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Abstract

The field of time series anomaly detection is hindered not by its models and algorithms, but
rather by its inadequate evaluation methodologies. A growing number of researchers have
claimed in recent years that various prevalent metrics, datasets, and benchmarking practices
employed in the literature are flawed. In this paper, we echo this sentiment by demonstrating
that widespread metrics are incongruent with desirable model behaviour in practice and
that datasets are plagued by inaccurate labels and unrealistic anomaly density, amongst
other issues. Furthermore, we provide suggestions and guidance on realigning theoretical
research with the demands of practical applications, with the goal of establishing a stable,
principled benchmarking framework within which models may be evaluated and compared
fairly. Finally, we offer a perspective on the main challenges and unanswered questions in
the field, alongside potential future research directions.

1 Introduction

The field of time series anomaly detection has many direct applications in wide-ranging domains such as
finance, healthcare, and manufacturing. Despite this, the theoretical applications and real-world use cases are
often misaligned as a result of unsuitable anomaly detection metrics and unreliable benchmarking datasets.
Since these flawed conventions have become ingrained in the literature, many researchers are regrettably
building their castles on sand.

We suggest re-examining these fundamental building blocks of time series anomaly detection, adopting an
application-driven approach in order to establish a principled set of benchmarking practices. After providing
a brief introduction to anomaly detection in time series and outlining previous criticisms of the field in
we discuss some typical applications in §3] and formulate a set of underlying assumptions that they all
share. This is followed by a critique of established anomaly detection metrics, leading to empirical results
demonstrating the efficacy of two recent metrics in We then consider the issue of datasets in which
includes a list of desirable characteristics, a critique of prominent public datasets, and a few suggestions on
how to proceed with developing new datasets. Thereafter, the state of anomaly detection models is discussed
in §6] as is the need for sensible baselines and our broad suggestions for future research directions. Finally,
we conclude in §7] with a summary of the main points and suggested follow-up research avenues.

2 Related work

In this section, we provide brief background information on anomaly detection in time series, as well as a
review of some of the recent criticisms facing the field.

2.1 Time series anomaly detection approaches

Time series anomaly detection is the process of identifying observations or subsequences within a time-ordered
sequence of data that deviate significantly from the expected behaviour or underlying patterns of the series,
typically under the assumption that such deviations are rare and represent events of interest. Anomaly
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detection is usually seen as a process consisting of two steps: anomaly scoring and thresholding (Keogh),
2021). The former is concerned with determining a score for each timestep in the series—conventionally
(although not necessarily) within a [0, 1] range, with 0 representing the most normal data and 1 representing
the most anomalous. Thereafter, the latter step involves converting these scores into binary predictions (i.e.
normal or anomalous).

Since appropriate thresholds tend to be context-dependent, and the fact that anomaly scoring is often
considered the more difficult step (Keogh, |2021)), most research in the literature has focused on developing
better scoring models. Many scoring approaches have been proposed, ranging from traditional statistical
approaches (e.g. statistical process control charts or a moving average) to newer machine learning methods
(e.g. isolation forest and local outlier factor) to the very latest deep learning techniques (e.g. autoencoders,
transformers, and numerous other architectures). These models are not the focus of the present paper, and
instead we refer the interested reader to one of the many comprehensive surveys on the current landscape of
time series anomaly detection algorithms (Schmidl et all 2022; |Zamanzadeh Darban et al., [2024).

2.2 Previous criticisms of the field

In recent years, a growing body of research has supported the notion that novel algorithms in the field
are often built on questionable foundations (Lai et al., [2021; [Keogh) [2021; Hwang et al., [2022; [Kim et al.,
2022; Wu & Keoghl, [2023; [Liu & Paparrizos, 2024} |Sarfraz et al., 2024} [Serbg & Ruocco), 2024). Without
insightful metrics, robust datasets, appropriate baselines, and sound benchmarking practices, any results or
conclusions are unreliable at best. An increasing number of dissenting researchers have raised concerns about
the direction of the field, with the general sentiment being that more research effort should be devoted to
establishing a solid foundation for benchmarking (i.e. metrics, datasets, and baselines) before pursuing the
development of more advanced and capable models (Sarfraz et al., 2024).

3 Time series anomaly detection applications

In this section, we review and discuss how time series anomaly detection is currently applied. Thereafter, we
identify certain commonalities in these applications and present a set of assumptions that applies to most use
cases, which subsequently inform our criticisms and suggestions pertaining to metrics, datasets, and models
in later sections.

3.1 Typical use cases

Considering the generic and fundamental nature of time series anomaly detection, it is unsurprising that it
is employed in a wide variety of domains. Some of the most prominent applications include:

o Healthcare. A simple application is monitoring a patient’s vital signs (such as heart rate, blood
pressure, etc.) using sensors in a bid to pre-empt any potential medical emergency (Haahr-
Raunkjaer et all [2022). More complex applications include the analysis of electrocardiograms
aimed at detecting heart arrhythmias (Greenwald et al., |1992; Moody & Mark] |2001)) and employing
electroencephalograms for the identification of unusual brain activity that might precede an epileptic
seizure (Shoji et al., [2021)).

e Predictive maintenance. One of the field’s most prominent use cases is monitoring key sensor
readings from machinery or equipment (such as temperature, vibration, and pressure) in order to pre-
empt catastrophic failures by carrying out predictive maintenance before a breakdown occurs (Choi
et al. |2022; Barrish & van Vuuren, 2023). Another potential application is in quality assurance, as
deviations from normal system behaviour might result in defective products.

e Finance and economics. Time series anomaly detection frequently plays a role in credit card fraud
detection systems by monitoring spending habits (Moschini et al., [2021). It may also be employed
to aid algorithmic trading strategies or detect illegal trading (James et al.| [2023)).
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o Information technology operations and cybersecurity. Anomaly detection models are widely
used to aid in network intrusion detection by analysing network traffic (Garcia-Teodoro et al.,
2009). Unusual patterns in packet sizes or connection frequency might, for instance, indicate that
a cyberattack has occurred. Another use case is monitoring data generated from servers (such as
CPU usage and disk I/0O) with a view to flag any hardware failures or software bugs early (Su et al.
2019).

3.2 Common assumptions

Despite the diversity of these applications, anomaly detection is employed in fundamentally similar ways. In
each case, a data-generating process or system (e.g. an electrocardiogram, machine temperature, or network
traffic) is analysed or monitored automatically by some model. If an abnormality in the data is identified, a
domain expert (e.g. cardiologist, technician, or information technology specialist) is alerted to the existence
of a potential anomaly. Based on a closer inspection of the underlying process, the expert decides whether
the issue is genuine and severe enough to warrant further action. Anomaly detection may be seen as a form
of decision support since it aids experts in deciding where they should focus their attention—this human
factor is an important consideration when attempting to align theory with practice.

