
AutoRL-Bench 1.0

Gresa Shala1, Sebastian Pineda Arango1, André Biedenkapp1,
Frank Hutter1,2, Josif Grabocka1

1University of Freiburg, 2Bosch Center for Artificial Intelligence
{shalag,pineda,biedenka,fh,grabocka}@cs.uni-freiburg.de

Abstract

It is well established that Reinforcement Learning (RL) is very brittle and sen-
sitive to the choice of hyperparameters. This prevents RL methods from being
usable out of the box. The field of automated RL (AutoRL) aims at automatically
configuring the RL pipeline, to both make RL usable by a broader audience, as
well as reveal its full potential. Still, there has been little progress towards this
goal as new AutoRL methods often are evaluated with incompatible experimen-
tal protocols. Furthermore, the typically high cost of experimentation prevents
a thorough and meaningful comparison of different AutoRL methods or estab-
lished hyperparameter optimization (HPO) methods from the automated Machine
Learning (AutoML) community. To alleviate these issues, we propose the first
tabular AutoRL Benchmark for studying the hyperparameters of RL algorithms.
We consider the hyperparameter search spaces of five well established RL methods
(PPO, DDPG, A2C, SAC, TD3) across 22 environments for which we compute
and provide the reward curves. This enables HPO methods to simply query our
benchmark as a lookup table, instead of actually training agents. Thus, our bench-
mark offers a testbed for very fast, fair, and reproducible experimental protocols
for comparing future black-box, gray-box, and online HPO methods for RL.

1 Introduction

Reinforcement Learning (RL) applications have made headlines in the past decade, with break-
throughs in a variety of domains such as game playing [see, e.g., 1–4], robotics [5] or real world tasks
[6, 7]. These demonstrations of the capabilities of RL algorithms have caused a surge of interest. In
spite of such achievements, RL algorithms are still highly sensitive to hyperparameter configurations
and implementation details [8–11]. Additionally, the brittleness of RL [12], i.e. configurations drasti-
cally failing on some seeds while performing very well on others, results in unreliable comparisons of
RL algorithms [13]. Bundled together with a typically high cost of experiments, this makes manual
tuning of RL agents highly error-prone, tedious and requires vast expert knowledge.

The quickly growing field of automated reinforcement learning [AutoRL; 14] aims to tackle these
problems. Still, efficient hyperparameter optimization of RL algorithms remains an open problem.
We argue that this can be largely attributed to the fact that there does not yet exist a commonly
used set of benchmarks on which novel AutoRL methods can be easily, fairly and comprehensively
studied and compared. Without such benchmarks, it is difficult to develop novel HPO methods for
RL, and it is even more challenging to compare fairly to existing HPO methods. Evaluating each
hyperparameter configuration is computationally demanding, as each evaluation requires running an
RL algorithm’s training loop for a sequence of episodes, repeating the process for multiple seeds.

The field of neural architecture search (NAS) in fact had faced very similar issues before the first
tabular NAS benchmark NAS-Bench-101 [15] was released. That benchmark had enormous impact in
enabling reproducible research and democratizing the field, leading to more than 1 000 new papers on
NAS in the last two years alone [16]. Here, we aim at introducing the equivalent of NAS-Bench-101

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.



for the case of AutoRL. Without such benchmarks, while there has been significant success in other
areas of Machine Learning (ML) for optimizing the hyperparameters of ML algorithms [17], the
RL community has not yet seen many success stories regarding the adoption of HPO methods,
besides notable exceptions such as PBT [18] and PB2 [19].1 In order to facilitate the evaluation of
existing and novel HPO methods for RL, we propose AutoRL-Bench 1.0, a tabular benchmark for
hyperparameter optimization of RL.

AutoRL-Bench 1.0 is the first tabular HPO benchmark for RL and contains reward curves for five
popular model-free RL algorithms across 22 environments. We consider three distinct classes of
environments from OpenAI Gym [20]: Atari [21], Classic Control, and MuJoCo [22] and focus on
five popular RL algorithms: PPO [23], A2C [24], DDPG [25], SAC [26], and TD3 [27]. We evaluate
468 distinct hyperparameter configurations for each environment, resulting in 12 744 total training
runs. In order to allow for the fast evaluation of black-box, as well as gray-box HPO methods for RL,
we provide reward curve information on the performance of different hyperparameter configurations
across the environments. Speaking simply, a researcher can now evaluate a new HPO method by
just querying our pre-computed reward curves without actually running any RL algorithms (i.e. the
evaluation of hyperparameter configuration reduces to O(1)). Further, as dynamic adaptation plays
an important role in deep RL [14], for a subset of algorithms and environments, we evaluate 729
schedules of hyperparameters with distinct switching points on each considered environment, which
allows us to give a head-to-head comparison between online/dynamic and gray-box HPO methods.

Our contributions are as follows: i) To the best of our knowledge, we are the first to provide a tabular
HPO benchmark for RL algorithms. ii) AutoRL-Bench 1.0 is abundant in information, providing
evaluations across 22 environments, as well as learning curve information on the performance of RL
algorithms. iii) We additionally provide a version of the benchmark that considers hyperparameter
schedules with distinct switching points that allow studying dynamic hyperparameter optimization.
iv) We empirically demonstrate the usefulness of our benchmark by evaluating multiple black-box,
gray-box and online HPO methods on it and providing insights into hyperparameter importance for
RL algorithms.

