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Abstract001

The scarcity of publicly available clinical cor-002
pora hinders developing and applying NLP003
tools in clinical research. While existing work004
tackles this issue by utilizing generative models005
to create high-quality synthetic corpora, their006
methods require learning from the original in-007
hospital clinical documents, turning them un-008
feasible in practice. To address this problem,009
we introduce RECORDTWIN, a novel synthetic010
corpus creation method designed to generate011
synthetic documents from anonymized clini-012
cal entities. In this method, we first extract013
and anonymize entities from in-hospital docu-014
ments to ensure the information contained in015
the synthetic corpus is restricted. Then, we016
use a large language model to fill the context017
between anonymized entities. To do so, we018
use a small, privacy-preserving subset of the019
original documents to mimic their formatting020
and writing style. This approach only requires021
anonymized entities and a small subset of orig-022
inal documents in the generation process, mak-023
ing it more feasible in practice. To evaluate024
the synthetic corpus created with our method,025
we conduct a proof-of-concept study using a026
publicly available clinical database. Our results027
demonstrate that the synthetic corpus has a util-028
ity comparable to the original data and a safety029
advantage over baselines, highlighting the po-030
tential of RECORDTWIN for privacy-preserving031
synthetic corpus creation 1.032

1 Introduction033

In-hospital clinical documents, such as discharge034

summaries, contain sensitive patient information035

that must be anonymized before these corpora036

can be shared outside the hospital. The scarcity037

of publicly available clinical corpora, due to the038

challenges of this anonymization process, signifi-039

cantly hampers the development and application of040

1We plan to publish our code on Github

Figure 1: Comparison of different clinical document
generation methods. (a) Learning from the original
in-hospital documents has a risk of unintended memo-
rization. (b) Few-shot learning without anonymization
has a risk of re-identification through rare entity combi-
nations. (c) RECORDTWIN is safer than (a) and (b) by
design since there is no risk of memorizing contextual
details like “81-year-old female” or including rare enti-
ties like “metastases to the liver.”

natural language processing (NLP) tools in clini- 041

cal research (Chapman et al., 2011). Convention- 042

ally, research on text anonymization focuses on 043

de-identification, using named entity recognition 044

(NER) to detect and then remove, replace, or gen- 045

eralize personally identifiable information (Lison 046

et al., 2021). However, NER models cannot guar- 047

antee perfect precision and recall in practice, espe- 048

cially on unseen data, necessitating manual review 049

to ensure anonymity. 050

Recent studies have turned to synthetic corpus 051

generation to address this limitation (Ive et al., 052

2020; Hiebel et al., 2023; Li et al., 2021). In this ap- 053

proach, generative language models are trained on 054

the original corpus to produce new, natural sound- 055

ing text. The concept of plausible deniability is 056

central to the privacy guarantees of this method: It 057

is difficult for users to determine whether the infor- 058

mation contained in the document comes from the 059
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original data or is fabricated. While these synthetic060