Based on the typical applications described in and the workflow outlined above, the following reasonable
assumptions inform our suggestions with respect to metrics and datasets:

e Labelled, ground truth anomalies correspond to events which are moteworthy to the user of the
anomaly detection system. Anomalies are somewhat subjective by definition, but what we are
assuming here is that system users know whether an alert is useful or not, and this knowledge may
be leveraged to determine whether similar alerts should be issued in the future.

o Experts investigate each alert soon after the potential anomaly is flagged. Within a reasonable
amount of time, these experts can determine whether a true anomaly was flagged based on their
subjective interpretation of “usefulness.” One flag during an anomalous subsequence is sufficient to
uncover the entire anomaly, and subsequent alerts are redundant.

e Users of the anomaly detection system are primarily concerned with the system’s ability to detect
anomalies. The number of true negatives should not play a role (or at least not a significant role) in
the evaluation of anomaly detection models, as the imbalanced nature of anomaly detection datasets
may result in overly optimistic evaluations.

Naturally, this is not an exhaustive list of possible assumptions covering all situations—various use cases will
often have more specific requirements. For instance, in many applications such as high-frequency trading,
timeliness of the detection is important. In such cases, earlier detections should be rewarded, but the exact
degree to which it should be rewarded varies significantly and thus cannot easily be accounted for in general
terms. Similarly, in certain applications (such as the monitoring of machinery in an industrial setting),
the duration of an anomaly (such as overheating, for instance) may correlate with the severity. Without
additional contextual information, it is also impossible to account for this in generic benchmarks.

Although these assumptions do not apply universally, the point of clearly stating these here is to establish a
basic framework that dictates what anomalies are and how they are handled in practice, particularly within
human-in-the-loop monitoring contexts. This framework may then be utilised when selecting or designing
metrics as well as guiding the curation of datasets.

4 Metric alignment

The importance of selecting suitable performance metrics is often underestimated, especially in time series
anomaly detection where the selection of appropriate metrics is particularly challenging due to the temporal
nature of the data. Many researchers have opted for intuitive measures borrowed from tabular anomaly
detection or binary classification, but often each of these has at least one serious drawback. A widespread
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failure to assess evaluation approaches critically prior to their use has resulted in flawed metrics permeating
the literature. We discuss the most prominent of these metrics in this section, before presenting our
recommendations.

4.1 A critique of existing metrics

Metrics may be partitioned into two broad categories: those in which the final binary predictions are
compared with the labels, and those that involve evaluating the anomaly scoring approach in isolation
without thresholding. [Serbg & Ruocco| (2024) refer to these as binary (threshold-specific) and non-binary
(threshold-free) metrics, respectively.

Let us examine binary metrics first, which are typically defined as some combination of true positives (TPs),
false positives (FPs), true negatives (TNs), and false negatives (FNs). Within this category we have:

o Accuracy is defined as A = (T'Pp + T Np)/n where n is the length of the time series, T'Pp is the
number of true positive points, and T'Np is the number of true negative points. This is a particularly
poor metric due to the imbalanced nature of anomaly detection datasets. As a result, models may
achieve a high score by flagging no anomalies in the time series (Serbg & Ruocco), [2024). Fortunately,
it has not found widespread use in the time series anomaly detection literature.

o Point-wise recall is defined as Rp = TPp/(TPp + FNp), and may be interpreted as the fraction
of actual anomalous points that were flagged correctly. Since this incentivises models to flag
everything due to no penalty being imposed for false positives, recall is complemented by the
following metric (Tatbul et al., 2018]).

o Point-wise precision is defined as Pp = T Pp /(T Pp + F Pp), which may intuitively be seen as the
fraction of flagged points that were actual anomalies. This rewards models for only flagging points
when they are absolutely certain, which may result in many undetected anomalies (Tatbul et al.|
2018)).

e The point-wise F} score attempts to balance precision and recall. It is defined as the harmonic
mean of the point-wise precision and point-wise recall, or F; = (2 x Pp x Rp)/(Pp + Rp). It is
an instance of the generic Fjg score, where  is the additional weight afforded to recall relative to
precision. While this metric seems sensible and has found use in at least 14 time series anomaly
detection papers (Serbg & Ruoccol [2024), we believe it is flawed since contiguous anomalous points
are treated as events in practice as opposed to individual points (Garg et al., 2021). This results
in partial detection of an anomalous sequence being penalised too harshly, which does not reflect
desirable behaviour in practice (Xu et al., [2018; [Serbg & Ruoccol 2024]).

e The point-adjusted F; score attempts to remedy the above flaw by treating all points in
an anomalous subsequence as true positives if any point is flagged, thereby rewarding partial
detection (Xu et al., |2018). After the adjustment, the F} score is calculated similarly, using the
point-adjusted precision and recall: Fa1 = (2 X P4y x R4)/(Pa + Ra). It has seen widespread
use in more than 16 papers (Sgrbg & Ruocco, [2024), despite having been shown to result in
overly optimistic evaluations due to the attainment of an artificially high precision value after the
adjustment. Numerous studies have, in fact, demonstrated that random predictors are often able
to outperform renowned anomaly detection models (Garg et all 2021} [Doshi et al.| [2022)). As a
consequence, we contend that this metric should be abandoned in the context of time series anomaly
detection.

e The event-wise F; score. When contiguous sequences of anomalous labels or anomalous
predictions are considered a single event, one can redefine precision and recall as Pgr and Rpg,
respectively (Hundman et al,, 2018). Furthermore, these may be used to define the event-wise (also
known as the segment-wise) Fy score as Fp1 = (2 x Pg x Rg)/(Pg + Rg). This metric has been
employed at least five times in the literature despite the following fatal flaw: assuming that there is
at least one anomaly in the time series, the model may achieve a perfect score by flagging the entire
time series.
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e The composite F; score is not well-known and combines event-wise recall with point-wise
precision. It is defined as Fo1 = (2 X Pp x Rg)/(Pp + Rg), which means that models are rewarded
once for each detected anomalous event and penalised repeatedly for each false positive point (Garg
et al, |2021)). Of the metrics discussed thus far, we believe this is the one most aligned with practice,
but it still violates the second assumption outlined in §3.2] by rewarding redundant true positives
during a single anomalous event.

