, as shown for the best-performing model in Appendix G.3.

Table 2: Performance Comparison on **ERR** Task. The best value is highlighted in blue, and the runner-up value is highlighted in light blue.

Type	Model	Acc.↑	Prec.↑	Recall↑	F1↑	Failed↓
Closed source	o3-mini (OpenAI, 2025)	0.6233	0.8443	0.2993	0.4420	0.00%
	GPT-4o (Achiam et al., 2023)	0.6267	0.7500	0.3763	0.5011	0.00%
	GPT-4-turbo (OpenAI, 2023)	0.5617	0.8000	0.1605	0.2674	0.00%
	Claude-3-7-sonnet (Anthropic, 2025)	0.6093	0.7363	0.3367	0.4621	0.17%
	Gemini-2.0-flash (Google AI Blog, 2024)	0.5867	0.7090	0.2893	0.4109	0.00%
	Gemini-2.5-pro-exp (Google AI Blog, 2025)	0.6483	0.7009	0.5134	0.5927	0.00%
Open source	QwQ-32b (Qwen Team, 2025)	0.6300	0.6552	0.5435	0.5941	0.00%
	Qwen2.5-72b-instruct (Qwen Team, 2024)	0.5917	0.7500	0.2709	0.3980	0.00%
	Deepseek-V3 (Liu et al., 2024a)	0.5858	0.7306	0.2676	0.3917	0.00%
	Deepseek-R1 (Guo et al., 2025)	0.6292	0.6197	0.6622	0.6403	0.00%

Table 3: Performance Comparison on **REA-ERR** Task. The best value is highlighted in blue, and the runner-up value is highlighted in light blue.

Type	Model	Acc.	Prec.	Recall	F1	Failed	Consist.
Closed source	o3-mini (OpenAI, 2025)	0.6505	0.8352	0.3729	0.5156	0.08%	0.2962
	GPT-4o (Achiam et al., 2023)	0.6408	0.6803	0.5268	0.5938	0.00%	0.2945
	GPT-4-turbo (OpenAI, 2023)	0.6033	0.7699	0.2910	0.4223	0.00%	0.1547
	Claude-3-7-sonnet (Anthropic, 2025)	0.6508	0.7493	0.4498	0.5622	0.00%	0.2146
	Gemini-2.0-flash (Google AI Blog, 2024)	0.6003	0.7542	0.2977	0.4269	0.33%	0.1780
	Gemini-2.5-pro-exp (Google AI Blog, 2025)	0.6850	0.7273	0.5886	0.6506	0.00%	0.3943
Open source	QwQ-32b (Qwen Team, 2025)	0.6421	0.5942	0.8943	0.7140	0.58%	0.2280
	Qwen2.5-72b-instruct (Qwen Team, 2024)	0.6300	0.7175	0.4247	0.5336	0.00%	0.2529
	Deepseek-V3 (Liu et al., 2024a)	0.6150	0.7906	0.3094	0.4447	0.00%	0.1980
	Deepseek-R1 (Guo et al., 2025)	0.6299	0.5903	0.8353	0.6917	0.25%	0.4526

Error Correction (ERR). Performance on this binary classification task was moderate, with accuracies ranging from 58% to 65% (Table 2). The results highlighted a distinct trade-off between **Precision** and **Recall**. Some models, like GPT-4-turbo, were highly precise (80.00%) but had very low recall (16.05%), acting as conservative error detectors. In contrast, open-source models such as Deepseek-R1 achieved a more effective balance, attaining the highest **FI**-score (64.03%) driven by strong recall (66.22%).

Protocol Reasoning on Error Correction (REA-ERR). To probe the model’s explicit reasoning process, the REA-ERR task required models to generate a Chain-of-Thought (CoT) before providing a final answer. This allows for a deeper analysis of not just whether a model can identify an error, but why it does so. As shown in Table 3, structured CoT prompting significantly boosts performance for reasoning-optimized models; for instance, QwQ-32b’s ***F1***-score rose from 59.41% (on ERR) to 71.40%, and Deepseek-R1’s also substantially improved.

To evaluate the validity of the generated reasoning chains, we use a *Consistency (Consist.)* metric, employing an LLM-as-a-judge. We acknowledge the potential skepticism towards LLM-based evaluation; therefore, we strictly limited its role to a semantic matching task, verifying if the model's stated error reason aligns with the ground truth, rather than an open-ended scientific evaluation.

To empirically validate this approach, we conducted a blinded human evaluation on 200 randomly sampled instances. The results showed a 94.21% agreement rate between the LLM-judge and human domain experts. This high level of agreement provides strong support for the metric's reliability in this specific context. Crucially, the gap between models' predictive accuracy and their reasoning consistency reveals that models often reach the correct answer through invalid reasoning. More detailed explanations are in Appendix G.7.

Protocol Generation (GEN). The GEN task revealed a comprehensive failure across all models (Figure 6). While standard fluency metrics like **BLEU** were uniformly low (max 10.23%), and the best **METEOR** score was 24.78%, domain-specific metrics exposed more critical scientific flaws. The two most significant failures were twofold: **Step Recall (SR)** below 43%, models omitted more than half of the necessary steps, while low **Step Precision (SP)** (20%–32%) showed that their outputs were diluted with irrelevant or fabricated steps. This widespread inability to generate complete and accurate protocols highlights a profound limitation of current models.

Figure 6: Comprehensive Performance Comparison on GEN Task under Direct and Zero-Shot Chain-of-Thought (CoT) Prompting.

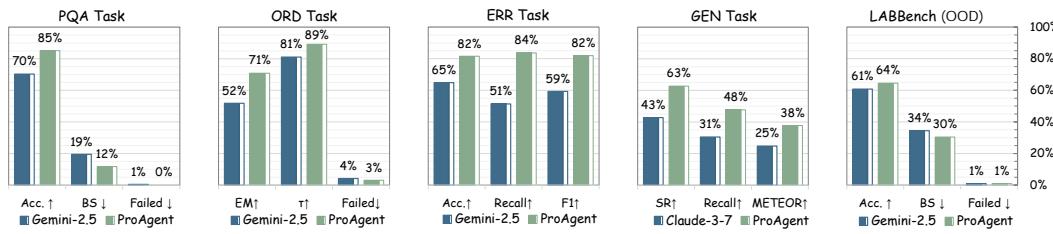


Figure 7: Comprehensive Performance Comparison on ProAgent and Gemini-2.5.

Protocol Reasoning on Protocol Generation (REA-GEN). Employing zero-shot CoT prompting (Kojima et al., 2022) consistently degraded performance across most models and metrics in the GEN task. Claude-3-7-sonnet’s *SR* dropped from **0.4280** to **0.3918**. This suggests that untuned reasoning can disrupt coherent text generation. To address this, BioProBench provides structured CoT exemplars to serve as a basis for fine-tuning. The value of such guided reasoning is confirmed in our one-shot CoT experiments (Appendix G.4), which show that providing a single exemplar can mitigate performance loss and even improve certain metrics, unlike the disruptive zero-shot approach .

5.2 PROAGENT PERFORMANCE ANALYSIS

To validate the effectiveness of the BioProCorpus as a solution to the identified failures, we evaluated ProAgent on both our benchmark and an external dataset.

Performance on BioProBench. As detailed in Figure 7, grounding a capable LLM with our corpus via RAG yields substantial performance gains. In PQA, ProAgent increases accuracy by 15 points to 85.08%. In ERR, it achieves an F1-score of 81.9%, markedly improving upon the baseline’s 59.27%. Most critically, for the GEN task, ProAgent raises Step Recall (SR) from 42.8% to 62.24%, directly mitigating the key failure mode of step omission. These gains strongly validate that BioProCorpus provides the necessary knowledge to enhance procedural fidelity and reduce hallucinations. However, while ProAgent marks a significant advancement, its performance is not perfect. For instance, a SR of 62.24% in the GEN task, while a 19-point improvement, still indicates that nearly 38% of necessary steps are omitted, highlighting that challenges in generating fully complete and accurate long-form protocols persist even when grounded with a high-quality corpus.

Generalization on External Benchmarks. To assess the broader utility of BioProCorpus, we evaluated ProAgent on 108 protocol-related questions from the LAB-Bench benchmark (Laurent et al., 2024), an out-of-distribution (OOD) task. Without RAG, the base model achieved 60% accuracy. After integrating the BioProBench RAG module, accuracy rose to 64%. This 4% absolute

432 improvement on an OOD task underscores the robust and transferable knowledge contained within
 433 our corpus, demonstrating its value as a foundational resource.
 434

435 **Robustness and Validity Analysis.** To ensure the reliability of our evaluation, we conducted addi-
 436 tional experiments on data contamination and metric validation. We performed a perturbation anal-
 437 ysis on the PQA task. Results show that model performance remains stable even when numerical
 438 values in the context are modified, suggesting models rely on in-context reasoning rather than mem-
 439 orization (see Appendix I). We validated our embedding-based metrics (SR/SP) against an LLM-
 440 as-a-judge approach. Correlation analysis confirms that SR and SP align significantly better with
 441 expert judgment than traditional keyword-based metrics, verifying their effectiveness for procedural
 442 evaluation (see Appendix F.3).
 443

444 6 RELATED WORKS

445 6.1 LLMs IN BIOMEDICAL DOMAIN ADAPTATION

446 While the rapid advancement of Large Language Models (LLMs) (Brown et al., 2020; Achiam
 447 et al., 2023; Anil et al., 2023; Team et al., 2023; Touvron et al., 2023b) has revolutionized NLP,
 448 their application in biomedicine is hindered by the domain shift between general and special-
 449 ized corpora (Jahan et al., 2024). To mitigate this domain shift, three adaptation strategies have
 450 emerged: **Architecture-specific tuning**: BioBERT (Lee et al., 2020) adapts BERT through contin-
 451 ued pre-training on PubMed. **Task-oriented specialization**: BioBART (Yuan et al., 2022) leverages
 452 BART’s encoder-decoder framework for generation-heavy tasks like literature summarization, while
 453 BioGPT (Luo et al., 2022) employs GPT-style autoregressive modeling to attain state-of-the-art per-
 454 formance on complex reasoning benchmarks like PubMedQA (Jin et al., 2019). **Multimodal inte-
 455 gration**: BioMedGPT (Luo et al., 2023) pioneers cross-modal alignment between medical imaging
 456 and text. However, these methods primarily address declarative knowledge found in literature or
 457 clinical narratives. They fall short when applied to experimental protocols, which are defined by
 458 procedural logic and precise operational language that eludes current models’ comprehension.
 459

460 6.2 BIOLOGICAL DATASETS AND BENCHMARKS

461 Existing biomedical benchmarks have evolved from question-answering (e.g., BioASQ (Tsatsar-
 462 onis et al., 2015) and PubMedQA (Jin et al., 2019)) to complex reasoning (e.g., DiseaseQA (Jin
 463 et al., 2021) and ComprehensiveBioEval (Jahan et al., 2024)), but dedicated evaluation of pro-
 464 cedural knowledge in protocols remains limited. However, evaluations focusing specifically on **bio-
 465 logical experimental protocols** remain limited. For example, LAB-Bench (Laurent et al., 2024)
 466 includes many QA contents but only 135 related to protocols. BixBench (Mitchener et al., 2025)
 467 focuses on multi-step analysis of real-world datasets but does not specifically address protocol struc-
 468 ture or procedural logic. In related clinical safety scenarios, CARDBiomedBench (Bianchi et al.,
 469 2025) evaluates neurological diagnosis and risk mitigation, and MedXpertQA (Zuo et al., 2025)
 470 assess domain-specific reasoning but not experimental protocols. A few emerging resources target
 471 sub-tasks of protocol processing, such as error identification (BioLP-bench (Ivanov, 2024)), plan-
 472 ning (BioPlanner (O’Donoghue et al., 2023)), or multimodal activity recognition (ProBio (Cui et al.,
 473 2023)). While **none systematically evaluate the comprehensive challenges of real-world proto-
 474 cols**, which require strict step ordering, causal and conditional logic, precise quantitation, and safety
 475 compliance across the key dimensions of understanding, reasoning, and generation. **BioProBench**
 476 fills this critical gap as the first large-scale benchmark explicitly dedicated to *procedural reasoning*
 477 in *biological protocols*, thereby complementing existing declarative benchmarks with a focus on
 478 experimental fidelity and laboratory automation.
 479

480 7 CONCLUSION

481 **Summary.** In this work, we introduced BioProBench, a large-scale resource for advancing pro-
 482 cedural reasoning in scientific AI. We presented three key assets: a foundational **BioProCorpus** of
 483 27,000 human-authored protocols; a large **dataset** of over 550,000 structured instances for training

486 and evaluation; and a rigorous **benchmark** to diagnose model capabilities. Our evaluation reveals
487 that leading LLMs have systemic weaknesses in handling causal logic, quantitative precision, and
488 structured generation. We demonstrate that these limitations can be substantially mitigated: **ProA-**
489 **gent**, a RAG-based agent grounded in our corpus, achieves significant performance gains across all
490 tasks, validating the corpus’s value as a high-fidelity knowledge source. BioProBench thus provides
491 a dual contribution: a benchmark to diagnose LLM deficiencies and a foundational resource for
492 building more reliable scientific agents.

493 **Limitation & Future Work.** Key limitations include the reliance on LLMs for task structuring,
494 which may introduce subtle model-specific artifacts, and a focus on textual protocols that omits real-
495 world multimodal context (*e.g.*, images, videos). Future work will proceed in two directions: incor-
496 porating multimodal data, which will necessitate the development of novel evaluation frameworks to
497 assess visual grounding and cross-modal reasoning in procedural tasks, and, building on ProAgent’s
498 success, developing protocol-specialized LLMs using the BioProBench dataset for lightweight adap-
499 tation (*e.g.*, LoRA) and advanced RAG architectures.

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540
541

ETHICS STATEMENT

542
543
544
The authors have read and adhered to the ICLR Code of Ethics. This work is centered on the
creation of a public dataset and benchmark, and we have taken several steps to address potential
ethical considerations.545
546
547
548
549
550
551

Data Sourcing and Licensing: The BioProCorpus is constructed entirely from publicly accessible
scientific protocol repositories. We have meticulously documented the source and license of every
protocol used. As detailed in Appendix D, we strictly adhere to the licensing terms of each source.
The publicly released portion of our benchmark (approximately 380,000 instances) is derived ex-
clusively from sources with open licenses (e.g., CC BY 4.0), ensuring full compliance and legal
redistribution. Data derived from sources with restrictive licenses are not redistributed and are used
only for internal validation.