corpora have shown high utility, they still carry the061

risk of privacy breaches due to unintended memo-062

rization.063

Unintended memorization refers to the issue064

where the generative model memorizes sensitive065

information from the training data (Carlini et al.,066

2019). This is particularly problematic when rare067

expressions are involved, as there may be few such068

cases in the original corpus, leading to the worst-069

case scenario where documents are exactly gen-070

erated as they are. Even privacy-preserving tech-071

niques like differential privacy-based text genera-072

tion (Yue et al., 2023; Al Aziz et al., 2021; Zecevic073

et al., 2024; Ramesh et al., 2024) are not immune074

to these risks, as sensitive information can still in-075

fluence the training process.076

The problem lies in learning from the documents077

intended for anonymization. To overcome this chal-078

lenge, we propose RECORDTWIN, a novel method079

for creating shareable synthetic clinical corpora by080

combining two key strategies:081

Entity Anonymization: We extract patient in-082

formation as entities from documents and apply083

k-anonymization to ensure that the same set of084

entities appears in at least k records. This miti-085

gates the risk of re-identification and restricts the086

information contained in the synthetic corpus.087

Context Generation: Instead of learning from in-088

hospital documents, we generate synthetic clini-089

cal documents using a general-domain large lan-090

guage model (LLM). By leveraging a small sub-091

set of privacy-preserving original documents as092

examples, we fill the context—including writing093

style and formatting— between entities, prevent-094

ing the generation of any sensitive information095

beyond the entity sequences.096

Fig. 1 illustrates the comparison of genera-097

tion with (a) learning from the original document,098

(b) few-shot learning with un-anonymized entity099

set, and (c) few-shot learning prompted with an100

anonymized entity set. In the original text, contex-101

tual details like “81-year-old female” and “metas-102

tases to the liver” could reveal the patient’s identity103

when combined with the diagnosis of “metastic104

melanoma”. (a) has a risk of generating the com-105

bination of all those details via unintended memo-106

rization. (b) can mitigate the risk of generating con-107

textual information such as “81-year-old female”108

by prompting the generative model only with ex-109

tracted entities. However, the combination of dis- 110

ease names “metastic melanoma” and “metastases 111

to the liver” can lead to the identification of a spe- 112

cific patient when it is rare in the original corpus. 113

On the other hand, (c) the generated document with 114

RECORDTWIN does not contain contextual infor- 115

mation (e.g., 81-year-old female) or a disease name 116

combination (e.g., metastases to the liver) that is 117

revealing of the patient’s identity. 118

Although our pipeline is safer than existing syn- 119

thetic corpus creation methods by design, chal- 120

lenges remain in maintaining the utility of the gen- 121

erated documents. The synthetic documents, while 122

anonymized, may be degraded from their original 123

counterparts in terms of utility, which could impact 124

downstream tasks like language model pre-training 125

or clinical document classification. Therefore, eval- 126

uating the utility of these synthetic documents in 127

real-world applications is critical. In this paper, we 128

present a proof-of-concept study to evaluate the 129

utility of our synthetic corpus using the MIMIC- 130

III (Johnson et al., 2016). Specifically, we assess its 131

utility across multiple NLP tasks, including named 132

entity recognition (NER) and clinical document 133

classification, demonstrating that the performance 134

of models trained on the synthetic corpus is com- 135

parable to those trained on original data. 136

2 Proposed: RECORDTWIN 137

This study proposes RECORDTWIN, a new method 138

for synthetic clinical corpus creation aiming to 139

mitigate the risk of revealing patient’s personal 140

information. The overview of RECORDTWIN is 141

presented in Fig. 2. We first extract clinical en- 142

tities from the original documents and apply k- 143

anonymization to the set of extracted entities. This 144

ensures that at least k records containing an iden- 145

tical set of entities are included in the synthetic 146

corpus (Sect. 2.1). Next, anonymized entities and 147

an example document are given to LLM to gener- 148

ate synthetic documents (Sect. 2.2). The example 149

can be sampled from a small subset of simulated 150

or manually anonymized original documents. In 151

this way, we can simulate the original document 152

in terms of writing style and formatting without 153

learning from the original document itself. 154

2.1 STEP 1: Entity Extraction and Table 155

k-anonymization 156

The first step in RECORDTWIN involves entity 157

extraction from the original documents (d) and 158
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Figure 2: Overview of RECORDTWIN: On the left, we have an original in-hospital document, and on the right, a
corresponding generated document. First, entities are extracted from the original documents to create a document-
entity table. Then the table is anonymized by generalizing or removing low-frequency entities to restrict a set of
entities contained in a generated document. In this example, the first row represents a set of entities contained in
document 1 (D1), and the second row for document 2 (D2). To ensure k-anonymity, the values in the columns
“metastases to the liver” and “confusion” for D1 are changed to 0. Also, the value of the "metastases" is changed
to 1. In this way, we can make k identical rows with the same set of entities, ensuring k-anonymity. Then, using
few-shot learning, the synthetic document is generated based on the anonymized entities.

