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Abstract—Fault detection is the process of detecting and
diagnosing faults or abnormalities in a system by analyzing
its operational data. However, with the complexity of
modern industrial processes, some faults are difficult to
be detected in a timely manner due to various factors
such as noise and data nonlinearity. Therefore, data-driven
Fault Detection (FD) has become a widely used method to
detect abnormal events in functional modules. Non-negative
Matrix Factorization (NMF), as an efficient dimensionality
reduction technique, has not had potential applications
in fault detection (FD) thoroughly explored. In order to
improve the FD methods based on NMF, we have developed
a new approach, named graph low-rank non-negative
matrix Factorization with auto-encoders (GLNMFA). GLN-
MFA integrates the Laplacian operator effectively iden-
tifies the local structure among data points, enhancing
the performance of dimensionality reduction algorithms.
It also introduces the nuclear norm to find a low-rank
approximation to the original matrix, thereby constraining
sparsity. Additionally, auto-encoders are incorporated to
learn a low-dimensional representation of the data and
extract key features, which are subsequently applied for
fault detection purposes. We employ an optimization algo-
rithm based on Alternating Direction Method of Multipliers
(ADMM) to optimize this model. Two test statistics T 2

(Hotelling’s T-squared), SPE (Squared Prediction Error)
are used to evaluate detection efficiency. Kernel Density
Estimation (KDE) are used to estimate control limits for
fault detection. The effectiveness of GLNMFA is validated
on two benchmark datasets.

Index Terms—Fault detection; Kernel density estimation;
Nonnegative matrix factorization.

I. INTRODUCTION

In modern industrial production, it is essential to
ensure the stable operation of equipment and the con-
tinuity of processes. The application of fault detection
technology aims to discover and diagnose potential faults
in time through real-time monitoring and analysis of
various data in the production process, so as to take
preventive measures to avoid production disruption. Fault
detection methods can be divided into three categories:
model-based method, signal-based method and data-
driven method. Non-negative matrix factorization (NMF)
has emerged as a powerful tool for data analysis, found
applications across various domains. Its fundamental
idea is to decompose a given data matrix into the
product of non-negative basis vectors and coefficient
matrices, enabling efficient representation and dimen-
sionality reduction of the data. In recent years, NMF has
shown significant potential in the field of fault detection.
Fault detection is a critical task in industrial production
and equipment maintenance [1]–[4]. Traditional methods
for fault detection often rely on expert knowledge or
statistical techniques, which may struggle to handle the



variability and high dimensionality of data in complex
systems [5]. As a data-driven approach, NMF can au-
tomatically learn basic patterns from data, offering a
new perspective and tool for fault detection [6]. Fault
detection methods are generally divided into three kinds,
which are signal driven, model driven and data driven.
With the rapid development of data collection and data
processing technology, data-driven fault detection has
become the mainstream [7]. The most popular data-
driven methods include Independent component analysis
(ICA) [8], Principal Component Analysis (PCA) [9],
canonical Component analysis (CCA) [10], and non-
negative matrix factorization (NMF). NMF has been
successfully applied in various applications, including
feature extraction, topic modeling, and collaborative
filtering. Its ability to discover underlying patterns in
data and its interpretability make it a valuable tool in
exploratory data analysis and dimensionality reduction
tasks [11]. In the classical Non-negative Matrix Fac-
torization (NMF) model, enhancing the model’s per-
formance can be achieved by incorporating regulariza-
tion terms and constraints. This approach facilitates the
extraction of more meaningful features and enhances
the effectiveness of dimensionality reduction [12], [13].
For example, Sparse Non-negative Matrix Factorization
(SNMF) produces more interpretive decomposition re-
sults by introducing sparsity constraints into the NMF
model. This ensures that most elements in the generated
base and coefficient matrices are zero [14]–[17]. Graph
Regularized Non-negative Matrix Factorization (GNMF)
introduces graph structure information based on standard
NMF, and improves the quality and stability of decom-
position results by using the relationship between data
samples [18], [19], [20]. Orthogonal Non-negative Ma-
trix Factorization (ONMF) introduces orthogonal con-
straints, i.e., the resulting basis matrix is orthogonal
[17], [21] . The orthogonal constraint makes the basis
matrix generated by NMF more sparse and mutually
exclusive, thus enhancing the interpretation and gener-
alization ability of decomposition results. The statistical
strategy based on NMF was first developed by Lee and
Seung [22]. Li et al was the first to apply NMF fault
detection in non-Gaussian processes [23]. Two statistical
metrics are established for fault detection using the
NMF method, namely the squared prediction error (SPE)
and squared distance statistic (T 2), T 2 can effectively
combine information from multiple variables to detect
anomalies by monitoring changes in these variables and
their correlations, and kernel density estimates (KDE)
were used to estimate the control limits [24], [25]. The
data on the benchmark Tennessee Eastman process show
that the fault detection method based on NMF has better
performance. Later, many new NMF variants appeared
and proved to have better fault detection performance