552
553
554
555
556
557

Potential for Harmful Insights or Applications: Our research aims to improve the safety and
reliability of AI in automated scientific experimentation. By creating a benchmark that specifically
probes for failures in procedural logic, quantitative accuracy, and safety-critical reasoning (e.g., the
ERR task), our goal is to identify and mitigate the risks of LLMs generating incorrect or unsafe
experimental protocols. We believe the primary application of this work is beneficial, contributing to
more robust and trustworthy AI for science.

558
559
560
561
562

Dataset Integrity: To ensure the scientific validity and minimize potential artifacts introduced by
LLM assistance in task formatting, all benchmark instances underwent a rigorous quality filtering
pipeline, including programmatic checks and manual validation by five PhD-level domain experts,
as described in Section 2.3.

563
564

REPRODUCIBILITY STATEMENT

565
566
567
We are committed to ensuring the reproducibility of our work. To facilitate this, we provide comprehensive details of our methodology, data, and experiments.568
569
570
571

Code and Data: The complete BioProBench benchmark (publicly licensed portion), and the source code for our evaluation pipeline and the ProAgent implementation are available at the following anonymous repository: <https://anonymous.4open.science/r/Anonymization-112358>.

572
573

Methodology and Implementation Details:

574
575
576
577
578
579
580
581
582

- The data collection, cleaning, structuring, and quality filtering processes are thoroughly described in Section 2 and detailed in Appendix A, B, and C, with representative examples for each task.
- All evaluation metrics are formally defined in Section 3, with further details in Appendix F. The full list of evaluated models, their versions, and the experimental setup are provided in Appendix E. The specific prompts used for each task are available in Appendix E.4.
- The architecture and implementation details of ProAgent are described in Section 4 and Appendix E.3, providing a clear basis for reproducing our baseline results.

583
584
These resources should provide the necessary components for the community to verify our results
and build upon this work.585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
597 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
598 report. *arXiv preprint arXiv:2303.08774*, 2023.

599 Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
600 Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
601 *arXiv preprint arXiv:2305.10403*, 2023.

602 Anthropic. Claude 3.7 sonnet system card, Feb 2025. Hybrid reasoning model; <https://www.anthropic.com/news/clause-3-7-sonnet>.

603

604 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
605 correlation with human judgments. In *Proceedings of the ACL workshop on intrinsic and extrinsic*
606 *evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.

607

608 Owen Bianchi, Maya Willey, Chelsea X Alvarado, Benjamin Danek, Marzieh Khani, Nicole
609 Kuznetsov, Anant Dadu, Syed Shah, Mathew J Koretsky, Mary B Makarous, et al. Cardbiomed-
610 bench: A benchmark for evaluating large language model performance in biomedical research.
611 *bioRxiv*, pp. 2025–01, 2025.

612 Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
613 with large language models. *Nature*, 624(7992):570–578, 2023.

614

615 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
616 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
617 few-shot learners. *Advances in Neural Information Processing Systems*, 33, 2020.

618 Jieming Cui, Ziren Gong, Baoxiong Jia, Siyuan Huang, Zilong Zheng, Jianzhu Ma, and Yixin Zhu.
619 Probio: A protocol-guided multimodal dataset for molecular biology lab. *Advances in Neural*
620 *Information Processing Systems*, 36:41543–41571, 2023.

621

622 Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
623 Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. *Communications of the ACM*, 64
624 (12):86–92, 2021.

625 Google AI Blog. Introducing gemini 2.0: Our new ai model for the agentic era, Dec 2024.
626 Google DeepMind blog; [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/)
627 [google-gemini-ai-update-december-2024/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/).

628 Google AI Blog. Introducing gemini 2.5 pro experimental (model id
629 gemini-2.5-pro-exp-03-25). Google DeepMind Blog, April 2025.
630 URL [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/)
631 [gemini-model-thinking-updates-march-2025/](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/). Also documented in
632 Google Cloud Vertex AI model card: <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro>.

633

634 Maarten Grootendorst. Maartengr/keybert: Bibtex, January 2021. URL <https://doi.org/10.5281/zenodo.4461265>.

635

636 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
637 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
638 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

639

640 Igor Ivanov. Biolp-bench: Measuring understanding of biological lab protocols by large language
641 models. *bioRxiv*, pp. 2024–08, 2024.

642

643 Israt Jahan, Md Tahmid Rahman Laskar, Chun Peng, and Jimmy Xiangji Huang. A comprehensive
644 evaluation of large language models on benchmark biomedical text processing tasks. *Computers*
645 *in biology and medicine*, 171:108189, 2024.

646 Qi Jin, Yucheng Diao, Feng Song, et al. Disease diagnosis in the era of deep learning: A com-
647 prehensive survey. In *Proceedings of the 2021 IEEE International Conference on Bioinformatics and*
Biomedicine, 2021.

648 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
 649 for biomedical research question answering. *EMNLP 2019*, 2019.
 650

651 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 652 language models are zero-shot reasoners. *Advances in neural information processing systems*,
 653 35:22199–22213, 2022.

654 Yanis Labrak, Adrien Bazoge, Emmanuel Morin, and *et al.* Biomistral: A collection of open-source
 655 pretrained large language models for medical domains. *arXiv preprint arXiv:2402.10373*, 2024.
 656

657 Jon M Laurent, Joseph D Janizek, Michael Ruzo, Michaela M Hinks, Michael J Hammer-
 658 ling, Siddharth Narayanan, Manvitha Ponnappati, Andrew D White, and Samuel G Rodriques.
 659 Lab-bench: Measuring capabilities of language models for biology research. *arXiv preprint*
 660 *arXiv:2407.10362*, 2024.

661 Jinyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jae-
 662 woo Kang. Biobert: a pre-trained biomedical language representation model for biomedical text
 663 mining. *Bioinformatics*, 36(4):1234–1240, 2020.

664 Valentin Liévin, Christoffer Egeberg Hother, Andreas Geert Motzfeldt, and Ole Winther. Can large
 665 language models reason about medical questions? *Patterns*, 5(3), 2024.
 666

667 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 branches out*, pp. 74–81, 2004.

668 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng, Chong
 669 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
 670 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.
 671

672 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 673 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 674 *arXiv:2412.19437*, 2024b.
 675

676 Renqian Luo, Lai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu. Biogpt:
 677 generative pre-trained transformer for biomedical text generation and mining. *Briefings in Bioin-
 678 formatics*, 23(6):bbac409, 2022.

679 Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Yushuai Wu, Mu Qiao, and Zaiqing Nie.
 680 Biomedgpt: Open multimodal generative pre-trained transformer for biomedicine. *arXiv preprint*
 681 *arXiv:2308.09442*, 2023.
 682

683 Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P
 684 Wellawatte, Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehen-
 685 sive benchmark for llm-based agents in computational biology. *arXiv preprint arXiv:2503.00096*,
 686 2025.

687 Tal Murthy and Jamien Lim. Laboratory automation and high-throughput biology, 2024.
 688

689 Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King,
 690 Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. Can generalist foundation models outcompete
 691 special-purpose tuning? case study in medicine. *arXiv preprint arXiv:2311.16452*, 2023.
 692

693 Odhran O’Donoghue, Aleksandar Shtedritski, John Ginger, Ralph Abboud, Ali Essa Ghareeb, Justin
 694 Booth, and Samuel G Rodriques. Bioplanner: automatic evaluation of llms on protocol planning
 695 in biology. *arXiv preprint arXiv:2310.10632*, 2023.

696 OpenAI. Openai announces gpt-4 turbo, 2023. API Documentation; <https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo>.
 697

698 OpenAI. Gpt-4o system card, Aug 2024. System card; <https://openai.com/index/gpt-4o-system-card/>.
 699

700 OpenAI. Introducing openai o3 and o4-mini. OpenAI Blog, April 2025. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.
 701

702 Kishore Papineni, Sanjeev Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 703 evaluation of machine translation. *Proceedings of the 40th annual meeting on Association for*
 704 *Computational Linguistics*, pp. 311–318, 2002.

705 Qwen Team. Qwen2.5-72b-instruct, 2024. Model card; <https://huggingface.co/Qwen/Qwen2.5-72B-Instruct>.

706 Qwen Team. Qwq-32b, 2025. Model card; <https://huggingface.co/Qwen/QwQ-32B>.

707 Shuo Ren, Pu Jian, Zhenjiang Ren, Chunlin Leng, Can Xie, and Jiajun Zhang. Towards scientific
 708 intelligence: A survey of llm-based scientific agents. *arXiv preprint arXiv:2503.24047*, 2025.

709 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
 710 Kevin Clark, Stephen R Pfahl, Heather Cole-Lewis, et al. Toward expert-level medical question
 711 answering with large language models. *Nature Medicine*, pp. 1–8, 2025.

712 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 713 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 714 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

715 Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
 716 Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. *Nature medicine*,
 717 29(8):1930–1940, 2023.

718 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 719 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 720 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

721 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 722 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 723 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

724 George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, Ioannis Partalas, Matthias
 725 Zschunke, Michael R Alvers, Dirk Weissenborn, Anastasia Krithara, Sergios Petridis, Dimitris
 726 Polychronopoulos, et al. An overview of the bioasq large-scale biomedical semantic indexing and
 727 question answering competition. *BMC Bioinformatics*, 16(1):1–28, 2015.

728 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 729 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 730 *neural information processing systems*, 35:24824–24837, 2022.

731 Lin Yang, Shawn Xu, Andrew Sellergren, Timo Kohlberger, Yuchen Zhou, Ira Ktena, Atilla Ki-
 732 raly, Faruk Ahmed, Farhad Hormozdiari, Tiam Jaroensri, et al. Advancing multimodal medical
 733 capabilities of gemini. *arXiv preprint arXiv:2405.03162*, 2024.

734 Hongyi Yuan, Zheng Yuan, Ruyi Gan, Jiaxing Zhang, Yutao Xie, and Sheng Yu. Biobart: Pretraining
 735 and evaluation of a biomedical generative language model. *arXiv preprint arXiv:2204.03905*,
 736 2022.

737 Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding,
 738 and Bowen Zhou. Medxpertqa: Benchmarking expert-level medical reasoning and understanding.
 739 *arXiv preprint arXiv:2501.18362*, 2025.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A CORPUS PROCESSING DETAILS**
757758 **A.1 RAW DATA PROCESSING**
759760 The raw Markdown files underwent a comprehensive multi-stage cleaning pipeline. We first dedu-
761 plicated entries to ensure uniqueness and remove redundancies. Subsequently, we normalized their
762 structure by converting varying formats of headings, lists, and code blocks into a consistent rep-
763 resentation. Protocols exhibiting missing or malformed sections, or those failing initial parsing
764 checks, were filtered out during this process to maintain data quality. After this cleaning and filter-
765 ing, each remaining protocol was serialized as a structured JSON object, containing the following
766 key fields: "id": A unique protocol identifier; "title": The protocol's official title; "url": A
767 direct link to the original protocol page on its repository; "keywords": A curated list of keywords
768 summarizing the protocol's content; "abstract": A concise summary or overview of the proto-
769 col; "input": Input parameters, required materials, or preconditions; "protocols": The core
770 step-by-step description of the experimental procedure; "length": Protocol length.
771772 This structured representation facilitates efficient downstream data access, querying, and processing,
773 serving as the foundational data layer for subsequent task construction within **BioProBench**.
774775 **A.2 HIERARCHICAL ENRICHMENT AND ANNOTATION**
776777 To capture the intricate multi-level structure inherent in biological protocols, beyond just linear steps,
778 we applied Large Language Models for hierarchical parsing and extraction of key semantic descrip-
779 tors. Specifically, we leveraged LLaMA (Touvron et al., 2023a) and Deepseek-v3 (Liu et al., 2024b)
780 models for these tasks. Following this enrichment process, we augmented the original JSON data
781 objects with additional structured fields: "hierarchical_protocol": A nested dictionary or-
782 ganizing the linearized protocol steps into a tree-like hierarchy of up to four levels; "problem",
783 "method", "innovation", "application", "description": Automatically extracted
784 key descriptors designed to succinctly capture the scientific context, methodology, novel aspects, po-
785 tential applications, and a general overview of the protocol; "classification": A dictionary
786 providing domain classification of the protocol, including fields such as "primary_domain",
787 "all_domains" (listing all relevant biological domains), and a numerical "confidence" score
788 indicating the model's certainty for the predicted classification. This hierarchical and semantic en-
789 richment is crucial for generating sophisticated, task-specific prompts that effectively leverage not
790 only the raw textual content of the protocols but also their underlying structural organization, de-
791 pendencies, and key scientific attributes. The enhanced data structure example is as follows:
792793 **Example of Enhanced Data**

```

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
  "id": "Protocol.io-11",
  "title": "Protein Immunoprecipitation (IP) from HEK293 Cells or iNeurons",
  "url": "https://www.protocols.io/view/protein-immunoprecipitation-ip-from-hek293-cells-
  o-dpyj5pun",
  "keywords": ["Protein Immunoprecipitation", "HEK293 Cells", ...],
  "abstract": "This protocol described the methods used to isolate...",
  "input": "Template DNA, primers, dNTPs, Taq polymerase...",
  "protocols": "1. Protein Extraction from HEK293 Cells or iNeurons... 2.
    Immunoprecipitation...",
  "length": 1471,
  "hierarchical_protocol": {"1": {"title": "Protein Extraction from HEK293 Cells or
    iNeurons"}, ... "2": {"title": "Immunoprecipitation"}, ...},
  "classification": {
    "primary_domain": "Genomics Technologies",
    "all_domains": ["Genomics Technologies", "Bioinformatics Methods", "Molecular
      Biology Techniques"], "confidence": 0.95},
  "description": "SHARE-seq protocol v2.2 addresses the need for a scalable and efficient
    method...",
  "problem": "Need for an advanced and scalable method to simultaneously profile
    chromatin accessibility and gene expression in single cells...",
  "method": "An updated version of SHARE-seq, leveraging combinatorial indexing and split
    -pool barcoding ...",
  "innovation": "Improved scalability, reproducibility, and efficiency for large-scale
    data production...",
  "application": "Used by the Epigenomics Platform and Gene Regulation Observatory at the
    Broad Institute for the IGVF project..."
```