Algorithm 1: Entity Extraction and
k-Anonymization

Input : D: The original corpus, NER: NER model,
A(; k): Anonymization method,

1 E ← {};
2 for d ∈ D do
3 Ed ← NER(d)
4 E ← E ∪ Ed

5 end
6 Initialize T
7 for d ∈ D do
8 for entity e ∈ E do
9 if e ∈ Ed then

10 T [d, e]← 1
11 end
12 end
13 end
14 T̂ ← A(T ; k)

anonymization of a set of entities to be contained159

in the generated documents. The procedure is as160

follows:161

Entity Extraction: For each document d in D,162

extract a set of entities Ed with named entity recog-163

nition model NER and obtain a set of entities in the164

entire original corpus E .165

Table Initialization: Create a document-entity ta-166

ble T as in Fig. 2, where each row corresponds167

to a document and each column corresponds to a168

unique entity in E . Initialize as a zero matrix.169

Document-entity Table Creation: Fill the170

document-entity table by marking the entries with171

1 if the entity name is contained in Ed.172

k-anonymization: Adjust the entity table as in173

Fig. 2 with an arbitrary anonymization method 174

A(; k), where k is a hyperparameter, to obtain an 175

anonymized document-entity table T̂ . This guar- 176

antees at least k documents share identical sets of 177

entities. The choice of anonymization method de- 178

pends on the specific requirements for maintaining 179

anonymity. For instance, numerical values such as 180

medical test results can be generalized. In Fig. 2, 181

normalization and deletion of disease names are be- 182

ing applied as the anonymization method. Note that 183

our method offers flexibility in achieving different 184

levels of anonymity. It can incorporate established 185

anonymization techniques for extracted entities and 186

leverage medical ontologies and knowledge graphs 187

to enhance the anonymization process. Addition- 188

ally, depending on the usage of the synthetic corpus 189

any entity type can be used for generation. 190

2.2 STEP2: Context Generation via Few-shot 191

Learning 192

The second step involves generating clinical doc- 193

uments using an LLM, prompted with entity se- 194

quences and an example document. We compose a 195

prompt as in Fig. 3 with one-shot example d̃. Here, 196

we assume a small subset of manually anonymized 197

or simulated demonstration pool D̃. Details of each 198

component are described in the following: 199

Instruction: We prompt the LLM to generate 200

a synthetic document based on lines of entities. 201

Also, we specifically instruct the LLM to follow 202

the formatting and writing style of d̃. 203

Example: d̃ sampled from D̃ is provided as a one- 204
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Instruction: Generate sentences of a document in Elec-
tronic Health Record from lines of entities following the
instructions.. The generated sentences should have the same
formatting and writing style as Example. ...

Example:
The number of sentences: 68
Lines of entities:
1| No Entity
2| No Entity
3| CABG, valve replacement, PVD, CRI,...
...
Generated sentences:
1| Admission Date: [**2118-12-12**]...
2| History of Present Illness:
3| This 72-year old female with an medical history of CABG
and valve replacement, PVD, CRI, ...
...
Now please generate a document based on the entities below.
The number of sentences: 68
Lines of entities:
1| No Entity
2| No Entity
3| metastatic melanoma, metastases
4| altered mental status, ___ ,headache
...
Generated sentences:
1|

Figure 3: The prompt used in RECORDTWIN. Example
is a one-shot example sampled from demonstration pool
D̃. Lines of entities are extracted from the original doc-
ument d and anonymized by deletion and normalization.

shot example, as well as lines of entities extracted205

from d̃.206

The number of sentences: To ensure that the total207

number of sentences in d matches the one in the208

generated document, we explicitly indicate the total209

number of sentences.210

Lines of entities: Using the anonymized table211

described in Sect. 2.1, we make sure the set of212

entities included in the synthetic document is k-213

anonymized. For example, if an entity name is214

normalized in k-anonymization, we provide the215

normalized version of the entity name accordingly216

(metastases in Fig. 3). Likewise, if an entity entry217

is deleted in the table, we do not provide that entity218

name ( ___ in Fig. 3).219

With this generation method, the risk of unin-220

tended memorization is eliminated since we only221

provide the manually anonymized example d̃ to222

LLM instead of the original document d itself.223

Also, for each synthetic document, there are at224

least k documents that contain the same set of en-225

tities. For example, expressions containing rare226

entity combinations, such as “metastases to the227

liver” and “confusion”, can be excluded from the228

resulting synthetic corpus so that there are at least229

k synthetic documents with the same set of entities.230

3 Experiment 231

To demonstrate the effectiveness of RECORDTWIN, 232

we conducted a proof-of-concept study, cre- 233

ating a synthetic corpus from discharge sum- 234

maries in MIMIC-III (Johnson et al., 2016) with 235

RECORDTWIN (Sect. 3.1). We evaluate the utility 236

of the synthetic corpus in pre-training for clinical 237

NER and fine-tuning for document classification 238

(Sect. 3.2). The evaluation in pre-training aims 239

to assess the quality of generated context in few- 240

shot learning, while the evaluation in fine-tuning 241

aims to assess whether RECORDTWIN preserves 242

the patient statistics in the original corpus during 243

the k-anonymization. 244

3.1 Synthetic Corpus generation 245

For the original in-hospital documents D, we use 246

discharge summaries from MIMIC-III, which con- 247

tains a total of 59,652 documents. The documents 248

are de-identified, meaning patient name, telephone 249

number, address, and dates are already deleted or 250

replaced. We assume a scenario where a small set 251

of simulated documents, identical to the original 252

ones, is available. We randomly sampled 100 dis- 253

charge summaries to create a demonstration pool 254

D̃. Using RECORDTWIN, we generate the syn- 255

thetic corpus D̂gen according to the specifications 256

outlined in Sect. 2. 257

Entity Extraction: To approximate the patient 258

statistics of the original documents, we extract 6 en- 259

tity types (problems, tests, treatments, clinical de- 260

partments, evidentials, and occurrences) annotated 261

in the i2b2 2012 corpus (Sun et al., 2013). Specif- 262

ically we fine-tuned Clinical BERT2 (Alsentzer 263

et al., 2019) with the i2b2 2012 corpus and use 264

as NER in Algorithm 1. We provide the results of 265

fine-tuning in the Appendix A.1. 266

Table Initialization and Document-entity Ta- 267

ble Creation: Next, we create a document-entity 268

table T as described in Sect. 2.1. Although 269

RECORDTWIN can be applied to any target entity 270

type, we focus on anonymizing “problems” entities 271

as the target set E in this proof-of-concept exper- 272

iment. This choice helps anonymize documents 273

containing rare disease names and their combina- 274

tions, as illustrated in Fig. 1. 275

k-anonymization: To minimize dependence on 276

the performance of the anonymization method 277

A(T ; k), we applied a straightforward normaliza- 278

2https://huggingface.co/emilyalsentzer/Bio_
ClinicalBERT
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tion and deletion strategy, setting k = 2 to en-279