In contrast with binary metrics, non-binary metrics deal with raw anomaly scores before a threshold is
applied, typically with the aim of evaluating anomaly scoring methods in isolation. Prominent examples of
such metrics include:

o The area under the receiver operating characteristic curve (AUCRroc) is obtained by
numerically integrating the receiver operating characteristic curve, which plots the true positive
rate against the false positive rate. The true positive rate is simply another term for recall, whereas
the false positive rate is defined as FPR = FP/(FP 4+ TN). The problem here is that the number
of true negatives may positively skew the results, which should not be the case since true negatives
are largely irrelevant in practice, as mentioned in §3.2] Despite this flaw, the AUCRroc has been
employed more than 16 times in recent studies (Serbg & Ruoccol [2024]).

o The area under the precision-recall curve (AUCppg) is obtained by numerically integrating the
precision-recall curve. Since there is a trade-off between point-wise precision and recall at each fixed
threshold, AUCpg provides a good measure of anomaly scoring performance across all thresholds.
It features prominently in the literature (in at least nine time series anomaly detection papers (Sgrbg
& Ruoccol [2024)), and while we certainly believe it is a marked improvement over the AUCgroc
score (Saito & Rehmsmeier}, 2015)), it suffers from the same flaws as the point-wise F} score.

« The UCR (University of California, Riverside) score (Keoghl 2021; |[Wu & Keogh, [2023)
is defined as the precision with one prediction, or PQ1, with an additional constraint stipulating
that each problem in the dataset only contains a single anomaly. Since the need for a threshold
is eliminated, anomaly scoring techniques may be evaluated in isolation by aggregating P@1
scores. Unfortunately, although we agree with the UCR score’s philosophy, this metric has limited
applicability since few benchmark datasets in practice have only one anomaly in each time series.

We note that other metrics have been proposed as well, such as the volume under the surface (Paparrizos
et all 2022a), the range-based Fj score (Tatbul et al.l [2018]), and the Numenta anomaly benchmark
score (Lavin & Ahmad, 2015). At the time of writing, however, these other metrics have been used relatively
infrequently in the literature as they typically operate under different assumptions or introduce additional
parameters which are designed for specific use cases.

More specifically, the mechanism underlying the metrics proposed by [Paparrizos et al. (2022a)), such as
volume under the surface, still aggregates point-wise performance and rewards redundant true positives.
On the other hand, the customisability of the range-based F; score (Tatbul et al., 2018) comes with the
added complexity of a tunable weight and up to six tunable functions, making it ill-suited for benchmarking
purposes. A detailed comparison between our recommended metrics and range-based approaches would be
valuable future work, but was considered outside the scope of the current paper.

4.2 Suggested metrics

All of the metrics discussed above have at least one clear drawback. Fortunately, we believe that a simple
alteration of the formula for precision so that it ignores redundant true positives (where the same anomalous
event is flagged again) addresses these weak points. What [Barrishl (2025); Barrish & van Vuuren| (2026) call
the realistic precision is defined as Pgr = TPg/(TPr + FPp).

This notion may be used to define our recommended binary metric, the realistic Fy score, as Fr1 = (2x Pg x
RE)/(Pr + Rg). This metric is perfectly aligned with what we considered desirable behaviour: correctly
detected anomalous events are rewarded once, subsequent redundant true positives are ignored, and each
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false flag is penalised individually. We obtain a principled non-binary metric by adapting the AUCpg score
in a similar way in terms of Pr and Rpg, which now may be used to compare anomaly detection algorithms
in respect of datasets that contain multiple anomalies.

Although these two metrics are aligned with the most basic, parameter-free assumptions in many applications,
various use cases may have more specific requirements. Fortunately, both metrics may be extended easily to
different contexts and applications—for instance, if one desires to account for different costs associated with
false positives and false negatives then one may incorporate a 5 value other than 1. Similarly, if detection
timeliness is a factor, then one can easily enforce a minimum time within which each anomaly must be

flagged.

We do not claim that these two metrics are a panacea for the problem of metrics in time series anomaly
detection. Instead, we recommend these two options as satisfying the assumptions we set out in It is
certainly possible that there are other, better options, and we strongly encourage further research in this
direction. Moreover, due to the complex and varied nature of time series anomaly detection, we believe that
the choice of metric in papers should be considered carefully.

To validate empirically these claims, we conducted a systematic benchmarking study of six algorithms across
three datasets. The results, detailed in Appendix [A] demonstrate significant rank reversals when switching
from standard to realistic metrics. Notably, we show that point-adjusted F-scores can award “state-of-the-
art” performance to a purely random scorer, whereas the recommended realistic F-score correctly identifies
it as noise.

5 Dataset alignment

For benchmarking results to be fair, robust, and reliable, it is essential that the datasets employed are
of a high standard. Unfortunately, the dearth of high-quality datasets in the field is one of the largest
challenges facing time series anomaly detection (Wu & Keoghl 2023)). In this section, we first discuss some
desirable characteristics of datasets. Thereafter, we briefly review some of the most prominent datasets in
the literature, before providing our suggestions.

5.1 Desirable dataset characteristics

Since it is desirable to provide a good estimate of real-world performance, datasets selected for this purpose
should be as similar as possible to what is encountered in practice. Based on this fundamental principle, we
have distilled the following characteristics that we believe should be pursued when selecting or designing a
dataset:

e Accurate labels. Label accuracy should take precedence over all other desirable benchmark
qualities because inaccurate labels cast doubt on all derived results. Since anomalies are subjective
by definition, dubious labelling is commonplace in the field and, to an extent, somewhat unavoidable.
Crucially, we contend that it should be possible to find some evidence for all labelled anomalies within
the time series data itself. After all, the goal should be to evaluate the algorithm’s ability to process
the given data, without access (or coincidental similarity) to external knowledge. This should go
without saying, yet some benchmark problems (especially those derived from real-world phenomena)
expect models to detect anomalies based on data which is loosely-related to the underlying system
at best. Ideally, labels should also be externally validated by leveraging out-of-band information
wherever possible. This is why we strongly emphasise the need for each anomaly to be substantiated
in some way. Ideally, documentation should accompany every anomaly detection problem, with an
explanation of how each anomaly differs from the normal data and how the labels are justified in
terms of out-of-band information (where applicable).

e A low anomaly density. Anomalies are relatively rare, by definition, and benchmarking datasets
should reflect that. If there is nearly as much “anomalous data” as normal data, then the definition
of an anomaly is stretched too far, and perhaps classification methods would be more applicable.
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Although there is no fixed upper limit on the acceptable percentage of anomalous points, we believe
that anything above 10% is excessive.

o Non-trivial problems. Wu & Keogh! (2023) raised concerns about the triviality of many datasets
in the literature. Although we do believe that simple problems have their place in datasets as a
yardstick of baseline competency, the lack of more challenging problems in many datasets makes it
difficult to discern the true capability of a model—clearly, anomaly detection tasks should cover the
full gamut of difficulty. Achieving this balance is not simple due to the lack of a principled approach
towards quantifying the difficulty of a given problem. Wu & Keoghl (2023) proffered an intuitive
definition based on whether a MATLAB “one-liner” using primitive functions is able to solve the
problem. As the authors acknowledged themselves, this definition is far from perfect, since virtually
any anomaly may be identified using so-called “magic numbers,” as demonstrated in Appendix [B]
As a result, we contend that the usefulness of this definition is limited beyond illustrative examples,
but do believe that this line of research (quantifying anomaly difficulty) would be very insightful.

e Diverse anomaly types and locations. Many different taxonomies of anomaly types have been
proffered in the literature (Schmidl et al., 2022; |Zamanzadeh Darban et al., 2024). The more diverse
the anomalies, the lower the likelihood that a potential blindspot in the detection algorithm goes
unnoticed. Similarly, anomalies should vary in location as well. [Wu & Keogh| (2023|) noticed a run-
to-failure bias in some datasets, where anomalous data is concentrated near the tail of the time series.
This may result in a misleading evaluation of performance since location biases are not applicable
to real-world streaming scenarios.

e A large dataset size. Larger datasets are more desirable since they tend to be statistically more
significant. Naturally, small datasets are not useless, but they would need to be complemented by
other datasets.

e Realism. Ideally, all other things being equal, benchmark problems sourced from real-world data
are preferred to synthetic datasets.