810 **B BENCHMARK CONSTRUCTION DETAILS**
811812 **B.1 DETAILS OF THE CONSTRAINED LLM-ASSISTED STRUCTURING PROCESS**
813814 Our task generation pipeline was meticulously designed to ground all content in human-authored
815 protocols while minimizing creative input from Large Language Models (LLMs). The pipeline,
816 illustrated in Figure 2 in the following key stages.
817818 We first designed standardized, parameterized instruction templates for each task. These templates
819 define the task’s objective, input/output format, and difficulty constraints. They contain slots where
820 specific content from the source protocols (e.g., a list of steps, a sentence with a numerical parameter)
821 is programmatically inserted. The template itself dictates the structure of the task, not the LLM.
822823 We selected specific models for their proficiency in reliable, low-level text manipulation tasks (e.g.,
824 Deepseek-V2 (Liu et al., 2024a) for QA distractor generation, Deepseek-V3 (Liu et al., 2024b) for
825 ERR perturbations). The selection was based on small-scale experiments focused on instruction-
826 following fidelity rather than generative creativity.
827828 For each protocol, our system extracts relevant content and inserts it into the corresponding instruc-
829 tion template to create a highly specific prompt. The LLM’s role is strictly confined to executing
830 the instruction within this prompt. For example, the prompt explicitly provides the correct answer
831 and instructs the model only to generate four other plausible-sounding distractors for PQA. In this
832 capacity, the LLM functions as a constrained string manipulation tool, not a knowledge source.
833834 A small set of manually curated, high-quality examples for each task was used as a reference. Gen-
835 erated instances were automatically compared against these examples for structural and format con-
836 sistency. Any outputs that deviated from the required format were discarded before entering the
837 main quality filtering pipeline.
838839 This human-in-the-loop, programmatically-guided process ensures that the LLM’s role is confined
840 to that of a highly constrained assistant for task re-formatting, thereby preserving the scientific
841 integrity of the benchmark.
842843 **C BENCHMARK EXAMPLES**
844845 Below we present one representative example for each of the five core tasks. Additional examples
846 are available in our public repository.
847848 **C.1 PROTOCOL QUESTION ANSWERING (PQA)**
849850 **Examples of PQA task instances**
851

```

852 {
853     "question": "Inoculate a 50~mL culture in a 250~mL flask with an initial OD_600nm
854         of approximately ____.",
855     "answer": "0.05",
856     "choices": ["0.01", "0.10", "0.20", "0.50", "0.05"],
857     "type": "parameter"
858 },
859 {
860     "question": "Resuspend the cell pellet in 2~mL of ____ solution or alternative
861         solutions based on bacterial strain requirements.",
862     "answer": "2% NaCl",
863     "choices": ["1% NaOH", "3% glycerol", "0.25% yeast extract", "5.5% NaClO", "2% NaCl
864         "],
865     "type": "reagent"
866 },
867 {
868     "question": "____ to homogenize the mixture after incubation.",
869     "answer": "Gently mix",
870     "choices": ["Vortex vigorously", "Centrifuge", "Boil", "Freeze", "Gently mix"],
871     "type": "operation"
872 }

```

C.2 STEP ORDERING (ORD)

Example of ORD task instance

```
"question": "Please sort the following steps titled 'Bacterial Growth Under Accumulation and No-Accumulation Conditions' in the correct order.",  
"wrong_steps": ["Plate Preparation",  
                "Overnight Culture",  
                "Growth Monitoring",  
                "Main Culture"],  
"correct_steps": ["Plate Preparation",  
                  "Overnight Culture",  
                  "Main Culture",  
                  "Growth Monitoring"]
```

C.3 ERROR CORRECTION (ERR)

Example of ERR task instance

```
"context": {
    "purpose": "Sterilization of seeds to remove surface contaminants using sodium
               hypochlorite.",
    "prior_step": "1.1 Place transgenic Arabidopsis seeds in a 1.5mL tube.",
    "next_step": "1.2.2 Vigorously mix the contents of the tube using a vortex mixer
                 .",
    "corrupted_text": "Mix 860\muL of sterile deionized water and 14\muL of 5% sodium
                      hypochlorite in a 1.5mL tube.",
    "corrected_text": "Mix 860\muL of sterile deionized water and 140\muL of 5% sodium
                      hypochlorite in a 1.5mL tube.",
    "is_correct": false,
    "type": "parameter",
    "error_description": "Reduced sodium hypochlorite volume may lead to insufficient
                         sterilization.",
  },
```

C.4 PROTOCOL GENERATION (GEN)

Example of GEN task instance

```
"system_prompt": "As a specialist in mouse model protocols, provide clear step-by-step instructions for experimental procedures.",  
"instruction": "Please describe the protocol in a flat list format (using only 1., 2., 3. numbers). Include only the steps, not a rationale or materials list. Use concise language and maintain a chronological order.",  
"input": "To prepare a mouse model of LPS-induced pulpitis, standardized recipes, autoclaving, and anesthesia protocols have been completed. How to perform the Modeling Surgery?",  
"output": [  
    "1. Weigh the C57BL/6 mouse using a beaker and an electronic scale.",  
    "2. Administer 1.2% tribromoethanol via intraperitoneal injection.",  
    "3. Pinch the mouse's toe to check its reaction.",  
    "4. Secure the mouse to the surgical pad with medical adhesive tape.",  
    "5. Open the mouse's oral cavity with curved ophthalmic forceps.",  
    "6. Use dressing forceps to expand the oral cavity and protect the tongue.",  
    "7. Access the maxillary first molar with a diamond bur and expand the pulp exposure .",  
    "8. Aspirate 0.1mL of 0.9% NaCl solution with a 1mL injection syringe.",  
    "9. Flush out any dentin debris from the medullary foramen.",  
    "10. Saturate a small cotton ball in the LPS-Pg solution.",  
    "11. Keep the saturated cotton ball on the exposed pulp for 5 minutes.",  
    "12. Remove the cotton ball and restore the tooth with Esthet-X flow.",  
    "13. Loosen the mouse's restraints and return it to the cage after it awakens."
```

918 C.5 PROTOCOL REASONING (REA)
919920 In the REA task, we employ structured Chain-of-Thought (CoT) templates for both **Protocol Gen-**
921 **eration (GEN)** and **Error Correction (ERR)** scenarios. These templates guide the model through
922 a clear, step-by-step reasoning process, covering experimental objectives, conditions, procedural
923 phases and risk considerations, before it produces the final output.
924925 For the **GEN** task, we use the following fixed format:
926927 Let's think step by step:
928 First, <Objective> specify the core objective </Objective>;
929 To achieve this, <Precondition> list existing conditions or prerequisites
930 </Precondition>;
931 The protocol must proceed as <Phase> divide the procedure into logical phases
932 </Phase>;
933 Critical parameters are <Parameter> identify key variables or settings
934 </Parameter>;
935 Finally, <Structure> define output format and hierarchy </Structure>.
936937 In this template, <Objective> is used to focus on the core objectives of the experiment; <Precon-
938 dition> clarifies the starting conditions and prerequisites; <Phase> divides the overall process into
939 several logical stages; <Parameter> lists key variables or indicators; and <Structure> constrains the
940 format and hierarchy of the final output. The model first fills in the corresponding content in each
941 label block to form a complete framework of ideas, and then generates coherent step text based on
942 the framework. The CoT example of GEN task is as flowing:
943944 Example of REA-GEN task instance
945946 ...
947 "cot": "Let's think step by step:
948 First, <Objective> generate, culture, and cryopreserve primitive endoderm stem cells
949 (PrESCs) from mouse blastocysts to establish fully potent PrESCs co-
950 expressing pluripotency and endoderm markers </Objective>.
951 To achieve this, <Precondition> the following materials are required: MEF feeder
952 cells, defined serum-free medium containing FGF4, heparin, CHIR9021, PDGF-AA,
953 TrypLE Select, CELLBANKER 1 plus, AK02N medium, and all necessary reagents
954 and equipment such as culture dishes, pipettes, centrifuge tubes, and
955 cryotubes </Precondition>.
956 The protocol must proceed as <Phase> 1) Mitotic inactivation of MEF, 2) Mouse mating
957 and blastocyst recovery, 3) MEF feeder preparation, 4) Blastocyst seeding, 5)
958 PrESC derivation and culture, 6) Cryopreservation, and 7) Gene expression
959 analysis </Phase>,
960 where critical parameters are <Parameter> MEF density (5x10^6 cells/plate),
961 Mitomycin C concentration (5 \mu g/mL), culture conditions (37 °C, 5% CO2
962), TrypLE Select incubation time (5 min), and cryopreservation solution (963
964 CELLBANKER 1 plus) </Parameter>.
965 Finally, <Structure> the protocol is structured into hierarchical operational steps
966 with numeric identifiers, using imperative verbs, maintaining consistent tense
967 , ensuring reagent continuity across steps, and excluding theoretical
968 explanations to focus on detailed experimental procedures </Structure>."
969970 For the **ERR** task, CoT is:
971972 Example of REA-ERR task instance
973974 ...
975 "cot": "Parameter Error: Reduced sodium hypochlorite volume may lead to insufficient
976 sterilization."
977

972 D DATA LICENSING AND AVAILABILITY

974 We collected a total of 26,933 raw protocols, from which we generated approximately 556,121
 975 downstream task instances. These source protocols were obtained from six distinct repositories,
 976 each governed by specific licensing terms. To ensure strict compliance with these terms, we have
 977 segregated the derived task instances based on the licensing of their original source protocols. Ap-
 978 proximately 380,697 instances derived from openly licensed source content are publicly released
 979 under a Creative Commons Attribution 4.0 (CC BY 4.0) license. The remainder—originating from
 980 subscription-only or sources with unspecified or restrictive licenses—is retained exclusively for in-
 981 ternal use and is not redistributed. Detailed licensing information for each source repository and the
 982 corresponding status of derived data is summarized below:

983 984 D.1 OPENLY LICENSED SOURCES (DERIVED DATA RELEASED UNDER CC BY 4.0)

- 985 • **Bio-protocol**²: All task instances derived from Bio-protocol content are publicly released
 986 under CC BY 4.0. Original authorship and DOIs are attributed where applicable.
- 987 • **Protocol Exchange**³: As an open repository for community use, protocols from Protocol
 988 Exchange are licensed under terms permitting redistribution. Derived instances are pub-
 989 lished under CC BY 4.0, with appropriate citation of original entries.
- 990 • **Nature Protocols via protocols.io**⁴: We specifically sourced experimental procedures
 991 hosted on protocols.io that are designated as Nature Protocols and published under a CC
 992 BY 4.0 license. Task data derived from these specific protocols are publicly released under
 993 CC BY 4.0.
- 994 • **Protocols.io**⁵: The default licensing for user-submitted protocols on protocols.io is CC
 995 BY 4.0, which permits redistribution and adaptation with proper attribution to protocols.io.
 996 Task examples derived from such protocols are made publicly available under CC BY 4.0.

997 998 D.2 SOURCES WITH RESTRICTIVE OR UNSPECIFIED LICENSES (DERIVED DATA RETAINED 999 INTERNALLY)

- 1000 • **JoVE (Journal of Visualized Experiments)**⁶: JoVE’s protocols are proprietary content
 1001 protected under subscription/license agreements. Copyright is held by JoVE and the au-
 1002 thors, and bulk reuse requires explicit permission. Although content from JoVE informed
 1003 aspects of our task design and methodology development, ****no raw JoVE protocol text**
 1004 **or task instances derived solely from JoVE protocols are publicly released.****
- 1005 • **Morimoto Lab**⁷: The Morimoto Lab website does not explicitly specify an open license,
 1006 implying standard copyright protection by Northwestern University and the authors. Con-
 1007 sequently, ****no Morimoto Lab source text or directly derived task instances are in-**
 1008 **cluded in the public dataset.****

1009 By segregating openly licensed and privately retained content, BioProBench rigorously honors the
 1010 legal terms associated with each source while maximizing the portion of the benchmark that can be
 1011 freely shared. Users accessing the public dataset are welcome to utilize and adapt the approximately
 1012 380K CC BY 4.0-licensed instances without restriction, in accordance with the license terms. The
 1013 remaining instances—derived from proprietary or restrictively licensed protocols (approximately
 1014 176K instances)—are reserved strictly for internal verification, development, and benchmarking
 1015 purposes and are not redistributed.

1017 1018 E IMPLEMENTATION DETAILS

1021 ²<https://bio-protocol.org/en>

1022 ³<https://protocolexchange.researchsquare.com/>

1023 ⁴<https://www.nature.com/nprot/>

1024 ⁵<https://www.protocols.io/>

1025 ⁶<https://www.jove.com/>

⁷<https://www.morimotolab.org/>

1026
1027

E.1 LLMs USED IN THE WORK

1028
1029
1030

The Large Language Models (LLMs) evaluated in this study were selected to represent a diverse range of architectures and training paradigms. They are categorized into three groups:

1031
1032
1033
1034
1035
1036

- General-Purpose Proprietary LLMs: This group includes o3-mini (OpenAI, 2025), GPT-4o (version gpt-4o-2024-11-20) (OpenAI, 2024), GPT-4-turbo (OpenAI, 2023), claude-3.7-sonnet (version claude-3.7-sonnet-20250219) (Anthropic, 2025), gemini-2.0-flash (Google AI Blog, 2024), and gemini-2.5-pro-exp (version gemini-2.5-pro-exp-03-25) (Google AI Blog, 2025). These models represent the state-of-the-art in large commercial systems and serve as high-performance baselines.
- Leading Open-Source LLMs: This category comprises Deepseek-R1 (Guo et al., 2025), DeepSeek-V3 (version deepseek-v3-0324) (Liu et al., 2024b), QwQ 32B (Qwen Team, 2025), and qwen-2.5-72b-instruct (Qwen Team, 2024). These models were chosen as powerful, publicly accessible alternatives that reflect significant advancements in open-source development.
- Domain-Specific Bio-LLMs: We included BioMedGPT-10B (utilizing the BioMedGPT-LM-7B checkpoint) (Luo et al., 2023), BioMistral-7B (Labrak et al., 2024), and BioMistral-7B-DARE (Labrak et al., 2024) to assess the impact of domain-specific pre-training on biomedical corpora. BioMistral-7B-DARE was specifically selected for its enhanced performance on biomedical tasks.

1042
1043
1044
1045
1046

Our evaluation methodology was standardized to ensure reproducibility and fair comparison. For all proprietary and open-source models accessed via APIs, we used the official endpoints with their default *generation_config* settings. This approach reflects a typical "out-of-the-box" usage scenario and minimizes experimenter-introduced bias from model-specific hyperparameter tuning. The domain-specific Bio-LLMs were evaluated locally using Hugging Face Transformers on a single NVIDIA A6000 GPU, adhering to the precision types (bf16 or float16) and default generation parameters recommended by the developers.