[26], [27].
In this paper, a novel fault detection approach is

presented, which is based on Non-negative Matrix Fac-
torization (NMF) and is named Graph Low-rank Non-
negative Matrix Factorization with Auto-encoder (GLN-
MFA). This method leverages the graph Laplacian to
incorporate the topological relationships between process
variables, thereby enhancing the model’s ability to uti-
lize information from these variables. Additionally, the
method utilizes the nuclear norm to ensure a low-rank
matrix approximation, which efficiently reduces model
redundancy. This advancement is supported by the cited
literature [28]–[30]. Auto-encoders play a crucial role in
this framework by mapping high-dimensional data into
a lower-dimensional space, simplifying data representa-
tion and reducing complexity, while retaining essential
information [31]. This unsupervised learning algorithm
achieves this by encoding input data into a compact rep-
resentation and then reconstructing it through a decoder
to closely match the original input [32], [33]. Then the
fault detection efficiency of this model is discussed [34]–
[37]. Based on analysis of benchmark datasets such as
the Tennessee Eastman Process (TEP) and XJTU-SY
rolling bearings, this paper demonstrates the advantages
and potential applications of GLNMFA in fault detection
[38], [39]. This is expected to improve the accuracy
and efficiency of fault detection, providing more reliable
support for industrial production and equipment main-
tenance. The remainder of the paper is outlined below,
with Section II reviewing the classic NMF and some
representative variants. Section III designs an effective
algorithm to solve GLNMFA. Section IV introduces
apply the GLNMFA model proposed in this paper for
fault detection, Section V highlights the advantages of
this algorithm by comparing with other methods, and
finally, provides a summary of the paper.

II. RELATED WORKS

A. Notation

For a matrix X ∈ Rm×N , where m represents the
number of variables and N represents the number of
samples, the notation xi represents the ith row of matrix
X, and xij represents the element at the ith row and jth
column of matrix X, || · ||F is the Frobenius norm of
the matrix. ‖ X ‖∗ is the nuclear norm of the matrix,
representing the sum of all the singular values of the
matrix. XT and X−1 are expressed as their transposed
and inverse matrices, respectively. The inner product of
two matrix can be given by the following formula :
〈X,Y〉 = tr(XTY) =

∑m
i=1

∑N
j=1 xijyij .

B. NMF Basics

Mathematically, NMF can be formulated as : X ≈
WH. X is the original data matrix, W ∈ Rm×k contains



the basis vectors, called the basis matrix, and H ∈ Rk×N

contains the coefficients, called the coefficient matrix,
in which k is the reduced dimension satisfying (m +
N)× k < m×N . The loss function of NMF is usually
defined as the distance between the original matrix X
and the approximately reconstructed matrix WH, and
the difference between the two is usually measured using
the Euclidean distance or the distance based on the KL
divergence. According to Lee and Seung’s research, the
loss function can be reasonably defined as :

min
W,H

1

2
‖ X−WH ‖2F

s.t.W ≥ 0,H ≥ 0.
(1)

In this case, W and H are greater than or equal to
zero, which means that their elements are non-negative.
There are many optimization methods for NMF-related
problems, such as multiplication update (MU), gradient
descent (PGD) [40], etc. But these algorithms converge
too slowly. A new alternating direction multiplier method
(ADMM) shows good convergence performance when
solving NMF-related problems. In this paper, ADMM
algorithm is used to solve the target problem.

