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ABSTRACT

Unsupervised domain adaptation (UDA) is a statistical learning problem when the
distribution of training (source) data is different from that of test (target) data. In
this setting, one has access to labeled data only from the source domain and unla-
beled data from the target domain. The central objective is to leverage the source
data and the unlabeled target data to build models that generalize to the target do-
main. Despite its potential, existing UDA approaches often struggle in practice,
particularly in scenarios where the target domain offers only limited unlabeled
data or spurious correlations dominate the source domain. To address these chal-
lenges, we propose a novel distributionally robust learning framework that models
uncertainty in both the covariate distribution and the conditional label distribution.
Our approach is motivated by the multi-source domain adaptation setting but is
also directly applicable to the single-source scenario, making it versatile in prac-
tice. We develop an efficient learning algorithm that can be seamlessly integrated
with existing UDA methods. Extensive experiments under various distribution
shift scenarios show that our method consistently outperforms strong baselines,
especially when target data are extremely scarce.

1 INTRODUCTION

Many supervised learning algorithms rely on the assumption that the training and test data are drawn
from the same underlying distribution. However, this assumption is often violated in real-world
applications due to various factors such as environmental changes, sampling biases, or temporal dy-
namics, leading to distribution shifts between training and deployment environments (Beery et al.,
2018; Zech et al., 2018; Volk et al., 2019). Such mismatches can result in significant performance
degradation, posing a fundamental challenge to achieving reliable generalization in practice (Gulra-
jani & Lopez-Paz, 2020; Koh et al., 2021; Sagawa et al., 2021).

Among various challenges posed by distribution shifts, we focus on unsupervised domain adapta-
tion (UDA; Ganin et al. (2016); Long et al. (2015; 2018); Ben-David et al. (2010)). In UDA, we are
given labeled data from a source domain and unlabeled data from a target domain, where the distri-
butions of the two domains are related but not necessarily identical. The discrepancy may arise from
differences in the marginal distribution of the input (Shimodaira, 2000; Sugiyama et al., 2007), the
conditional distribution of the output given the input (Jin et al., 2023; Cai et al., 2023), or both (Ta-
chet des Combes et al., 2020; Wu et al., 2025). The central objective is to build a predictive model
that generalizes to the target domain by effectively transferring knowledge from the source domain.

Two representative approaches in UDA are distribution alignment and pseudo-labeling methods.
Distribution alignment reduces the discrepancy between source and target domains, either in the
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data space (Courty et al., 2017b) or in the feature space (Ganin et al., 2016; Long et al., 2018).
In contrast, pseudo-labeling methods refine target predictions using a source-trained model (Amini
& Gallinari, 2003; Kumar et al., 2020; Wei et al., 2020), inspired by early work on self-training
(Lee, 2013). Despite their popularity, both distribution alignment and pseudo-labeling methods
often face practical limitations. Two common scenarios are when the amount of unlabeled target
data is limited, or when the source data contains spurious correlations. When target data are scarce,
alignment estimates can become unreliable and pseudo-labels may be noisy, which can lead to poor
generalization (Liang et al., 2020; Xie et al., 2020). When spurious correlations are present—for
example, when irrelevant features like background or color are strongly associated with labels—
models often rely on these shortcuts, which do not transfer to the target domain and ultimately
degrade performance (Arjovsky et al., 2019; Zhao et al., 2019; Liu et al., 2021).

In this paper, we propose a new method for UDA, with a particular focus on classification tasks,
based on the framework of distributionally robust learning (also known as distributionally robust
optimization; DRO1). Our approach is inspired by the maximin effect estimation method developed
for regression problems with multi-source data (Meinshausen & Bühlmann, 2015). While originally
motivated by the multi-source setting, our method can also be applied in single-source scenarios by
simulating multiple pseudo-sources through random indexing.

The proposed method estimates the conditional distribution of the output given the input for each
source domain and constructs an ambiguity set consisting of their mixtures. The mixing weights
are allowed to vary, enabling the model to adjust how much it trusts each source, while the input
distribution is permitted to shift within a small Wasserstein ball around the observed target inputs.
By explicitly modeling both sources of uncertainty—(i) which conditionals to rely on and (ii) how
the target inputs may vary—our method improves target prediction performance, particularly when
target data are scarce or when source domains contain spurious correlations.

We empirically evaluate our approach on widely used benchmarks, including digit classification
tasks (MNIST, SVHN, USPS) and spurious correlation datasets (Waterbirds, CelebA, Colored
MNIST). Our experiments focus on two key scenarios: (1) standard UDA with limited unlabeled
target data and (2) settings where spurious correlations hinder generalization. In both cases, our
method substantially outperforms existing approaches in domain adaptation and robust learning.

Our main contributions can be summarized as follows:

• We propose a novel distributionally robust framework that jointly models uncertainty in the target
covariate distribution and the conditional label distribution defined in the feature space.

• We develop a tractable minimax optimization algorithm for the proposed method, which can be
seamlessly combined with existing UDA methods.

• We provide extensive experiments demonstrating substantial improvements over well-known
baselines in two challenging scenarios: target data scarcity and spurious correlations.

In the following, we review key lines of related work, including modern approaches to UDA, DRO-
based methods, and other robust methods addressing spurious correlations.

1.1 RELATED WORKS

Unsupervised domain adaptation UDA has been applied in a wide range of areas, including com-
puter vision (Hoffman et al., 2018), natural language processing (Gururangan et al., 2020), and
healthcare (Kamnitsas et al., 2017). Popular approaches in UDA learn domain-invariant features
by aligning marginal or class-conditional distributions (Long et al., 2015; Ganin et al., 2016; Sun
& Saenko, 2016; Tzeng et al., 2017; Long et al., 2018), or by separating normalization statistics
across domains (Chang et al., 2019). They also regularize decision boundaries (Shu et al., 2018)
and exploit pseudo-labels—including source-free variants (Liang et al., 2020; Yang et al., 2021).
Optimal-transport methods align either marginal input distributions (Courty et al., 2017b) or joint
distributions (Courty et al., 2017a; Damodaran et al., 2018). Recent work explores concept-based
interpretability, diffusion-based alignment, information-theoretic regularization, one-shot settings,
and heterogeneous-modal adaptation (Peng et al., 2024; Xu et al., 2025; Tan et al., 2025; Zhang

1While DRO was originally studied in the context of optimization, in this paper we use the term more
broadly to refer to distributionally robust learning methods under distribution shift.
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et al., 2025; Yang et al., 2025). Causal-representation-based approaches (Kong et al., 2023; Li et al.,
2023) address multi-source settings by identifying invariant latent structures across heterogeneous
environments, offering a conceptually different direction within UDA. However, these methods can
fail in the presence of spurious correlations.

To address this limitation, recent studies attempt to disentangle causal and spurious features using
unlabeled target data. Examples include counterfactual consistency, generative interventions, and
self-training refinements (Chen et al., 2020; Yue et al., 2023; Wei et al., 2025). Similar approaches
have also been explored in multi-source settings (Li et al., 2023; Liu et al., 2025). However, these
methods often rely on strong structural assumptions or are highly sensitive to the quality of initial
pseudo-labels, making them fragile under scarce or imbalanced target data.