1047

E.2 EVALUATION DATASET CONSTRUCTION

1048

The final evaluation dataset was curated from our comprehensive pool of generated task instances through a multi-stage, stratified sampling strategy designed to ensure statistical robustness.

1049
1050
1051
1052
1053
1054
1055
1056

The initial data pool was aggregated from six source repositories. To prioritize accessibility and reproducibility, instances derived from sources with restrictive licenses (JOVE and Morimoto Lab) were excluded. From the remaining openly licensed sources, we performed proportional random sampling. To ensure the dataset's representativeness, we then stratified the sample to achieve a balanced distribution across task-specific categories:

1057
1058
1059
1060
1061
1062
1063
1064

- **Protocol Generation (GEN)** task: Instances were stratified by difficulty levels, maintaining an approximate ratio of 5:2:1 for easy, standard, and difficult categories, respectively.
- **Protocol Question Answering (PQA)** task: Samples were balanced across defined question types, specifically targeting reagent, parameter, and operation-related questions, to achieve an equitable 1:1:1 distribution.
- **Error Correction (ERR)** task: A balanced 1:1 ratio of instances representing True versus False statements was enforced to mitigate potential classification biases during evaluation.
- **Step Ordering (ORD)** task: Instances were sampled to establish a 1:2 ratio between those requiring the ordering of top-level protocol steps versus those involving child-level (sub-protocol) steps, reflecting different granularity levels.

1065
1066
1067
1068
1069
1070
1071
1072

Finally, a panel of biology PhD experts conducted a rigorous manual review of all sampled instances. This human-in-the-loop validation confirmed the factual accuracy, logical coherence, and relevance of each item. This meticulous curation process resulted in a high-quality evaluation set comprising 1,200 instances for ERR, 772 for GEN, 1,200 for PQA, and 1,161 for ORD.

1080
1081

E.3 PROAGENT IMPLEMENTATION DETAILS

1082
1083
1084

ProAgent was constructed using the LangGraph library. The agent operates as a conditional graph where nodes represent processing steps (Planner, Retriever, Generator) and edges represent the flow of logic based on the planner’s decisions.

1085
1086
1087
1088
1089
1090
1091
1092
1093

Knowledge Base Construction: The 27,000 protocols from the corpus were split into chunks. The Small-Chunk KB was generated with a character window of 2000 and an overlap of 400. The Large-Chunk KB used a window of 5000 and an overlap of 1000. **Embedding Model:** All chunks were embedded using the Qwen-3-Embedding model. **Hybrid Search Configuration:** The weighting factor for hybrid search was set to $\alpha=0.6$, balancing semantic and lexical signals (60% semantic, 40% BM25). The FAISS index was an IndexFlatL2. BM25 was implemented using the rank-bm25 library. **Retrieval Parameters:** The initial dense retrieval stage returns 60 candidate chunks. The number of final chunks (k) passed to the generator is 5 for PQA/ERR tasks and 3 for ORD/GEN tasks.

1094
1095
1096

For PQA, ORD, and ERR tasks, we utilized the Gemini-2.5-pro-exp model via its official API. For the GEN task, we used the Claude-3-7-sonnet model.

1097
1098
1099
1100

E.4 PROMPTS USED IN EACH TASK

The specific prompts used for each task in our experiments are provided below.

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

Prompts for PQA

You will be given a multiple-choice question related to a biological protocol. The blank in the question (represented as) indicates where the correct choice should be filled in.

Question:
{question}

Choices:
{choices}

Your task:

- Choose the most likely correct answer from the given choices.
- You must always select one answer, even if you are unsure.
- The selected answer must match one of the choices exactly (including case and punctuation).
- Assign a confidence score between 0 and 100 based on your certainty.
- Output your answer wrapped exactly between the tags [ANSWER_START] and [ANSWER_END].
- The format of your response must be: [ANSWER_START]your selected choice & your confidence score[ANSWER_END]

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Prompts for ERR

Determine whether the following target step in a protocol is True or False:

{step}

You may use the following context, which includes the purpose of the step, as well as the preceding and following steps, to inform your decision:

{context}

Please carefully evaluate if the step is logically consistent, necessary, and accurate in the context. If you find anything wrong, answer False.

- Please respond with only True or False, without any additional explanation.
- Output your answer wrapped exactly between the tags [ANSWER_START] and [ANSWER_END].
- The format of your response must be: [ANSWER_START]True or False[ANSWER_END]

1134
1135

Prompts for ORD

1136

Please sort the following steps titled {title} in the correct order.

1137

The steps are:

1138

{steps out of order}

1140

- Give me the correct order of the steps as a list of their original indices (start from 0), no other words.

1141

- Output your answer wrapped exactly between the tags [ANSWER_START] and [ANSWER_END].

1143

- The format of your response must be: [ANSWER_START]a list of the original indices[ANSWER_END]

1144

1145

Prompts for GEN

1146

1147

You are a specialist in {domain} protocols, skilled in experimental procedures of {domain}.

1148

Please describe the protocol in a flat list format (using only 1., 2., 3. numbers). Include only the steps, not a rationale or materials list. Use concise language and maintain a chronological order.

1149

Format requirements:

1150

- Each step must be on a separate line.

1151

Now my question is:

1152

{input question}

1153

1154

Prompts for REA-GEN

1155

1156

You are a specialist in {domain} protocols, skilled in experimental procedures of {domain}.

1157

Please describe the protocol in a flat list format (using only 1., 2., 3. numbers). Include only the steps, not a rationale or materials list. Use concise language and maintain a chronological order.

1158

Your response must be structured strictly for machine processing. It must contain two main parts in order:

1159

1. Your Chain of Thought (CoT) process, formatted with specific XML-like tags.
2. The final detailed protocol steps, wrapped in [ANSWER_START][ANSWER_END] tags.

1160

Please begin your response by outputting your thinking process. Follow this exact structure and include your analysis within the respective tags:

1161

Let's think step by step:

<Objective>[Output the core objective of this protocol here]</Objective>.

1162

To achieve this, <Precondition>[Output the necessary preconditions, materials, equipment, etc., here]</Precondition>.

1163

The protocol must proceed as <Phase>[Output the logical division into key phases or stages here]</Phase>,

1164

where critical parameters are <Parameter>[Output the critical parameters for each step/phase and the logic behind them here]</Parameter>.

1165

Finally, <Structure>[Acknowledge and state the required output structure for the final steps here]</Structure>.

1166

After outputting the complete thinking process exactly as structured above, output the final detailed protocol steps.

1167

Format requirements for the final output steps (which must be placed between the [ANSWER_START] and [ANSWER-END] tags):

1168

- Each step must be on a separate line.
- [ANSWER_START] [Output the detailed protocol steps here, ensuring each step is on a new line] [ANSWER-END]

1169

Now my question is:

1170

{input question}

1188
1189

Prompts for REA-ERR

1190
1191
1192

Evaluate the validity of the following target step in a protocol. Follow the detailed reasoning process demonstrated in the example below to identify potential errors across Operation, Reagent, and Parameter categories, with meticulous attention to numerical values and their consistency with the provided context and typical practices.

1193
1194

--- Example Start

1195
1196

Example Target Step:

Mix 860 μ L of sterile deionized water and 14 μ L of 5% sodium hypochlorite in a 1.5mL tube.

1197
1198
1199
1200

Example Context:

"purpose": "Sterilization of seeds to remove surface contaminants using sodium hypochlorite.",

"prior_step": "1.1 Place transgenic Arabidopsis seeds in a 1.5mL tube.",

"next_step": "1.2.2 Vigorously mix the contents of the tube using a vortex mixer."

1201
1202
1203

Example Reasoning Process:

1. Operation Error: The operations (Mix) and the use of a 1.5mL tube are standard. No obvious operational errors.

1204
1205
1206
1207

2. Reagent Error: The reagents are appropriate. However, the specified volume of 5% sodium hypochlorite is 14 μ L, mixed with 860 μ L water. This results in a very dilute solution (0.07%). For sterilization, typical practice suggests a final concentration of around 0.5(1% sodium hypochlorite. Therefore, the reagent volume is significantly too low, which undermines effectiveness and contradicts the stated sterilization purpose.

1208
1209
1210

3. Parameter Error: Although explicit parameters like time and temperature are not mentioned, the concentration of sodium hypochlorite functions as a critical parameter in disinfection efficacy. Here, the final concentration (0.07%) is too low to be effective, making it a parameter error as well.

1211
1212
1213

Based on the significant numerical error in both Reagent volume and the effective concentration (parameter), the step is invalid.

1214
1215
1216

Example Answer: [ANSWER_START]False[ANSWER-END]

--- Example End

1217
1218
1219

Now, evaluate the following target step using the same detailed reasoning process demonstrated in the example above:

Evaluate the validity of the target step:
{step}

1220
1221
1222

You may use the following context, which includes the purpose of the target step, as well as the preceding and following steps, to inform your decision:
{context}

Analyze the step, paying meticulous attention to all numerical values (e.g., times, temperatures, volumes, concentrations, speeds, durations), by reasoning through the following three categories of potential errors. As part of this analysis, explicitly compare numerical values specified in the target step and consider typical laboratory practices.

1223
1224
1225

Only evaluate the correctness of the information explicitly present in the target step. Do not make assumptions about missing details. Focus solely on identifying errors in what is actually stated.

1226
1227
1228

The format of your final answer must be: [ANSWER_START]True or False[ANSWER-END]

1229
1230

F SUPPLEMENTARY EVALUATION METRICS

1231
1232
1233
1234

F.1 METRICS DETAILS

1235
1236
1237
1238

PQA We evaluate model performance using two key metrics: **accuracy** to measure answer correctness and the **Brier score** to assess confidence calibration. To compute these metrics, we first parse the model’s generated response to extract both the predicted answer and its associated confidence score.

The model’s output string is processed using regular expressions to isolate content between [ANSWER_START] and [ANSWER_END] markers. The parsed content is split into the predicted answer \hat{a}_i (first segment) and a confidence score c_i (numeric value extracted from the final segment). Failures in parsing (e.g., malformed output) are excluded from metric calculations and reported separately as a parsing error rate. **Accuracy** is then computed as:

$$A = \frac{1}{M} \sum_{i=1}^M \mathbb{I}(a_i = \hat{a}_i), \quad (3)$$

where a_i is the ground-truth answer, \hat{a}_i is the model’s prediction, and \mathbb{I} is the indicator function. **Brier Score** quantifies calibration by measuring the squared deviation between confidence and accuracy:

$$B = \frac{1}{M} \sum_{i=1}^M (c_i - \mathbb{I}(a_i = \hat{a}_i))^2, \quad (4)$$

with $c_i \in [0, 1]$ rescaled from the parsed confidence percentage. Perfect calibration yields $B = 0$.

For robustness, we report the parsing failure rate $\rho = F/N \times 100\%$, where F is the count of unparsable responses and N is the total number of questions.

ORD We evaluate ranking performance using two metrics: **Exact Match** for absolute sequence correctness and **Kendall’s Tau** (τ) for pairwise order consistency. The model’s output is parsed from the text between [ANSWER_START] and [ANSWER_END] markers, converted to a list of indices $\mathbf{p} = (p_1, \dots, p_n)$ representing the predicted order of steps. These are mapped to their corresponding step contents and compared against the ground-truth sequence $\mathbf{g} = (g_1, \dots, g_n)$. Cases with mismatched step sets (i.e., $\text{set}(\mathbf{p}) \neq \text{set}(\mathbf{g})$) are discarded and reported as parsing failures. **Exact Match** measures the proportion of perfectly predicted sequences:

$$A_{\text{EM}} = \frac{1}{M} \sum_{i=1}^M \mathbb{I}(\mathbf{p}_i = \mathbf{g}_i), \quad (5)$$

where M is the number of valid parsed samples and \mathbb{I} is the indicator function. **Kendall’s Tau** (τ) quantifies rank correlation by comparing concordant/discordant pairs:

$$\tau = \frac{2}{n(n-1)} \sum_{a < b} [\mathbb{I}((p_a - p_b)(g_a - g_b) > 0) - \mathbb{I}((p_a - p_b)(g_a - g_b) < 0)], \quad (6)$$

where n is the sequence length, and p_a, g_a denote the ranks of element a in the predicted and ground-truth orders, respectively. $\tau = 1$ indicates perfect agreement, while $\tau = -1$ implies complete inversion.

We further report the parsing failure rate $\rho = F/N \times 100\%$, where F counts unparsable or set-mismatched responses and N is the total samples.

ERR The model’s error detection capability is evaluated using standard binary classification metrics. The model’s output is parsed to extract the predicted boolean label (True for correct input, False for erroneous input) through pattern matching between [ANSWER_START] and [ANSWER_END] markers. Parsing failures (e.g., missing markers or invalid labels) are excluded from metric calculations. Key metrics are defined as:

- **Precision:** The proportion of correctly identified errors among all inputs flagged as erroneous by the model. High precision indicates low false alarm rate.
- **Recall:** The proportion of actual errors successfully detected by the model. High recall reflects comprehensive error coverage.
- **F1-score:** The harmonic mean of precision and recall, balancing the trade-off between false positives and false negatives.