Adding some constraints or regularization terms to the
classical NMF model can improve the performance of
the model, for example, graph regularized NMF (GNMF)
[18].

min
W,H

1

2
‖X−WH‖2F + λtr(HLHT)

s.t.W ≥ 0,H ≥ 0.
(2)

In the model, a graph regularization term is added to the
classical NMF, where L is referred to as the Laplacian
matrix learned from the original matrix X, defined as
(L = D - Z). Here, D represents the adjacency matrix,
and Z denotes the degree matrix. The addition of this
regularization term can better capture the local structure
information among the data points, thus improving the
performance of data dimensionality reduction [41].

Another popular variant of NMF is obtained by plac-
ing a constraint on the coefficient matrix H, named
sparse nonnegative matrix decomposition (SNMF) [14].

min
W,H

1

2
‖X−WH‖2F

s.t.W ≥ 0,H ≥ 0, ‖H‖0 ≤ s.
(3)

Compared with the classical NMF model, the above
model adds additional constraints on the coefficient
matrix H. Here, the sparsity of H is controlled by the
l0 norm constraint on H, so that H ≤ s to achieve
better dimensionality reduction. s here is a parameter
that controls the sparsity of the coefficient matrix H.

III. GRAPH LOW-RANK NON-NEGATIVE MATRIX
FACTORIZATION WITH AUTO-ENCODERS

A. Model description

This section introduces the proposed NMF model. In
order to obtain better performance, two regularization
terms, the nuclear norm term and the auto-encoder term,
are added on the basis of GNMF are added on the basis
of GNMF, nuclear norm term and auto-encoder term.
The nuclear norm regularization term can achieve the
low-rank approximation of the matrix, thus achieving the
effect of dimensionality reduction and denoising, auto-
encoding terms can learn a low-dimensional representa-
tion of the data to extract key features.

min
W,H

1

2
‖ X−WH ‖2F +λ1 ‖ H−WTX ‖2F +λ2 ‖ H ‖∗

+ λ3tr(HLHT)

s.t.W ≥ 0,H ≥ 0.
(4)

‖ H ‖∗ is the nuclear norm of H, λ1, λ2, λ3 is the
regularization parameter. In fact, it can be viewed as an
extension of Model (2).

B. Optimization algorithm

The main idea of ADMM is to decompose the orig-
inal problem into multiple sub-problems, and gradually
approach the optimal solution of the original prob-
lem by optimizing each sub-problem alternatively [42],
[43]. The optimization of nuclear norm is complicated.
Meanwhile, in order to simplify the model optimization
process, introduce two auxiliary variables Y and U, then
equation (4) can be reformulated as follows:

min
W,H,U,Y

1

2
‖ X−Y ‖2F +λ1 ‖ H−WTX ‖2F

+ λ2 ‖ U ‖∗ +λ3tr(HLHT)

s.t.WH = Y,H = U,W ≥ 0,H ≥ 0.

(5)

Construct an augmented Lagrange of the original func-
tion as follows:

L(W,H,U,Y,A,B) =

1

2
‖ X−Y ‖2F +λ1 ‖ H−WTX ‖2F

+ λ2 ‖ U ‖∗ +λ3tr(HLHT)

+
β1
2
‖WH−Y‖2F − 〈A,WH−Y〉

+
β2
2
‖H−U‖2F − 〈B,H−U〉.