sure minimal k-anonymity. First, the columns280

(i.e., entity names) in T were normalized using281

SciSpacy (Neumann et al., 2019) and mapped to282

UMLS canonical names. Also, the columns for283

low-frequency entities were dropped for efficient284

anonymization. Then, the table was k-anonymized285

by matching the two most similar rows with cosine286

similarity using Faiss3 and changing values for non-287

overlapping entities to 0 (deletion as in Fig. 2). The288

resulting table T̂ is k=2 anonymized in terms of289

anonymized target entities (i.e., “problems”).290

Generation via few-shot learning Given the k-291

anonymized document-entity table T̂ , we gener-292

ated the synthetic corpus D̂gen with the method293

described in Sect. 2.2. Specifically, for each doc-294

ument d, if an entity is deleted in the anonymiza-295

tion, we replace the entity name in the lines of296

entities with blank (“___” in Fig. 3). Also, if an297

entity is normalized during the anonymization, we298

replace the entity name with a normalized entity299

name (“metastases” in Fig. 3). Through this nor-300

malization and deletion, we obtain anonymized301

entity sequences. Then we prompted the LLama302

3.1 70b model4 (Carlini et al., 2019) as in Fig. 3.303

We use a downloaded open-source LLM to ensure304

that clinical data remains secure and is not shared305

with third parties. Since k-anonymization reduced306

the corpus size by approximately half (20,939 docu-307

ments), all evaluation was performed on this subset308

of the original data.309

3.2 Utility Evaluation310

In this section, we evaluate the utility of D̂gen in311

comparison with D. The evaluation was carried out312

in two downstream clinical tasks, (i) pre-training313

via masked language modeling (MLM) for clinical314

NER and (ii) fine-tuning for document classifica-315

tion. Through these evaluations we aim to assess316

the following qualities of the synthetic corpus:317

Pre-training: MLM learns the semantic represen-318

tation of masked tokens based on their surrounding319

contexts. This evaluation aims to assess the quality320

of generated context, including writing styles and321

formatting, surrounding clinical entities.322

Fine-tuning: In document classification tasks, the323

classifier maps patient information expressed in a324

document to various classes such as readmission325

risk, diagnosis and patient traits. This evaluation326

3https://faiss.ai/index.html
4https://huggingface.co/meta-llama/Llama-3.

1-70B

aims to assess if the generated corpus preserves the 327

medical validity and diversity of patient statistics 328

expressed in the original documents. 329

3.2.1 Pre-training for Clinical NER 330

We evaluated the utility of D̂gen for the pre-training 331

masked language model. Specifically, we contin- 332

ued pre-training a BERT-base model5 (Devlin et al., 333

2019) on the synthetic corpus using an MLM objec- 334

tive, followed by fine-tuning on three clinical NER 335

datasets: i2b2 2010, 2011 (Uzuner et al., 2011), and 336

2012. For comparison, we evaluated models pre- 337

trained on D̂gen (Generated) and D (Original) as 338

well as the BERT-base model without continual pre- 339

training and the ClinicalBERT model pre-trained 340

on the full MIMIC-III discharge summaries. 341

Dataset Model ACC F1

i2b2 2010

ClinicalBERT 0.961 0.874
BERT-base 0.957 0.860

Original 0.961 0.875
Generated 0.962 0.876

i2b2 2011

ClinicalBERT 0.956 0.879
BERT-base 0.952 0.870

Original 0.956 0.881
Generated 0.955 0.878

i2b2 2012

ClinicalBERT 0.910 0.786
BERT-base 0.900 0.761

Original 0.910 0.785
Generated 0.907 0.776

Table 1: NER performance of different models on
datasets across i2b2 2010, 2011, and 2012 corpus, show-
ing Accuracy (ACC) and micro F1 scores. “Generated”
is the model pre-trained on the synthetic corpus and
“Original” is pre-trained on the original corpus. Under-
lined scores indicate the lowest values, while bolded
scores represent the highest values.

The results are presented in Table 1. For 342

all datasets, we report the accuracy and micro 343

F1 scores averaged over five runs with different 344

seeds. As shown in Table 1, models pre-trained 345

on the synthetic corpus consistently outperformed 346

the BERT-base model without the continual pre- 347

training across all NER tasks, showing that the 348

synthetic corpus is useful for continual pre-training. 349

Notably, on the i2b2 2010 dataset, the model pre- 350

trained on synthetic data achieved an F1 score of 351

5https://huggingface.co/google-bert/
bert-base-uncased

5
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0.876, marginally outperforming the model trained352