1296 **GEN** To comprehensively assess the performance of Large Language Models (LLMs) on our protocol text generation benchmark, we employ a multi-faceted evaluation strategy. Recognizing the
 1297 limitations of relying solely on standard text generation metrics or potentially biased LLM-based
 1298 judges (given the specialized domain knowledge required for protocols, which current LLMs may
 1299 lack for reliable judgment), our evaluation integrates three distinct categories of metrics: Standard
 1300 Text Generation Metrics, Keyword-Based Content Metrics, and Embedding-Based Structural Metrics.
 1301 This approach aims to capture fluency, core semantic content, and the crucial procedural structure
 1302 inherent in biological protocols.
 1303

1304 We include established metrics primarily as a baseline assessment of overall textual fluency and
 1305 surface-level semantic similarity. While metrics like **BLEU** (Papineni et al., 2002), **METEOR**
 1306 (Banerjee & Lavie, 2005), and **ROUGE-L** (Lin, 2004) (which measures longest common subsequence
 1307 overlap) are standard, we acknowledge their potential insufficiency for evaluating the logical
 1308 coherence and step-by-step accuracy required in long-form, structured texts such as experimental
 1309 protocols. They serve as a general indicator of quality but are supplemented by more domain-
 1310 specific evaluations.
 1311

1312 In the Embedding-Based Structural Metrics, we calculate the semantic similarity between a gen-
 1313 erated step s' and a reference step s using Cosine Similarity. Let \mathbf{v}_s and $\mathbf{v}_{s'}$ denote the vector
 1314 embeddings of the reference step and the generated step, respectively, produced by the sentence
 1315 transformer model. The cosine similarity is defined as the dot product of the two vectors divided by
 1316 the product of their Euclidean magnitudes:

$$\text{Sim}(s, s') = \frac{\mathbf{v}_s \cdot \mathbf{v}_{s'}}{\|\mathbf{v}_s\| \|\mathbf{v}_{s'}\|} = \frac{\sum_{i=1}^n v_{s,i} v_{s',i}}{\sqrt{\sum_{i=1}^n v_{s,i}^2} \sqrt{\sum_{i=1}^n v_{s',i}^2}} \quad (7)$$

1317 where n is the dimensionality of the embedding vectors. The resulting score ranges from -1 to 1,
 1318 with 0 indicating orthogonality.
 1319

1320 **REA** To assess the model’s ability to provide accurate reasoning alongside error correction, we
 1321 evaluate its performance on two fronts: the correctness of the error detection and the validity of the
 1322 provided reasoning process.
 1323

1324 The evaluation of error detection itself mirrors the section above, utilizing standard binary classifi-
 1325 cation metrics: **Precision**, **Recall**, and **F1-score**.
 1326

1327 In addition to these, we introduce a specific metric to evaluate the quality of the reasoning provided
 1328 when an error is identified: **Consistency (Consist.)**. This metric measures the proportion of actual
 1329 erroneous samples for which the model correctly identifies the underlying reason for the error within
 1330 its reasoning process. Let S_{err} be the set of actual erroneous samples in the error correction task,
 1331 and $N_{\text{err}} = |S_{\text{err}}|$ be its cardinality. Let $\mathbb{I}_{\text{reason}}(\mathbf{x})$ be an indicator function that is 1 if the model’s
 1332 reasoning process for sample \mathbf{x} correctly identifies the true cause of the error, and 0 otherwise. The
 1333 Consistency is defined as:
 1334

$$\text{Consist.} = \frac{1}{N_{\text{err}}} \sum_{\mathbf{x} \in S_{\text{err}}} \mathbb{I}_{\text{reason}}(\mathbf{x}) \quad (8)$$

1335 For $\mathbb{I}_{\text{reason}}(\mathbf{x})$ to be 1, the model must not only successfully flag the input \mathbf{x} as erroneous, but its gen-
 1336 erated reasoning process must accurately reflect the ground-truth nature of the error. To determine
 1337 if the model’s identified error reason aligns with the ground-truth error, we employ an LLM-as-a-
 1338 judge, specifically `deepseek-v3`. The use of an LLM judge is considered appropriate here due
 1339 to the relatively low complexity of comparing the model’s stated error cause with the predefined
 1340 ground-truth error, a task for which current LLMs demonstrate sufficient competency.
 1341

1342 F.2 SUPPLEMENTARY ANALYSIS OF EVALUATION METHODOLOGY

1343 This section provides a detailed analysis to validate the robustness of our proposed evaluation frame-
 1344 work. We specifically investigate two key aspects of the embedding-based metrics (SR and SP): the
 1345 sensitivity to the choice of the similarity threshold and the dependency on a specific embedding
 1346 model. Furthermore, we present a granular, sub-domain level performance analysis to offer a more
 1347 nuanced understanding of model capabilities.
 1348

1350
 1351 **Sensitivity to the Similarity Threshold (δ)** The choice of the similarity threshold, δ , is a critical
 1352 parameter. To investigate its impact, we evaluated all models across a wide range of thresholds,
 1353 $\delta \in \{0.5, 0.6, 0.7, 0.8, 0.9\}$. This analysis yielded three key insights.
 1354

1355 1. **Identification of a Stable Ranking Zone:** The analysis revealed that while absolute scores
 1356 naturally decrease as the threshold becomes stricter, the relative rankings of the models
 1357 remain highly consistent within a “stable zone.” This consistency was quantified using
 1358 Spearman’s rank correlation (ρ) between the model rankings at our chosen threshold ($\delta =$
 1359 0.7) and other thresholds, as shown in Table 4. The correlation is exceptionally high (often
 1360 ≥ 0.8) within the $[0.6, 0.8]$ range, demonstrating that the choice of threshold within this
 1361 zone does not significantly alter our conclusions. The sharp drop at $\delta = 0.9$ for SR is due
 1362 to a “floor effect”, where nearly all scores collapse to zero, making rankings unreliable.
 1363 This confirms that an extreme threshold is not appropriate.
 1364

1365 Table 4: Spearman’s Rank Correlation (ρ) of model rankings at various thresholds compared to the
 1366 rankings at our selected threshold of $\delta = 0.7$.
 1367

Metric	Corr. with $\delta = 0.5$	Corr. with $\delta = 0.6$	Corr. with $\delta = 0.8$	Corr. with $\delta = 0.9$
SR	0.927	0.927	0.709	0.218
SP	0.758	0.927	0.842	0.612

1368 2. **Qualitative Justification:** Case studies further justify the choice of $\delta = 0.7$. For example,
 1369 two semantically identical sentences, such as “Use a serological pipette to detach the cells.”
 1370 and “Detach cells using a serological pipette.”, yield a cosine similarity of **0.86**. A very
 1371 strict threshold of $\delta = 0.9$ would incorrectly penalize such valid paraphrasing. Conversely,
 1372 two semantically unrelated sentences scored **0.55**, confirming that a threshold around 0.7
 1373 effectively distinguishes between relevant and irrelevant content.
 1374

1375 3. **Raw Score Stability:** For full transparency, we present the raw SR and SP scores for all
 1376 models within the identified stable zone ($\delta \in \{0.6, 0.7, 0.8\}$) in Table 5 and Table 6. This
 1377 data reinforces the observation that relative model performance is consistent across this
 1378 range.
 1379

1380 Collectively, this evidence demonstrates that our choice of $\delta = 0.7$ is not an arbitrary selection but
 1381 is a justified, representative point within a stable evaluation landscape.
 1382

1383 Table 5: SR scores for all models evaluated at different similarity thresholds within the stable zone.
 1384

Model	SR ($\delta = 0.6$)	SR ($\delta = 0.7$)	SR ($\delta = 0.8$)
claude-3-7-sonnet-20250219	0.7176	0.4280	0.1467
deepseek-v3-0324	0.6918	0.3984	0.1317
gemini-2.5-pro-exp-03-25	0.6747	0.3704	0.1076
gpt-4-turbo	0.6356	0.3587	0.1169
qwen2.5-72b-instruct	0.6674	0.3723	0.1282
o3-mini	0.6315	0.3355	0.1094
qwq-32b	0.5868	0.2979	0.0838
deepseek-r1	0.6474	0.3491	0.1129
gemini-2.0-flash	0.6624	0.3573	0.1417
gpt-4o-2024-11-20	0.6677	0.3785	0.1180

1394 **Robustness to the Choice of Embedding Model** To ensure that our results are not dependent on a
 1395 single embedding model, we conducted a robustness check by re-running our entire evaluation with
 1396 a different, popular embedding model: `bge-m3`. We then compared the model rankings produced
 1397 by `bge-m3` with those from our original model (`all-mpnet-base-v2`) at the chosen threshold
 1398 of $\delta = 0.7$. The full results are presented in Table 7.
 1399

1400 The consistency of the rankings produced by the two embedding models was quantified using Spear-
 1401 man’s rank correlation. The results show a remarkably high level of agreement:

1402 • **Spearman’s ρ for SR** (`all-mpnet-base-v2` vs. `bge-m3`): **0.794**
 1403 • **Spearman’s ρ for SP** (`all-mpnet-base-v2` vs. `bge-m3`): **0.903**

1404 Table 6: SP scores for all models evaluated at different similarity thresholds within the stable zone.
1405

Model	SP ($\delta = 0.6$)	SP ($\delta = 0.7$)	SP ($\delta = 0.8$)
claude-3-7-sonnet-20250219	0.4667	0.2263	0.0688
deepseek-v3-0324	0.5186	0.2584	0.0777
gemini-2.5-pro-exp-03-25	0.4877	0.2097	0.0510
gpt-4-turbo	0.5975	0.3172	0.0929
qwen2.5-72b-instruct	0.5364	0.2685	0.0785
o3-mini	0.5121	0.2539	0.0753
qwq-32b	0.5270	0.2615	0.0830
deepseek-r1	0.4899	0.2359	0.0675
gemini-2.0-flash	0.4756	0.2440	0.0795
gpt-4o-2024-11-20	0.5182	0.2492	0.0704

1415 Table 7: SR and SP scores computed using the `bge-m3` embedding model at a threshold of $\delta = 0.7$.
1416

Model	SR Score	SP Score
claude-3-7-sonnet-20250219	0.5756	0.3105
deepseek-v3-0324	0.5342	0.3495
gemini-2.5-pro-exp-03-25	0.4883	0.2816
gpt-4-turbo	0.4784	0.4183
qwen2.5-72b-instruct	0.5071	0.3601
o3-mini	0.4791	0.3619
qwq-32b	0.4257	0.3605
deepseek-r1	0.4785	0.3254
gemini-2.0-flash	0.5272	0.3462
gpt-4o-2024-11-20	0.4952	0.3263

1427 These high correlation coefficients provide compelling evidence that our paper’s conclusions are not
1428 an artifact of a specific tool choice. The relative performance hierarchy of the LLMs is consistently
1429 captured by different semantic evaluation models, confirming the generalizability of our findings.
1430

1432 F.3 VALIDATION OF EMBEDDING-BASED STRUCTURAL METRICS

1434 To validate the effectiveness of our proposed embedding-based structural metrics (Step Recall (SR)
1435 and Step Precision (SP)), we assessed their alignment with an “LLM-as-a-judge” oracle. We utilized
1436 GPT-4o as the judge to score the “procedural correctness” of generated protocols on a scale of 1-5,
1437 analyzing a balanced subset of 51 GEN task instances.

1438 We calculated the Spearman Rank Correlation (ρ) between our automated metrics and the judge’s
1439 scores. As shown in Table 8, our structural metrics (SR and SP) demonstrate a statistically signifi-
1440 cant positive correlation with the judge’s assessment (ρ ranging from 0.50 to 0.67 for top models),
1441 consistently outperforming the traditional Keyword F1 metric.

1442 This comparison highlights a key finding: lexical overlap metrics (like Keyword F1) are often in-
1443 sufficient for capturing the logical integrity of long biological protocols. The stronger alignment of
1444 SR and SP with the judge confirms that our embedding-based approach provides a more robust and
1445 semantically meaningful evaluation of procedural generation.
1446

1447 Table 8: Validation of Embedding-Based Structural Metrics
1448

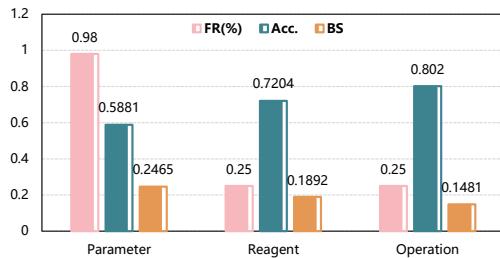
Model	Metric Pair	Spearman ρ	P-value
Claude-3.7	Step Recall (SR) \leftrightarrow Judge	0.6718	1.71e-07
	Step Precision (SP) \leftrightarrow Judge	0.5474	5.66e-05
	Keyword F1 \leftrightarrow Judge	0.4262	2.52e-03
o3-mini	Step Recall (SR) \leftrightarrow Judge	0.4992	2.24e-04
	Step Precision (SP) \leftrightarrow Judge	0.6013	3.87e-06
	Keyword F1 \leftrightarrow Judge	0.4312	1.77e-03
DeepSeek-R1	Step Recall (SR) \leftrightarrow Judge	0.4947	2.60e-04
	Step Precision (SP) \leftrightarrow Judge	0.4390	1.42e-03
	Keyword F1 \leftrightarrow Judge	0.3405	1.55e-02

1458 **G ADDITIONAL EXPERIMENTS**
14591460 **G.1 DETAILED RESULTS FOR PQA AND ORD**
14611462 The detailed results across different models in PQA task are shown in Table 9 and Table 10.
14631464 Table 9: Performance Comparison on **PQA** Task. The best value is highlighted in blue, and the
1465 runner-up value is highlighted in light blue.
1466

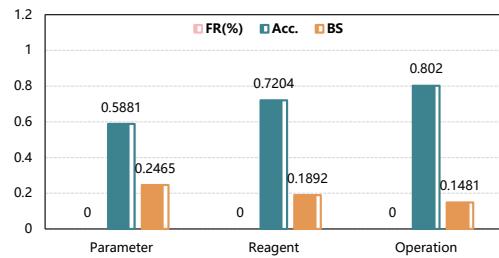
Type	Model	Acc. \uparrow	BS \downarrow	Failed \downarrow
Closed source	o3-mini (OpenAI, 2025)	0.6567	0.2665	0.00%
	GPT-4o (Achiam et al., 2023)	0.6350	0.2770	0.00%
	GPT-4-turbo (OpenAI, 2023)	0.5792	0.3403	0.00%
	Claude-3-7-sonnet (Anthropic, 2025)	0.6390	0.2454	0.50%
	Gemini-2.0-flash (Google AI Blog, 2024)	0.6344	0.2605	0.17%
	Gemini-2.5-pro-exp (Google AI Blog, 2025)	0.7027	0.1949	0.50%
Open source	QwQ-32b (Qwen Team, 2025)	0.6367	0.2236	1.58%
	Qwen2.5-72b-instruct (Qwen Team, 2024)	0.6530	0.2624	0.08%
	Deepseek-V3 (Liu et al., 2024a)	0.6658	0.2172	0.00%
	Deepseek-R1 (Guo et al., 2025)	0.6783	0.1965	0.00%

1477 Table 10: Performance Comparison on **ORD** Task. The best value is highlighted in blue, and the
1478 runner-up value is highlighted in light blue.
1479