Distributionally robust optimization Distributionally robust framework has recently gained atten-
tion in various areas, including UDA. One line of work in DRO defines ambiguity sets via Wasser-
stein balls or f -divergences, which provide robustness to small perturbations of the source distribu-
tion (Ben-Tal et al., 2013; Duchi et al., 2021; Awad & Atia, 2023). Another line considers maximin-
effect or GroupDRO formulations that address mixture shifts, where the target distribution differs
in mixing proportions across subpopulations (Meinshausen & Bühlmann, 2015; Zhan et al., 2024;
Wang et al., 2025; Guo, 2024; Sagawa et al., 2019). Maximin-effect approaches are closely related
to our setting but have been mostly studied in regression tasks. We provide further discussion on this
point in Section 3. Mixture-shift formulations, particularly GroupDRO, are also relevant when spu-
rious correlations arise from changing group proportions. However, GroupDRO typically assumes
access to group labels and does not explicitly use unlabeled target data for improving target predic-
tion performance. (Guo et al., 2025) studies DRO for classification, but this paper mainly focuses
on statistical convergence rates and the construction of bias-corrected estimators. More recently, Jo
et al. (2026) introduced a distributionally robust learning framework using hierarchical ambiguity
sets to specifically address subgroup shifts.

Other robust methods under spurious correlation A closely related setting to UDA is domain
generalization (DG), where unlike UDA, no unlabeled target data are available during training.
Representative DG methods, such as IRM (Arjovsky et al., 2019), V-REx (Krueger et al., 2021),
and Fish (Shi et al., 2021), aim to learn representations that are invariant across multiple training
environments to mitigate spurious correlations. Beyond domain generalization, other lines of work
address spurious correlations more directly. These include approaches such as sample reweighting,
biased auxiliary models, and adversarial weighting without group labels (Nam et al., 2020; Lahoti
et al., 2020; Sohoni et al., 2020; Liu et al., 2021). Additional strategies suppress spurious features
through contrastive objectives or mixup-based regularization (Zhang et al., 2022; Jin et al., 2024).

2 PRELIMINARIES

This section introduces basic notations, definitions and some preliminary setups. Let (X,Y ) be
the random variables of the input and output pair, where X ∈ X ⊆ Rd and Y ∈ Y . For a joint
distribution P of (X,Y ), its marginal distribution of X and conditional distribution of Y given X
are denoted by PX and PY |X , respectively. Also, we use the lower case p for denoting the density
of the corresponding distribution denoted by the upper case P , and vice versa. The expectation with
respect to the distribution P is denoted by EP .

Suppose for a moment that there is a single source domain. Let the population distributions of the
source and target domains be denoted by P sc and P tg, respectively. For a function fθ parameterized
by θ ∈ Θ ⊆ Rp, let ℓ(fθ(X), Y ) be the loss function, which is the cross-entropy loss in most cases.
In UDA, the goal is to minimize the target risk EP tg [ℓ(fθ(X), Y )] with the labeled source and
unlabeled target data. The empirical risk minimizer (ERM) trained on the source data is the most
naive baseline in UDA. However, when P sc and P tg are different, ERM can exhibit poor predictive
performance on the target domain.

An important alternative to ERM estimator under distributional shift is DRO. LetQ denote a class of
joint distributions over (X,Y ), often referred to as the ambiguity set. In general, the DRO estimator
with ambiguity set Q can be obtained by solving the minimax optimization problem

minimize
θ∈Θ

sup
Q∈Q

EQ[ℓ(f
θ(X), Y )]. (1)
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Constructing a suitable ambiguity set Q is a crucial and central component of DRO methods. A
common approach is to define Q as a small (pseudo-)metric ball around the empirical distribution
of source data or one of its variants. In practice, a key consideration is that the inner supremum
must be not only well-defined but also computationally tractable, as it directly affects the overall
optimization. For this reason, popular choices for the underlying metric include the Wasserstein
distance (Gao et al., 2024; Gao & Kleywegt, 2023; Mohajerin Esfahani & Kuhn, 2018; Blanchet
et al., 2021) and f -divergences (Duchi & Namkoong, 2021; Namkoong & Duchi, 2016), which
allow for efficient approximations or closed-form solutions in many settings.

While ambiguity sets around the source distribution provide robustness to minor shifts, they are less
suitable for structured shifts. A notable case is subpopulation shift, where the source is a mixture of
subpopulations and the target has the same subpopulations but different mixing weights. Here, the
target can be far from the source in standard distances, making small-ball sets inadequate. A crucial
example of an alternative formulation is the ambiguity set used in GroupDRO (Sagawa et al., 2019),
which is specifically designed to address subpopulation shifts.

3 PROPOSED DISTRIBUTIONALLY ROBUST LEARNING METHOD

In this section, we present our multi-source DRO framework together with the corresponding learn-
ing algorithm. We assume access to labeled multi-source datasets D(k) = {(x(k)

i , y
(k)
i )}N(k)

i=1 , where
D(k) denotes the dataset from the kth source domain (k = 1, . . . ,K), and an unlabeled target dataset
Dtg = {xtg

i }N
tg

i=1 . Although the framework is motivated by the multi-source setting, it can also be
applied to single-source problems, as discussed in Section 3.1. Section 3.2 provides a high-level
formulation of the proposed ambiguity set, highlighting the core intuition behind our method. Sec-
tion 3.3 specifies the components of the ambiguity set in greater detail, and Section 3.4 presents the
detailed learning algorithm.

3.1 MULTI-SOURCE FRAMEWORK FOR SINGLE-SOURCE PROBLEMS

Suppose that the source dataset Dsc = {(xsc
i , ysci )}Nsc

i=1 come from a single domain. If a natural
grouping variable is available, such as an environment or a demographic attribute, it can be used to
partition Dsc into multiple sources. Otherwise, each dataset D(k) can be formed by random sub-
sampling with replacement from Dsc. This sub-sampling procedure can be justified when the source
distribution is a mixture of heterogeneous subpopulations: repeated random sub-sampling with re-
placement increases the chance that some sub-samples approximate an individual subpopulation.
Consequently, when the target distribution consists of the same subpopulations but with different
mixing weights, treating the sub-samples as distinct sources enables us to develop procedures that
are robust to changes in mixture proportions. This idea has been used in the maximin effect (Mein-
shausen & Bühlmann, 2015), and our approach builds on the same principle. Throughout the paper,
even in the single-source setting, we treat each D(k) as if it were drawn from a distinct source do-
main, thereby framing the problem as a multi-source domain adaptation task. For notational and
modeling convenience, we refer to these sub-samples as “sources.”

3.2 PROPOSED AMBIGUITY SET: HIGH-LEVEL FORMULATION

Let P̂ (k)
Y |X denote the estimated conditional distribution based on the kth source D(k), and let P̂ tg

X be
an estimator of the target input distribution. Details on how these estimators are constructed will be
provided in Section 3.3. Given ϵ1, ϵ2 ≥ 0 and β̄ ∈ ∆K−1, the proposed ambiguity set is defined as

Q = Q(ϵ1, ϵ2, β̄) =

Q = (QX , QY |X)

∣∣∣∣∣∣
QY |X =

∑K
k=1 βkP̂

(k)
Y |X , β ∈ ∆K−1

D1

(
QX , P̂ tg

X

)
≤ ϵ1, D2

(
β, β̄

)
≤ ϵ2

 , (2)

where ∆K−1 = {(β1, . . . , βK) :
∑K

k=1 βk = 1, βk ≥ 0} denotes the (K − 1)-dimensional
simplex, and D1 and D2 are suitable divergence measures. Further details on the choices of D1 and
D2 are provided in Section 3.3. The choices of P̂ (k)

Y |X and D1 play a crucial role in ensuring the
computational tractability of the proposed method.
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The core idea behind the ambiguity set in (2) is that the target conditional distribution of the output
given the input is expressed as a mixture of conditional distributions estimated from multiple source
domains. To this end, we estimate different conditional distributions P̂ (k)

Y |X from sub-samples, and
their mixtures form a sufficiently diverse class capable of containing the target conditional distri-
bution. The radii ϵ1 and ϵ2 control the size of the ambiguity set and, consequently, the degree of
distributional uncertainty allowed. The mixing vector β is centered around a reference vector β̄,
which can encode prior knowledge about the relative importance of each source. If no prior infor-
mation is available, one can set β̄ in proportion to the sample sizes of the source groups. In our
experiments, each group was constructed with the same number of samples. Thus, we simply set β̄
to the uniform vector.