(6)

where β1, β2 are penalty parameters, and A, B are
Lagrange multipliers. Here also need to consider the non-
negative constraints on W and H. Under the framework
of ADMM, the optimal solution is iteratively obtained



Fig. 1: The illustration of the proposed model.

by updating variables one by one [44]. The iterative steps
for solving (6) are as follows:

Wk+1 = arg min
W
L(W,Hk,Uk,Yk,Ak,Bk)

Hk+1 = arg min
H
L(Wk+1,H,Uk,Yk,Ak,Bk)

Uk+1 = arg min
U
L(Wk+1,Hk+1,U,Yk,Ak,Bk)

Yk+1 = arg min
Y
L(Wk+1,Hk+1,Uk+1,Y,Ak,Bk)

Ak+1 = Ak − β1(Wk+1Hk+1 −Yk+1)

Bk+1 = Bk − β2(Hk+1 −Uk+1).

The update process for each variable is discussed in
detail below:

(1) Update W while fixing other variables.

updating W can be simplified as following optimiza-
tion problems.

min
W

λ1 ‖ H−WTX ‖2F +
β1
2
‖WHk−Yk−Ak/β1‖2F .

(7)
2λ1XXTWk+1+β1Wk+1HkHT

k =

2λ1XHT
k + β1YkHT

k + AkHT
k .

(8)

Equation (8) is the result after derivation, which belongs
to the Sylvester equation, If an equation form such as:

AX + XB = C.

A ∈ Rm×m,B ∈ Rn×n,X and B ∈ Rm×n, then this
equation is called the Sylvester equation, Bartels et al.
have given an introduction to solving this equation in
detail, and this paper does not go into detail [45]. In
equation (8), let A = 2λ1XXT, B = β1HkHT

k , C =
2λ1XHT

k + β1YkHT
k + AkHT

k , it is easy to see that the
solution to W is solved in accordance with the form of
the Sylvester matrix.

(2) Update H while fixing other variables. updating H

can be simplified as following optimization problems.

min
H
λ1 ‖ H−WT

k+1X ‖2F +λ3tr(HLHT)

+
β1
2
‖Wk+1H−Yk‖2F − 〈Ak,Wk+1H−Yk〉

+
β2
2
‖H−Uk‖2F − 〈Bk,Hk −Uk〉

(9)

(2λ1I + β1W
T
k+1Wk+1 + β2I)Hk+1 + Hk+1(2λ3L)

= 2β1WT
k+1Yk + WT

k+1Ak + λ1WT
k+1X + β2Uk + Bk.

(10)
Equation (10) can also be seen as a Sylvester equation
through simple calculation, which can also be solved. In
this equation, I is the identity matrix , I ∈ Rk×k.

(3) Update Y while fixing other variables. updating Y
can be simplified as following optimization problems.

min
Y

1

2
‖X−Y‖2F +

β1
2
‖Y −Wk+1Hk+1 + Ak/β1‖2F .

(11)
The following solution is obtained through derivation:

Yk+1 =
1

1 + β1
(X + β1Wk+1Hk+1 −Ak). (12)

(4) Update U while fixing other variables. updating U
can be simplified as following optimization problems.

min
U
λ2‖U‖∗ −

β2
2
‖Hk+1 − U− Bk/β2‖2F . (13)

Since the nuclear norm is not differentiable in most
cases, and this form of formula has a closed solution,
it is solved as follows:
a. Singular value decomposition (SVD) [46]: Decompo-
sition of matrix A into the product of three matrices U,
Σ, V. A = UΣVT, Σ is a diagonal matrix containing
singular values of matrix A.
b. Select a threshold: Determine a threshold τ , τ is used
to determine the magnitude of the singular value.
c. Threshold processing: The elements of the Σ matrix



is less than or equal to the threshold value The singular
values of τ is set to 0, preserving singular values greater
than the threshold.

σ′i =

{
σi if σi > τ

0 if σi ≤ τ
.

d. Reframe: using the processed Σ matrix, and recon-
struct A′ matrix to A′ = UΣ′VT .
e. A′ is a simplified or denoised version of the original
matrix A.

