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Abstract

Mechanistic interpretability seeks to uncover how internal components of neural networks
give rise to predictions. A persistent challenge, however, is disentangling two often con-
flated notions: decodability—the recoverability of information from hidden states—and
causality—the extent to which those states functionally influence outputs. In this work, we
investigate their relationship in vision transformers (ViTs) fine-tuned for object counting.
Using activation patching, we test the causal role of spatial and CLS tokens by transplanting
activations across clean–corrupted image pairs. In parallel, we train linear probes to assess
the decodability of count information at different depths. Our results reveal systematic
mismatches: middle-layer object tokens exert strong causal influence despite being weakly
decodable, whereas final-layer object tokens support accurate decoding yet are functionally
inert. Similarly, the CLS token becomes decodable in mid-layers but only acquires causal
power in the final layers. These findings highlight that decodability and causality reflect
complementary dimensions of representation—what information is present versus what is
used—and that their divergence can expose hidden computational circuits.
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1. Introduction

Mechanistic interpretability seeks to uncover how internal components of neural networks
contribute to predictions, moving beyond aggregate performance metrics toward causal
understanding of model behavior (Bereska and Gavves, 2024; Olah, 2022; Feng and Stein-
hardt, 2024; Hanna et al., 2023; Nanda et al., 2023; Wu et al., 2024; Joseph and Nanda,
2024; Lepori et al., 2024; Liu et al.). A central challenge is distinguishing between two
notions often conflated in practice: the decodability of information from representations,
and the causal use of that information by the model. Decodability methods, such as linear
probing, test whether a variable of interest can be recovered from hidden states (Belinkov,
2021). Causal methods, such as activation patching, instead test whether modifying acti-
vations changes the model’s outputs (Heimersheim and Nanda, 2024; Zhang and Nanda,
2024). While both approaches provide valuable perspectives, it remains unclear how they
align—or diverge—across layers and token types in large models.

This distinction is especially pertinent for vision transformers (ViTs), whose predictions
arise from the interaction of local patch embeddings and a global classification (CLS) token.
In ViTs, local patches may contain object-specific information, while the CLS token aggre-
gates global scene evidence. Yet whether information contained in these representations is
actually used in making predictions is less well understood. For example, a token may carry
highly decodable features but exert no influence on the output, or conversely, a token with
weakly decodable information may nonetheless causally drive predictions when perturbed.
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Understanding this gap is crucial for accurately characterizing what ViTs represent and
how they compute.

In this work, we investigate the relationship between decodability and causality in a
vision transformer fine-tuned for object counting (Chang and Bisk, 2024; Kajic and Ne-
matzadeh, 2022; Kajić et al., 2025). Using activation patching, we transplant hidden ac-
tivations from clean and corrupted image pairs to test which tokens influence predictions
at different depths. In parallel, we train linear probes on object patches, CLS tokens, and
background patches to assess their decodability. Comparing the two perspectives reveals
systematic mismatches. Middle-layer object tokens, though weakly decodable, exert strong
causal influence when patched. By contrast, final-layer object tokens support highly accu-
rate decoding yet are functionally inert, with predictions unaffected by patching. Similarly,
CLS tokens become decodable in the middle layers but only acquire causal power in the
final layers.

Our findings highlight that decodability and causality are not interchangeable lenses on
model behavior. Instead, they reflect complementary dimensions of representation: what
information is present, and what information is used. By demonstrating their divergence
in a concrete setting, we argue that both are necessary for a comprehensive interpretability
analysis, and that mismatches between them may reveal hidden computational circuits.

2. Activation Patching for Causality

Activation patching (Heimersheim and Nanda, 2024; Zhang and Nanda, 2024) is a causal
interpretability method that tests whether specific activations are used by the model to
make predictions. Given a source input xs and a target input xt, we forward each through
the model to obtain hidden states hls, h

l
t at layer l. We then form a patched run by replacing

part of the target activations with those from the source:

h̃lt = hlt with hlt,i ← hls,i,

where i indexes the token or component being patched. Continuing the forward pass
from h̃lt yields a new output f̃(xt). If f̃(xt) shifts toward f(xs), then the patched activations
causally influence the prediction.