Type	Model	EM \uparrow	$\tau \uparrow$	Failed \downarrow
Closed source	o3-mini (OpenAI, 2025)	0.4415	0.7333	2.07%
	GPT-4o (Achiam et al., 2023)	0.4294	0.6268	7.32%
	GPT-4-turbo (OpenAI, 2023)	0.3273	0.5278	23.43%
	Claude-3-7-sonnet (Anthropic, 2025)	0.4781	0.7336	5.43%
	Gemini-2.0-flash (Google AI Blog, 2024)	0.4021	0.6370	9.39%
	Gemini-2.5-pro-exp (Google AI Blog, 2025)	0.5180	0.8104	4.22%
Open source	QwQ-32b (Qwen Team, 2025)	0.4447	0.7047	5.68%
	Qwen2.5-72b-instruct (Qwen Team, 2024)	0.4322	0.6572	7.92%
	Deepseek-V3 (Liu et al., 2024a)	0.4005	0.6395	4.74%
	Deepseek-R1 (Guo et al., 2025)	0.4596	0.7453	2.93%

1490 **G.2 PERFORMANCE ON DIFFERENT CATEGORIES OF PQA**
1491

(a) Gemini-2.5-pro-exp



(b) Deepseek-R1

1503 Figure 8: Performance comparison across different categories of PQA.
15041505 Performance varied significantly across different question categories, as detailed for representative
1506 models in Figure 8. Both Gemini-2.5-pro-exp (Team et al., 2023) and Deepseek-R1 (Guo et al.,
1507 2025) consistently achieved their highest accuracy and best calibration on “Operation” questions
1508 (identifying procedural steps), followed by “Reagent” questions, and performed worst on “Parameter”
1509 questions (extracting specific numerical values or conditions). This suggests that current LLMs
1510 are more adept at processing qualitative aspects of protocols (actions, sequences) than quantitative
1511 details (precise values, measurements), indicating potential limitations in handling numerical or
fine-grained conditional information within scientific procedures.
1512

1512
1513

G.3 ANALYSIS OF FAILURE TYPES ON ORD TASK

1514

1515

A critical issue across models was the Failure Rate—the inability to produce a parsable output conforming to task requirements. This brittleness varied greatly, with some models exhibiting alarmingly high **Failed**, such as GPT-4-turbo (23.43%) and the open-source QwQ-32b (22.39%). Even top performers like Gemini-2.5-pro had a non-trivial **Failed** (4.22%). To understand the nature of these failures, we analyzed GPT-4-turbo’s errors (Table 11). The analysis revealed that the majority of its 272 failures stemmed from fundamental structural issues: failing to include all required steps (“Missing steps”, 58.46%) or including extra steps (32.35%). Less frequent errors involved invalid formatting or duplicated steps. These patterns indicate that beyond sequential reasoning difficulties, models struggle with basic task constraints like outputting the correct set of elements, especially under the cognitive load of permutation.

1525

1526

1527

1528

Table 11: Analysis of Failure Types for GPT-4-turbo on **ORD** Task.

Failure Type	Count	Percentage of Failures
Missing steps	159	58.46%
Extra steps	88	32.35%
Invalid format	24	8.82%
Repeated steps	1	0.37%
Total Failures	272	100.00%

1535

Briefly comparing model types, the closed-source Gemini-2.5-pro led overall, yet open-source models like QwQ-32b and Deepseek-R1 showed competitive Tau scores, indicating potential in pairwise ordering (though QwQ-32b’s high **Failed** is a caveat). Strikingly, biomedical-specific models (BioMedGPT, BioMistral variants) performed drastically worse than general-purpose ones on all metrics, including extremely high **Failed** (33%-91%), suggesting domain specialization did not aid, and perhaps hindered, performance on this procedural task.

1541

The impact of sequence length was examined using the best model, Gemini-2.5-pro (Table 12). As the number of steps increased, **EM** accuracy plummeted (65.8% for 3-5 steps vs. 13.0% for 12+ steps), confirming the difficulty of maintaining global coherence. **Kendall’s τ** remained more robust, peaking for moderately long sequences, further supporting the observation that local pairwise understanding is stronger than global sequence construction. Critically, the **Failed** escalated sharply with sequence length (1.5% for 3-5 steps vs. 16.3% for 12+ steps), showing that longer sequences exacerbate both reasoning challenges and output brittleness.

1548

1549

Table 12: Performance of Gemini-2.5-pro-exp across different step numbers.

1550

Step Num	EM	τ	Failed(%)	N_{total}
3-5	0.6583	0.7729	1.54	648
6-8	0.4079	0.7972	4.81	291
9-11	0.2750	0.8348	7.69	130
12+	0.1299	0.8208	16.30	92
Overall	0.5180	0.8104	4.22	1161

1558

1559

G.4 ONE-SHOT CoT PROMPTING ON GEN TASK

1560

1561

Our initial findings, detailed in Figure 6, presented results for models under both direct prompting and a zero-shot CoT approach. To further investigate the impact of CoT prompting, we then introduced a one-shot CoT condition, providing a single exemplar of the desired reasoning process before generation. The performance under this one-shot condition, detailed in Table 13, offers a more nuanced perspective compared to the generally detrimental effects observed with the aforementioned zero-shot CoT approach from our initial experiments.

Table 13: Comprehensive Performance Comparison on **GEN** Task with direct and CoT Prompting. The best value is highlighted in blue, and runner-up value is highlighted in light blue.

Type	Model	Embedding		Keywords			N-gram			Failed \downarrow
		$SR \uparrow$	$SP \uparrow$	$Prec. \uparrow$	$Recall \uparrow$	$F1 \uparrow$	$BLEU \uparrow$	$METEOR \uparrow$	$ROUGE-L \uparrow$	
One-shot CoT Prompting										
	o3-mini (OpenAI, 2025)	0.3064	0.2571	0.1049	0.1990	0.1289	5.05	22.29	11.23	0.00%
	GPT-4o (Achiam et al., 2023)	0.3544	0.2913	0.1498	0.2849	0.1846	6.59	24.99	13.80	0.00%
Closed	GPT-4-turbo (OpenAI, 2023)	0.3287	0.3571	0.1490	0.2828	0.1837	6.81	24.47	14.99	0.00%
source	Claude-3-7 (Anthropic, 2025)	0.4312	0.2354	0.1556	0.2951	0.1918	6.64	25.32	13.15	0.00%
	Gemini-2.0 (Google AI Blog, 2024)	0.3422	0.3156	0.1489	0.2835	0.1834	6.68	24.88	14.22	0.00%
	Gemini-2.5 (Google AI Blog, 2025)	0.3773	0.2598	0.1446	0.2746	0.1781	4.84	23.06	10.13	0.00%
	QwQ-32b (Qwen Team, 2025)	0.2694	0.3221	0.1433	0.2715	0.1763	5.91	22.96	12.83	0.00%
Open	Qwen2.5-72b (Qwen Team, 2024)	0.3850	0.3045	0.1573	0.2982	0.1937	7.36	25.84	14.75	0.00%
source	Deepseek-V3 (Liu et al., 2024a)	0.3583	0.3031	0.1596	0.3041	0.1971	6.57	25.59	14.83	0.00%
	Deepseek-R1 (Guo et al., 2025)	0.3422	0.2633	0.1320	0.2515	0.1627	4.01	19.72	8.07	0.00%

Notably, several models demonstrated improvements with one-shot CoT over both direct prompting and zero-shot CoT in specific metrics. For instance, Claude-3-7-sonnet achieved the highest overall **SR** score, reaching **0.4312** with one-shot CoT, a slight improvement over its direct prompting score (**0.4280**) and a significant recovery from its zero-shot CoT performance (**0.3918**). It also saw its **METEOR** score increase to **25.32**, surpassing its direct prompting result (**24.78**). GPT-4-turbo, under one-shot CoT, exhibited the best overall **SP** score (**0.3571**) and the best **ROUGE-L** score (**14.99**), also securing the runner-up position for **BLEU** (**6.81**) in this condition. Deepseek-V3 excelled in keyword-based metrics, achieving the highest **Keyword F1** (**0.1971**) and **Keyword Precision** (**0.1596**) in the one-shot CoT setting. It also performed strongly in N-gram metrics, obtaining the runner-up **METEOR** score (**25.59**) and runner-up **ROUGE-L** (**14.83**). Qwen2.5-72b-instruct demonstrated significant gains, improving its **SR** to **0.3850** (the runner-up score, from 0.3723 in direct) and achieving the overall best **METEOR** score (**25.84**) and the best **BLEU** score (**7.36**) across all models in this one-shot CoT condition (METEOR improved from 23.97 in direct).

However, the improvements were not universal. While **METEOR** scores generally saw a modest uplift with one-shot CoT compared to direct prompting for several models (e.g., GPT-4o to **24.99**, Gemini-2.0-flash to **24.88**), other N-gram metrics like **BLEU** and **ROUGE-L** typically remained lower than their direct prompting counterparts across many models, albeit often showing an improvement over the zero-shot CoT results. Similarly, **Keyword F1** scores, while sometimes better than zero-shot CoT, did not consistently surpass direct prompting levels. For example, Claude-3-7-sonnet's **Keyword F1** of **0.1918** with one-shot CoT was below its direct prompting score of **0.2392**.

These findings suggest that providing even a single, task-relevant example (one-shot CoT) can help models better structure their reasoning process for the **GEN** task, mitigating some of the performance degradation seen with untuned, zero-shot CoT. The exemplar appears to guide the models towards more semantically relevant (**SR**, **METEOR**) and precise (**SP**) step generation for certain architectures. This reinforces the notion that the structure and guidance of the reasoning process are critical for complex generation tasks, and that even minimal exemplars can offer benefits, lending further support to the value of structured CoT exemplars for fine-tuning in the future, as provided by BioProBench.

G.5 PERFORMANCE COMPARISON ACROSS OUTSTANDING LLMs

The radar charts, as shown in Figure 9 reveal clear distinctions among leading models across comprehension, error detection, ordering and generation tasks. In the **PQA/ERR/ORD** subplot, Gemini-2.5-pro-exp consistently dominates: it achieves the highest PQA accuracy, leads in error-correction precision and overall accuracy, and outperforms peers on both **Exact Match (EM)** and **Kendall's τ** in the **ORD** task. GPT-4-turbo offers a strong balance between PQA and ERR-**Prec.**, but lags behind Gemini on recall and ordering metrics. Deepseek-R1 closes the gap substantially, particularly on ERR-**Recall** and ORD- τ , demonstrating that an open-source model can rival closed-source alternatives in nuanced judging and local ordering. In contrast, BioMedGPT-LM-7B underperforms across all axes, underscoring its limited procedural understanding despite its biomedical focus.

In the **GEN** subplot, all models exhibit a trade-off between structural fidelity (**Step Recall**) and lexical metrics (**BLEU**, **METEOR**). Again, Gemini-2.5-pro-exp achieves the best structural recall

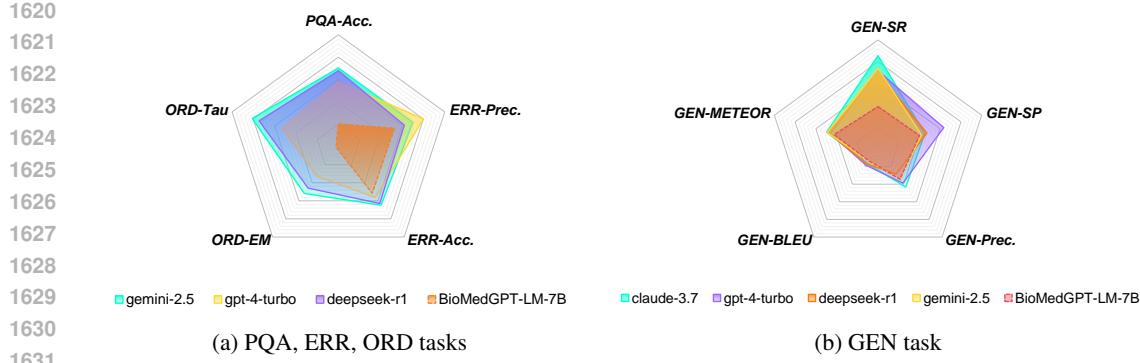


Figure 9: Radar plots comparing performance of representative LLMs on the five core tasks.

and competitive (**Step Precision (SP)**), indicating more complete and less extraneous step generation. Deepseek-R1 strikes a middle ground with balanced keyword precision and **METEOR** scores, while BioMedGPT-LM-7B trails in every metric, confirming that specialized biomedical pretraining alone is insufficient for coherent, procedure-aware text generation. Overall, these results highlight Gemini-2.5’s leadership in both reasoning and generation, the surprising competitiveness of Deepseek-R1, and the pronounced weaknesses of current domain-specific small models.

G.6 PERFORMANCE OF DOMAIN-SPECIFIC BIO-LLMs

To offer a comprehensive and fair evaluation, this section provides a dedicated analysis of domain-specific models: BioMedGPT-10B (Luo et al., 2023), BioMistral-7B, and BioMistral-7B-DARE (Labrak et al., 2024). These models differ significantly from the general-purpose LLMs in the main text in terms of parameter scale (7-10B) and training corpora (specialized biomedical literature). Our goal is to understand their performance profile on the procedural tasks in BioProBench, which present a different set of challenges compared to tasks involving declarative knowledge extraction from scientific articles.

Table 14 and Table 15 summarize their performance. Our analysis indicates that the complex procedural reasoning and generation required by BioProBench are challenging for models of this architecture and training paradigm.

Table 14: Performance summary for domain-specific Bio-LLMs on comprehension, ordering, and correction tasks. These models are analyzed separately to fairly account for their distinct scale and training focus. The up-arrow (\uparrow) denotes that higher is better, while the down-arrow (\downarrow) denotes that lower is better. A dash (-) indicates the metric was not applicable due to format adherence issues.

Model	PQA			ORD			ERR			
	Acc. \uparrow	BS \downarrow	Failed \downarrow	EM \uparrow	$\tau\uparrow$	Failed \downarrow	Acc. \uparrow	Prec. \uparrow	Recall \uparrow	F1 \uparrow
BioMedGPT-10B	0.202	0.535	53.4%	0.020	0.020	91.2%	0.515	0.526	0.273	0.359
BioMistral-7B	0.211	0.571	33.8%	0.042	0.044	91.7%	0.498	0.498	0.572	0.532
BioMistral-7B-DARE	0.279	0.567	37.7%	0.064	0.049	64.9%	0.501	0.500	0.831	0.624

On comprehension-heavy tasks like **PQA** and **ORD**, the models struggled to parse the questions and reconstruct procedural logic, as evidenced by low accuracy and high rates of non-compliance with output formats. This suggests that understanding the implicit causality and temporal dependencies in protocols remains a significant hurdle. In the **ERR** task, BioMistral-7B-DARE, which leverages the DARE model merging technique, achieved a remarkably high **Recall (83.1%)**, indicating a potentially valuable risk-averse strategy for error detection, despite low precision.