The above criteria are, in some ways, a response to the flaws noted by [Wu & Keogh| (2023)—mnamely,
mislabelling, triviality, unrealistic anomaly density, and run-to-failure biases. These criteria should be
extended with additional emphases on anomaly diversity, dataset size, and realism in order to form a
comprehensive list of desirable dataset characteristics.

5.2 Publicly available datasets

Based on the desirable characteristics outlined above, we now provide a brief description and critical review
of the most prominent anomaly detection datasets in the literature. Our research here is largely inspired by,
and an extension of, the critical analysis performed by [Keoghl (2021). We focus on univariate benchmark
datasets here since these are easier to validate and illustrate our main point clearly: most time series anomaly
detection datasets in the literature are unsuitable for benchmarking purposes, largely due to dubious labelling
and high anomaly density.

A handful of archives (or dataset collections) have been made available in the time series anomaly detection
literature. The TimeEval archive (Schmidl et al., [2022) is one such archive that comprises both univariate
and multivariate datasets. The archive contains a new synthetic dataset called GutenTAG (Wenig et al.|
2022)), is well-structured and accompanied by detailed metadata, and curates a handful of public datasets as
well. Regrettably, many of these public datasets are flawed due to problems including mislabelling, anomaly
density, and overly trivial problems, as will be discussed later.

The TSB-UAD archive was introduced by |Paparrizos et al| (2022b) and we employ their version of the
respective datasets wherever available—their curation, collection, and standardisation of univariate datasets
proved to be invaluable. The archive comprises 13 766 individual time series problems, which are categorised
into public (datasets previously made available in the literature), artificial (classification datasets which
have been transformed into anomaly detection problems), and synthetic (augmented versions of the public
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datasets) subsets. We instead partition the reviewed datasets into three categories: those we recommend
for use, those we only partially recommend (with some caveats), and those we do not recommend. These
recommendations are supported by illustrative examples from each dataset in Appendix [C}

The TSB-AD archive (Liu & Paparrizos, 2024) was recently released and may be seen as a successor to
the TSB-UAD archive. It includes multivariate time series problems as well, while featuring many of the
same univariate datasets as in its predecessor archive. The datasets in the archive have been subjected to
additional automated and manual curation, resulting in an arguably more refined set of benchmark problems
than those in the original TSB-UAD archive. Although the TSB-AD curation process represents a significant
and commendable effort to improve the quality of datasets, we contend that some key limitations remain.
The manual curation step is invaluable, but it is unfortunately not possible to validate since (to the best
of our knowledge) the annotators’ reasoning was not made available. Moreover, the curation still depends
on the initial labels (some of which, without better documentation from the dataset creator, may be flawed
beyond repair as suggested by [Wu & Keogh| (2023))). Although such large-scale curation efforts are invaluable,
questions regarding label provenance and potential algorithm-specific bias remain.

In our subsequent review of the benchmarking landscape, we first examine datasets that should be avoided
when benchmarking time series anomaly detection models. Mislabelling issues, high anomaly density, or
excessive triviality may result in a skewed view of an anomaly detection model’s performance. Some of the
datasets may be repaired if a concerted effort is made, but in most cases this is not possible or worthwhile.
We believe the following datasets should be avoided:

o Dodgers loop (Ihler et all [2006). The single time series in this dataset representing traffic data
suffers from questionable and highly subjective labels. This is because the labelled anomalies are
expected bursts of traffic when a game finishes at the Dodgers Stadium. The Stadium also hosts rock
concerts and other non-baseball sporting events that would have similar traffic dynamics, however,
yet these are not labelled, resulting in many false negatives in the ground truth. Moreover, the
labelled times seem to be nominal durations of the games, but if a game is heavily lopsided, many
fans leave early, affecting the accuracy of the labels.

o Numenta (Lavin & Ahmad) |2015). This is a large and well-known benchmark with data sourced
from diverse domains, but many time series are unfortunately plagued by mislabelling or triviality.

o Sensorscope (Yao et al.l [2010). The time series in this dataset are drawn from a wide variety of
environmental data such as temperature, humidity, and solar radiation, but unfortunately many of
the labels are highly dubious.

o The TSB-UAD artificial datasets (Paparrizos et al., 2022b). These datasets were developed
from existing classification datasets, but the conversion process resulted in various time series with
highly dubious labels.

o The TSB-UAD synthetic datasets (Paparrizos et al.,2022b). This archive is based on anomaly
detection problems derived from the corresponding public datasets which have been augmented with
new or more difficult anomalies, but unfortunately the flaws in the public datasets are inherited and
remain unresolved.

o NASA SMAP (Hundman et al) [2018|). Time series in this dataset are sourced from the Soil
Moisture Active Passive (SMAP) satellite and suffer from dubious labels, high anomaly density, and
triviality.

o NASA MSL (Hundman et al) [2018). As in the case of NASA SMAP, this Mars Rover dataset
features too many instances of questionable or overly trivial labels.

o Daphnet (Béchlin et al., 2009). The conversion process from the original multivariate data sourced
from sensors attached to Parkinson’s disease patients seem to have resulted in problems that are
virtually unsolvable.
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o GHL (Filonov et al., 2016). These univariate problems were converted from original multivariate
data based on a simulated gasoil heating loop, resulting in anomalies that are very difficult to
substantiate.

o Genesis (von Birgelen & Niggemann| 2018). This is a small univariate dataset which has been
converted from an original, multivariate dataset monitoring a portable pick-and-place robot that
also suffers from mislabelling.