Algorithm 1 ADMM for GLNMFA

Input: Given the original data matrix X, Laplace matrix L,
parameterλ1, λ2, λ3 > 0, penalty parameters β1, β2 > 0.
Initialize: (W0,H0,U0,Y0,A0,B0), set k=0.
Repeat:
1: Update Wk+1 by (8).
2: Update Hk+1 by (10).
3: Update Yk+1 by (12).
4: Update Uk+1 by (13).
5: Update Ak+1=Ak − β1(Wk+1Hk+1 −Yk+1).
6: Update Bk+1 = Bk − β2(Hk+1 −Uk+1).
End While

IV. APPLICATION STUDIES

This section introduces the fault detection process
based on GLNMFA and conducts a comparative analysis
with PCA, NMF, and SNMF using the TEP and XJTU-
SY Bearing Dataset. The aim is to establish that GLN-
MFA demonstrates higher detection efficiency than other
algorithms across the majority of fault variables. All
experiments in this article were conducted on Windows
10, Intel(R) Core(TM) i7-8750H, CPU of 2.21 GHz,
RAM of 16.0 GB, using Matlab R2020b.

frame diagram.png

Fig. 2: Control frame diagram of fault detection.

A. Fault Detection Process based on GLNMFA

Fig. 2 described the fault detection process based on
Graph low-rank non-negative matrix decomposition with

auto-encoding(GLNMFA-FD) method, detailed steps are
as follows:

(1) Initialization: given the Normal Sample (not-fault)
data matrix X, builds the Laplace matrix L of the original
matrix. W and H are initialized using positive random
numbers.

(2) Calculate W and H: The GLNMFA model is
optimized by ADMM algorithm, and the decomposed
radix matrix W and coefficient matrix H are obtained.

(3) Calculate T 2 and SPE: The coefficient matrix
H can be viewed as a low-rank approximation of the
original data matrix. As stated in [23], H reflects the
state of the industrial process. To reconstruct H and X,
the formula is as follows:

Ĥ = (WTW)−1WTX (14)

X̂ = WĤ (15)

In the process of fault detection based on non-negative
matrix factorization, two fault detection indexes T 2 and
SPE are constructed as follows:

T 2 = ĤTĤ

SPE = (X− X̂)T(X− X̂).
(16)

(4) Computational control limit: The upper control
limits for the two monitoring metrics T 2 and SPE are
calculated using KDE. The KDE equation for univariate
kernel estimation is shown in equation (17):

P̂ (x) =
1

Nh

∑
i

K

(
x− xi
h

)
(17)

P̂ (x) is the estimate of the probability density function,
where N is the number of samples, h is the bandwidth,
and K(·) is the kernel function. The requirements for
kernel functions are shown in equation (18).∫ +∞

−∞
K(x)dx = 1,K(x)>0 (18)

The corresponding control limits for T 2 statistics
and SPE statistics are denoted as Jth,T 2 and Jth,SPE ,
respectively.

(5) According to the test data, a new coefficient
matrix H is obtained. New T 2 and SPE are calculated
according to equations (16).

(6) Determine whether the new T 2 and SPE are
faulty by comparing them with the corresponding control
limits. If the test statistics are out of control, a fault
occurs, otherwise normal. Therefore, the detection logic
can be defined as:{
T 2 < Jth,T 2 and SPE < Jth,SPE ⇒ fault− free

T 2 ≥ Jth,T 2 or SPE ≥ Jth,SPE ⇒ faulty.
(19)

(7) Two percentage parameters, MAR (Miss alarm



rate) and FAR (False alarm rate), are used as criteria
to judge fault detection. This formula means that the
smaller MAR and FAR, the better the detection results.

MAR =
number of samples (T 2 < Jth,T 2 | f 6= 0)

total of samples (f 6= 0)

FAR =
number of samples (T 2 ≥ Jth,T 2 | f = 0)

total of samples (f = 0)
.