In addition to modeling the conditional distribution of Y via mixtures, the ambiguity set (2) also
accounts for uncertainty in the input distribution of the target domain through the radius parameter
ϵ1. This additional layer of robustness is particularly beneficial when the number N tg of target sam-
ples is limited. In such cases, the empirical target input distribution P̂ tg

X may be a poor estimate of
the true P tg

X , and small perturbations in the input space can lead to large variations in model per-
formance. By allowing the input distribution to vary within a controlled neighborhood, the method
hedges against this sampling variability and prevents overfitting to a small or biased target sample.
Such robustness is especially useful in practice, as limited or imbalanced target samples often fail to
capture the diversity of the true domain.

The proposed ambiguity set in (2) is inspired by recent work on maximin effect estimation in re-
gression settings (Meinshausen & Bühlmann, 2015; Guo, 2024; Wang et al., 2025). These studies
consider DRO formulations where the ambiguity set consists of mixtures of conditional distributions
from multiple source domains. In contrast to our classification setting, their analysis is primarily on
regression, using negative explained variance or squared error loss as the performance criterion.
This choice offers computational benefits; for example, in linear regression it leads to a closed-
form solution for the optimization problem (see Theorem 1 in Meinshausen & Bühlmann (2015)).
In classification settings, however, developing a computationally feasible DRO algorithm under an
ambiguity set of the form (2) presents new challenges. Addressing these challenges and designing
an efficient algorithm for this setting constitutes one of our main technical contributions, which we
describe in the following subsections.

3.3 DETAILED SPECIFICATION OF THE AMBIGUITY SET

To fully specify the ambiguity set Q in (2), we define the estimators P̂ tg
X and P̂

(k)
Y |X as well as the

two divergence measures D1 and D2. The reference vector β̄ is treated as fixed, while the radii ϵ1
and ϵ2 serve as tuning parameters that control the size of the ambiguity set.

We simply define P̂ tg
X as the empirical measure based on Dtg. The construction of each P̂

(k)
Y |X

depends on the available data. If sufficiently large datasets are available for each source, one can
estimate P̂ (k)

Y |X separately using only the data from that source. However, in many practical settings,
the amount of data per source may be limited. Moreover, when the distributions of different sources
are similar, estimating them separately can be an inefficient use of data. To address this problem,
in our experiments, we first train a single classification model using the entire source dataset. From
this trained model, we extract a feature map z : X → Z by removing the final classification layer.
Given the extracted features, we then estimate each P̂

(k)
Y |X (or the corresponding conditional density

p̂
(k)
Y |X ) using a simple linear logistic regression trained independently on each source, treating the

softmax outputs as practical probability estimates. This approach ensures that the proposed method
remains efficient and scalable, even when the number of sources K is large.

It is worth noting that the proposed method can be combined with existing UDA methods. For in-
stance, after obtaining the feature map z, one may employ well-known approaches such as CDAN or
STAR to construct P̂ (k)

Y |X using z as the initial feature map, leading to further performance improve-
ments. Further explanation and empirical results of this combination are provided in Section 4.2.

For the divergence D2, we simply use the Euclidean distance. For D1, we adopt the infinite-order
Wasserstein distance, chosen for its computational tractability; see Section 3.4 for algorithmic de-
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Algorithm 1 Procedure for minimizing (3)

1: Input: step sizes ηθ, ηβ , ηz; initial values θ(0), β(0)

2: repeat for t = 1, 2, . . .

3: Sample xtg
i ∼ P̂ tg

X and compute ztgi = z(xtg
i )

4: Compute y◦(β(t−1), xtg
i ) as in (4)

▷ Step 1: Update z′

5: Update z′i using the gradient ascent and projection steps in (5)
▷ Step 2: Update β

6: Update β(t) using the exponentiated gradient ascent and projection steps in (6)
7: Compute y◦(β(t), xtg

i )
▷ Step 3: Update θ

8: Update θ(t) using the gradient descent in (7)
9: until convergence

tails. Recall that the Wasserstein distance of order t ∈ [1,∞) between two probability measures
P and Q is defined as Wt(Q,P ) = infγ{(

∫
c(x, x′)t dγ)1/t}, where the infimum is taken over all

couplings γ of Q and P , and c(·, ·) is a cost function. The infinite-order Wasserstein distance is then
given by W∞(Q,P ) := limt→∞ Wt(Q,P ).

In our case, we define the cost function as the Euclidean distance between feature representations,
that is, c(x, x′) = ∥z(x)− z(x′)∥2, where z denotes the feature map introduced earlier. This choice
is often more effective than defining the cost function directly in the raw input space, particularly in
high-dimensional settings (Ganin et al., 2016; Zeiler & Fergus, 2014; Krizhevsky et al., 2017).

3.4 LEARNING ALGORITHM

The proposed DRO estimator is obtained by solving the general DRO problem (1) with the ambigu-
ity set defined in (2). In this subsection, we describe the detailed learning algorithm. We assume that
fθ(X) depends on X only through the fixed representation z(X) as defined in Section 3.3. Thus,
we denote the model by fθ

Z(z(X)) in the remainder of this section. For notational convenience,
we often treat the probability mass function p̂

(k)
Y |X(· | X) as a probability vector. Before present-

ing the algorithm, we state the following proposition, which facilitates a computationally efficient
implementation.

Proposition 3.1 (Tractable surrogate reformulation). Suppose that the feature map z : X → Z and
the estimators P̂

(k)
Y |X are given. Let the divergence measures D1 and D2 be defined as in Section

3.3. For any ϵ1, ϵ2 > 0 and a fixed θ, the maximization objective in the DRO problem (1) with the
ambiguity set Q defined in (2), i.e., supQ∈Q EQ[ℓ

(
fθ(X), Y

)
] is upper-bounded by the following

surrogate objective

sup
β∈∆K−1,

∥β−β̄∥2≤ϵ2

EP̂ tg
X

[
sup

∥z′−z(X)∥2≤ϵ1

ℓ
(
fθ
Z(z

′), y◦(β,X)
)]

, (3)

where

y◦(β, x) :=

K∑
k=1

βk p̂
(k)
Y |X(· | x) for x ∈ X (4)

is the soft pseudo-label vector defined as a convex combination of source conditionals.

This reformulation admits an efficiently computable algorithm that leverages adversarial feature
perturbation z′ and soft pseudo-label y◦. The detailed rationale behind the approximation (3) is
provided in Appendix A.1.

We now outline the procedure for minimizing (3). At a high level, the algorithm alternates between
updating z′, β, and θ using a minimax optimization scheme implemented via stochastic gradient
descent, as summarized in Algorithm 1. The detailed update rules are described below.
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1. Update of z′. Suppose that θ and β are fixed. Given a sample xtg
i from P̂ tg

X , let ztgi = z(xtg
i ).

To maximize the mapping z′ 7→ ℓ
(
fθ
Z(z

′), y◦(β, xtg
i )
)
, we perform a projected gradient ascent

starting from ztgi :
z′i ← ztgi + ηz∇zℓ

(
fθ
Z(z

tg
i ), y◦(β, xtg

i )
)

z′i ← Π{z:∥z−ztg
i ∥2≤ϵ1}(z

′
i),

(5)

where ∇z denotes the gradient of z 7→ ℓ(fθ
Z(z), y

◦(β, xtg
i )), ηz is the step size, and ΠA(·) is the

Euclidean projection onto the set A.