As an illustrative example of our activation patching setup, we consider an image con-
taining two objects, A and B (the clean image). We construct a corrupted counterpart by
removing object B. When passed through the counting-finetuned vision transformer, the
clean image yields a prediction of 2, while the corrupted image yields a prediction of 1,
as expected (see Appendix C for details on the model and dataset). We then perform the
following activation patching experiments (Figure 1):

1. Patch the activation of object B from the clean run into the corrupted run.

2. Patch the activation of the empty patches in the corrupted run (corresponding to the
patch locations of object B in the clean run) into the clean run.

3. Patch the activation of object A from the clean run into the corrupted run.

4. Patch the activation of object A from the corrupted run into the clean run.
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5. Patch the CLS token from the clean run into the corrupted run.

6. Patch the CLS token from the corrupted run into the clean run.

In our setup, activations are patched layer-wise: an activation from a given layer in the
source run is transplanted into the corresponding layer of the target run. To assess how
information at different depths influences model behavior, we measure the effect of patching
by computing the logit difference between the model’s predictions for class 2 versus class 1
as a function of the patched layer. The results are shown in Figure 2.

In experiment 1, patching a token corresponding to an “additional object” flips the
prediction from 1 to 2, but only when the patching is performed in early layers. Likewise,
in experiment 2, patching an “empty” token that effectively occludes object B flips the
prediction from 2 to 1, again restricted to early layers. These results suggest that early
layers in a ViT process local patch information in a way that remains directly relevant to
the model’s predictions.

One might expect that transplanting an activation corresponding to an object token
into a location where another object is already present would leave the model’s prediction
unchanged. Surprisingly, our experiments 3 and 4 reveal otherwise. In particular, when
we patch a middle-layer activation of object A from a run with two objects into the cor-
responding token of a run with one object, the prediction shifts from 1 (the count in the
target image) to 2 (the count in the source image). Conversely, patching object A’s ac-
tivation in the middle layers from the one-object run into the two-object run causes the
prediction to flip from 2 to 1, again aligning with the source. These findings indicate that
object-containing spatial patches in the middle layers encode some information relevant to
the global count of the image, and that this information can be transferred to the target
run through patching, despite the ostensible count being unchanged.

In experiments 5 and 6, we patch the CLS token. As shown in Figure 2, this intervention
alters the prediction in the expected manner—flipping the target count to match the source
count—only when applied in the final layers.

Note that the effects above are observed consistently across multiple clean–corrupted
image pairs with varying object counts (see Appendix B).To further understand the infor-
mation contained in the spatial and CLS patches, we next conduct a series of linear probing
experiments on these tokens.

3. Linear Probing for Decodability

We perform linear probing on three categories of tokens: spatial patches containing objects,
CLS tokens, and background patches (used as a baseline). For each image, we randomly
sample one token from each category and train a linear classification probe with cross-
entropy loss on the training split, reporting test accuracy on the held-out set. As shown in
Figure 3, probing accuracies in the early layers are uniformly low, indicating that the model
is primarily engaged in local feature processing at this stage. Consistently, as demonstrated
in experiments 1 and 2 above, patching local object tokens is still effective in altering
predictions during these early layers.

In the middle layers, probe accuracies on spatial patches increase steadily, while the ac-
curacy on the CLS token rises sharply to above 90%. Importantly, in the same middle layers
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where prediction flipping was observed in experiments 3 and 4, the object patches them-
selves do not encode precise information about the global count, as indicated by the probes.
It is only in the final layers that object patches achieve accuracies above 90%; however, at
this stage, patching object tokens no longer alters the prediction. These findings highlight
our central argument: decodability and causality are not equivalent. Middle-layer
object tokens exhibit causal influence on predictions despite being only weakly decodable,
whereas final-layer object tokens support accurate decoding of count information yet lack
causal influence on the model’s outputs.