(20)

B. Application on the TEP

The Benchmark Tennessee Eastman process is a stan-
dardized platform for testing process monitoring and
fault diagnosis algorithms [47]. Fig. 3 shows the complex
chemical process for TEP, including 22 processing units
and 12 process variables [17]. TE process is highly
nonlinear and multi-variable, so it is widely used in
research for monitoring algorithms. Its standardization
promotes the performance comparison of algorithms and
the development of techniques. TE process data sets
are used to evaluate the accuracy and reliability of
algorithms, which is of great significance to improve the
efficiency and safety of chemical processes. In the PCA
based approach [48], the selection variance contribution
is 85%, and the corresponding k value is 20 and the
number of iterations is set to 1000.

Fig. 3: Flowchart of the TEP.

The detection results based on PCA and NMF meth-
ods are shown in Table I and Table II, respectively.
In addition, the best performances are highlighted in
bold. In Table I and Table II, T 2, SPE represents the
percentage of the fault variable that is greater than the
control limit in the total sample. In the Fig. 5 to Fig. 9,
T 2, SPE represents the actual value calculated according
to the fault detection strategy. It can be seen from the
data in the Table I-II that although GLNMFA is weaker
than individual algorithms at individual fault points,
GLNMFA has the best fault detection efficiency overall.

C. Application on the XJTU-SY Bearing Dataset

The XJTU-SY rolling bearing acceleration life test
dataset provided by Xi’an Jiaotong University is a
valuable resource containing vibration signals and lifes-
pan data of rolling bearings under different operating
conditions [49]. It is primarily used for research in
bearing life prediction and health monitoring, aiding
in the development and evaluation of machine learning
and deep learning models. Fig. 4 Experimental platform
includes AC motor, motor speed controller, shaft, support
bearing, hydraulic loading system and test bearing [50].
Data are collected using a portable dynamic signal
acquisition unit at a sampling frequency of 25.6 kHz,
with a sampling duration of 1 minute and a duration of
1.28 seconds per sample. The dataset, in CSV format,
includes vibration signals for analyzing bearing fault
types and characteristics. Fault diagnosis studies based
on this dataset employ various algorithms such as stan-
dard deviation, FFT spectrum, and envelope spectrum for
abnormal detection and fault classification. For instance,
envelope spectrum analysis of acceleration signals aids
in identifying outer race faults. This dataset not only
fuels research in prediction and health management but
also facilitates the practical application of intelligent
operations and maintenance in the industry.

Fig. 4: Experimental platform of the XJTU-SY bearing
dataset.



TABLE I: FAR Values for TEP.

PCA NMF SNMF ONMF GLNMFA

T 2 SPE T 2 SPE T 2 SPE T 2 SPE T 2 SPE

IDV(1) 0.00% 10.62% 9.38% 0.00% 16.83% 0.63% 46.25% 0.63% 0.40% 0.00%

IDV(2) 0.63% 18.13% 2.50% 0.00% 5.00% 4.73% 49.38% 0.00% 3.00% 0.00%

IDV(3) 0.00% 13.75% 3.13% 0.00% 27.25% 0.00% 48.25% 0.20% 0.02% 0.00%

IDV(4) 5.63% 0.00% 13.88% 3.75% 14.63% 3.13% 48.13% 0.00% 0.20% 0.20%

IDV(5) 3.75% 0.00% 2.50% 6.88% 28.23% 0.63% 35.00% 1.25% 0.20% 1.00%

IDV(6) 22.75% 17.33% 6.40% 6.40% 0.00% 0.00% 32.00% 0.00% 0.00% 0.00%

IDV(7) 12.58% 25.10% 6.40% 2.32% 11.40% 0.00% 12.00% 0.60% 0.00% 2.40%

IDV(8) 82.51% 1.25% 4.16% 0.00% 15.00% 0.00% 6.80% 0.00% 0.00% 0.00%

IDV(9) 4.83% 22.50% 6.40% 0.56% 25.80% 0.60% 15.40% 0.00% 0.40% 2.40%

IDV(10) 4.38% 22.50% 6.28% 0.28% 31.20% 0.60% 21.80% 2.20% 0.40% 0.40%

Average 13.71% 13.12% 6.10% 2.02% 17.53% 1.03% 31.50% 0.49% 0.46% 0.64%

TABLE II: MAR Values for TEP.