2. Update of β. Given θ and z′i, we update the mixture weights β via a projected exponentiated
gradient ascent (Sagawa et al., 2019):

β̃k ←
βk exp

(
ηβℓ

(
fθ
Z(z

′
i), p̂

(k)
Y |X(· | xtg

i )
))

∑K
j=1 βj exp

(
ηβℓ

(
fθ
Z(z

′
i), p̂

(j)
Y |X(· | xtg

i )
)) , for k = 1, . . . ,K,

β ← Π{β:∥β−β̄∥2}≤ϵ2(β̃).

(6)

where ηβ is the step size. See Appendix A.2 for further details on this update.

3. Update of θ. Given z′i and β, we update θ using a stochastic gradient descent:

θ ← θ − ηθ∇θℓ
(
fθ
Z(z

′
i), y

◦(β, xtg
i )
)
, (7)

where∇θ denotes the gradient of the map θ 7→ ℓ(fθ
Z(z

′
i), y

◦(β, xtg
i )).

Note that the role of β is to form an adversarial mixture over these estimated conditionals. Specifi-
cally, the update rule in (6) assigns larger weights to conditional estimators that induce higher loss
under the current classifier fθ. The model parameters θ are then updated in (7) to minimize the re-
sulting adversarial objective. By iterating these updates, the classifier becomes robust to conditional
uncertainty and potential mixture shifts. A detailed analysis of the stability of the learning algorithm
is provided in Appendix A.3.

4 EXPERIMENTS

In this section, we evaluate the proposed method in two experimental settings using widely adopted
benchmark datasets. The first experiment considers digit recognition tasks across three domains—
MNIST, SVHN, and USPS—and compares the proposed method with existing UDA approaches,
with particular emphasis on scenarios where the amount of target-domain data is limited. The second
experiment examines the robustness of our method in the presence of spurious correlations, using
popular benchmarks such as Waterbirds, CelebA, and Colored MNIST, where distribution shifts are
induced by non-causal attributes. In the first experiment, one of MNIST, SVHN, or USPS is used as
the single source domain, and one of the remaining two serves as the target domain, resulting in three
source–target pairs. In the second experiment, each benchmark dataset consists of a single source
domain and a single target domain as described below. Thus, all experiments are conducted under
the single-source UDA setting. See Appendix A.5 for more detailed descriptions of the datasets.

MNIST, SVHN, and USPS (LeCun et al., 2002; Netzer et al., 2011; Hull, 2002): Three bench-
mark datasets for handwritten digit recognition from different domains. MNIST contains grayscale
images of digits from 0 to 9, SVHN consists of color images of house numbers obtained from
Google Street View, and USPS includes grayscale images of handwritten digits collected from postal
envelopes. For each dataset, we randomly sampled 102 and 10 unlabeled target samples per class.

Waterbirds, CelebA, and CMNIST (Sagawa et al. (2019); Liu et al. (2015); Arjovsky et al.
(2019)): Three benchmark datasets widely used to study spurious correlations. Each dataset is di-
vided into four groups, where spurious attributes (e.g., background in Waterbirds, gender in CelebA,
or color in CMNIST) are correlated with labels. In all cases, three majority groups are combined to
form the single-source domain, and the remaining minority group serves as the target domain. For
Waterbirds, CelebA, and CMNIST, the unlabeled target sample sizes N tg are 56, 1,387, and 2,998,
respectively.
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Method
SVHN→ MNIST MNIST → USPS USPS → MNIST

102 10 102 10 102 10

ERM (Src-only) 59.6± 1.8 63.4± 1.4 60.4± 5.7
DANN 66.0± 4.9 61.2± 1.8 82.0± 3.9 74.3± 5.7 74.8± 6.7 51.1± 5.0
CDAN 63.4±1.8 56.9±0.9 80.8±1.4 62.0±1.8 58.3±4.6 54.8±5.9

MK-MMD 50.0±3.0 48.3±1.0 63.3±1.1 41.3±5.5 57.6±3.2 32.1±3.9

ATDOC 83.3±9.1 59.1±5.7 91.1±0.8 73.6±4.2 92.6±1.3 87.0±3.6

STAR 76.4±1.5 66.8±0.9 90.3±1.9 81.3±7.6 94.5±0.7 85.2±2.7

CORAL 75.4±2.7 63.6±0.9 90.4±0.7 85.4±0.5 75.9±1.9 64.7±3.5

MCD 79.1±1.0 61.3±0.7 89.3±1.6 84.5±2.3 96.1±1.6 85.9±4.0

Ours (ERM) 92.0±1.6 87.0±0.9 92.1±1.1 87.1±3.6 90.3±2.2 86.4±2.5

Ours (CDAN) 92.5±2.3 87.0±2.0 93.5±1.3 87.8±1.5 91.5±1.9 87.0±1.9

Ours (STAR) 94.4±1.7 91.3±1.1 95.6±1.0 91.2±1.4 97.3±0.8 93.0±2.8

*Ours (STAR) 92.9±2.1 85.1±1.2 93.6±1.5 90.5±0.6 96.6±1.4 87.6±3.2

Table 1: Comparison of test accuracies across different target sample sizes for three domain adapta-
tion benchmarks: SVHN, MNIST, and USPS. Each block reports results under two target data sizes:
102 and 10 unlabeled samples per class. Here, Ours(·) denotes our methods built upon different
base classifiers, and *Ours(·) denotes the versions tuned via LODO-CV. Boldface indicates the best
performance.

4.1 EXPERIMENTAL SETUP

Following Meinshausen & Bühlmann (2015), in all our experiments we set K = 10 and draw each
sub-sample of size N = N sc/5 with replacement, which we denote by D(k) = {(x(k)

i , y
(k)
i )}Ni=1,

k = 1, . . . , 10. A detailed analysis regarding the choice of K is provided in Appendix A.4. We
then use the entire source dataset to learn the feature map z. For constructing a base classi-
fier P̂ (k)

Y |X , we use three approaches: training a simple linear logistic regression model (ERM) on

{(z(x(k)
i ), y

(k)
i )}Ni=1, and training CDAN and STAR, both initialized with the learned feature map

z. For the backbone, we use two different models. In the first setting, we adopt a deep neural net-
work, following the architecture in (Ganin et al., 2016). In the second setting, we employ ResNet-50
following (Sagawa et al., 2019).

For hyperparameter selection, we adopt a validation-based selection strategy to ensure a fair com-
parison across methods. Specifically, we assume the availability of a small labeled target vali-
dation set containing 10 samples per class, which is used to perform a grid search over ϵ1 ∈
{0, 0.2, 0.4, 0.6, 0.8, 1} and ϵ2 ∈ {0, 0.2, 0.4, 0.6, 1}. This setting is consistent with those used
in prior domain adaptation studies (Yue et al., 2023; Courty et al., 2017b; Saito et al., 2018), and
the same selection procedure is applied to all competing methods. This choice allows us to report
target-domain performance without being confounded by differences in hyperparameter selection
strategies. In addition, we report the performance of our method using leave-one-domain-out cross
validation (LODO-CV) (Gulrajani & Lopez-Paz, 2020), which does not rely on labeled target valida-
tion data and provides a complementary evaluation. Results obtained under this setting are marked
with an asterisk (*Ours(·)). We compare our method with several baselines commonly used in do-
main adaptation and robust learning: DANN (Ganin et al., 2016), CDAN (Long et al., 2018), MK-
MMD (Long et al., 2015), CORAL (Sun & Saenko, 2016), MCD (Saito et al., 2018), ATDOC (Tang
et al., 2020), STAR (Lu et al., 2020), GroupDRO, ICON (Yue et al., 2023), DRUDA (Wang & Wang,
2024), and PDE (Deng et al., 2023).