2 Related Work

Tabular Benchmarks Tabular benchmarks have been proposed for other important problems in the
(Auto)ML community where evaluations are expensive. For example, in the field of neural architecture
search [NAS; 28] evaluating the performance of deep learning architectures can quickly become
very resource intensive. Thus, to make novel NAS methods easily and cheaply comparable and
reproducible, tabular benchmarks have become an important tool for NAS research [29]. By now, there
exist various different tabular benchmarks (see, e.g., NAS-Bench-101 [15], NAS-Bench-1Shot1 [30],
NAS-Bench-201 [31], NAS-Bench-301 [32] or NAS-Bench-Suite [33]) all of which provide different
search spaces and target applications. The availability of such benchmarks has allowed rapid
development of NAS methods. Similarly, tabular benchmarks play important roles in the fields of
HPO [34] and multi-fidelity optimization [35, 36] (see, e.g., HPO-B [37] and HPOBench [38]). While
RL is similarly or potentially even more expensive to train and evaluate, to the best of our knowledge,
there have not yet been any tabular benchmarks on which HPO for RL could be studied.

Automated Reinforcement Learning (AutoRL) While there are various parts of the RL pipeline
that could be automated, e.g., the choice of algorithm, architecture or environment components, in
this work we focus on hyperparameter optimization (HPO) for RL2. One of the best understood and
studied hyperparameter of RL is the discounting factor γ. For example, it is known that smaller values
of γ lead to faster convergence but might result in myopic policies [39]. Increasing the discounting
value over time can drastically speed up learning [40]. Further, François-Lavet et al. [40] showed
that simultaneously decreasing the learning rate while increasing γ improves learning speeds even
further. Still, for most algorithms and their hyperparameters it is not clear or understood whether
they are best adapted during training or whether they should stay fixed [14] and how they influence
the learning dynamics in general. Thus, it is common place that RL practitioners use some default
configuration without exploring different types of HPO or AutoRL methods. To alleviate users from
having to manually tune their RL agent, various HPO methods for RL have been proposed (see, e.g.,

1For a more in-depth discussion of related work we refer to Section 2
2For a comprehensive survey on AutoRL we refer to [14]

2



[18, 41, 42, 19, 43–45]). Still, HPO and AutoRL methods have not yet found widespread adoption
by the RL community as methods are often not extensively evaluated.

Reproducibility of RL Comparison and reproducibility of RL experiments remain difficult to tackle
problems. RL algorithms’ sensitivity to hyperparameters [8, 12] is exacerbated by implementation
details that can strongly influence an RL agents performance [9–11]. Further, the cost of typical RL
experiments causes studies to often only compare performances on a handful of trials, which is most
often not sufficient for a clear comparison [13].

These issues persist when trying to compare AutoRL methods [14]. Thus, novel AutoRL methods are
often only evaluated on particular search spaces, across a handful of environments and not compared
to existing baselines. Access to cheap-to-evaluate tabular benchmarks can mitigate this issue and
may thus help advance the state-of-the-art in AutoRL and help shed light on when hyperparameters
are best (not) adapted dynamically.

Benchmarks for RL There exists a plethora of benchmarks to evaluate RL algorithms [see, e.g.,
22, 21, 20, 46]. However, these are designed with RL in mind, not HPO for RL or other forms
of AutoRL. These benchmarks provide environments for the agents to interact with and to collect
training examples on. This makes them prohibitive for use in AutoRL experiments as any RL agent
that is being optimized will still have to compute expensive training updates. Our proposed benchmark
differs from RL benchmarks in that it provides precomputed reward curves of already trained agents
for specific hyperparameter configurations, and is tailored towards AutoRL research.

3 Benchmark Description

The benchmark comprises recorded reward-curves for five commonly used RL algorithms (PPO [23],
A2C [24] and DDPG [25]) on 22 environments (see Appendix A Figure 2). For each algorithm,
we consider the static configuration space containing the learning rate and discounting factor, and,
depending on the algorithm, the clipping value or target network updating frequency (see Appendix A,
top half of Table 1). For PPO, SAC, and TD3, we additionally consider a dynamic version in which
hyperparameters can change at discrete time-steps while the agent is training. Our AutoRL-Bench
1.0 contains the recorded reward-curves for all training runs of each agent with all combinations of
hyperparameters in the chosen configuration spaces.

The considered OpenAI Gym [20] environments consist of 15 Atari [21] games, four classic control
problems, and three MuJoCo [22] tasks. Most environments have a discrete action space. Only
the classic control task Pendulum and the MuJoCo environments Ant, Hopper and Humanoid have
continuous action spaces. All 15 Atari games have image-based state representations whereas the
classic control and MuJoCo environments have vector-based state representations. Most environments
have dense reward signals, only the games Bowling, Enduro, Pong, Skiing and Tennis have mostly
sparse reward signals. Finally, all environments were used to compute reward curves with static
configurations. Only the classic control tasks and the Enduro game were used to compute reward
curves for configuration schedules.

Data Collection For the RL algorithms, we used the implementations from stable-baselines3 [47].
To be able to provide uncertainty estimates, we ran each configuration (or schedule) for three seeds on
a compute cluster using rtx2080 GPUs. We trained all agents for 106 steps on each environment and
evaluated the performance for 10 episodes every 104 steps. The total cost of creating the benchmark
amounts to 29 160 GPU hours, or 3.3 GPU years of computational resources. For implementation
details about the data format we refer to Appendix B.

When training PPO, SAC, and TD3 with configuration schedules, to avoid a combinatorial explosion,
we limited the configuration space to two hyperparameters with three values each and used two
discrete switching points after 3 · 105 and 6 · 105 training steps elapsed. This gives rise to a
configuration space of (32)3 = 729 distinct configuration schedules, all of which were evaluated on
five environments for three seeds each. Without this limitation the original PPO configuration space
with two switches would already have required (6 · 6 · 3)3 = 1259 712 evaluations. In the pruned
space, a third switch would already result in (32)4 = 6561 schedules.