« OPPORTUNITY (Roggen et al., 2010). The conversion from the original multivariate activity
classification dataset resulted in many dubious labels.

o Occupancy (Candanedo & Feldheim| [2016]). All the instances in this dataset (converted from an
original multivariate classification dataset in which the task was to identify whether a room was
occupied based on readings such as temperature, humidity, and light sensors) have unreasonably
high anomaly density and some dubious labels as well.

o SMD (Su et all 2019). This dataset represents metrics from server machines (such as CPU load,
network usage, etc.) and was converted from an original multivariate dataset. It suffers from
questionable labels and, in some cases, triviality.

o« ECG (Paparrizos et all |2022b). The electrocardiogram dataset was created by the authors of the
TSB-UAD archive (Paparrizos et al.l 2022b)) by partitioning one long ECG time series from the
MIT-BIH dataset. This dataset is fundamentally flawed for benchmarking because the anomalies
present are largely repetitions of the same specific arrhythmia. As a result, a model need only
identify a single instance to detect trivially the remainder via similarity matching. High scores on
this dataset reflect the abundance of these repeated events rather than the model’s ability to detect
true anomalies, leading to a massive overestimation of performance.

o« MITDB (Moody & Mark, 2001). This collection of 48 half-hour ECG recordings is widely used but
suffers from the same critical weakness as the dataset above. Many records contain thousands of
instances of the exact same anomaly type. Standard evaluation metrics on this dataset inherently
“overcount” success, rewarding an algorithm many times for learning a single, often simple, pattern.
This redundancy obscures whether a model can actually generalise to diverse or subtle anomalies,
rendering the dataset unsuitable for rigorous benchmarking.

Even flawed datasets which violate some of the desirable qualities outlined in §5.1] might have some use.
The datasets listed below should be suitable for benchmarking purposes, with some caveats and after having
addressed some of the more serious concerns:

o IOPS (Paparrizos et al., 2022b)). As preprocessed in the TSB-UAD archive, this dataset consists
of 29 anomaly detection problems together with labelled training data for each one. The reasoning
behind the anomalies is not documented to the best of our knowledge, but a visual inspection of the
problems indicates that the labels appear to be reasonable. Some problems are trivial, but this does
not discount the entire dataset.

o Yahoo (Laptev et al., 2015). The Al subset of the Yahoo dataset contains real data and should
be retained, while the A2, A3, and A4 subsets represent anomaly detection problems that are too
simple. A few instances of mislabelling in the A1 subset can be fixed (simply by removing A1-32,
A1-35, A1-46, A1-47, and A1-67), and the run-to-failure bias is not that severe.

o SVDB (Greenwald et al., [1992)). The Supraventricular Arrhythmia Database also appears to be a
good benchmark based on real-world cardiological data, after problems with a high anomaly density
are filtered out.
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Our list of recommended datasets is short. Since it is our contention that the single, most important requisite
quality for a good time series anomaly detection benchmark is accurate anomaly labels, it is no surprise that
the labelling processes in the recommended datasets are well-substantiated:

o The UCR time series anomaly archive (Keogh) 2021} |[Wu & Keoghl, 2023)) is arguably the best
univariate dataset available at present. Each instance is documented, and each anomaly is justified.
Moreover, the anomalies are diverse in terms of both type and location, while also being non-trivial
for the most part. Each problem only contains one anomaly by design so that anomaly scoring
models can be evaluated in isolation using the UCR score defined in This, however, is also
a drawback, since researchers or users who wish to evaluate and compare thresholding approaches
need to look elsewhere for datasets with multiple anomalies in each time series.

o The Mackey Glass benchmark (Thill et al.l 2020) addresses the need for high-quality datasets
with multiple anomalies in each time series. Although the data and the anomalies here are synthetic,
the generation methodology underlying the dataset is well-documented and sensible. While the
dataset is relatively short, a tool is made available so that users may create similar anomaly detection
problems.

e The synthetic GutenTAG dataset (Schmidl et al., [2022; |Wenig et al.l 2022)) was introduced
as part of the TimeEval archive. It consists of 193 datasets in total, with a mix of univariate and
multivariate time series. The datasets were created by a set of base oscillations aimed at generating
“normal data,” before perturbing the time series using a set of anomaly injectors. The problems are
relatively easy, but otherwise it is a high quality benchmark.

The key metadata for the three recommended datasets are summarised in Table[I] The low anomaly sequence
count and overall contamination level align with the fundamental requirement that anomalies remain rare
occurrences within benchmark datasets.

Table 1: Metadata for the recommended datasets

GutenTAG MackeyGlass UCR
Problem count 168 10 250
Anomalous sequence count 442 100 250
Data realism Synthetic Synthetic Real
Anomaly realism Synthetic Synthetic Synthetic
Average train length 10000 257 21209.8
Average test length 10000 99743 56 205.3
Average contamination 3.5% 4% 2.4%
Average anomalous sequences 2.5 10 1

More detailed quantitative profiling for the remaining datasets may be found in the TSB-AD archive (Liu
& Paparrizos, 2024]).

5.3 Dataset suggestions

A thorough examination of prominent time series anomaly detection datasets revealed that most suffer from
some form of mislabelling. Some of these dubious labels were introduced via the TSB-UAD conversion process
from multivariate data, which involves turning each dimension into a separate anomaly detection problem,
and then filtering out problems in which none of the algorithms tested was able to achieve an AUCRgroc
score above 0.8. We have two reservations about this approach. Apart from our previously substantiated
view (described in that AUCRoc¢ is a poor metric for this task, we also believe that filtering anomaly
detection problems based on model performance could be seen as an example of circular reasoning, since
these very same models are then meant to be benchmarked on the dataset later. A model’s output cannot
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ascertain the accuracy of the ground truth—once again, it would be better if some documentation, reasoning,
or substantiation behind the labels was provided by the dataset creators.

Let us finally turn our attention to how datasets should be developed in practice. We believe there are three
broad approaches that may be adopted:

¢ Real data and anomalies. High-quality datasets sourced from actual phenomena are ideal because
of their inherent realism. Due to the time-consuming and difficult nature of curating labels, as well
as the often expensive underlying data-generating system, this approach tends to be costly. The
high cost, as well as the potentially sensitive nature of the data, means that few such datasets are
made available publicly, with relatively rare exceptions such as the NASA datasets (Hundman et al.
2018). Moreover, one has to be particularly careful when preprocessing real data so that the qualities
outlined in are met.