4.2 RESULTS ON DIGIT RECOGNITION TASKS

In the first experiment, we consider two target sample sizes: 102 and 10 per class. This setup al-
lows us to evaluate whether our method can maintain robust performance even when only a very
small number of target samples are available for training. Table 1 summarizes the results for three
source–target domain pairs. Our method (Ours(·)) consistently achieves the best performance across
all tasks and target sample sizes. Notably, the performance can be further improved by combin-
ing our approach with existing UDA methods such as CDAN and STAR. For example, when us-
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Method Group Waterbirds CelebA CMNIST
label Test Acc Test Acc Test Acc

ERM (Src-only) × 48.4±0.9 35.5±0.6 0.9±0.5

DANN × 35.8±4.5 23.5±2.1 0.9±1.8

CDAN × 46.2±1.8 24.6±1.5 1.2±0.4

MK-MMD × 45.1±1.2 27.7±2.9 2.8±1.3

ATDOC × 47.3±1.4 31.8±1.4 3.1±0.9

STAR × 49.8±5.6 24.4±2.4 2.2±2.7

CORAL × 50.9±2.9 31.7±1.9 1.7±0.4

MCD × 59.0±3.1 30.7±2.5 1.9±1.9

DRST × 37.1±6.0 29.5±4.6 1.0±0.7

ICON × 54.2±1.4 31.1±2.7 4.4±3.2

GroupDRO ✓ 61.4±2.7 63.0±2.6 3.4±1.6

GroupDRO (with Tgt) ✓ 90.6±0.2 89.3±1.3 73.1±0.3

PDE ✓ 57.1±6.6 55.0±5.5 1.3±1.2

Ours (ERM) × 87.3±2.1 85.0±4.1 7.5±0.5

*Ours (ERM) × 83.3±2.7 76.0±3.8 4.9±0.7

Table 2: Comparison of test accuracies across Waterbirds, CelebA, and CMNIST. ERM (Src-only)
and GroupDRO are trained solely on source domain data, without using any target domain samples.
GroupDRO (with Tgt) denotes the setting where both source labeled data and target labeled data
are available during training. Boldface indicates the best performance except for models that use
labeled target data for training.

ing CDAN as the base classifier, our method improves upon classical CDAN by +29.1% on the
SVHN→MNIST task. Although *Ours(·) shows a moderate drop compared to Ours(·), it remains
consistently competitive and still outperforms baselines that rely on labeled target data for tuning.

These improvements highlight the twofold strength of our framework. First, the ambiguity set ex-
plicitly accounts for uncertainty in the target input distribution through the ϵ1-radius. This design
is particularly beneficial under extreme data scarcity, where the empirical distribution P̂ tg

X may be a
poor approximation of the true P tg

X . By allowing controlled perturbations, the model hedges against
sampling variability and mitigates overfitting to small or biased target samples. Second, incorporat-
ing UDA methods such as CDAN or STAR enables the construction of conditional estimators that
generalize better to the target domain. The formulation of the ambiguity set as a mixture of these
refined conditionals produces an uncertainty set more closely aligned with the true target distribu-
tion. Consequently, the final model trained under this set achieves better generalization to target
than mixtures based solely on ERM conditionals.

4.3 RESULTS ON SPURIOUS CORRELATION BENCHMARKS

Table 2 reports the test accuracies on the target domain across the three spurious-correlation bench-
marks. Overall, most baseline methods show limited generalization to the target domain, with some
performing even worse than standard ERM. This underscores the difficulty of these benchmarks,
where spurious correlations and target-data scarcity occur simultaneously. It is well-known that
classical UDA methods such as DANN, CDAN, and MK-MMD suffer from limited generalization
when spurious correlations exist across domains, as they mainly match marginal input distributions
without preserving semantic invariance (Johansson et al., 2019; Zhao et al., 2019). This often aligns
spurious attributes (e.g., background, gender, or color) instead of causally related features, which
can hurt generalization to the target domain. Pseudo-labeling methods such as STAR and ATDOC
are also vulnerable, since spurious correlations can induce inaccurate pseudo-labels that propagate
errors during training.

In contrast, our method does not rely on reducing the distance between marginal input distribu-
tions. Instead, it explicitly considers a set of plausible target distributions through a distributional
ambiguity set and optimizes for the worst-case target risk within this set. By accounting for distribu-
tional variations that may arise from spurious attributes, this formulation guides the model to focus
on predictive features that are invariant across the plausible target distributions, thereby enhancing
robustness to spurious correlations. As a result, it significantly outperforms existing baselines, par-
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ticularly in scenarios where spurious correlations dominate and unlabeled target data is extremely
limited. Compared to ERM, it improves target domain accuracy by +38.9% on Waterbirds, +49.5%
on CelebA, and +6.6% on CMNIST. Similar to the first experiment, *Ours(·) shows a slight perfor-
mance reduction compared to Ours(·), yet still achieves stronger performance than all baselines.

4.4 SENSITIVITY ANALYSIS OF THE HYPERPARAMETERS ϵ1 AND ϵ2

(a) MNIST → USPS (102) (b) USPS → MNIST (10)

Figure 1: Heatmaps of average test accuracy across (ϵ1,ϵ2).

In this subsection, we analyze how the hyperparameters ϵ1 and ϵ2 affect model performance through
a detailed sensitivity study. Figures 1 report heatmaps of the average test accuracy in different
combinations of ϵ1 and ϵ2. Figure 1(a) corresponds to the MNIST→USPS task with 102 unlabeled
target samples per class, while Figure 1(b) shows results for the USPS→MNIST task with only 10
unlabeled target samples per class.

In Figure 1, the baseline setting (ϵ1, ϵ2) = (0, 0) performs noticeably worse than configurations that
introduce moderate uncertainty. Increasing either ϵ1 or ϵ2 generally improves accuracy, showing that
controlled covariate or conditional perturbations enhance generalization. When the target sample
size is moderately large, both hyperparameters exhibit a broad plateau of strong performance. As
shown in Figure 1(a), accuracy remains high for ϵ1 ∈ {0.2, 0.4} and ϵ2 ≥ 0.2, demonstrating that
the method is insensitive to small variations in these hyperparameters.

Under extreme target-data scarcity, the effect of ϵ1 becomes more prominent. Figure 1(b) shows
that accuracy changes sharply along the ϵ1 axis, especially for ϵ1 ≥ 0.6, while remaining relatively
stable across values of ϵ2. This behavior reflects the setting in which P̂ tg

X is estimated from very few
samples, making robustness to covariate-level variability particularly important.

The appropriate value of ϵ1 depends on the scale of the learned embedding, so no single universal
choice applies across models. In practice, accuracy remains stable over a broad range of ϵ1 values
(Figure 1), suggesting that approximate or heuristic selections work well in most cases. In contrast,
ϵ2 can be set to a relatively large value (e.g.,∞) when no prior knowledge is available, as conditional
mixing does not induce instability.

5 CONCLUSION

We presented a DRO framework for UDA that jointly models uncertainty in both the target covariate
distribution and the conditional label distribution. By formulating an ambiguity set over mixtures
of source conditionals and allowing controlled perturbations in target inputs, our method directly
addresses two challenges that have gained increasing attention in recent research: the scarcity of
unlabeled target data and the presence of spurious correlations in the source domain. Extensive
experiments on digit recognition and spurious correlation benchmarks demonstrated consistent and
substantial performance gains over strong baselines, highlighting the method’s robustness and effec-
tiveness. Although our experiments focus on vision benchmarks, extending the framework to other
modalities such as NLP or time-series data is a natural next step.
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Correct-n-contrast: A contrastive approach for improving robustness to spurious correlations.
ArXiv:2203.01517, 2022.