3



from benchmark_handler import BenchmarkHandler
import numpy as np
benchmark = BenchmarkHandler(data_path, environment="Pendulum-v0", seed=0,

search_space="PPO", static=True)
incumbent_reward, incumbent_config = -np.inf, None
for i in range(100): # 100 iterations of random search

candidate = np.random.randint(low=0, high=len(config_space))
lr, gamma, clip = config_space[candidate]
config_to_query = {"lr":lr, "gamma": gamma, "clip": clip}
queried_data = benchmark.get_metrics(config_to_query, budget=100)
result = queried_data["eval_avg_returns"][-1]
if result > incumbent_reward:

incumbent_reward, incumbent_config = result, config_to_query

Listing 1: Code snippet for querying AutoRL-Bench 1.0 while optimizing with Random Search

API for AutoRL-Bench 1.0 To ease the accessibility to the data for users, we provide an API which
is freely accessible at https://github.com/releaunifreiburg/AutoRL-Bench. Once the data
is downloaded, a few lines of code suffice to query the metrics of a hyperparameter configuration
for a given (environment, search space) combination. An example of querying the benchmark while
optimizing with random search is given in Listing 1. The user can also switch between the dynamic
or static spaces by modifying the respective attribute in the benchmark object. When querying a
dynamic configuration, the user must provide the list of hyperparmeter values that are used in the
schedule, where switches are possible at 300k and 600k training steps (see Listing 2 of Appendix B).
In our GitHub repository, we provide further examples on advanced ways to query the API to avoid
creating an object for every (environment,search space) combination. Moreover, we provide examples
on how to couple its functionality with HPO optimizers.

4 Experiments

Setup To demonstrate how HPO methods for RL or other AutoRL approaches could leverage
our novel benchmark, here we provide a comprehensive comparison of existing HPO methods and
evaluate their usefulness for RL. For a detailed description of the considered baselines we refer to
Appendix C. On the static benchmark, we evaluated RS and SMAC4MF for a budget of 4 full RL
training procedures for each (algorithm, environment, seed) triple. As PBT and PB2 are designed
to optimize hyperparameters dynamically, we only evaluate them on the dynamic version of our
benchmark. We denote these results under the labels D-PBT, and D-PB2. Additionally, to get a better
understanding of the configuration spaces and to facilitate a comparison between multi-fidelity and
dynamic methods, we compare to PBT and PB2 results for real runs on the full configuration spaces.
These results are denoted with the labels PBT and PB2 respectively. Following Parker-Holder et al.
[19] we used a population of 4 members for both PBT and PB2. For all baselines, we report the
average rank of the evaluated methods across environments. For brevity, we group environments
following the description of Section 3. We present group-aggregated results for PPO in the main
paper; qualitatively similar results for all algorithms and additional results on a per-environment basis
are given in Appendix D.

Results In all configuration spaces, we observe that the online HPO methods perform best in
the beginning, but random search (RS) and SMAC4MF find static hyperparameter configurations
that outperform the schedules optimized by PBT and PB2 (see Figure 1 and Figures 5 and 6in
the appendix). In conclusion, PBT and PB2 with 4 workers are efficient in terms of discovering
configurations under limited budgets, however, the SMAC4MF outperforms both on the PPO search
space, when more than about 3 hours of HPO time per environment is available. Such findings indicate
that the community needs novel HPO methods that both converge quickly given a low HPO budget,
but also remain competitive compared to RS when more computing time is available. Moreover, the
results indicate that SMAC4MF, the only multi-fidelity HPO baseline in our collection, is amongst the
best-performing methods across time steps, but it performs worse than PBT and PB2 in the early HPO
phases. Thus, we believe the successive halving mechanism is not optimally suitable for the realm of
RL because reward curves are noisy. Figure 1 (subplot b) shows that running PBT and PB2 on our

4

https://github.com/releaunifreiburg/AutoRL-Bench


103 104

Wallclock Time

1

2

3

4

Av
er

ag
e 

Ra
nk

ATARI

103 104

Wallclock Time

1

2

3

4
CONTROL

103 104

Wallclock Time

1

2

3

4
MUJOCO

RS SMAC PB2 PBT

(a) static

103 104

Wallclock Time

1

2

3

4

5

6

Av
er

ag
e 

Ra
nk

RS
SMAC
PB2
PBT
D-PBT
D-PB2

(b) dynamic

Figure 1: Average ranks for optimizing PPO on the (a) static and (b) dynamic benchmark

benchmark yields very similar results to running the default PBT/PB2 implementations, therefore
validating the correctness of the dynamic benchmark. Overall, the experimental results demonstrated
that tuning the hyperparameters of RL algorithms is an open challenge and we believe this benchmark
and its eventual successors will be the de facto experimental protocol for innovating more efficient
HPO methods for RL, which would enable practitioners to deploy RL in an off-the-shelve manner on
new environments.

Finally, we used our benchmark to evaluate hyperparameter importance for the considered algorithms.
Our results show that the learning rate is of high importance for the considered algorithms. For a
more detailed analysis we refer to Appendix D.

5 Conclusion

We presented the first tabular HPO benchmark for AutoRL. Our tabular benchmark drastically reduces
the computational requirements for evaluating novel AutoRL methods and, in turn, dramatically
lowers the barrier of entry into this field of study. Our benchmark consists of reward curves for
five commonly used RL methods across a diverse set of 22 environments. In particular, counter to
commonly provided tabular HPO benchmarks, our benchmarks allow to study configuration schedules
through the use of distinct switching points. We demonstrated the value of our benchmark by using it
to evaluate commonly used HPO methods both from the AutoML as well as the AutoRL community.
Lastly, we showed how our benchmark can provide insights to RL practitioners about the influence
of hyperparameters on an agent’s performance. We believe that our benchmark opens up the doors
for the study of novel AutoRL methods and will help advance the field in a similar fashion as tabular
benchmarks helped advance research in neural architecture search.