e Real, normal data with synthetic anomalies added. This approach is simpler and more cost-
effective since it is typically easier to ensure that data is free of anomalies than to identify their
locations. Once normal data is available, anomalies may be introduced by perturbing the time series
in some way. When executed well, as in the case of the UCR archive (Keoghl 2021; [Wu & Keoghl
2023)), this approach successfully balances realism with the other desirable qualities in

e Synthetic data and anomalies. This paradigm involves injecting artificial anomalies into
synthetic base oscillations which are considered the normal data. This is the quickest, easiest, and
cheapest approach, while providing the most control over the anomaly detection problems generated
(e.g. one may modify the anomaly types, lengths, locations, and density to one’s liking). This comes
at the expense of realism—since everything is synthetic, there is little that tethers each problem
to real-world applications. Another challenge is ensuring that there are at least a few anomaly
detection problems in the dataset which are truly difficult, since many synthetic archives are overly
simple. An intuitive method of enhancing difficulty involves adding noise to base oscillations (as
suggested in the Mackey Glass datasets (Thill et al., [2020)), but we believe that this approach is
conceptually risky since a corrupted data-generating process means that the accuracy of labels can
no longer be guaranteed—it can become difficult to verify that a supposed anomaly is not merely a
byproduct of injected noise. This is not meant as a critique of the Mackey Glass datasets (in which
the amount of injected noise is relatively low), but rather as a precautionary guideline. Instead,
we suggest adjusting the difficulty of anomaly detection problems by generating arbitrarily complex
base oscillations (for instance, by exploiting differential equations that exhibit chaotic behaviour in
their solutions) and increasing the subtlety of injected anomalies thereafter. Since any deviation
from a deterministic base oscillation may be considered an anomaly by definition, these anomalies
may be as subtle as desired without compromising the integrity of the labels.

Regardless of the approach selected, we strongly emphasise the need for future datasets to be well-documented
and anomalies to be substantiated in some way. This is essential in instilling trust in the accuracy of the
labels.

6 Model alignment

Most research in time series anomaly detection is focused on developing novel detection models and methods.
The latest models are often complicated, involve some flavour of deep learning, and require careful tuning
of their hyperparameters. A growing body of research, however, indicates that these complex models are
often overkill, and perform poorly once re-evaluated in respect of better datasets with more appropriate
metrics (Rewicki et al.l [2023; 'Wu & Keoghl [2023).

These complex models are often also not compared with sensible baselines. |Sarfraz et al.| (2024) proposed a
few simple and effective baselines, including sensor range deviation, nearest neighbour distance (to the nearest
training data), the principal component analysis (PCA) reconstruction error, and four neural network blocks
which represent prominent deep learning architectures.
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Algorithms based on time series discords and the matrix profile (Yeh et al., |2016; [Lu et all [2023), as well
as the simple baselines mentioned above, often outperform far more complex approaches. The success of
these baselines begs the question whether there is a true need for more powerful models—in other words,
perhaps most time series anomaly detection problems in practice may be solved by simple means. Consider
many of the applications outlined in §3.1] such as monitoring information technology systems or a patient’s
vital signs—typical anomalies would take the form of large spikes or drops in the sensor values, which may
be detected by basic methods. It may, of course, be argued that more powerful algorithms will unlock new
potential applications, but it should be kept in mind that existing algorithms are often accurate enough for
many current use cases.

As a result, we suggest that a greater research focus be placed on improving computational efficiency
(ensuring that models are fast enough for real-time detection), model interpretability, and explainability
of the predictions. It is important to instill trust in the system by keeping the user as informed as possible.
Much of the research in this area is limited to univariate data (Jacob et al. 2021} Der et al.l 2024)), so
multivariate extensions, as well as improved techniques in general, would be particularly useful in practice.

7 Conclusion and suggested research avenues

Much of the research in time series anomaly detection suffers from unsuitable performance metrics, flawed
datasets, and poor benchmarking practices. In each case, we examined the literature and provided
suggestions for future research directions in order to align the theory with its practical applications in
domains such as healthcare, predictive maintenance, finance and cybersecurity.

We showed that many popular metrics, such as the point-wise F} score, the point-adjusted Fj score, the
AUCRroc, and the AUCpg, exhibit disqualifying flaws. Instead, we proposed the realistic F; score and
realistic AUCppg, which reward correctly identified anomalous events once, penalise each false positive, and
ignore redundant true positives for anomalies which have already been detected.

Thereafter, we critiqued some of the most prominent datasets, and showed that many are plagued with
labelling problems. In order to help remedy this predicament, we identified desirable characteristics
in datasets, including accurate labels, low anomaly densities, non-trivial anomaly detection problems,
realism, and diverse anomaly types and locations. We also provided practical suggestions pertaining to
the development of new datasets.

Many newly proposed algorithms are often evaluated by adopting poor benchmarking practices, and
without being compared with simple baselines. Much research effort has been devoted to developing more
powerful models, but we contend that existing models are often accurate enough already for most practical
applications. Instead, we recommended a renewed effort to improve models in terms of computational
efficiency, interpretability, and explainability so that they become more useful in practice.

A relatively unexplored research direction is improving our understanding of what makes certain anomaly
detection problems difficult. This would help identify the relative strengths and weaknesses of models, and
aid in developing better datasets which span the full spectrum of difficulty.

Beyond academic rigour, the choice of evaluation methodology carries significant implications for safety-
critical deployments. In domains such as healthcare monitoring and industrial safety, the reliance on
inflated metrics (such as the point-adjusted F-score) creates a dangerous false sense of security, potentially
allowing models to be deployed that fail to detect the onset of catastrophic events despite reporting high
benchmark scores. By shifting towards realistic evaluation frameworks, the community can ensure that
reported performance aligns with operational reality, ultimately leading to more reliable and trustworthy
systems in high-stakes environments.

Although we hope that our suggestions will help steer research in a direction that is more aligned with
practical applications, we recognise the limitation of our work, and welcome challenges and critique. Our
primary goal is merely to call attention to building blocks of the field that have been neglected, and hopefully
spark debate as to what the best practices in time series anomaly detection truly are.
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A Comparing evaluation metrics

To substantiate the critical analysis presented in §4] we conducted a systematic experiment designed to
isolate the failure modes of standard evaluation metrics and demonstrate the practical utility of the proposed
alternatives. Specifically, we benchmarked the point-wise F-score (F} ), event-wise F-score (F} ), point-
adjusted F-score (F} ,), composite F-score (F} ), and the realistic F-score (Fy ) across the three datasets
recommended in the UCR anomaly archive, the Mackey-Glass benchmark, and the GutenTAG synthetic
dataset.

We evaluated six distinct anomaly scoring approaches, selected to represent a diverse range of methodologies.
These include the local outlier factor (LOF) (using & = 50 neighbours and window size w = 50), matrix
profile (MP), autoencoder, and the fast Fourier transform, as well as two naive baselines: a random scorer
(to test for noise rejection) and a flag all baseline (to test for event-precision).

All algorithms (except for the two naive baselines) were implemented using the TSB-AD library (Liu &
Paparrizos, [2024)) with default hyperparameters. To ensure a fair comparison that reflects the “best-case”
potential of each model, we performed a grid search over anomaly thresholds v € {0.05,0.1,...,0.95}.
Furthermore, we evaluated each configuration both with and without the postprocessing step described by
Barrish & van Vuuren| (2026) (which filters predictions to retain only the first threshold crossing or local
peaks in anomaly scores). The results presented in Table [2| reflect the average maximum F-score achieved
by each algorithm’s optimal configuration on each dataset, with the rank of each anomaly scorer shown in
parentheses. This protocol ensures that low scores are attributable to the fundamental misalignment of the
metric or the model’s output, rather than suboptimal thresholding.