Yue Zhang, Mingyue Bin, Yuyang Zhang, Zhongyuan Wang, Zhen Han, and Chao Liang. Link-
based contrastive learning for one-shot unsupervised domain adaptation. In Proc. Computer Vi-
sion and Pattern Recognition, pp. 4916–4926, 2025.

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
representations for domain adaptation. In Proc. International Conference on Machine Learning,
2019.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. In Proc. Pattern Analysis and Machine Intelligence,
volume 40, pp. 1452–1464, 2017.

Chunting Zhou, Daniel Levy, Xian Li, Marjan Ghazvininejad, and Graham Neubig. Distributionally
robust multilingual machine translation. ArXiv:2109.04020, 2021.

15



Published as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF PROPOSITION 3.1

In this subsection, we provide the detailed rationale of the tractable reformulation stated in Proposi-
tion 3.1. With the ambiguity set Q defined in (2), the inner maximization in the DRO objective can
be expressed as

sup
Q∈Q

EQ[ℓ
(
fθ(X), Y

)
] = sup

Q∈Q
EQX

EQY |X [ℓ
(
fθ(X), Y

)
] (8)

= sup
β∈∆K−1,

∥β−β̄∥2≤ϵ2

sup
W∞(QX ,P̂ tg

X )≤ϵ1

EQX
EQβ

Y |X

[
ℓ
(
fθ(X), Y

)]
, (9)

where

Qβ
Y |X =

K∑
k=1

βkP̂
(k)
Y |X .

We recall the following lemma from Staib & Jegelka (2017), which will be useful in our reformula-
tion.
Lemma A.1.1 (Staib & Jegelka (2017), Proposition 3.1). Suppose that the cost function c(·, ·) used
to define the Wasserstein distance is a metric on X . Let P be a Borel probability measure on X , and
let f : X → R be a measurable function. Then, for any ϵ ≥ 0,

sup
W∞(Q,P )≤ϵ

EQ [f(X)] = EP

[
sup

x′∈Bϵ(X)

f(x′)

]
,

where Bϵ(x) = {x′ ∈ X : c(x, x′) ≤ ϵ} and EP denotes the expectation under X ∼ P .

By Lemma A.1.1, we have

sup
W∞(QX ,P̂ tg

X )≤ϵ1

EQX

[
EQβ

Y |X

[
ℓ
(
fθ(X), Y

)]]
= EP̂ tg

X

[
sup

x:∥z(x)−z(X)∥2≤ϵ1

EQβ
Y |X

[
ℓ
(
fθ(x), Y

)]]

= EP̂ tg
X

[
sup

x:∥z(x)−z(X)∥2≤ϵ1

EQβ
Y |X

[
ℓ
(
fθ
Z(z(x)), Y

)]]

≤ EP̂ tg
X

[
sup

z′:∥z′−z(X)∥2≤ϵ1

EQβ
Y |X

[
ℓ
(
fθ
Z(z

′), Y
)]]

Therefore, (8) is upper-bounded by

sup
β∈∆K−1,
∥β−β̄∥2≤ϵ2

EP̂ tg
X

[
sup

∥z′−z(X)∥2≤ϵ1

EQβ
Y |X

[
ℓ
(
fθ
Z(z

′), Y
)]]

.

By treating the probability mass function p̂
(k)
Y |X(· | X) as a probability vector, we define the soft

pseudo-label vector as

y◦(β, x) :=

K∑
k=1

βk p̂
(k)
Y |X(· | x). (10)

Recall that the cross-entropy loss is defined by

ℓ
(
fθ
Z(z

′), Y
)
= −

∑
y∈Y

I[Y = y] log πθ
Z(y | z′),
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where πθ
Z(· | z′) denotes the predicted class probability vector obtained by applying the softmax

function to fθ
Z(z

′) and I[·] is the indicator function. Therefore, we have

EQβ
Y |X=x

[
ℓ
(
fθ
Z(z

′), Y
)]

= EQβ
Y |X=x

−∑
y∈Y

I[Y = y] log πθ
Z(y | z′)


= −

∑
y∈Y

(
K∑

k=1

βk p̂
(k)
Y |X(y | x)

)
log πθ

Z(y | z′)

= ℓ
(
fθ
Z(z

′), y◦(β, x)
)
.

(11)

Here, we slightly abuse the notation for ℓ(·, ·), interpreting ℓ(fθ
Z(z

′), y◦(β, x)) as the cross-entropy
between the two probability vectors πθ

Z(· | z′) and y◦(β, x).

Combining the above, we obtain the following surrogate objective for (8):

sup
β∈∆K−1,

∥β−β̄∥2≤ϵ2

EP̂ tg
X

[
sup

∥z′−z(X)∥2≤ϵ1

ℓ
(
fθ
Z(z

′), y◦(β,X)
)]

. (12)

A.1.1 ON THE TIGHTNESS OF THE RELAXATION GAP OF THE SURROGATE LOSS

Our surrogate objective (12) can be strictly smaller than the original objective. The gap arises from
the inequality

sup
x:∥z(x)−z(X)∥2≤ϵ1

EQβ
Y |X

[
ℓ
(
fθ
Z(z(x)), Y

)]
≤ sup

z′:∥z′−z(X)∥2≤ϵ1

EQβ
Y |X

[
ℓ
(
fθ
Z(z

′), Y
)]

.

This inequality can be strict when the feature map z(·) does not cover the entire ϵ1-ball. In many
practical settings, however, embedding distributions produced by deep networks are modeled under
the assumption that the pushforward distribution of X through z(·) admits a positive Lebesgue
density on, or in a neighborhood of, its effective support.

Raw images often lie near a low-dimensional manifold in the input space and may not possess a
Lebesgue density. After several nonlinear transformations, internal representations typically exhibit
different geometric behavior and are commonly treated as “thickened” manifolds with nonzero vol-
ume in the ambient space. The widespread use of the Fréchet Inception Distance (FID) illustrates
this modeling perspective, as the metric implicitly assumes a non-degenerate covariance structure
for deep embeddings.

Under the above modeling assumption, the image of z(·) generally overlaps substantially with the
ϵ1-ball, making the relaxation introduced after Lemma A.1.1 nearly tight and the resulting upper
bound a close approximation of the original hierarchical objective.

A.2 EXPONENTIATED GRADIENT ASCENT FOR UPDATING β

We first review the exponentiated gradient method briefly and then describe its application to our
β-update procedure.

Exponentiated gradient ascent method The exponentiated gradient ascent method can be inter-
preted as a mirror ascent step over the simplex, obtained by maximizing the first-order approxima-
tion of the objective with a KL divergence regularization. Specifically, let L(β) be a differentiable
objective function. Then, the exponentiated gradient ascent update from β(t) is given by

β(t+1) = arg max
β∈∆K−1

{
L(β(t)) +∇βL(β(t))⊤(β − β(t))− 1

ηβ
DKL

(
β ∥β(t)

)}
,

where ∇β denotes the gradient of the mapping β 7→ L(β), and ηβ > 0 is the step size. Since the
terms involving β(t) are constant with respect to β, this is equivalent to

β(t+1) = arg max
β∈∆K−1

{
∇βL(β(t))⊤β − 1

ηβ
DKL

(
β ∥β(t)

)}
.
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By the KKT optimality conditions, the maximization above admits the following closed-form solu-
tion:

β
(t+1)
k =

β
(t)
k exp

(
ηβ [∇βL(β(t))]k

)
∑K

j=1 β
(t)
j exp

(
ηβ [∇βL(β(t))]j

) , k = 1, . . . ,K, (13)

where [A]i denotes i-th component of A. See Kivinen & Warmuth (1997) for details.