Acknowledgements

This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research
and innovation programme under GA No 952215. André Biedenkapp and Frank Hutter acknowledge
Robert Bosch GmbH for financial support. André Biedeankpp and Frank Hutter acknowledge funding
by European Research Council (ERC) Consolidator Grant “Deep Learning 2.0” (grant no. 101045765).
Funded by the European Union. Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the ERC. Neither the European
Union nor the ERC can be held responsible for them. The authors additionally acknowledge funding
by The Carl Zeiss Foundation through the research network "Responsive and Scalable Learning for
Robots Assisting Humans" (ReScaLe) of the University of Freiburg.

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Ried-

miller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,

5



D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 02 2015. URL http://dx.doi.org/10.
1038/nature14236.

[2] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. Pondé
de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning. arXiv:1912.06680
[cs.LG], abs/1912.06680, 2019.

[4] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng,
Q. Yuan, W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand. arXiv:1910.07113
[cs.LG], 2019.

[5] M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and
W. Zaremba. Learning dexterous in-hand manipulation. International Journal of Robotics
Research, 39(1), 2020.

[6] M. G. Bellemare, S. Candido, P. Samuel Castro, J. Gong, M. C. Machado, S. Moitra, S. S.
Ponda, and Z. Wang. Autonomous navigation of stratospheric balloons using reinforcement
learning. Nature, 588(7836):77–82, 2020.

[7] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner,
A. Abdolmaleki, D. de las Casas, C. Donner, L. Fritz, C. Galperti, A. Huber, J. Keeling,
M. Tsimpoukelli, J. Kay, A. Merle, Jean-M. Moret, S. Noury, F. Pesamosca, D. Pfau, O. Sauter,
C. Sommariva, S. Coda, B. Duval, A. Fasoli, P. Kohli, K. Kavukcuoglu, D. Hassabis, and
M. Riedmiller. Magnetic control of tokamak plasmas through deep reinforcement learning.
Nature, 602(7897):414–419, 2022.

[8] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup. Reproducibility of benchmarked deep
reinforcement learning tasks for continuous control. arXiv:1708.04133 [cs.LG], 2017.

[9] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. Im-
plementation matters in deep RL: A case study on PPO and TRPO. In Proceedings of the
International Conference on Learning Representations (ICLR’20), 2020. Published online:
iclr.cc.

[10] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R.ël Marinier, L. Hussenot,
M. Geist, O. Pietquin, M. Michalski, S. Gelly, and O. Bachem. What matters for on-policy deep
actor-critic methods? a large-scale study. In Proceedings of the International Conference on
Learning Representations (ICLR’21), 2021. Published online: iclr.cc.

[11] S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, and W. Wang. The 37 implementa-
tion details of proximal policy optimization. In ICLR Blog Track, 2022. URL https:
//iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.

[12] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In S. McIlraith and K. Weinberger, editors, Proceedings of the Conference
on Artificial Intelligence (AAAI’18). AAAI Press, 2018.

[13] R. Agarwal, M. Schwarzer, P. Samuel Castro, A. C. Courville, and M. G. Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. 2021.

6

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
iclr.cc
iclr.cc
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/


[14] J. Parker-Holder, R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang, V. Nguyen,
R. Calandra, A. Faust, F. Hutter, and M. Lindauer. Automated reinforcement learning (autorl):
A survey and open problems. Journal of Artificial Intelligence Research (JAIR), 74:517–568,
2022. doi: 10.1613/jair.1.13596.

[15] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International Conference on Machine Learning,
pages 7105–7114. PMLR, 2019.

[16] Difan Deng and Marius Lindauer. Literature on Neural Architecture Search. https://www.
automl.org/automl/literature-on-neural-architecture-search/, 2022. [Online;
accessed 25-September-2022].

[17] M. Feurer and F. Hutter. Hyperparameter optimization. In F. Hutter, L. Kotthoff, and J. Van-
schoren, editors, Automated Machine Learning: Methods, Systems, Challenges, chapter 1, pages
3–38. Springer, 2019. Available for free at http://automl.org/book.

[18] M. Jaderberg, V. Dalibard, S. Osindero, W. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu. Population based
training of neural networks. arXiv:1711.09846 [cs.LG], 2017.

[19] J. Parker-Holder, V. Nguyen, and S. J. Roberts. Provably efficient online hyperparameter
optimization with population-based bandits. In H. Larochelle, M. Ranzato, R. Hadsell, M.-F.
Balcan, and H. Lin, editors, Proceedings of the 33rd International Conference on Advances in
Neural Information Processing Systems (NeurIPS’20). Curran Associates, 2020.

[20] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI gym. arXiv:1606.01540 [cs.LG], 2016.

[21] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal Artificial Intelligence Research, 47:253–279,
2013.

[22] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In
International Conference on Intelligent Robots and Systems (IROS’12), pages 5026–5033. IEEE,
2012.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347 [cs.LG], 2017.

[24] V. Mnih, A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In M. Balcan and K. Weinberger,
editors, Proceedings of the 33rd International Conference on Machine Learning (ICML’17),
volume 48, pages 1928–1937. Proceedings of Machine Learning Research, 2016.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Proceedings of the International
Conference on Learning Representations (ICLR’16), 2016. Published online: iclr.cc.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In J. Dy and A. Krause, editors,
Proceedings of the 35th International Conference on Machine Learning (ICML’18), volume 80,
pages 1861–1870. Proceedings of Machine Learning Research, 2018.