The results presented in Table [2] substantiate the concerns regarding metric reliability raised in §4 Most
notably, the point-adjusted metric (F} ,) assigns a purely random scoring function an F-score of 0.89 on the
Mackey-Glass dataset. This confirms that point-adjustment renders the metric incapable of distinguishing
between state-of-the-art detection and random noise, as a random distribution will eventually hit a portion
of every anomaly and trigger full credit. In contrast, the realistic F-score (Fj,) correctly identifies this
behaviour as noise, assigning it a score of 0.02.

Similarly, the event-wise metric (F} ) proves susceptible to trivial gaming. The Flag All baseline achieves
a perfect score of 1.00 across the UCR and Mackey-Glass datasets under Fj . simply by flagging every time
step. Because the F} . metric fails to penalise false positive duration, it disproportionately rewards such
“alarmist” behaviour. The recommended F}, accounts for this precision failure, correctly assigning the
baseline a score of 0.00.

Crucially, the choice of metric fundamentally alters the leaderboard. Under the inflated F 4, the autoencoder
appears highly competitive on the UCR archive (0.84), nearly matching the matrix profile (0.94). Under
realistic evaluation (F7 ), however, the autoencoder’s performance collapses to 0.30, while the matrix profile
remains robust at 0.64. This suggests that the autoencoder’s success under standard metrics is largely driven
by “fragmented”, sporadic alerts.

Finally, the results illuminate the fundamental philosophical distinctions between point-wise, composite, and
realistic evaluation. Standard point-wise evaluation (F} ,) treats anomaly detection as a binary classification
task at every timestamp. While theoretically rigorous, this approach is operationally brittle: it penalises
valid detections for minor latency or misalignment, often assigning low scores to models that successfully
flagged the event.
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Table 2: Average F-scores and ranks (in parentheses) across three datasets

Dataset Algorlthm F17p Fl,e Fl,a Fl,c FL.,.

GutenTAG ~ LOF 0.71 (1) 0.83 (2) 0.94 (1) 0.84 (1) 0.75 (1)
GutenTAG ~ MP 051 (2) 0.76 (4) 0.88 (2) 0.65(2) 0.55 (2)
GutenTAG ~ FFT 0.28 (4) 057 (5) 0.71(4) 049 (4) 0.1 (3)
GutenTAG ~ AE 0.33(3) 0.80(3) 079 (3) 0.52(3) 0.39 (4)
GutenTAG ~ Random  0.06 (5) 0.05 (6) 0.70 (5) 0.07 (5) 0.03 (5)
GutenTAG Flag all 0.05 (6) 1.00 (1) 0.05(6) 0.06(6) 0.00 (6)
MackeyGlass LOF 0.14 (1) 091(2) 096 (1) 093 (1) 0.91 (1)
MackeyGlass MP 0.13(2) 0.75(4) 091 (2) 0.77(2) 0.74 (2)
MackeyGlass AE 0.09 (3) 0.80 (3) 0.79(5) 0.18 (3) 0.13 (3)
MackeyGlass FFT 0.08 (4) 0.11(5) 0.85(4) 0.13(4) 0.08 (4)
MackeyGlass Random 0.08 (5) 0.02(6) 0.89(3) 0.09(5) 0.02(5)
MackeyGlass Flag all 0.08 (6) 1.00 (1) 0.08 (6) 0.08(6) 0.00 (6)
UCR LOF 0.20 (2) 0.71(3) 0.93(2) 0.74 (1) 0.67 (1)
UCR MP 040 (1) 0.72(2) 094 (1) 0.71(2) 0.64 (2)
UCR AE 0.13 (3) 058 (4) 0.84(3) 0.37(3) 0.30 (3)
UCR FFT 0.10 (4) 027 (5) 0.84(4) 0.30 (4) 0.23 (4)
UCR Random  0.05 (5) 0.02(6) 0.70 (5) 0.06 (5) 0.02 (5)
UCR Flag all  0.05(6) 1.00 (1) 0.05 (6) 0.05(6) 0.0 (6)

The composite F-score (F} ) attempts to bridge this gap by combining point-wise precision with event-wise
recall. It still rewards flagging long anomalies multiple times, however, which is arguably undesirable in
most practical applications. Instead, realistic F-score (F} ;) represents a paradigm shift towards operational
utility. It is built on the premise that an operator needs to be alerted to an event once. By treating the
event as the fundamental unit of recall (like F} ) but strictly penalising the false positive rate of the alert
duration (unlike F} .), F , effectively filters out “spammy” models.

B Defining the notion of anomaly detection “triviality”

Wu & Keogh|(2023) were not only amongst the first researchers to note the rampant problem of overly trivial
benchmarks, but they also took this a step further by proffering a pragmatic definition of a trivial anomaly
detection problem:

Definition B.1 (Trivial time series anomaly detection problems). “A time series anomaly detection problem
is trivial if it can be solved with a single line of standard library MATLAB code. We cannot ‘cheat’ by calling
a high-level built-in function such as kmeans or ClassificationKNN or calling custom written functions. We
must limit ourselves to basic vectorized primitive operations, such as mean, mazx, std, diff, etc.”

While this definition serves as an excellent heuristic for identifying obviously simple problems, its strict
application presents operational challenges, as the authors acknowledged themselves. A key nuance lies
in distinguishing between generalisable domain heuristics and post-hoc parameter tuning. Without this
distinction, reliance on specific “magic numbers” allows one to offer a one-liner justification for any time
series anomaly, provided the anomaly’s location is known a priori.

As an example, it is worth examining the UCR time series anomaly archive (arguably the best time series
anomaly detection benchmark dataset), introduced by |Wu & Keogh! (2023). This truly is a difficult dataset—
few models tested on the dataset in the literature are able to solve more than 50% of the problems correctly.
Within this dataset, problem 001 was shown to be particularly difficult for many models. This anomaly
depicted in Figure (1}, however, yields to a “simple” one-liner that satisfies Definition (the line of code is
admittedly in Python, but it could easily be translated to MATLAB):

np.where (np.round(np.diff(values), 6) == 8.69513, 1, 0)
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UCR time series anomaly archive: Problem 001
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Figure 1: An example of a difficult anomaly detection problem, solved by a “simple” one-liner.

Of course, the one-liner above is exceptionally contrived, since the 8.69513 constant is chosen based on prior
knowledge of where the anomaly is. One could solve this problem by employing various other one-liners
as well, but the purpose of this example is not to classify the problem as trivial. Rather, it highlights
the difficulty in defining the mathematical boundary between a valid simple solver and one that “overfits”
via magic numbers. Consequently, while Definition is powerful for filtering out noise, identifying these
illustrative one-liners relies on human judgement to determine whether a solution represents a legitimate
heuristic or a contrived fit.