The **GEN** task, which requires synthesizing a complete protocol, proved particularly demanding (Table 15). The low scores across both our domain-specific metrics (*SR*, *SP*) and standard N-gram metrics (*BLEU*, *METEOR*) suggest difficulties in generating semantically relevant steps and maintaining lexical similarity to reference protocols.

1674
1675
1676 Table 15: Performance of domain-specific models on the **GEN** task.
1677
1678
1679
1680

Model	Embedding		Keywords			N-gram		
	SR↑	SP↑	Prec.↑	Recall↑	FI↑	BLEU↑	METEOR↑	ROUGE-L↑
BioMedGPT-10B	0.1941	0.1999	0.1721	0.2740	0.1967	6.84	21.18	15.15
BioMistral-7B	0.0335	0.0445	0.1232	0.2170	0.1486	5.81	19.21	12.53
BioMistral-7B-DARE	0.1400	0.2434	0.2163	0.1879	0.1756	4.66	15.12	15.90

1681
1682 In conclusion, our results highlight that the specialized knowledge from biomedical literature does
1683 not directly translate to the procedural understanding required for biological protocols. This is not
1684 a limitation of the models themselves, but rather an illustration of the distinct nature of the problem
1685 space. We believe this presents a valuable opportunity for the community. BioProBench can serve
1686 as a crucial resource for fine-tuning and developing the next generation of Bio-LLMs, specifically
1687 enhancing their grasp of procedural logic and bringing them closer to practical application in the
1688 laboratory.

1689
1690 **Detailed Domain-wise Performance Analysis** A coarse, aggregated evaluation score can mask
1691 important variations in model performance across different scientific specializations. To provide a
1692 more nuanced understanding of the capabilities of domain-specific LLMs, we conducted a detailed
1693 domain-wise performance analysis. Our benchmark was designed with fine-grained domain labels
1694 to facilitate this type of granular evaluation.

1695 As an illustrative example, we present results from the **PQA (Protocol Question Answering)** task.
1696 Table 16 shows the performance of three prominent domain-specific models across a selection of
1697 14 distinct sub-domains. The accuracy scores clearly demonstrate that model performance is not
1698 uniform; different models exhibit unique strengths and weaknesses.

1699
1700 Table 16: Sample sub-domain accuracy (Acc) scores on the PQA task for three domain-specific
1701 models. The best-performing model in each sub-domain is highlighted in bold.

Sub-domain	BioMedGPT-LM-7B	BioMistral-7B	BioMistral-7B-DARE	Key Observation
Microbiology & Virology	0.1750	0.3265	0.4468	BioMistral-7B-DARE shows a clear lead.
Molecular Biology Techniques	0.3256	0.1897	0.2931	BioMedGPT-LM-7B is surprisingly strong here.
Bioinformatics Methods	0.2727	0.3750	0.2308	BioMistral-7B excels in this computational domain.
Pharmacology & Drug Dev.	0.2353	0.1667	0.1750	BioMedGPT-LM-7B shows a relative strength.
Structural Biology Tech.	0.1429	0.2143	0.1176	BioMistral-7B performs best, though all struggle.

1702
1703 This granular analysis reveals several key findings:
1704
1705

- 1706 **1. Specialized Strengths:** Models exhibit distinct performance profiles. For instance,
1707 BioMistral-7B-DARE demonstrates superior performance in ‘Microbiology & Virology’,
1708 whereas the base BioMistral-7B model shows a particular aptitude for ‘Bioinformatics
1709 Methods’. This suggests that training data and fine-tuning methods have a significant im-
1710 pact on sub-domain specialization.
- 1711 **2. Performance Inversion:** A model’s overall aggregated score can be misleading. While
1712 BioMistral-7B-DARE may have a strong overall score, BioMedGPT-LM-7B outperforms
1713 it in ‘Molecular Biology Techniques’ and ‘Pharmacology & Drug Development’, highlight-
1714 ing its specific areas of expertise.
- 1715 **3. Revealing Common Limitations:** This analysis also pinpoints common weaknesses
1716 across models. For example, all models find ‘Structural Biology Techniques’ chal-
1717 lenging, indicating a potential gap in current training datasets or model architectures for this
1718 specific area.

1722 This granular evaluation not only strengthens our findings but also provides a much clearer and
1723 more valuable picture of the current landscape of domain-specific LLMs, which can help guide
1724 future research and development efforts.

1725
1726

G.7 DETAILS OF HUMAN VALIDATION FOR LLM-AS-A-JUDGE

1728 To address concerns regarding the reliability of using an LLM (DeepSeek-V3) as a judge for the
 1729 Consistency metric in the REA-ERR task, we conducted a rigorous human validation experiment.
 1730

1731 The Consistency metric is designed to measure whether the “reasoning chain” generated by a model
 1732 correctly identifies the specific error described in the Ground Truth. This is a constrained semantic
 1733 matching task. We randomly sampled 200 instances from the REA-ERR test set where the evaluated
 1734 models correctly predicted the binary label (True/False).

1735 The PhD-level biological experts were presented with:

1736

- 1737 1. The Ground Truth Error Description (e.g., “Reagent concentration is too low”).
- 1738 2. The Model’s Generated Chain-of-Thought (CoT).
- 1739 3. The LLM-Judge’s decision (Pass/Fail on whether the CoT matched the Ground Truth).
- 1740 4. The experts were asked to label the LLM-Judge’s decision as “Correct” or “Incorrect”
 1741 based on their domain knowledge.

1743 Finally, the Human-LLM Agreement is 188/200 instances, and the Agreement Rate is 94.21%. The
 1744 remaining 5.8% of cases were primarily “edge cases” where the model’s reasoning was partially
 1745 correct or ambiguous (e.g., identifying the correct parameter but stating the wrong direction of error).
 1746 In the vast majority of clear-cut cases, the LLM-judge demonstrated human-level performance in
 1747 this specific matching task. This result confirms that for the specific purpose of checking reasoning
 1748 consistency against a known ground truth, the LLM-as-a-judge approach is a reliable proxy for
 1749 human evaluation.

1750 G.8 QUALITATIVE ANALYSIS OF REASONING INCONSISTENCY

1753 To address the concern regarding models providing correct answers via incorrect reasoning traces,
 1754 we analyzed specific instances from the REA-ERR task. A representative example is shown in
 1755 Table 17, where the model correctly flags the step as erroneous (False) but identifies the wrong
 1756 scientific cause.

1757 Table 17: Case Study: Hallucinated Error vs. Actual Error.

1759 Target Step (Corrupted):	“...centrifuge for 2 min at 10,000 \times g....” (Context involves a 10 μm^3 sample).
1760 Ground Truth Error:	The centrifugation speed is too high (10,000 \times g). The correct protocol specifies 1,000 \times g. The 1761 sample size (10 μm^3) is consistent with the ground truth context.
1762 Model Prediction:	[False] (Correct Label).
1763 Model Reasoning Trace (Excerpt):	“Parameter Error: ...‘10,000 \times g’: This is a high speed... but could be acceptable for pelletting 1764 all cellular material... The most critical error is the sample volume (‘10 μm^3 ’).... It is physically 1765 impossible to ‘dice’ a sample of this size....”
1766 Analysis of Inconsistency:	The model explicitly condones the actual error (10,000 \times g) as “acceptable.” Instead, it halluci- 1767 nates a physical impossibility regarding the sample dimensions (10 μm^3), which are actually 1768 correct in the specific context of this micro-sample protocol.
1769 Implication:	Standard accuracy metrics would credit the model for this response. However, our Consistency 1770 metric (LLM-as-a-judge) correctly penalizes this instance because the reasoning does not align 1771 with the ground truth error (Speed vs. Volume). This case exemplifies why evaluating the 1772 reasoning chain is essential for rigorous scientific benchmarking.

1773 H EXAMPLES OF LLM RESPONSES

1775 This section provides qualitative examples illustrating the performance of evaluated Large Language
 1776 Models on select instances from the **BioProBench** benchmark. Complementing the quantitative
 1777 results presented elsewhere, these examples offer valuable insights into the nature of the task inputs,
 1778 the expected Ground Truth outputs, and the types of responses generated by different models across
 1779 various biological protocol understanding and reasoning tasks. For each selected task instance, the
 1780 input prompt provided to the model is displayed alongside its corresponding ground truth answer and
 1781 the outputs produced by several representative LLMs from our evaluation suite. Visual cues, such
 as background coloring, are employed within the accompanying table to highlight the agreement or

disagreement between model responses and the Ground Truth. Representative examples spanning different task types are compiled and presented in Table 18 20 19 21 22 23.

Table 18: Examples illustrating the input, ground truth, and outputs from selected models for PQA task. Model output cells are colored green if they exactly match the Ground Truth and red otherwise.

Input / Prompt:	Question: Place a droplet (100ul) of water-suspended fixated nematodes onto the LbL-coated glass slides and wait ____ min for settling and attaching the animals to the LbL polyelectrolyte film. Choices: ["50","20","10","40","30"] Task Instructions: Choose the most likely correct answer from the given choices. Output format: [ANSWER_START]choice & confidence[ANSWER_END]
Ground Truth:	30
GPT-4o Output:	30 & 80
Deepseek-v3 Output:	20 & 70
Gemini-2.5-pro-exp Output:	30 & 75

Table 19: Examples illustrating the input, ground truth, and outputs from selected models for ERR task. Model output cells are colored green if they exactly match the Ground Truth and red otherwise.

Input / Prompt:	Question: Determine whether the following target step in a protocol is True or False: Resuspend the cell pellets in 10mL of culture media (RPMI 1460 containing 10% FBS, 100U/mL of penicillin/streptomycin, 2 mM L-glutamine, and 500mM beta-mercaptoethanol). Context: purpose: Prepare culture media for bone marrow cell suspension., prior_step: Red blood cell lysis and washing., next_step: Addition of GM-CSF for cell culture. Task Instructions: Carefully evaluate if the step is logically consistent... Respond with only True or False... Output format: [ANSWER_START]True or False[ANSWER_END]
Ground Truth:	False
GPT-4o Output:	False
Deepseek-v3 Output:	False
Gemini-2.5-pro-exp Output:	False

Table 20: Examples illustrating the input, ground truth, and outputs from selected models for ORD task. Model output cells are colored green if they exactly match the Ground Truth and red otherwise.

Input / Prompt:	Please sort the following steps titled 'Cell Washing and Red Blood Cell Lysis' in the correct order. The steps are: Wash the spleen cells suspension with complete RPMI medium by centrifugation at 350xg for 10 minutes at 4°C. Stop the lysis reaction by adding complete RPMI medium to a final volume of 10ml. Discard the supernatant and resuspend cells in 3ml of ice-cold ACK to lyse red blood cells. Incubate for 5 minutes at room temperature with occasional shaking. - Give me the correct order of the steps as a list of their original indices (start from 0), no other words. - Output your answer wrapped exactly between the tags [ANSWER_START] and [ANSWER_END]. - The format of your response must be: [ANSWER_START]a list of the original indices[ANSWER_END]
Ground Truth:	[0, 2, 3, 1]
GPT-4o Output:	[2, 3, 1, 0]
Deepseek-v3 Output:	[0, 2, 3, 1]
Gemini-2.5-pro-exp Output:	[0, 2, 3, 1]

I SENSITIVITY ANALYSIS ON DATA CONTAMINATION

A potential concern in evaluating LLMs on open-source data is the risk of data contamination (memorization of training data). To investigate this, we constructed a Perturbed Test Set consisting of 100 randomly selected PQA instances.

For each instance, we systematically modified the questions in the source context. We then re-evaluated the top-performing models (Gemini-2.5-Pro, DeepSeek-R1, o3-mini, DeepSeek-V3) on this perturbed set.

If models were relying on parametric memory (memorization), we would expect them to ignore the modified context and output the original (now incorrect) answers, leading to a significant perfor-

1836 Table 21: Examples illustrating the input, ground truth, and outputs from selected models for GEN
 1837 task. Model output cells are colored green if they exactly match the Ground Truth and red otherwise.
 1838

1839	Input / Prompt:	System Role: You are an expert in CRISPR-based molecular biology protocols, skilled in breaking down complex 1840 procedures into atomic steps. Instruction: Please describe in a single-level list format (using only 1., 2., 3. numbers, no sub-steps) of the proto- 1841 col. Only the operating steps should be included, no explanation of the principles or material list is required. The 1842 steps should be logically coherent, the language should be concise, and it should follow the structure of a standard 1843 experimental protocol. Format Requirements: 1844 - Each step must be on a separate line. Question: To design sgRNAs for targeting genes in a CRISPR competition assay, what are the key steps?
1845	Ground Truth:	1. Identify target sites within the gene of interest. 1846 2. Design sgRNAs with 20 base pairs of homology and a NGG PAM sequence. 1847 3. Clone sgRNAs into a guide vector backbone using BsmBI digestion and ligation. 1848 4. Use online tools like Benchling to optimize sgRNA design. 5. Target functional protein domains for efficient gene knockout.
1849	GPT-4o Output:	1. Identify the target genes of interest. 1850 2. Select appropriate genomic regions within the target genes for sgRNA design. 1851 3. Use sgRNA design tools to generate potential sgRNA sequences. 1852 4. Filter the sgRNA sequences based on criteria such as on - target efficiency and off - target potential. 1853 5. Choose a set of sgRNAs for the CRISPR competition assay. 6. Synthesize the selected sgRNAs.

1854
 1855
 1856 mance drop. However, as shown in Table 24, the performance decline was minimal (approximately
 1857 0-3%).

1858 The stability of model performance across perturbed contexts strongly suggests that the models are
 1859 performing in-context reasoning to extract information from the provided text, rather than recalling
 1860 memorized answers. This validates that our benchmark effectively evaluates reasoning capabilities.
 1861
 1862

1863 J DATASHEET FOR BIOPROBENCH

1864
 1865 Following the framework proposed by Gebru et al (Gebru et al., 2021), we provide a datasheet to
 1866 document the motivation, composition, collection process, and maintenance plan of BioProBench.
 1867

1868 J.1 MOTIVATION

1869 For what purpose was the dataset created? The dataset was created to evaluate and improve the
 1870 procedural reasoning capabilities of Large Language Models (LLMs) in the domain of biological
 1871 experimental protocols. It aims to address the gap in existing benchmarks which focus primarily on
 1872 declarative knowledge rather than procedural execution.