[27] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on
Machine Learning (ICML’18), volume 80. Proceedings of Machine Learning Research, 2018.

[28] T. Elsken, J. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine
Learning Research, 20(55):1–21, 2019.

[29] M. Lindauer and F. Hutter. Best practices for scientific research on neural architecture search.
Journal of Machine Learning Research, 21(243):1–18, 2020.

7

https://www.automl.org/automl/literature-on-neural-architecture-search/
https://www.automl.org/automl/literature-on-neural-architecture-search/
iclr.cc


[30] A. Zela, J. Siems, and F. Hutter. NAS-Bench-1Shot1: Benchmarking and dissecting one-shot
neural architecture search. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJx9ngStPH.

[31] X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In Proceedings of the International Conference on Learning Representations (ICLR’20),
2020. Published online: iclr.cc.

[32] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter. NAS-bench-301 and the
case for surrogate benchmarks for neural architecture search. arXiv:2008.09777, 2020.

[33] Y. Mehta, C. White, A. Zela, A. Krishnakumar, G. Zabergja, S. Moradian, M. Safari, K. Yu,
and F. Hutter. NAS-Bench-Suite: NAS evaluation is (now) surprisingly easy. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=0DLwqQLmqV.

[34] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker,
A. Boulesteix, D. Deng, and M. Lindauer. Hyperparameter optimization: Foundations, algo-
rithms, best practices and open challenges. arXiv:2107.05847 [stat.ML], 2021.

[35] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of machine
learning hyperparameters on large datasets. In A. Singh and J. Zhu, editors, Proceedings of
the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 54. Proceedings of Machine Learning Research, 2017.

[36] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In A. Gretton and C. Robert, editors, Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 51. Proceedings of
Machine Learning Research, 2016.

[37] S. Pineda-Arango, H. S. Jomaa, M. Wistuba, and J. Grabocka. HPO-B: A large-scale repro-
ducible benchmark for black-box HPO based on openml. volume abs/2106.06257, 2021.

[38] K. Eggensperger, P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad, M. Lindauer,
and F. Hutter. HPOBench: A collection of reproducible multi-fidelity benchmark problems for
HPO. In J. Vanschoren, S. Yeung, and M. Xenochristou, editors, Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks. Curran Associates, 2021.

[39] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming, volume 3 of Optimization
and neural computation series. Athena Scientific, 1996. ISBN 1886529108.

[40] V. François-Lavet, R. Fonteneau, and D. Ernst. How to discount deep reinforcement learning:
Towards new dynamic strategies. arXiv:1512.02011 [cs.LG], 2015.

[41] Y. Chen, A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver, and N. de Freitas.
Bayesian optimization in alphago. arXiv:1812.06855 [cs.LG], 2018.

[42] F. Runge, D. Stoll, S. Falkner, and F. Hutter. Learning to Design RNA. In Proceedings of the
International Conference on Learning Representations (ICLR’19), 2019.

[43] V. Nguyen, S. Schulze, and M. A. Osborne. Bayesian optimization for iterative learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and H. Lin, editors, Proceedings of
the 33rd International Conference on Advances in Neural Information Processing Systems
(NeurIPS’20). Curran Associates, 2020.

[44] J. Franke, G. Köhler, A. Biedenkapp, and F. Hutter. Sample-efficient automated deep reinforce-
ment learning. In International Conference on Learning Representations (ICLR), 2021.

[45] N. Awad, N. Mallik, and F. Hutter. DEHB: Evolutionary hyberband for scalable, robust and
efficient hyperparameter optimization. In Z. Zhou, editor, Proceedings of the 30th International
Joint Conference on Artificial Intelligence, IJCAI’21, pages 2147–2153. ijcai.org, 2021.

[46] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark
reinforcement learning. arXiv:1912.01588 [cs.LG], 2019.

8

https://openreview.net/forum?id=SJx9ngStPH
iclr.cc
https://openreview.net/forum?id=0DLwqQLmqV
https://openreview.net/forum?id=0DLwqQLmqV


[47] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

[48] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf,
R. Sass, and F. Hutter. SMAC3: A versatile bayesian optimization package for hyperparameter
optimization. Journal of Machine Learning Research (JMLR) – MLOSS, 23(54):1–9, 2022.

[49] S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization at
scale. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on
Machine Learning (ICML’18), volume 80, pages 1437–1446. Proceedings of Machine Learning
Research, 2018.

[50] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based
configuration evaluation for hyperparameter optimization. In Proceedings of the International
Conference on Learning Representations (ICLR’17), 2017. Published online: iclr.cc.

[51] J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning
algorithms. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Pro-
ceedings of the 25th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’12), pages 2960–2968. Curran Associates, 2012.

[52] F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter
importance. In E. Xing and T. Jebara, editors, Proceedings of the 31th International Conference
on Machine Learning, (ICML’14), pages 754–762. Omnipress, 2014.

[53] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. 2016.