Detailed procedure for updating β We now revisit our optimization problem in (3). Since the
constraint ∥β − β̄∥2 ≤ ϵ2 is handled by projection after the ascent step, we focus only on updating
β over the simplex ∆K−1. Suppose that xtg

i and z′i are given. Then, we need to solve

sup
β∈∆K−1

[
ℓ
(
fθ
Z(z

′
i), y

◦(β, xtg
i )
)]

.

This problem can be expressed as:

sup
β∈∆K−1

ℓ
(
fθ
Z(z

′
i), y

◦(β, xtg
i )
)
= sup

β∈∆K−1

EQβ

Y |X=x
tg
i

[
ℓ
(
fθ
Z(z

′
i), Y

)]
= sup

β∈∆K−1

K∑
k=1

βk EP̂
(k)

Y |X=x
tg
i

[
ℓ
(
fθ
Z(z

′
i), Y

)]
= sup

β∈∆K−1

K∑
k=1

βk ℓ
(
fθ
Z(z

′
i), p̂

(k)
Y |X(· | xtg

i )
)
,

where this expression follows from (4) and (11).

Setting

L(β) :=
K∑

k=1

βk ℓ
(
fθ
Z(z

′
i), p̂

(k)
Y |X(· | xtg

i )
)
,

and applying the closed-form solution in (13), we obtain the following update rule:

β
(t+1)
k ←

β
(t)
k exp

(
ηβ ℓ

(
fθ
Z(z

′
i), p̂

(k)
Y |X(· | xtg

i )
))

∑K
j=1 β

(t)
j exp

(
ηβ ℓ

(
fθ
Z(z

′
i), p̂

(j)
Y |X(· | xtg

i )
)) , k = 1, . . . ,K.

A.3 EMPIRICAL ANALYSIS OF THE STABILITY OF LEARNING ALGORITHM

(a) Trajectory of L2 norm of β-gradient (b) Trajectory of L2 norm of θ-gradient

Figure 2: Gradient behavior of β and θ under joint optimization.

In this subsection, we analyze the stability of our learning algorithm presented in Section 3.4. To
assess this stability, we further examine the gradient behavior of the joint optimization procedure
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by conducting an additional controlled experiment. Specifically, we empirically track the gradient
trajectories of both the β-gradient (adversarial weights) and the θ-gradient (model parameters).

Specifically, we fixed the hyperparameters (ϵ1, ϵ2) = (0.6, 0.4) and performed a domain adaptation
experiment on the SVHN→MNIST task using a mini-batch size of 128. At each iteration, we com-
puted the L2 norm of the gradients with respect to β and θ. For panel (a), the learning rate for θ
was fixed at 10−3 while varying the learning rate for β. For panel (b), the learning rate for β was
fixed at 10−2 while varying the learning rate for θ. For each learning rate in {10−1, 10−2, 10−3},
we repeated the procedure 20 times to assess stability and convergence across different update mag-
nitudes.

Figure 2 demonstrates the resulting gradient trajectories of β and θ, respectively. The main obser-
vations are summarized below.

• Across all learning rates, both β and θ show monotonically decreasing and smooth gradient
norms, indicating that the updates consistently move toward a stable point without sharp fluctu-
ations.

• Even under the most aggressive learning rate (10−1), the gradient norms remain well-controlled
and do not exhibit any signs of gradient explosion, oscillation, or unstable plateauing, which are
typical indicators of optimization instability in min–max procedures.

• The variance bands across 20 random repetitions are uniformly narrow, suggesting that the opti-
mization dynamics are highly reproducible and not sensitive to stochastic variation in initializa-
tion or minibatch sampling.

These empirical findings demonstrate that the proposed joint optimization procedure is numerically
stable, robust to learning-rate variation, and reliable across repeated runs.

The optimization structure follows the standard formulation of GroupDRO (Sagawa et al., 2019),
whose convergence behavior has been analyzed in prior work. Similar min–max update rules have
also been used in recent studies (Krueger et al., 2021; Zhou et al., 2021), indicating that this class of
optimization procedures is generally well-behaved under practical settings.

A.4 SELECTION OF PSEUDO-GROUPS K

In this subsection, we analyze practical strategies for selecting the number of pseudo-groups K and
conduct a sensitivity analysis. Selecting the number of pseudo-groups K is critical in the single-
source setting due to an inherent trade-off. If K is too small, the diverse conditional structures in
the source distribution may not be fully captured, limiting the representation of target conditional
uncertainty. Conversely, increasing K substantially raises computational and memory costs, as
each pseudo-group requires training a separate conditional estimator P̂ (k)

Y |X . Therefore, choosing an
intermediate value of K is essential. We discuss two practical strategies for selecting K and analyze
the sensitivity of the model to this choice.

The first strategy utilizes a small labeled target validation set to guide the choice of K. In our
experiments, we used 10 labeled samples per class. Figure 7(a) visualizes the validation accuracy
for the MNIST→USPS task. Accuracy increases steadily as K grows from 2 to 7 across all ϵ2.
Beyond this point, performance stabilizes: when K ≥ 7 and ϵ2 > 0.4, accuracy reaches a plateau
between 89% and 91%. Although the highest accuracy is observed at K = 14 with ϵ2 = 1, K = 10
serves as a practical compromise, balancing performance with computational efficiency.

Alternatively, K can be selected via cross-validation on the source data, leveraging the Maximin
effect (Meinshausen & Bühlmann, 2015). For each candidate K, the source data is partitioned
into training and validation subsets. K pseudo-groups are formed from the training subset to train
conditional estimators P̂ (k)

Y |X , which are then evaluated on the validation subset. The K yielding the
highest average score is selected. This provides a data-driven criterion independent of target labels.
Figure 7(b) shows the validation accuracy obtained from 5-fold cross validation. one can see that
validation performance improves with K and stabilizes for K ≥ 9 with ϵ2 ∈ [0.4, 0.8]. These results
suggest that selecting K in the range of 9 to 14 is appropriate.

To assess robustness, Figure 7(c) summarizes test accuracy across varying K and ϵ2. Performance
varies smoothly across different ϵ2, indicating low sensitivity to this parameter. Accuracy improves
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(a) Validation with a small labeled target set (b) Validation using cross-validation

(c) Test accuracy

Figure 3: Heatmaps of average accuracy for the MNIST→USPS task with 102 unlabeled target
samples per class, shown across different values of K and ϵ2. Panels (a) and (b) show validation
accuracy obtained using a small labeled target set and cross-validation, respectively. Panel (c) shows
the corresponding test accuracy. All results are averaged over 5 independent runs.

up to K = 7, after which it plateaus within a high-performing range (84%–86% for K ≥ 8).
Notably, both selection strategies converge to a consistent range of K ∈ [9, 12]. While larger values
of K may offer marginal gains, K = 10 is adopted as the default setting to balance accuracy with
computational cost, which increases linearly with K.
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A.5 EXPERIMENTS DETAILS

In this section, we provide details regarding the datasets and baseline configurations. The source
code is available at https://github.com/kshwi5500/DRL_for_UDA.

A.5.1 DIGIT BENCHMARKS

MNIST (LeCun et al., 2002): A widely used benchmark dataset of handwritten digit recognition,
consisting of grayscale images of digits from 0 to 9. Each image is of size 28× 28 pixels, yielding
784-dimensional input vectors when flattened. The dataset contains a total of 70,000 images, with
60,000 images allocated for training and 10,000 images reserved for testing. The digit classes are
balanced across 10 categories, corresponding to the labels 0 through 9. Due to its simplicity and ac-
cessibility, MNIST has been extensively used for evaluating classification algorithms, representation
learning methods, and as a canonical testbed for new machine learning models.