PCA NMF SNMF ONMF GLNMFA

T 2 SPE T 2 SPE T 2 SPE T 2 SPE T 2 SPE

IDV(1) 0.50% 0.25% 1.25% 1.25% 8.38% 1.02% 2.02% 4.76% 0.17% 0.00%

IDV(2) 0.25% 16.87% 0.38% 5.38% 6.88% 0.35% 30.13% 84.13% 0.98% 0.95%

IDV(3) 1.38% 16.25% 1.75% 2.25% 27.38% 4.88% 27.75% 2.88% 0.20% 0.19%

IDV(4) 1.57% 14.58% 1.00% 3.50% 12.63% 7.63% 47.25% 9.88% 0.20% 0.19%

IDV(5) 1.00% 12.35% 1.75% 3.00% 24.88% 3.00% 22.13% 3.75% 0.20% 0.19%

IDV(6) 27.25% 7.25% 0.00% 0.02% 42.00% 42.13% 0.04% 0.11% 0.20% 0.14%

IDV(7) 0.50% 0.36% 0.01% 0.04% 0.09% 0.20% 0.10% 0.20% 0.20% 0.20%

IDV(8) 1.50% 7.13% 0.00% 0.04% 0.03% 0.20% 0.04% 0.20% 0.20% 0.20%

IDV(9) 98.75% 93.13% 97.16% 92.52% 97.25% 98.31% 95.21% 97.33% 94.27% 96.20%

IDV(10) 73.5% 77.13% 0.00% 0.04% 0.00% 0.20% 0.09% 0.19% 0.20% 0.20%

Average 20.62% 24.53% 10.33% 10.08% 21.95% 15.79% 22.47% 20.34% 9.68% 9.85%

Fig. 5: Bearing 3-1 detection results in the XJTU-SY
used PCA.

Fig. 6: Bearing 3-1 detection results in the XJTU-SY
used NMF.



Fig. 7: Bearing 3-1 detection results in the XJTU-SY
used SNMF.

Fig. 8: Bearing 3-1 detection results in the XJTU-SY
used ONMF.

Fig. 9: Bearing 3-1 detection results in the XJTU-SY
used GLNMFA.

The pictures Fig. 5 to Fig. 9 show detection perfor-
mance of Bearing 3-1 for XJTU-SY bearing. In this
dataset, faults are artificially introduced starting at the
201st data point. The figure illustrates the fault points
on the horizontal axis, the calculated sample values on
the vertical axis, and the dashed line indicates the control
limit. A fault point exceeding the control limit confirms
the occurrence of a fault, while a point below the limit

suggests that no fault has occurred or the fault has not
been accurately detected.

As can be seen from Table III and Table IV, al-
though the detection result of GLNMFA is not optimal
at individual fault points (for example, MAR Values
for Bearing 2-5), considering the average results, the
detection efficiency of GLNMFA for XJTU-SY data set
is nonetheless remains.

V. CONCLUSIONS

In this paper, a novel non-negative matrix decompo-
sition model GLNMFA is proposed for fault detection
in industrial systems. The model improves the fault
detection efficiency by adding regularization terms to
the classical NMF model. The graph regularization term
plays a pivotal role in preserving the inherent graph
structure characteristics of the data, which is essential
for comprehending the interdependencies and influences
among various components within a complex system.
The incorporation of nuclear norm regularization terms
results in a sparser representation, aiding in the elimina-
tion of noise and insignificant features, thus enhancing
the model’s interpretability. Experimental validation on
the TEP and XJTU-SY datasets has substantiated the
effectiveness of the proposed NMF algorithm in fault
detection. When compared to existing fault detection
methods, this model exhibits superior performance in
terms of detection accuracy, robustness, and computa-
tional efficiency.

Despite the positive results of this study, there is still
room for further improvement. Future work can focus
on: parameter selection and tuning strategies to auto-
matically determine optimal regularization parameters.
Algorithm performance optimization in real-time fault
detection scenarios. Multi-modal data fusion to further
improve the accuracy of fault detection.
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