9

http://jmlr.org/papers/v22/20-1364.html
iclr.cc


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix F
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix G
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See
Section 3. For convenience we add the URL here again: https://github.com/
releaunifreiburg/AutoRL-Bench

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 3

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Sections 1 and 3
(b) Did you mention the license of the assets? [Yes] See Appendix E
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

10

https://github.com/releaunifreiburg/AutoRL-Bench
https://github.com/releaunifreiburg/AutoRL-Bench


A Additional Benchmark Details

Acrobot DDV CartPole DDV MountainCar DDV Pendulum DCV

Alien DDI Asteroids DDI BankHeist DDI BeamRider DDI Bowling SDI

Boxing DDI Breakout DDI Enduro SDI Phoenix DDI Pong SDI

RiverRaid DDI SeaQuest DDI Skiing SDI Invaders DDI Tennis SDI

Ant DCV Hopper DCV Humanoid DCV

Figure 2: Used environments. We provide reward, action- and state-space classification. Rewards
are either Dense or Sparse. Action-spaces are either Discrete or Continuous and state-spaces are
either Image based or Vector state-spaces. For example, Pong has a sparse reward (only scoring
points carries reward information), a dense action space and an image based state-representation. For
detailed descriptions of each environment we refer to https://www.gymlibrary.ml

11

https://www.gymlibrary.ml


Table 1: Configuration spaces of the considered RL algorithms
Type of Space Algorithm Hyperparameters Hyperparameter Values

Static

PPO
learning rate (log10) −6,−5,−4,−3,−2,−1
γ 0.8, 0.9, 0.95, 0.98, 0.99, 1.0
clip 0.2, 0.3, 0.4

A2C learning rate (log10) −6,−5,−4,−3,−2,−1
γ 0.8, 0.9, 0.95, 0.98, 0.99, 1.0

DDPG
learning rate (log10) −6,−5,−4,−3,−2,−1
γ 0.8, 0.9, 0.95, 0.98, 0.99, 1.0
τ 0.0001, 0.001, 0.005

SAC
learning rate (log10) −6,−5,−4,−3,−2,−1
γ 0.8, 0.9, 0.95, 0.98, 0.99, 1.0
τ 0.0001, 0.001, 0.005

TD3
learning rate (log10) −6,−5,−4,−3,−2,−1
γ 0.8, 0.9, 0.95, 0.98, 0.99, 1.0
τ 0.0001, 0.001, 0.005

Dynamic PPO learning rate (log10) −5,−4,−3
γ 0.95, 0.98, 0.99

SAC learning rate (log10) −5,−4,−3
γ 0.95, 0.98, 0.99

TD3 learning rate (log10) −5,−4,−3
γ 0.95, 0.98, 0.99

B Data Format and Implementation Details

We store the benchmark data as a set of JSON files, separated in folders per search space and en-
vironment. Every file contains the reward curves for a hyperparameter configuration (or schedule
in the case of the dynamic search space) in a given environment and search space. Specifically, the
JSON file has the following fields: i) returns_train – the reward list returned during training, ii) times-
tamps_train – the timestamp (in seconds) associated with the training reward, iii) timesteps_train – the
time step associated with the reward, iv) returns_eval – the rewards observed during evaluation and
its associated measurements, v) std_returns_eval – the standard deviation of the evaluation reward,
vi) timestamps_eval – the timestamp associated with the evaluation reward, vii) timesteps_eval – the
time step associated with the evaluation reward.

We use the following naming convention for all the files in the benchmark:
%env_name%-%search_space%_random_%hp1%_val1%hp2%_val2_%seed%seedval%eval.json,
where we apply bold fonts for fixed strings. For instance, a filename is:
BeamRider-v0_A2C_random_lr_-6_gamma_0.95_seed0_eval.json.

We trained each configuration and seed tuple on an environment for 106 steps. Every 104 steps, we
evaluated the agent for 10 episodes and recorded the mean and standard deviation of the obtained
evaluation returns.

C Baseline Descriptions

Random Search (RS) is a simple and standard HPO baseline. It selects hyperparameter configura-
tions uniformly at random.

SMAC4MF (SMAC) [48] implements a variant of the multi-fidelity optimizer BOHB [49] which
combines Hyperband [50] with Bayesian optimization [BO; 51]. The Hyperband component allows
to quickly discard under-performing configurations on smaller budgets (i.e., few epochs or number of
training samples), whereas the BO component identifies well-performing regions of hyperparameters

12



from benchmark_handler import BenchmarkHandler

bench = BenchmarkHandler(data_path, environment="Pendulum-v0", seed = 0,
search_space="PPO", static=True)

#querying static configuration
config_to_query = {"lr":-6, "gamma": 0.8, "clip": 0.2}
queried_data = bench.get_metrics(config_to_query, budget=50)

#querying dynamic configuration
bench.static = False
config_to_query = {"lr":[-3,-4], "gamma": [0.8,0.99], "clip": [0.2,0.2]}
queried_data = bench.get_metrics(config_to_query, budget=50)

Listing 2: Code snippet for querying AutoRL-Bench 1.0

from which to sample. SMAC4MF differs from the original BOHB by fitting a Random Forest for
the BO component.

Population Based Training (PBT) [18] is an evolutionary method for HPO that allows to dynam-
ically change hyperparameters during training. PBT maintains a population of RL agents. Every
N steps (a user-defined value) the worst members in the population are replaced with the best
ones. Simultaneously the hyperparameters of these replaced agents are perturbed to explore if new
hyperparameter values might improve the performance further. To work well, PBT typically requires
large populations between 40 and 80 members.

Population based bandits (PB2) [19] extends the PBT framework and replaces the random
hyperparameter perturbations with predictions from a time-varying Gaussian process. This change
enables PB2 to perform a more informed search over hyperparameters. As a consequence, PB2
typically requires drastically fewer members (i.e., only 4 to 8) in the population compared to PBT.

D Additional Results

D.1 Hyperparameter Importance for RL Agents

In order to determine the importance of hyperparameters for the considered RL agents, we address
the following questions. i) Which static hyperparameter configurations result in the best final reward
for each considered algorithm? ii) Which hyperparameters are more important, i.e. have a higher
influence on the final reward?

