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Abstract

Preparing data for machine learning tasks in health and life science applications requires
decisions that affect the cost, model properties and performance. In this work, we study
the implication of data collection strategies, focusing on a case study of mitosis detection.
Specifically, we investigate the use of expert and crowd-sourced labelers, the impact of
aggregated vs single labels, and the framing of the problem as either classification or ob-
ject detection. Our results demonstrate the value of crowd-sourced labels, importance of
uncertainty quantification, and utility of negative samples.
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1. Introduction

The application of computer vision techniques and models for analysis of medical images
is compelling because of the potential to generate fast, accurate, and reliable predictions,
leading to applications which would benefit both patients and clinicians. Although there is
growing excitement around the use of self-supervised methods to decrease the dependence of
machine learning (ML) models on annotated datasets (see recent surveys by Ciga et al., 2022;
Krishnan et al., 2022), the primary paradigm for using ML models in medical applications
is supervised learning. Indeed, much of the literature focuses on scenarios where the input
data is pre-collected and fixed without regard to the data gathering phase.

In this work, we seek to investigate the interactions between label acquisition and mod-
eling choices. Specifically we look at trade-offs in the cost of label acquisition vs model
performance by comparing the performance of classification models and object detection
models. For label acquisition, classification models have lower costs, as they can be trained
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using comparatively easy-to-acquire binary labels. Conversely, object detection models have
higher costs in label acquisition, as they require detailed annotations. We also consider the
impact on performance of different labeling schemes. We compare using annotations from
only one labeler to annotations from multiple labelers (per input). We focus on the appli-
cation of mitosis detection in digital pathology images, but note that the characteristics of
the problem can be abstracted and applied to other settings.

Mitosis detection, the identification of cells undergoing cell division, is a well-studied
problem as it is an important metric for tumor proliferation in cancer. In the context of
clinical practice, a simplified detection pipeline is as follows: during cancer diagnosis, a
tumor tissue sample is acquired, stained using hematoxylin and eosin (H&E), and then
assessed by a pathologist who makes a diagnosis. The pathologist will count mitotic events
(cells observed to be undergoing mitosis) during analysis of the stained tissue under a
microscope. Generally speaking, more mitotic events indicates greater proliferation speed
in cancer tumors.

In recent years, these tissue samples are increasingly being digitized, enabling computa-
tional pathology (Fuchs and Buhmann, 2011; Cui and Zhang, 2021; Srinidhi et al., 2021), a
domain broadly referring to the use of computational tools for pathology tasks. Because of
the success of machine learning models in natural images, there is excitement around the
potential of ML models for pathology tasks, which could help speed-up prediction time, re-
duce pathologist burden and perhaps increase accuracy and reliability in predictions (Abels
et al., 2019; Van der Laak et al., 2021; Rajpurkar et al., 2022; Javed et al., 2022).

Mitosis detection is a natural setting for our analysis. The problem characteristics admit
formulations as either classification or object detection. This is because digital histopathol-
ogy images are very large, up to 150k × 150k pixels, and therefore the first step of a com-
putational histopathology pipeline is to divide the image into smaller sub-images, called
tiles. Depending on the size of these tiles, it may be sufficient to associate labels with the
tile-level thus mapping naturally to a classification problem. Alternatively, labels may be
bounding boxes on the tile, mapping naturally to an object detection problem. Exploit-
ing this duality, there have been several machine learning challenges in mitosis detection
which use bounding boxes (or centroids) such as as MITOS 2012 (Ludovic et al., 2013) and
TUPAC16 (Veta et al., 2019), and tile-level annotations, such as AMIDA13 (Veta et al.,
2015). There have also been studies which attempt to merge both types of labels to increase
dataset size (Mehta et al., 2018; Sebai et al., 2020a; Ciga and Martel, 2021).

Mitosis is a temporal process and therefore has distinct visual features depending on the
stage of cell division. This complexity is further compounded by non-mitotic events, such
as programmed cell death, which can appear very similarly to mitosis, particularly to the
untrained eye. Therefore, mitotic event labels are typically the consensus of two or more
labelers, motivating the additional aspects of our analysis.

2. Background and related work

This study explores trade-offs in data acquisition and modeling choices for mitosis detec-
tion in histopathology images. To investigate, we created a pipeline beginning with raw
histopathology images of a patient’s biopsy (SVS formatted files, hereafter, whole slide
images; WSI) collected by The Cancer Genome Atlas BReast CAncer (TCGA BRCA) pro-
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Figure 1: Overview of the analysis pipeline describing the workflow from whole slide image
(WSI, a) to prediction (h, i). Each WSI corresponds to a single patient and is
divided into tiles (b) for analysis. Two types of labelers assess the tiles, expert (c)
and crowd-sourced (d), and provide one of two types of labels: bounding box (e)
or binary (f). These labels are then used to train the model, which uses a ResNet
backbone (g) which is the input to an object detection model (Faster-RCNN, h)
or classification/regression model (i). See Section 2 for more detail.

gram (The Cancer Genome Network, 2012). Each WSI represents a patient biopsy scanned
by a digital microscope, typically at multiple magnifications (Fig. 1a). WSIs are then pre-
processed to generate tiles, while discarding any tiles which are primarily background (1b).
Tiles are passed on to two sets of labelers for two sets of tasks (Fig. 1c-f). The resulting
labels are then used as training and testing data for several model classes (Fig. 1g-i). We
detail this pipeline and provide necessary background below.