on the original data (0.875) and even ClinicalBERT353

(0.874). This indicates that synthetic data can ef-354

fectively serve as a proxy for original clinical data355

and proper contexts are generated for the medical356

entities.357

3.2.2 Fine-tuning for Document Classification358

We tested the utility of the synthetic corpus across359

three clinical document classification tasks: read-360

mission prediction (Rajkomar et al., 2018), ICD361

coding (Mullenbach et al., 2018), and phenotyp-362

ing (Gehrmann et al., 2018). For each task, D in363

the annotated dataset are replaced with their syn-364

thetic counterparts while preserving the original365

annotations. We compared the following settings:366

(i) models fine-tuned on the full original dataset,367

(ii) models fine-tuned on a mix of original and syn-368

thetic data (partial replacement), and (iii) models369

fine-tuned entirely on synthetic data. This assumes370

three different scenarios where (i) annotated D is371

fully available, (ii) annotated D is partially avail-372

able and D̂gen is generated for the rest of annotated373

samples, and (iii) D is not available at all and all374

annotated documents are replaced by D̂gen. We375

fine-tune Clinical-Longformer6 (Li et al., 2022) for376

(i), (ii) and (iii) in all tasks.377

Results are presented in Fig. 4. For readmission378

prediction, we report the binary F1 score, and for379

ICD coding and phenotyping, we report the mi-380

cro F1 score. The results are averaged over five381

runs with different seeds. “Fraction” denotes the382

percentage of mixed synthetic documents, with 0%383

representing the fully original corpus and 100% rep-384

resenting the fully synthetic corpus. The results for385

the document classification tasks show that mod-386

els trained on D̂gen generally perform closely to387

models fine-tuned on D. Notably, F1 score de-388

grades from 70% in phenotyping, indicating the389

valuable patient information is reduced during k-390

anonymization for this task. We discuss per-task en-391

tity diversity in the synthetic corpus later in Sect. 4.392

To summarize, RECORDTWIN can compensate for393

the lack of the original documents in classification394

tasks, approximating the patient statistics of the395

original corpus.396

4 Analysis397

In the previous section, we showed that the syn-398

thetic corpus created with RECORDTWIN has a399

6https://huggingface.co/yikuan8/
Clinical-Longformer

utility comparable to that of the original corpus. 400

In this section, we analyze the privacy preserving 401

quality of RECORDTWIN and diversity of patient 402

statistics in the synthetic corpus. 403

4.1 Privacy Preserving Quality 404

In this section, we discuss the privacy preserv- 405

ing quality of the synthetic corpus generated with 406

RECORDTWIN. Specifically we (1) evaluate the 407

re-identification risk of the synthetic corpus and 408

(2) calculate the n-gram similarity between the syn- 409

thetic and the original corpus. We sampled 1,000 410

documents from D and generated the same number 411

of documents to create following baseline synthetic 412

corpora: 413

REPLACE: The original documents are 414

anonymized by replacing the entities in 415

the documents with the k-anonymized entities. 416

ORGE: The synthetic documents are generated 417

without the k-anonymization of extracted enti- 418

ties. 419

ORGD: The synthetic documents are generated 420

from anonymized entities with the original docu- 421

ment as an example. 422

4.1.1 Re-identification Risk 423

We follow Ben Cheikh Larbi et al. (2023) to evalu- 424

ate the re-identification risk of the synthetic corpus. 425

First, we calculate the Jaccard similarity between 426

each original document, d, and all members of 427

the synthetic corpus, D̂gen. Next, we identify the 428

member of D̂gen with the highest similarity to d. 429

Finally, we compute the accuracy of the binary clas- 430

sification problem where the goal is to determine 431

whether the member of D̂gen with the highest sim- 432

ilarity to d was actually generated from d. In this 433

context, d can be deemed as the prior knowledge 434

of a potential attacker who has access to D̂gen and 435

attempts to re-identify the target patient by a set of 436

keywords. The lower re-identification accuracy in- 437

dicates stronger privacy protection, as the synthetic 438

documents are less likely to be linked back to their 439

original counterparts. 440

REPLACE ORGE ORGD RECORDTWIN

ACC 0.912 0.807 0.793 0.737
Sim 0.784 0.226 0.366 0.204

Table 2: Accuracy and similarity scores across differ-
ent generation methods. Underlined scores indicate the
highest re-identification risk, while bolded scores repre-
sent the lowest risk.

6
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Figure 4: Results for readmission, ICD, and phenotyping datasets showing ACC and F1 metrics.