1873 Who created the dataset? The dataset was created by the authors of this paper.
 1874

1875 J.2 COMPOSITION

1876 What do the instances that comprise the dataset represent? The dataset consists of two parts:
 1877

1878 BioProCorpus: 26,933 full-text biological protocols (raw text and structured JSON).

1879 BioProBench Task Data: Over 550,000 structured task instances (QA pairs, ordering sequences,
 1880 etc.) derived from the corpus.

1881 Does the dataset contain all possible instances or is it a sample? It is a sample of publicly available
 1882 protocols from six major repositories (Bio-protocol, Protocol Exchange, etc.), covering 16 biological
 1883 sub-domains.

1884 Is the information missing from some instances? Some instances derived from restrictive licenses
 1885 (e.g., JOVE) are excluded from the public release to comply with licensing terms, as detailed in
 1886 Section 2.

1890 Does the dataset contain data that might be considered confidential or sensitive? No. All data is
 1891 sourced from scientific protocols that are either open-access or publicly viewable. Personal data of
 1892 protocol authors has been removed or is publicly cited scientific information.
 1893

1894 **J.3 COLLECTION PROCESS**

1895
 1896 How was the data associated with each instance acquired? Data was collected via web scraping and
 1897 API access from six specific repositories detailed in the main text.

1898 What mechanisms or procedures were used to collect the data? We used custom Python scripts to
 1899 crawl and parse the raw HTML/PDF content into a unified JSON format.

1900 Who was involved in the data collection process? The authors and their research assistants.

1901
 1902 **J.4 PREPROCESSING/CLEANING/LABELING**

1903
 1904 Was any preprocessing/cleaning/labeling of the data done? Yes. We used a multi-stage pipeline:

1905
 1906 Cleaning: Removal of HTML tags and non-textual artifacts.

1907
 1908 Structuring: Using LLMs (LLaMA/DeepSeek) to parse steps into structured JSON.

1909
 1910 Task Generation: Programmatically generating task instances (PQA, ORD, etc.).

1911
 1912 Quality Filtering: Automated structural checks and manual validation by PhD-level experts.

1913 Is the software used to preprocess/clean/label the instance available? Yes, the code for the construction
 1914 pipeline is available in our repository.

1915
 1916 **J.5 USES**

1917 Has the dataset been used for any tasks already? Yes, it is used in this paper to benchmark 10 LLMs
 1918 and to evaluate the ProAgent.

1919 What (other) tasks could the dataset be used for? It can be used for training scientific agents, improving
 1920 procedural extraction, and checking bio-safety compliance.

1921
 1922 **J.6 DISTRIBUTION**

1923 Will the dataset be distributed to third parties? Yes, the openly licensed portion (approx. 380k
 1924 instances) is available on [GitHub/HuggingFace Link available upon publication].

1925
 1926 How will the dataset be distributed? It is distributed as JSON files via the repository.

1927 When will the dataset be distributed? It is available now (anonymized) and will be permanently
 1928 available upon publication.

1929 License: The public subset is released under CC BY 4.0.

1930
 1931 **J.7 MAINTENANCE**

1932 Who is supporting/hosting/maintaining the dataset? The corresponding author and their lab.

1933 How can the owner/curator of the dataset be contacted? Contact information will be provided in the
 1934 final version of the paper.

1935 Is there an erratum? We will maintain a changelog on the repository to document any updates or
 1936 error corrections.

1937 Will the dataset be updated? Yes, we plan to update the dataset if new protocols become available
 1938 or if community feedback identifies issues.

1939
 1940
 1941
 1942
 1943

1944 Table 22: Examples illustrating the input, ground truth, and outputs from selected models for REA-
 1945 GEN task. Model output cells are colored green if they exactly match Ground Truth and red otherwise.
 1946

1947

1948	Input / Prompt:	<p>System Role: You are an expert in CRISPR-based molecular biology protocols, skilled in breaking down complex procedures into atomic steps.</p> <p>Instruction: Please describe in a single-level list format (using only 1., 2., 3. numbers, no sub-steps) of the protocol. Only the operating steps should be included, no explanation of the principles or material list is required. The steps should be logically coherent, the language should be concise, and it should follow the structure of a standard experimental protocol.</p> <p>Response Structure Requirements: Your response must be structured strictly for machine processing. It must contain two main parts in order: 1. Your Chain of Thought (CoT) process, formatted with specific XML-like tags. 2. The final detailed protocol steps, wrapped in [ANSWER_START] [ANSWER_END] tags.</p> <p>CoT Instructions & Format: Please begin your response by outputting your thinking process. Follow this exact structure and include your analysis within the respective tags: Let's think step by step: <Objective>[Output the core objective of this protocol here]</Objective>. To achieve this, <Precondition>[Output the necessary preconditions, materials, equipment, etc., here]</Precondition>. The protocol must proceed as <Phase>[Output the logical division into key phases or stages here]</Phase>, where critical parameters are <Parameter>[Output the critical parameters for each step/phase and the logic behind them here]</Parameter>. Finally, <Structure>[Acknowledge and state the required output structure for the final steps here]</Structure>. After outputting the complete thinking process exactly as structured above, output the final detailed protocol steps.</p> <p>Final Output Step Format Requirements: - Each step must be on a separate line. - [ANSWER_START] [Output the detailed protocol steps here, ensuring each step is on a new line] [ANSWER_END]</p> <p>Question: To design sgRNAs for targeting genes in a CRISPR competition assay, what are the key steps?</p>
1967	CoT:	<p>Let's think step by step: First, <i>{Objective}</i>, designing sgRNAs for targeting genes in a CRISPR competition assay; <i>{Objective}</i>. To achieve this, <i>{Precondition}</i>, the gene sequence of interest is available, and the researcher has knowledge of CRISPR components and tools; <i>{Precondition}</i>. The protocol must proceed as <i>{Phase}</i>, 1) Identifying target sites within the gene, 2) Designing sgRNAs with specific parameters, 3) Cloning sgRNAs into a vector, and 4) Optimizing sgRNA designs; <i>{Phase}</i>, where critical parameters are <i>{Parameter}</i>, a 20 base pair homology region, presence of an NGG PAM sequence, use of BsmBI digestion for cloning, and targeting functional protein domains for efficient knockout; <i>{Parameter}</i>. Finally, <i>{Structure}</i>, the protocol is presented as a single-level list with imperative verbs, maintaining logical order and excluding rationale or material lists; <i>{Structure}</i>.</p>
1974	Ground Truth:	<ol style="list-style-type: none"> 1. Identify target sites within the gene of interest. 2. Design sgRNAs with 20 base pairs of homology and a NGG PAM sequence. 3. Clone sgRNAs into a guide vector backbone using BsmBI digestion and ligation. 4. Use online tools like Benchling to optimize sgRNA design. 5. Target functional protein domains for efficient gene knockout.
1978	GPT-4o Output:	<p>Let's think step by step: <i>{Objective}</i>, Design sgRNAs for targeting genes in a CRISPR competition assay; <i>{Objective}</i>. To achieve this, <i>{Precondition}</i>, Materials required: genomic sequence of target genes, CRISPR design tool (e.g., CHOPCHOP, CRISPRscan), computational access for design, primers, cloning materials, and control sequences (e.g., non-targeting sgRNA); <i>{Precondition}</i>. The protocol must proceed as <i>{Phase}</i>, 1. sgRNA design and selection, 2. Cloning of sgRNA into a CRISPR vector, 3. Preparation of cells for transfection, 4. Transfection of CRISPR constructs into cells, 5. Competition assay setup and analysis; <i>{Phase}</i>, where critical parameters are <i>{Parameter}</i>, 1. Selection of high-efficiency, on-target sgRNAs, 2. Ensuring proper cloning of sgRNAs, 3. Efficient transfection of CRISPR constructs, 4. Monitoring competition conditions, 5. Validating sgRNA effects through analysis (e.g., flow cytometry, sequencing); <i>{Parameter}</i>. Finally, <i>{Structure}</i>, Detailed protocol steps will be listed in a logical sequence with concise, actionable instructions for each phase; <i>{Structure}</i>.</p> <p>[ANSWER]</p> <ol style="list-style-type: none"> 1. Obtain the genomic sequences of the target genes to be edited. 2. Use a CRISPR design tool to generate potential sgRNA sequences for each target gene. 3. Evaluate the sgRNAs based on predicted on-target efficiency and off-target effects. 4. Select the top-performing sgRNAs for cloning into a CRISPR vector. 5. Synthesize the selected sgRNAs using a commercial service or custom oligos. 6. Clone the sgRNAs into the CRISPR expression vector using standard cloning protocols (e.g., ligation or restriction enzyme-based cloning). 7. Verify the correct insertion of sgRNAs into the vector via sequencing or restriction digestion. 8. Prepare cells (e.g., HEK293T or other relevant cell line) by growing them to the desired confluence. 9. Transfect cells with the CRISPR vector carrying the selected sgRNAs using a transfection reagent (e.g., Lipofectamine or electroporation). 10. Select successfully transfected cells using appropriate selection markers (e.g., puromycin) or by flow cytometry if using fluorescent markers. 11. Set up the CRISPR competition assay by co-transfecting cells with a mix of different sgRNA constructs or using a control sgRNA. 12. Allow cells to proliferate under selective conditions to enable competition between edited populations. 13. Harvest cells at specified time points and analyze the relative abundance of different populations by flow cytometry, qPCR, or sequencing. 14. Analyze the data to assess the competition between gene-edited populations and determine the effect of each sgRNA on gene function. <p>[/ANSWER]</p>

1998

1999

Table 23: Examples illustrating the input, ground truth, and outputs from selected models for REA-ERR task. Model output cells are colored green if they exactly match Ground Truth and red otherwise.

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Input / Prompt:	Main Instruction: Evaluate the validity of the following target step in a protocol. Follow the detailed reasoning process demonstrated in the example below to identify potential errors across Operation, Reagent, and Parameter categories, with meticulous attention to numerical values and their consistency with the provided context and typical practices.
	— Example Start —
	Example Target Step: Mix 860 μ L of sterile deionized water and 14 μ L of 5% sodium hypochlorite in a 1.5mL tube.
	Example Context: { "purpose": "Sterilization of seeds to remove surface contaminants using sodium hypochlorite.", "prior_step": "1.1 Place transgenic Arabidopsis seeds in a 1.5mL tube.", "next_step": "1.2.2 Vigorously mix the contents of the tube using a vortex mixer." }
	Example Reasoning Process: 1. Operation Error: The operations (Mix) and the use of a 1.5mL tube are standard. No obvious operational errors. 2. Reagent Error: The reagents are appropriate. However, the specified volume of 5% sodium hypochlorite is 14 μ L, mixed with 860 μ L water. This results in a very dilute solution (0.07%). For sterilization, typical practice suggests a final concentration of around 0.5–1% sodium hypochlorite. Therefore, the reagent volume is significantly too low, which undermines effectiveness and contradicts the stated sterilization purpose. 3. Parameter Error: Although explicit parameters like time and temperature are not mentioned, the concentration of sodium hypochlorite functions as a critical parameter in disinfection efficacy. Here, the final concentration (0.07%) is too low to be effective, making it a parameter error as well. Based on the significant numerical error in both Reagent volume and the effective concentration (parameter), the step is invalid.
	Example Answer: [ANSWER_START] False [ANSWER_END]
	— Example End —
	Now, evaluate the following target step using the same detailed reasoning process demonstrated in the example above:
	Evaluate the validity of the target step: Maintain hESCs in Nutristem medium on 0.5 μ u/cm ² vitronectin N-precoated tissue culture-treated plastic in a humidified incubator (37°C, 10%CO ₂).
	You may use the following context, which includes the purpose of the target step, as well as the preceding and following steps, to inform your decision:
	Context: purpose: Maintain hESCs in optimal conditions for growth and differentiation. prior_step: "Preparation of vitronectin-coated plates" next_step: Daily medium exchange
	Analysis Instructions: Analyze the step, paying meticulous attention to all numerical values (e.g., times, temperatures, volumes, concentrations, speeds, durations), by reasoning through the following three categories of potential errors. As part of this analysis, explicitly compare numerical values specified in the target step and consider typical laboratory practices.
	Constraints on Evaluation: Only evaluate the correctness of the information explicitly present in the target step. Do not make assumptions about missing details. Focus solely on identifying errors in what is actually stated.
	Final Answer Format: The format of your final answer must be: [ANSWER_START] True or False [ANSWER_END]
CoT:	CO ₂ concentration is critical for maintaining pH balance in the medium. The concentration of CO ₂ should be 5%.
Ground Truth:	False.
o3-mini Output:	Reasoning: 1. Operation Error: The instruction "Maintain hESCs in Nutristem medium on ... tissue culture-treated plastic" is generally appropriate as an operation for culturing human embryonic stem cells. The use of pre-coated plastic (vitronectin-coated) and a humidified incubator at 37°C is standard practice. There is no error in the overall procedure described. 2. Reagent Error: The medium (Nutristem) and the coating (vitronectin) are appropriate reagents for hESC culture. The target step states the coating density as "0.5 μ u/cm ² ." This appears to be intended to represent a concentration value (likely 0.5 μ g/cm ² , a typical value) but is rendered in an unusual format. However, when considering only the explicit numerical value and comparing to typical practices, 0.5 μ g/cm ² is standard. Since we are evaluating the correctness of the explicit information and assuming that the shorthand "0.5 μ u/cm ² " is meant to denote this, the reagent information is acceptable. 3. Parameter Error: The incubator condition is stated as "37°C, 10%CO ₂ ." While 37°C is the standard temperature, the typical CO ₂ concentration for culturing hESCs is around 5% in most conventional cell culture protocols. A setting of 10% CO ₂ is unusually high and could adversely affect the pH and cell viability. This numerical discrepancy in the CO ₂ parameter represents an error relative to standard practices. Based on the significant error in the CO ₂ parameter, the target step is not valid. [ANSWER_START]False[ANSWER_END]

2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075

Table 24: Sensitivity Analysis on Data Contamination

Model	Original Acc.	Perturbed Acc.	Δ Acc.	Δ Brier Score
Gemini-2.5-Pro	0.71	0.69	-0.02	0.058
DeepSeek-R1	0.67	0.64	-0.03	0.066
o3-mini	0.66	0.63	-0.03	0.022
DeepSeek-V3	0.65	0.63	-0.02	0.01

2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105