The shortcomings of Definition[B-1]do, however, highlight the need for some principled method for quantifying
the difficulty of time series anomaly detection problems. Given such a difficulty measure, one could
empirically ensure that datasets possess anomaly detection problems that span a wide range of difficulty.
Moreover, one could compare entire datasets in terms of their overall difficulty. This line of research would
clearly be very useful, and has, to the best of our knowledge, not been thoroughly examined in the literature.

C Gallery of illustrative benchmark problems from public datasets

In this appendix, we present illustrative examples from the public datasets cited in this paper in order to
support our views and criticisms of each.

C.1 Datasets to avoid

Dodgers loop dataset

—— Values
Labels

0 10000 20000 30000 40000 50000
Timesteps

Figure 2: The entirety of the Dodgers loop benchmark dataset. Anomalies in the traffic data caused by
Dodgers games are largely indistinguishable from other causes, such as car accidents.
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NAB dataset: Problem AdExchange 3
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Figure 3: Problem 3 in the AdExchange section of the Numenta benchmark. The accuracy of the labels is
somewhat questionable, since one of the largest spikes in the time series is not flagged.

NAB dataset: NYC taxi problem
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Figure 4: The NYC taxi problem in the Numenta dataset. Five anomalies are labelled, corresponding to

the NYC marathon, Thanksgiving, Christmas, New Year’s day, and a snow storm, but these may be seen
as highly subjective since other anomalous events occurred during this period, as shown by

(2023).

SensorScope dataset: Problem 19

Values

—20

—— Values
Plausible anomaly

[ Labels

0 5000 10000 15000 20000 25000 30000

Timesteps

—40

Figure 5: Problem 19 in the SensorScope dataset. Many of the anomalous labels are questionable, while a few
normal subsequences (such as the long flatline period at the beginning and a sharp drop later) subjectively

look as if they could pass as anomalies.

TSB-UAD artificial dataset: Problem 64-35
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Figure 6: A snippet from a sample problem in the TSB-UAD artificial dataset. Numerous subsequences
appear to be more anomalous than the labelled anomaly.
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NASA-SMAP dataset: Problem Al
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Figure 7: The Al problem in the NASA SMAP dataset. It features a single, exceedingly simple anomaly.

NASA-MSL dataset: Problem T13
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Figure 8: An example of a time series anomaly detection problem in the NASA MSL dataset with two

dubious anomaly labels.

NASA-MSL dataset: Problem M7
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Figure 9: The M7 problem in the NASA MSL dataset. Two large spikes are visible in the data, but only

one of these is labelled as an anomaly.

Daphnet dataset: Problem S09R01E4 Channel 6
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Figure 10: A sample problem from the Daphnet benchmark dataset. The original labelled data might be
accurate, but it seems exceptionally difficult to motivate that this anomaly can be identified without other
dimensions or external information. The long flatline subsequence or the large drop near the end of the time

series could potentially be considered anomalies instead.
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GHL dataset: Problem 1 Channel 10
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Figure 11: A sample anomaly detection problem from the GHL benchmark dataset. It is virtually impossible
to justify the labelled anomaly using this univariate data alone.

Genesis dataset: Channel 13
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Figure 12: A sample anomaly detection problem in the Genesis benchmark dataset. It is virtually impossible
to justify the labelled anomaly when considering the univariate data alone.

OPPORTUNITY dataset: Problem S1-ADL2 Channel 122
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Figure 13: A sample anomaly detection problem in the OPPORTUNITY benchmark dataset. The

transformation from a classification task to an anomaly detection task results in many instances of
questionable labels. The large spike or long flatline period could potentially be considered anomalous.

Occupancy dataset: Problem 0 Channel 1
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Figure 14: A sample anomaly detection problem in the Occupancy benchmark dataset. The anomaly density
is unreasonably high, while the labels themselves are also of dubious accuracy.
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Server Machine Dataset: Problem 2 3 Channel 4
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Figure 15: A sample anomaly detection problem in the SMD benchmark. Except for the two clear spikes, it
is difficult to justify the other labelled anomalies.

MBA ECG dataset: Problem 9
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Figure 16: A sample problem in the ECG dataset. While the anomalies are distinct, they represent repetitions
of the same arrhythmia. This allows models to achieve high scores via simple pattern matching rather than

genuine anomaly detection.

MITDB dataset: Problem 233 Channel 1
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Figure 17: An example of an anomaly detection problem in the MITDB benchmark with a particularly high
anomaly density. Although it is not quite as egregious as the figure makes it out to be, more than 34% of
points are labelled as anomalies, which begins to stretch the definition of an “anomaly.”

C.2 Partially recommended datasets

TIOPS dataset: Problem KPI-05f10d3a-239c-3bef-9bdc-a2feeb0037aa
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Figure 18: A sample anomaly detection problem in the IOPS dataset. The labels are relatively clear-cut.

22



Under review as submission to TMLR

Yahoo dataset: A2 problem 39
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Figure 19: Problem 39 in the A2 subset of the Yahoo dataset. The single labelled anomaly takes the form
of a large spike which is easy to identify.

Anomaly locations for the Yahoo Al dataset
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Figure 20: The anomaly locations within the Yahoo A1 subset as a percentage of the total time series length.
The concentration of the anomaly labels near the tail end of the time series indicates that a run-to-failure

bias exists. Adapted from Wu & Keogh| (2023).

SVDB dataset: Problem 865
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Figure 21: Problem 865 in the SVDB dataset. The dataset has an unreasonably high anomaly density of
60.5%.

Histogram of anomaly density in the SVDB dataset
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Figure 22: A histogram of the anomaly density of each problem in the SVDB dataset. It stands to reason
that a decent portion of the dataset is still usable once those problems with high anomaly density have been

removed.
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C.3 Recommended datasets

UCR dataset: Problem 65
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Figure 23: A sample anomaly detection problem in the UCR dataset. The anomaly is inserted by reversing
a cycle in the original data. This is a good example of an anomaly which is well-substantiated, while also

not overly simple for baseline models.

Mackey-Glass Anomaly Benchmark dataset: Problem 1
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Figure 24: A sample anomaly detection problem in the Mackey Glass dataset. The anomaly is introduced
by removing a subsequence from the original data and then stitching the time series back together, resulting

in an anomaly which is very difficult for a human to identify.

GutenTAG: Sine wave with a platform anomaly
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Figure 25: A sample anomaly detection problem in the GutenTAG dataset. The anomaly is introduced by
introducing a “flatline” into the original sine wave. The dataset is well-documented and principled, but some

problems can be trivial.
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