To answer the first question we compute the average rank of all considered static configurations
per environment and for each configuration space separately. Based on these averages, we select
the four best and worst configurations in each configuration space. Figure 3 depicts the results as
box-plot, where lower ranks indicate better final rewards. Generally, lower learning rates result in
better final rewards than configurations with high learning rates. Further, our results indicate that
PPO and A2C configurations are less robust than DDPG ones, i.e. generally poorly-performing
configurations can in some environments result in very good final rewards and vice versa. Contrary to
practitioners’ hopes, there exists no silver bullet hyper-parameter configuration that is clearly optimal
in the vast majority of the environments. The take-home message is that optimal hyperparameters are
environment-specific and must be carefully tuned.

To answer the second question we make use of the fANOVA hyperparameter importance method [52],
which aims to quantify how strongly the change in a hyperparameters value influenced the final
observed reward. fANOVA attributes higher importance to those hyperparameters that have a stronger
influence in the final performance, i.e. reward. In Figure 4 we compute the average rank over
all environments. Our results confirm that the learning rate is instrumental in achieving optimal
performance for the considered algorithms. Furthermore, γ is very influential in the case of PPO.

13



(-4
, 0

.9
9,

 0
.4

)
(-4

, 0
.9

8,
 0

.2
)

(-4
, 0

.9
9,

 0
.2

)
(-4

, 0
.9

5,
 0

.2
)

(-1
, 0

.9
9,

 0
.4

)
(-1

, 0
.9

5,
 0

.2
)

(-1
, 0

.9
, 0

.4
)

(-1
, 0

.8
, 0

.4
)

Conf. ('lr', 'gamma', 'clip')

0

25

50

75

100
Ra

nk
 o

f R
ew

ar
d

PPO

(-4
, 0

.9
8)

(-4
, 0

.9
5)

(-4
, 0

.9
9)

(-4
, 0

.8
)

(-2
, 0

.9
9)

(-1
, 0

.9
5)

(-1
, 0

.9
)

(-1
, 1

.0
)

Conf. ('lr', 'gamma')

0

10

20

30

A2C

(-4
, 0

.9
8,

 0
.0

01
)

(-4
, 0

.9
9,

 0
.0

05
)

(-4
, 0

.9
9,

 0
.0

01
)

(-5
, 0

.9
9,

 0
.0

01
)

(-2
, 1

.0
, 0

.0
00

1)
(-2

, 0
.8

, 0
.0

01
)

(-2
, 0

.9
5,

 0
.0

01
)

(-2
, 0

.8
, 0

.0
05

)

Conf. ('lr', 'gamma', 'tau')

0

25

50

75

100
DDPG

Figure 3: Average rank of the final reward across environments (four best and worst configurations)

lr gamma clip
1.0

1.5

2.0

2.5

3.0

Ra
nk

 o
f I

m
po

rta
nc

e

PPO

lr gamma
Hyperparameters

1.00

1.25

1.50

1.75

2.00
A2C

lr gamma tau
1.0

1.5

2.0

2.5

3.0
DDPG

Figure 4: Hyperparameter importance per search space (red diamond=mean, red line=median)

103 104

Wallclock Time

1

2

3

Av
er

ag
e 

Ra
nk

ATARI

103 104

Wallclock Time

1

2

3

CONTROL

103

Wallclock Time

1

2

3

MUJOCO

RS SMAC PB2 PBT

Figure 5: Average Rank for A2C Search Space

14



103 104

Wallclock Time

1

2

3

4

Av
er

ag
e 

Ra
nk

DDPG

104 105

Wallclock Time

1

2

3

4

SAC

104 105

Wallclock Time

1

2

3

4
TD3

RS SMAC PB2 PBT

Figure 6: Average Rank for DDPG, SAC, and TD3 Search Space

D.2 Regret Plots

We present the regret plots of the experiments presented in the main paper in Figures 7 to 9.

We compute the normalized regret for an observed reward r within an environment as :

normalized regret =
rmax − r

rmax − rmin
(1)

where rmax and rmin are the maximum and minimum reward observed for any algorithm in that
environment.

103 104

Wallclock Time

0.0

0.5

1.0

Av
er

ag
e 

No
rm

al
ize

d 
Re

gr
et ATARI

103 104

Wallclock Time

0.0

0.5

1.0
CONTROL

103

Wallclock Time

0.0

0.5

1.0
MUJOCO

RS SMAC PB2 PBT

Figure 7: Average normalized regret for A2C Search Space

D.3 Rank plots per Environment

Figures 10 to 14 show the average rank of each evaluated HPO method on the individual environments.

103 104

Wallclock Time

0.0

0.5

1.0

Av
er

ag
e 

No
rm

al
ize

d 
Re

gr
et ATARI

103 104

Wallclock Time

0.0

0.5

1.0
CONTROL

103 104

Wallclock Time

0.0

0.5

1.0
MUJOCO

RS SMAC PB2 PBT

(a) static

103 104

Wallclock Time
0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

No
rm

al
ize

d 
Re

gr
et RS

SMAC
PB2
PBT
D-PBT
D-PB2

(b) dynamic

Figure 8: Average normalized regret for optimizing PPO on the (a) static and (b) dynamic benchmark