2.1. Dataset & Labels

TCGA is a cancer genomics program containing over 20,000 primary cancer and matched
normal samples corresponding to 33 cancer types. The data is publicly available. Breast
cancer is one of the most common types of cancer and correspondingly is one of the largest
sample sizes on TCGA (TCGA BRCA, 1098 cases; The Cancer Genome Network, 2012).
In breast cancer, mitotic evaluation is one of the factors used to determine tumor grade. It
also has been the cancer used in the aforementioned challenge problems in mitosis detection.

Clinically relevant labels may be associated with the entire WSI, as in diagnosis, or
a particular region (tile), as in mitosis detection. Annotations may also be at the pixel
level and modeled as a segmentation task. Collecting pixel-level data is expensive, time-
consuming, and error prone given the very large image sizes and domain-specific nature of
the task. We do not focus on this formulation here but note that it has been addressed in
the literature (e.g., Veta et al., 2013; Naylor et al., 2017; Graham et al., 2019), as well as
in the context of alternative formulations, e.g. using bounding boxes to learn segmentation
maps (Yang et al., 2018).

Unlike in natural image settings, most people are unable to perform annotation tasks,
for example, accurately identify tissue and cell structures. This limits but does not prevent
efforts to crowd-source annotations (Fig. 1d; Ørting et al., 2020) and increasingly there are
companies which facilitate the gathering of crowd-sourced annotations for medical images.
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It is much more expensive and time-consuming to acquire expert labels (Fig. 1c) than crowd-
sourced labels, however we typically expect expert labels to be more accurate. For the
mitotic detection task past work has shown, even amongst experts, there is a considerable
amount of label disagreement (Tabata et al., 2019; Bertram et al., 2020). Because of this,
labels may be the aggregated result of several labelers, imparting a notion of uncertainty.

2.2. Models & Evaluation Metrics

Classification and object detection models are the most commonly used classes of models
to perform mitosis detection. We describe each model using two components: feature
representation and prediction. Feature representation is largely a function of architecture
choice and training data. Some common architectures include ResNet (He et al., 2016),
VGG (Simonyan and Zisserman, 2014), and swin-transformer (Liu et al., 2021). Often
these representations are pretrained on ImageNet for classification tasks. The last layer of
the network can be easily modified adapt to different tasks (predictions), described below.

Classification, regression and object detection models can all ostensibly be used for mi-
tosis detection. Classification follows intuitively from assigning whether a tile has a mitotic
event (we refer to a tile with no mitotic events as a “negative sample”) and object detection
follows intuitively from predicting bounding boxes surrounding mitotic events. The framing
as a regression problem comes from considering a continuously valued confidence score, as
would result from aggregating the labels of multiple raters. For a more complete description
of the types of models, please see the Appendix.

Object detection and classification models are typically evaluated on some set of metrics
derived from the confusion matrix, and, in the case of object detection, conditioned on the
intersection over union of the predicted and ground truth labels. Because the number
of instances is not bounded in the object detection setting, typically the mean (over the
population) average (in the image) metric is reported.

3. Experimental setup

3.1. Dataset & Labels

This work uses labels generated by two groups: crowd-sourced data labelers and expert data
labelers. The crowd-sourced data labelers provide annotations via an app-based platform
and are described as a mix of medical doctors, professionals, researchers, and students. More
detailed demographic information is not provided but labelers are required to “qualify”
based on a small set of “gold standard” labeling tasks in mitosis detection. The expert data
labelers are a group of three board-certified pathologists (authors DG, HM, MH) and two
research scientists (authors CE, SB) familiar with mitosis detection in histopathology data.

In general, we do not expect that it is possible to collect enough expert data to train
a successful model because of the time and budget required. Therefore we do not aim to
compare the strategies on this axis. Instead, we aim to evaluate the utility of the crowd-
sourced data under difference modeling design choices and quantify the differences in time
to acquire, concordance, and accuracy as a function of the type of label collected.

Based on an initial user experience experiment, an image magnification of 40× and a tile
size of 1,000 pixels square were selected to best view mitotic events and minimize zooming,
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Table 1: Summary description of the trained model classes.