Table 2 presents the accuracy scores and the aver-441

age Jaccard similarity of the identified members of442

D̂gen. While not directly comparable, generation-443

based methods exhibit lower identification risks444

than most anonymization methods evaluated by445

Ben Cheikh Larbi et al. (2023), highlighting the446

privacy-preserving quality of the generative ap-447

proach. Among them, RECORDTWIN has the low-448

est re-identification accuracy and Jaccard similar-449

ity. Interestingly, ORGD has the second lowest450

accuracy while ORGE has the second lowest av-451

erage Jaccard similarity. As we see in Sect. 4.1.2,452

ORGD contains a portion of the generated docu-453

ment with high similarities with the original doc-454

uments. This result indicates the importance of455

preventing memorization of original documents as456

well as k-anonymization of entities.457

4.1.2 N-gram Similarity458

For evaluation of similarity, we follow Zecevic et al.459

(2024) and use ROUGE-L (Lin, 2004) as the simi-460

larity metric. ROUGE-L relies on the longest com-461

mon sub-sequence shared between the generated462

and reference documents, assessing how much of463

the original document is generated in the generated464

document. We calculate the ROUGE-L score given465

a generated document and the original document466

as a reference.467

Fig. 5 shows the distribution of ROUGE-L468

scores for each generation method. All the dis-469

tributions are estimated using a kernel-density esti-470

mate using Gaussian kernels. RECORDTWIN has471

the lowest average score, 0.333 and REPLACE has472

the highest, 0.810. ORGE has a similar distribu-473

tion as RECORDTWIN with higher average score,474

0.393. For ORGD, the average is 0.528, and the475

scores are widely distributed, indicating a chunk of476

documents in the synthetic corpus are fairly sim-477

ilar to the original documents. Also, while RE-478

PLACE and ORGD generated documents with high479

ROUGE-L scores (1.0 and 0.998 as the max scores),480

RECORDTWIN does not have such cases (0.575 as481

Figure 5: Distribution of ROUGE-L scores for various
generation methods. RECORDTWIN has the lowest av-
erage and max scores (0.333 and 0.575 respectively),
indicating the exact phrases in D are less prone to be
contained in the synthetic corpus.

the max score). These indicate phrases in D are 482

less likely to be contained in the generated version 483

D̂gen using RECORDTWIN. 484

4.2 Diversity in Patient Statistics 485

In Sect. 3.2.2, we observe a decline in the utility 486

of the synthetic corpus for the phenotyping task. 487

During k-anonymization, “problems” entities were 488

deleted or normalized to enhance privacy preserv- 489

ing quality, which may have altered the original 490

patient statistics. We hypothesize that this decline 491

in the utility stems from a loss of diversity in “prob- 492

lems” entities across document classes. To verify 493

this, we counted the number of unique “problems” 494

entities in the generated corpus as a percentage of 495

those in the original corpus for each class. 496

Dataset # CLS Average (Std) Max Min

Readmission 2 0.625 (0.005) 0.630 0.620
ICD 50 0.561 (0.040) 0.673 0.477
Phenotyping 10 0.442 (0.023) 0.472 0.409

Table 3: Average (std), max and min of the percentage
of unique “problems” entities retained in the generated
corpus for each class. Phenotyping has the lowest av-
erage, potentially leading to lower performance shown
in Fig. 4 Underlined scores indicate the lowest values,
while bolded scores represent the highest values..