Examining the CLS token, its probe accuracy reaches the 90% level by the middle layers.
Yet, as shown in experiments 5 and 6, patching the CLS token at this stage does not alter
predictions—again illustrating that decodability ̸= causality. Only in the final layers
does CLS token patching successfully flip the prediction.

The observed layer-wise mismatch between decodability and causality can suggest a
plausible account of how the attention mechanism transports the count information, and
eventually sends it to the CLS token: In the early layers, predictions are causally driven
by local object tokens, consistent with the low probe accuracy of global information at
this stage. By the middle layers, object tokens themselves contain only weak traces of
the global count, yet attention may be actively reading from them to shape the model’s
output—explaining why patching these tokens can flip predictions. At the same time,
the CLS token already encodes reasonably accurate count information, but attention may
still be writing new signals from spatial tokens into it, diminishing its causal role when
patched. In the final layers, object and background tokens exhibit highly decodable count
information, but attention appears no longer to propagate it into the CLS token. As a
result, patching them has little effect, suggesting that the CLS token has already settled
into its final prediction—consistent with its dominant causal influence at this stage. We
emphasize, however, that this interpretation is preliminary. Our goal is to demonstrate
that the mismatch between decodability and causality is systematic and can potentially
expose hidden circuits—ones that implement computations more complex than standard
associative memory or key–value retrieval (Hopfield, 1982; Olah et al., 2020; Olsson et al.,
2022; Wang et al., 2022).

4. Discussion

Our results show that decodability and causality can diverge in systematic ways. A token
may contain decodable information while functionally inert, or exert causal influence despite
weak probe accuracy.

Probing alone can either overstate or understate functional roles: final-layer object to-
kens yield high decoding accuracy for counts, yet patching reveals they no longer affect pre-
dictions; conversely, middle-layer object tokens flip predictions when patched even though
probes recover little count information. On the other hand, causal analysis alone can also
mislead: patching identifies which tokens influence predictions, but not whether they do
so by carrying reliable task information or by transmitting intermediate signals. Without
probing, causal influence remains ambiguous.

Taken together, these findings show that decodability and causality vary dynamically
across layers, and neither perspective alone is sufficient to capture how representations are
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used. A comprehensive interpretability analysis requires asking both: what information is
present? and what information is used?

References

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances, 2021. URL
https://arxiv.org/abs/2102.12452.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety – a review,
2024. URL https://arxiv.org/abs/2404.14082.

Yingshan Chang and Yonatan Bisk. Language models need inductive biases to count in-
ductively, 2024. URL https://arxiv.org/abs/2405.20131.

Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context?, 2024.
URL https://arxiv.org/abs/2310.17191.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-
than?: Interpreting mathematical abilities in a pre-trained language model, 2023. URL
https://arxiv.org/abs/2305.00586.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching, 2024.
URL https://arxiv.org/abs/2404.15255.

J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. doi:
10.1073/pnas.79.8.2554. URL https://www.pnas.org/doi/abs/10.1073/pnas.79.8.

2554.

Sonia Joseph. Vit prisma: A mechanistic interpretability library for vision transformers.
https://github.com/soniajoseph/vit-prisma, 2023.

Sonia Joseph and Neel Nanda. Laying the foundations for vision and mul-
timodal mechanistic interpretability & open problems. AI Alignment Forum,
Mar 2024. URL https://www.alignmentforum.org/posts/kobJymvvcvhbjWFKe/

laying-the-foundations-for-vision-and-multimodal-mechanistic.