SVHN (Netzer et al., 2011): The Street View House Numbers dataset, designed for digit recog-
nition in natural scenes. It consists of cropped color images of digits (32 × 32 pixels) obtained
from Google Street View house numbers. SVHN provides 73,257 training images, 26,032 test im-
ages, and an additional set of 531,131 extra training images to facilitate large-scale training. The
dataset covers 10 digit classes (0–9) and presents greater variability than MNIST due to cluttered
backgrounds, varying illumination, and diverse font styles, making it a challenging and widely used
benchmark in digit classification and domain adaptation studies.

USPS (Hull, 2002): The U.S. Postal Service (USPS) dataset is a benchmark collection of hand-
written digits originally scanned from postal envelopes. Each image is a grayscale 16×16 pixel rep-
resentation of digits ranging from 0 to 9, resulting in compact 256-dimensional input vectors when
flattened. The dataset provides 7,291 training images and 2,007 test images, spanning 10 classes
that are approximately balanced across digits. Compared to MNIST, USPS offers lower-resolution
images and displays noticeable stylistic variations in handwriting, including slant, thickness, and
shape differences, which make recognition more challenging. Due to these characteristics, USPS is
often used alongside MNIST and SVHN as a complementary benchmark in digit classification tasks
and as a target or source domain in domain adaptation studies.

(a) MNIST (b) SVHN (c) USPS

Figure 4: Example images from the CMNIST dataset.

A.5.2 SPURIOUS CORRELATION BENCHMARKS

Waterbirds (Sagawa et al. (2019)): The Waterbirds dataset is designed to study the impact of spu-
rious correlations in image classification. It is constructed by overlaying bird images from the CUB-
200-2011 dataset (Wah et al. (2011)) onto background scenes from the Places dataset (Zhou et al.
(2017)). This process induces a strong but spurious correlation between bird type and background.
Specifically, the dataset is divided into four groups based on bird type (landbird vs. waterbird) and
background (land vs. water): g1 = {landbird, land}, g2 = {landbird, water}, g3 = {waterbird,
land}, and g4 = {waterbird, water}. Most samples belong to the aligned groups (g1 and g4), while
the misaligned groups (g2 and g3) are relatively rare. This imbalance creates minority groups that
highlight the difficulty of learning invariant predictors under spurious correlations. In our experi-
ments, we follow prior work by treating the three majority groups as the single-source domain and
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the minority group (g3, waterbirds with a land background) as the target domain. The training set
contains 4,739 source images and 56 unlabeled target images, while the target test set includes 642
samples, providing a controlled evaluation of out-of-distribution generalization.

(a) Landbirds, Land (b) Landbirds, Water (c) Waterbirds, Land (d) Waterbirds, Wa-
ter

Figure 5: Example images from the Waterbirds dataset.

CelebA (Liu et al. (2015)): The CelebA dataset contains large-scale celebrity face images anno-
tated with multiple binary attributes. We consider the task of classifying blond vs. non-blond hair,
where gender acts as a spurious attribute correlated with hair color. This naturally induces four
groups based on hair color (blond vs. non-blond) and gender (male vs. female): g1 = {non-blond,
female}, g2 = {non-blond, male}, g3 = {blond, female}, and g4 = {blond, male}. Most samples
belong to g1, g2, and g3, while the minority group g4 (blond-haired males) is underrepresented,
reflecting the spurious correlation between hair color and gender. The three majority groups are
combined to form the single-source domain, and the minority group is treated as the target domain.
The dataset provides 161,383 labeled source training images, 1,387 unlabeled target training images,
and 642 target test images for evaluation.

(a) Non-blond, Fe-
male

(b) Non-blond, Male (c) Blond, Female (d) Blond, Male

Figure 6: Example images from the CelebA dataset.

Colored MNIST (CMNIST) (Arjovsky et al. (2019)): The Colored MNIST dataset is a synthetic
variant of MNIST designed to study the effect of spurious correlations. We consider a binary clas-
sification task using digits 0 and 1, which yields four groups based on digit identity and color:
g1 = {digit 0, red}, g2 = {digit 0, green}, g3 = {digit 1, red}, and g4 = {digit 1, green}. Most
samples belong to the aligned groups (g1, g4, and g3), while the minority group g2 (digit 0 with
green color) is underrepresented, capturing the spurious correlation between digit and color. In our
experiments, the three majority groups are combined to form the single-source domain, and the
minority group is used as the target domain. The dataset provides 26,002 labeled source training
images, 2,998 unlabeled target training images, and 8,966 target test images.

A.5.3 BASELINE DETAILS

• ERM (Src-only) The standard empirical risk minimization approach that optimizes average ac-
curacy on the source training set. While simple and widely used, ERM does not incorporate any
robust objective and cannot exploit unlabeled target data, making it insufficient under domain
shift.
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(a) 0, Green (b) 1, Green (c) 0, Red (d) 1, Red

Figure 7: Example images from the CMNIST dataset.

• CDAN (Long et al., 2018): Extends DANN by conditioning the domain discriminator on both
feature representations and classifier predictions. This coupling captures multimodal structures
in the feature space, leading to more effective domain alignment.

• MK-MMD (Long et al., 2015): Minimizes the maximum mean discrepancy (MMD) across mul-
tiple kernels between source and target feature distributions. By leveraging multiple kernels,
MK-MMD adapts flexibly to complex distribution shifts.

• CORAL (Sun & Saenko, 2016): Matches the second-order statistics (covariances) of source
and target features to reduce domain discrepancy. This moment-matching approach is simple,
efficient, and widely adopted in UDA.

• MCD (Saito et al., 2018): Employs two classifiers with a shared feature extractor. By maximizing
their prediction discrepancy on target samples and then minimizing it, MCD encourages the
extractor to learn target-discriminative features.

• ATDOC (Tang et al., 2020): Adapts classifiers by leveraging target-domain pseudo-labels in an
adversarial manner. It progressively refines pseudo-labels to improve alignment and robustness
in the absence of ground-truth target labels.

• STAR (Lu et al., 2020): Introduces stochastic classifiers to model diverse decision boundaries.
By averaging predictions across multiple classifiers, STAR improves stability and robustness
under domain shifts.

• Group DRO (Sagawa et al., 2019): A robust optimization method that minimizes the worst-case
loss across predefined groups. Since it relies on explicit group labels in the training data, Group
DRO cannot leverage unlabeled target data, which limits its applicability in unsupervised domain
adaptation.

• Group DRO (with Tgt) (Sagawa et al., 2019): A robust optimization method that minimizes the
worst-case loss across predefined groups. In this variant, we assume access to group labels from
both the source and target domains during training. This setup is not realistic in unsupervised
domain adaptation, since target group labels are unavailable in practice.

• ICON (Yue et al., 2023): Focuses on unsupervised domain adaptation by enforcing invariant
consistency across source and target predictions. ICON leverages consistency regularization
to learn representations robust to distributional shifts, achieving state-of-the-art performance in
UDA.

• PDE (Deng et al., 2023): A method designed to combat spurious correlations by progressively
expanding the training data from easy samples to harder ones. It identifies samples where the
model relies on invariant features rather than spurious ones, effectively improving generalization
on out-of-distribution data without requiring full group labels for all samples.

• DRUDA (Wang & Wang, 2024): A distributionally robust unsupervised domain adaptation
(UDA) framework that addresses the distribution shift between source and target domains. By
employing a distributionally robust optimization approach, it minimizes the worst-case risk over
an uncertainty set around the target distribution, thereby enhancing the model’s stability and
performance in unlabeled target environments.

A.6 DISCLOSURE ON LLM USAGE

We used large language models solely to aid in polishing the writing of this paper.
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