Table 3 presents the percentage of unique “prob- 497

7



lems” entities retained in the generated corpus rela-498

tive to the original. When averaged over all classes,499

the unique “problems” count drops to 44.2% for500

phenotyping, compared to 62.5% for Readmission501

and 56.1% for ICD. The reduced diversity in pheno-502

typing likely contributes to a higher false-negative503

rate in classification. We further analyze the class-504

wise performance for the phenotyping task in the505

Appendix. In summary, the trade-off between pri-506

vacy preservation and dataset utility should be care-507

fully considered, particularly for tasks reliant on508

entity diversity. We leave such consideration, in-509

cluding using more sophisticated anonymization510

methods, for the future work.511

5 Related Work512

We summarize the related work of this paper in two513

groups: (1) a method that removes personal infor-514

mation through NER, and (2) a method that gener-515

ates synthetic documents with generative models.516

5.1 De-identification and Anonymization517

De-identification and anonymization techniques518

are frequently applied to create shareable corpora,519

yet these techniques can be unreliable in practice.520

De-identification has been extensively studied521

in the context of text anonymization in the clinical522

domain. Particularly in the United States, since the523

enactment of HIPAA in 1996, personal information524

such as the names of physicians and facilities has525

been clearly defined. In practice, major publicly526

accessible electronic health record datasets in the527

U.S., such as i2b2 (n2c2) (Sun et al., 2013) and528

MIMIC (Johnson et al., 2016, 2023), have been529

constructed using this approach.530

On the other hand, anonymization involves the531

complete and irreversible removal of any infor-532

mation from a dataset that could directly or indi-533

rectly identify an individual (Lison et al., 2021).534

Such information includes explicit identifiers (e.g.,535

names, addresses) and quasi-identifiers (e.g., rare536

diseases, hospital names). Existing anonymiza-537

tion approaches generally first leverage named en-538

tity recognition (NER) or a pre-defined set of en-539

tities (Chakaravarthy et al., 2008) to detect (quasi-540

)identifiers and then delete, replace, or general-541

ize those (quasi-) identifiers to remove sensitive542

information. In practice, automated detection of543

(quasi-) identifiers depends on the NER model’s544

performance. Since the detection can be unreli-545

able, there is no guarantee that a complete removal546

of identifying information can be achieved. Also, 547

there is a trade-off between anonymity and utility in 548

downstream tasks (Ben Cheikh Larbi et al., 2023). 549

5.2 Generation-Based Approaches 550

While anonymization aims to protect personal in- 551

formation by editing the original documents, ap- 552

proaches based on generative models have also 553

been proposed. Generation-based approaches rely 554

on the property that the information contained in 555

the synthetic corpus comes from the original or 556

fabricated by the generative models (plausible de- 557

niability) (Amin-Nejad et al., 2020; Hiebel et al., 558

2023; Ive et al., 2020; Li et al., 2021). Previous 559

studies have demonstrated the usefulness of gener- 560

ated corpora as training data for downstream tasks 561

such as medical outcome prediction (Amin-Nejad 562

et al., 2020), NER (Hiebel et al., 2023), and diag- 563

nosis/phenotype prediction (Ive et al., 2020). 564

Recently, Kweon et al. (2024) proposed a 565

method for generating synthetic clinical data us- 566

ing publicly available case reports. Their approach 567

involves transforming the style and formatting of 568

case reports to resemble in-hospital documents 569

with the help of a large language model. While 570

our method shares similarities with theirs, we dif- 571

fer in that we derive patient statistics directly from 572

actual in-hospital documents. This reliance on real 573

patient data necessitates the extraction of entities 574

and an anonymization process to ensure privacy. 575

6 Conclusion 576

In this paper, we present RECORDTWIN, a novel 577

method to create a synthetic clinical corpus com- 578

bining entity anonymization and context genera- 579

tion through few-shot learning. RECORDTWIN is 580

safe for two reasons: (1) it anonymizes the pa- 581

tient statistics using k-anonymization (2) it does 582

not learn from the in-hospital documents intended 583

for anonymization. We conduct a proof-of-concept 584

experiment and evaluate the RECORDTWIN from 585

utility perspectives. The results suggest that the 586

generated corpus has high utility in downstream 587

tasks. We believe this work presents an innova- 588

tive solution for corpus scarcity in the clinical do- 589

main and lays the foundation for creating publicly 590

available synthetic clinical corpora in real-world 591

settings. 592
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7 Limitations593

RECORDTWIN is safer than the existing ap-594

proaches for synthetic clinical corpus creation by595

design. Theoretically, the synthetic corpus can be596

created from entity sequences with complete k-597

anonymity. Also, we showed that the generated598

documents has high utility in downstream clinical599

tasks. However there are limitations in our proof-600

of-concept experiment in (1) privacy-preserving601

quality of the synthetic corpus and (2) evaluation602

of generated documents.603

Privacy-preserving Quality: To simplify the604

anonymization process, our experiments made605

specific choices, including setting k = 2 for k-606

anonymization and selecting “problems” entities607

as the anonymization target. While these decisions608

streamline the process, they also impose limita-609

tions on the privacy-preserving quality of the syn-610

thetic corpus. For instance, ensuring complete k-611

anonymity across all entity types could enhance612

privacy preserving quality. However, achieving this613

would require more sophisticated and potentially614

complex anonymization techniques. In future work,615

we plan to explore the impact of different values of616

k and various anonymization methods, integrating617

them into the proposed RECORDTWIN. Addition-618

ally, our current approach applies anonymization619

at the entity set level within a document rather than620

directly anonymizing entity sequences used for text621

generation. While our pipeline is flexible enough622

to accommodate different anonymization targets,623

anonymization of sequential data remains an av-624

enue for future research.625

Evaluation of Generated Documents: Depend-626

ing on the intended use, a thorough human review627

of the generated documents may be necessary be-628

fore publicly releasing the corpus. However, as-629

sessing the fluency and medical accuracy of the630

synthetic corpus is costly, as it requires meticu-631

lous scrutiny by domain experts. To mitigate this632

challenge, future work could explore the use of633

LLM (Fu et al., 2023; Chen et al., 2023) as an alter-634

native to manual inspection, potentially reducing635

the cost and effort associated with human evalua-636

tion while maintaining quality control.637

8 Ethics Statement638

The data used in this study is publicly available and639

ethically sound. However, in the context of gener-640

ating clinical corpora, it is crucial to acknowledge641

the potential presence of errors in the generated642

data. Consequently, it is strongly advised against 643

employing this data for tasks that have a direct im- 644

pact on human life, such as automated diagnosis. 645

Additionally, the study recognizes the possibility of 646

privacy breaches if RECORDTWIN is used without 647

the careful entity anonymization process, empha- 648

sizing the importance of continuously integrating 649

improvements based on relevant research findings. 650
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A Appendix830