Sonia Joseph, Praneet Suresh, Lorenz Hufe, Edward Stevinson, Robert Graham, Yash Vadi,
Danilo Bzdok, Sebastian Lapuschkin, Lee Sharkey, and Blake Aaron Richards. Prisma:
An open source toolkit for mechanistic interpretability in vision and video, 2025. URL
https://arxiv.org/abs/2504.19475.

Ivana Kajic and Aida Nematzadeh. Probing representations of numbers in vision and lan-
guage models. In SVRHM 2022 Workshop @ NeurIPS, 2022. URL https://openreview.

net/forum?id=01hQQ16Lc9M.
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Appendix A. Key Figures

Figure 1: Activation patching experiments, corresponding to experiments 1 through 4,
where object A is the 1× 1 square and object B is the 1× 3 rectangle.

Figure 2: Activation patching results, corresponding to experiments 1 through 6 in left-
right, top-bottom order.
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Figure 3: Test accuracy of linear probes.

Appendix B. Activation Patching on Additional Pairs

Figure 4: Activation patching with 3 objects

Here we provide further examples of activation patching with more objects. In the first
case, the clean image contained three objects: one 1 × 3 rectangle and two 1 × 1 squares.
Two corrupted versions were created. Corrupt 1 removed both squares, leaving only the
rectangle (count = 1). Corrupt 2 removed the rectangle, leaving the two squares (count =
2).

For Corrupt 1, patching the rectangle token from the clean run restored the prediction
from 1 to 2 when applied at layers 7–8 (0-indexed), but never recovered the full count of 3.
Even when the rectangle was patched together with one of the square tokens, the prediction
still only restored to 2.

For Corrupt 2, patching in both square tokens from the clean run restored the prediction
from 2 to 3, when applied at layers 6–9 (0-indexed).

Figure 5: Activation patching with 4 objects.

Another example is a clean image with four objects (one 1× 3 rectangle and three 1× 1
squares) and a corrupted version containing only the rectangle (count = 1).
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For this corrupted run, patching in the rectangle token from the clean run restored the
prediction to 2 at layers 6–8 (0-indexed), but the effect diminished to 1 again in layers 9–11.
Patching the rectangle together with one square temporarily restored the prediction to 3
at layers 6–7, fell to 2 at layer 8, and returned to 1 at layers 9–11. Finally, patching the
rectangle with any two squares never restored the full count of 4.

These additional results reinforce the finding that patching in the middle layers can
influence predictions. At the same time, they corroborate the probing conclusion that
count information in middle-layer object tokens is inaccurate: predictions can be
swayed in the direction of the source image, but they do not reliably recover the correct
total count.

We conducted activation patching on a total of 20 pairs with different labels, and confirm
that the patterns above is general.

Appendix C. Experimental Details

Model We use a standard Vision Transformer (ViT-B/32) architecture with 12 layers,
12 attention heads, and hidden dimension 768. The model is initialized from ImageNet-
21k pretraining and ImageNet-1k fine-tuning (Steiner et al., 2022), and we further fine-
tune it on a synthetic object counting dataset. Fine-tuning is performed with a 10-way
classification head (predicting counts from 1–10) using cross-entropy loss, Adam optimizer,
learning rate 3 × 10−4, batch size 8192, and training for 250 epochs. Both training and
testing accuracies reached 100% after 225 epochs. All experiments are conducted with the
same model checkpoint at the 250 epoch.

Dataset Our synthetic dataset consists of images containing two object types: 1 × 1
squares and 1× 3 rectangles. To facilitate activation patching, all objects are aligned with
the patch grid of the ViT: each patch is either fully occupied (black) or left entirely empty.
Object placement is randomized across images. For each target count from 1 to 10, we
generate 100 images, resulting in a balanced distribution across counts. The dataset is split
into training and test sets using a 75–25 ratio.

Activation Patching We implement activation patching on vision transformers with
adaptations of ViT-Prisma, an open-source library for vision transformer interpretabil-
ity (Joseph, 2023; Joseph et al., 2025).
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