15



103 104

Wallclock Time

0.0

0.5

1.0
Av

er
ag

e 
No

rm
al

ize
d 

Re
gr

et DDPG

104 105

Wallclock Time

0.0

0.5

1.0

SAC

104 105

Wallclock Time

0.0

0.5

1.0

TD3

RS SMAC PB2 PBT

Figure 9: Average normalized regret for DDPG, SAC, and TD3 Search Space

104

Wallclock Time

2

4

Av
er

ag
e 

Ra
nk

Ant-v2

103 104

Wallclock Time

2

4

Hopper-v2

103 104

Wallclock Time

2

4

Humanoid-v2

RS SMAC PB2 PBT

Figure 10: Average Rank for DDPG Search Space per Environment

104 105

Wallclock Time

2

4

Av
er

ag
e 

Ra
nk

Ant-v2

104 105

Wallclock Time

2

4
Hopper-v2

104 105

Wallclock Time

2

4
Humanoid-v2

RS SMAC PB2 PBT

Figure 11: Average Rank for SAC Search Space per Environment

16



103 104 105

1

2

3

4

Av
er

ag
e 

Ra
nk

Pong-v0

103 104 105

1

2

3

4

Alien-v0

103 104 105

1

2

3

4

BankHeist-v0

103 104 105

1

2

3

4

BeamRider-v0

103 104 105

1

2

3

4

Av
er

ag
e 

Ra
nk

Breakout-v0

103 104

1

2

3

4
Enduro-v0

103 104

1

2

3

4
Phoenix-v0

103 104

1

2

3

4
Seaquest-v0

103 104

1

2

3

4

Av
er

ag
e 

Ra
nk

SpaceInvaders-v0

103 104

1

2

3

4
Riverraid-v0

103 104

1

2

3

4
Tennis-v0

103 104

1

2

3

4
Skiing-v0

103 104

1

2

3

4

Av
er

ag
e 

Ra
nk

Boxing-v0

103 104

1

2

3

4
Bowling-v0

103 104

1

2

3

4
Asteroids-v0

103 104

1

2

3

4
CartPole-v1

103 104

1

2

3

4

Av
er

ag
e 

Ra
nk

MountainCar-v0

103 104

1

2

3

4
Acrobot-v1

103 104

Wallclock Time

1

2

3

4
Pendulum-v0

103 104

Wallclock Time

1

2

3

4
Ant-v2

103 104

Wallclock Time

1

2

3

4

Av
er

ag
e 

Ra
nk

Hopper-v2

103 104

Wallclock Time

1

2

3

4
Humanoid-v2

RS SMAC PB2 PBT

Figure 12: Average Rank for PPO Search Space per Environment

17



103 104
1

2

3

Av
er

ag
e 

Ra
nk

Pong-v0

103 104

1

2

3

4
Alien-v0

103 104

1

2

3

4
BankHeist-v0

103 104

1

2

3

4
BeamRider-v0

103 104

1

2

3

4

Av
er

ag
e 

Ra
nk

Breakout-v0

103 104

1

2

3

4
Enduro-v0

103 104

1

2

3

4
Phoenix-v0

103 104

1

2

3

4
Seaquest-v0

103 104

1

2

3

4

Av
er

ag
e 

Ra
nk

SpaceInvaders-v0

103 104

1

2

3

4 Riverraid-v0

103 104

1

2

3

Tennis-v0

103 104

1

2

3

Skiing-v0

103 104

1

2

3

Av
er

ag
e 

Ra
nk

Boxing-v0

103 104

1

2

3

Bowling-v0

103 104

1

2

3

Asteroids-v0

103 104

1

2

3

CartPole-v1

103 104

1

2

3

Av
er

ag
e 

Ra
nk

MountainCar-v0

103 104

1

2

3

Acrobot-v1

103 104

Wallclock Time

1

2

3

Pendulum-v0

103

Wallclock Time

1

2

3
Ant-v2

103

Wallclock Time

1

2

3

Av
er

ag
e 

Ra
nk

Hopper-v2

103

Wallclock Time

1

2

3

Humanoid-v2

RS SMAC PB2 PBT

Figure 13: Average Rank for A2C Search Space per Environment

18



104 105

Wallclock Time

2

4

Av
er

ag
e 

Ra
nk

Ant-v2

104

Wallclock Time

2

4
Hopper-v2

104 105

Wallclock Time

2

4
Humanoid-v2

RS SMAC PB2 PBT

Figure 14: Average Rank for TD3 Search Space per Environment

E License

We provide Auto-RL Bench 1.0 under an MIT License. OpenAI Gym [53] and Stable-Baselines3 [47]
are also offered under an MIT License.

F Limitations and Future Work

AutoRL-Bench 1.0 provides data that allows for the evaluation of black-box HPO, grey-box HPO, as
well as online HPO methods. However, we only focus on model-free RL algorithms as our search
spaces. This limitation can be lifted by extending the benchmark through increasing the number
of search spaces. Further, by its tabular nature, AutoRL-Bench 1.0 covers exactly the evaluated
configuration spaces but does not allow to reason about algorithmic behaviour outside the covered
space. Still, AutoRL-Bench 1.0 lays the foundation for principled study of AutoRL and in particular
HPO for RL. In future work, similar to trends in benchmarking for NAS [see, e.g., 33], we plan at to
use surrogates models to cover larger configuration spaces while keeping the positive aspects of a
tabular benchmark.

G Societal Impact

The provided benchmark serves the goal of environmental sustainability by, in the long run, reducing
the energy consumption of training RL agents through the help of better AutoRL. Further, the bench-
mark is designed to facilitate research on AutoRL. As AutoRL aims at unlocking the full potential
of RL by making RL algorithms off-the-shelf solution approaches to a variety of problem domains,
there are various potential positive and negative impacts on society. By essentially democratizing RL
this could enable users to employ RL even for nefarious use-cases. Still, the democratization of RL
will ensure that not only a select few with vast amounts of compute are able to employ RL.

19


	Introduction
	Related Work
	Benchmark Description
	Experiments
	Conclusion
	Additional Benchmark Details
	Data Format and Implementation Details
	Baseline Descriptions
	Additional Results
	Hyperparameter Importance for RL Agents
	Regret Plots
	Rank plots per Environment

	License
	Limitations and Future Work
	Societal Impact