A.1 Implementation Details and Performance831

of the Entity Extraction Model832

Since the original documents (discharge summaries833

from MIMIC) are not divided into sentences, we834

applied a sliding window technique with a win-835

dow size of 350 tokens for preprocessing in the836

entity extraction model. As a base model, we used837

Clinical BERT, which was pre-trained on clinical838

text. We fine-tuned the base model using Hug-839

gingface Trainer7 on the i2b2 2012 dataset with840

hyperparameters summarized in Table 4. Other hy-841

perparameters are set to default values. The model842

performance on the evaluation set was 0.752 and843

0.902 in F1 score and accuracy, respectively.844

Hyperparameter Value
Learning rate 2e-5
Number of training epochs 10
Training batch size 4
Evaluation batch size 8
Max input token length 350

Table 4: Training hyperparameters for the Entity Extrac-
tion Model

A.2 Implementation Details for Document845

Generation846

For the synthetic corpus creation, the documents847

were generated using the Transformers pipeline.848

7https://huggingface.co/docs/transformers/en/
main_classes/trainer

We queried the LLM with prompts exemplified in 849

Figure 6. The configuration for text generation 850

is summarized in Table 5, while other generation 851

parameters were set to their default values. 852

Hyperparameter Value
Do sampling True
Temperature 0.8
Top-p 0.95
Top-k 5
Max generation length Prompt length + 1500

Table 5: Configuration for document generation

A.3 Implementation Details for Downstream 853

Tasks 854

Fine-tuning for the downstream tasks are imple- 855

mented with transformer trainer. 856

For NER, we fine-tuned the pre-trained model 857

described in Sect. 3.2.1, utilizing sliding windows 858

of 3 sentences during preprocessing. The hyper- 859

parameters used are listed in Table 6, while other 860

values were set to their default settings. For doc- 861

ument classification, we fine-tuned the Clinical- 862

Longformer8 with hyperparameters listed in Ta- 863

ble 7. All other values were set to their default 864

settings. 865

Parameter Value
Learning rate 2e-5
Number of training epochs 10
Training batch size 4
Evaluation batch Size 8
Max input token length 250

Table 6: Hyperparameters for NER

Parameter Value
Learning rate 2e-5
Number of training epochs 10
Training batch size 4
Evaluation batch size 4
Weight decay 0.01
Max input token length 1000

Table 7: Hyperparameters for document classification

8https://huggingface.co/yikuan8/
Clinical-Longformer
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A.4 Performance Details for Phenotyping866

Task867

We present the per-class F1 scores and the number868

of predicted labels on the test set for phenotyping869

classification in Table 8. For some labels, such870

as "Obesity" and "Chronic pain fibromyalgia," the871

number of predicted labels is significantly lower in872

the Gen dataset compared to the Org dataset. This873

disparity leads to imbalanced model performance874

across label types. A likely reason for this is the875

reduction in the variety of unique “problem” entites876

caused by the k-anonymization process.877
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F1 # labels
Label Org Gen Org Gen Gold
Advanced cancer 0.743 0.647 15 14 20
Obesity 0.700 0.000 8 0 12
Advanced lung disease 0.667 0.296 14 5 22
Chronic pain fibromyalgia 0.632 0.111 26 5 31
Alcohol abuse 0.800 0.625 15 12 20
Depression 0.766 0.516 42 41 52
Other substance abuse 0.690 0.581 10 12 19
Chronic neurological dystrophies 0.704 0.694 30 31 41
Schizophrenia and other psychiatric disorders 0.833 0.806 27 34 33
Advanced heart disease 0.500 0.182 13 7 15

Table 8: F1 score and number of predicted labels for each class in phenotyping classification. For # labels, Gen
and Org denote the number of predicted labels by Gen and Org. Gold denotes the number of gold labels for each
class. Some classes in Gen such as “Obesity” and “Chronic pain fibromyalgia” has prominently smaller number of
predicted labels compared with Org. This also results in lower F1 scores for those labels.

Instruction: Generate sentences of a document in an Electronic Health Record from lines of entities
following the instructions below:

1. The generated sentences must maintain the order of the entities as they appear in the lines of entities.
2. The generated sentences should have the same formatting and writing style as the Example.
3. Be sure to generate the sentences by filling the context between entities instead of just copying the lines
of entities.
4. Be sure to put a period at the end of each sentence if necessary.

Example:
The number of sentences: 68
Lines of entities:
1| No Entity
2| No Entity
3| CABG, valve replacement, PVD, CRI,...
...
Generated sentences:
1| Admission Date: [**2118-12-12**]...
2| History of Present Illness:
3| This 72-year old female with an medical history of CABG and valve replacement, PVD, CRI, ...
...
Now please generate a document based on the entities below.
The number of sentences: 68
Lines of entities:
1| No Entity
2| No Entity
3| metastatic melanoma, metastases
4| altered mental status, ___ ,headache
...
Generated sentences:
1|

Figure 6: The prompt used in RECORDTWIN. Example is a one-shot example sampled from demonstration pool D̃.
Lines of entities are extracted from the original document d and anonymized by deletion and normalization. Also,
we specified the number of sentences to be generated.
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