Model Class Training Label Negative Tiles Output
BC c ∈ {0, 1} ✓ ĉ ∈ [0, 1]
Reg a ∈ R>0 â ∈ R
Reg-NS a ∈ R≥0 ✓ â ∈ R
Det b ∈ [x1, y1, w, h] b̂ ∈ [x1, y1, w, h], p̂ ∈ [0, 1]

Det-NS b ∈ [x1, y1, w, h] ✓ b̂ ∈ [x1, y1, w, h], p̂ ∈ [0, 1]

Det-WL b ∈ [x1, y1, w, h], a ∈ R>0 b̂ ∈ [x1, y1, w, h], p̂ ∈ [0, 1]

Det-NS-WL b ∈ [x1, y1, w, h], a ∈ R≥0 ✓ b̂ ∈ [x1, y1, w, h], p̂ ∈ [0, 1]

respectively. Using these specifications, each WSI in this study has approximately 800 to
3,000 1k × 1k tiles. The variance is due to the differing sizes of the biopsy tissues.

The expert group completed two experiments: (1) placing bounding boxes indicating
mitotic events on tiles and (2) labeling tiles with binary indicators for the presence or
absence of mitosis. We refer to this data as “expert data” throughout. Expert data is
aggregated by taking the majority to determine if mitosis present and then averaging the
annotations [x1, y1, w, h] if the majority agrees mitosis is present. The results of the first
experiment are used as the testing data and the results of both experiments are used to
compare the time, accuracy, and concordance of the two strategies.

The tiles used in the expert labeler experiment were required to meet two selection
criteria chosen to increase the likelihood of discovering mitotic events. First, only high-
grade TCGA BRCA WSIs were chosen as high-grade cancer suggests more mitotic events
than lower grade (Elston and Ellis, 1991). Second, from those WSIs, tiles were selected
by applying an existing mitotic classification model (Dusenberry and Hu, 2018, referred to
as IBM model) to all tiles and then picking the top tiles ranked by the confidence score
output. The expert labeler dataset consists 4,000 tiles, corresponding to the top 800 tiles
from 5 WSIs.

The crowd-sourced group completed one experiment, placing bounding boxes indicating
mitotic events on tiles. We refer to this data as “crowd-sourced data” throughout.

For this experiment, bounding boxes are only included in the dataset if at least five
labelers have reviewed the tile and at least two labelers have placed overlapping boxes. An
agreement score, a ∈ [0, 1], is reported along with each box to capture this information.
This data constituted the primary training data. The input to the crowd-sourced data
experiment consists of 70 patient BRCA WSIs with various cancer grades and a total of
56,260 1k×1k tiles. For ten of these 70 WSIs, all non-background tiles were chosen. For
the remaining WSIs, all tiles with an IBM model confidence score greater than 0.2 and an
additional ten percent of tiles with score less than 0.2 were randomly chosen.

3.2. Models & Evaluation Metrics

We train seven models using different combinations of input data and prediction tasks
(see Table 1). Specifically we select: (1) binary classification (BC), (2) regression with
presence-only agreement score data (Reg), (3) regression with agreement score and negative
samples (Reg-NS), (4) object detection (Det), (5) object detection with negative samples
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(Det-NS), (6) object detection with weighted loss (Det-WL), and (7) object detection with
weighted loss and negative samples (Det-NS-WL). Models 1-5 are standard implementations
as described in the Appendix. Models 6 and 7 alter the typical cross-entropy loss for the
output object detection network by using a weighted cross-entropy where the weight is the
corresponding agreement score.

To enable head-to-head comparisons of the different models, we select the true positive
rate (TPR) and false positive rate (FPR) as our primary metrics of interest. To do so,
we coarsen the predictions from the object detection model by treating each tile with any
number predicted boxes as positive and each tile with no predicted boxes as negative.

Data post-processing In all cases, for model training we further tile the 1k × 1k pixel
tiles into 250 × 250 pixel tiles. This choice was motivated by the observation that the height
and width each mitotic event is typically 30-60 pixels. In choosing a smaller tile size, the
object of interest is a larger fraction of the overall image. We use a step size of 125 pixels
such that each tile overlaps with its neighbors. Using this procedure, each 1k × 1k pixel
tile results in 49 250 × 250 pixel sub-tiles. Training, validation, and testing data splits are
done respecting the source WSI such that one patient’s data does not span the split.

Label post-processing Although our goal is to explore the interactions between data
collection and model through classification, regression, and object detection in the context
of mitotic detection, collecting each of these datasets is cost prohibitive and therefore we
gathered the most detailed data, bounding boxes, and applied coarsening techniques to use
the data in the classification and regression settings. For the regression task we use the
agreement score (a) of the tile, weighted by the fraction (r) of the bounding box contained
in the tile, combined using a weighted sum in the case of multiple events (N) per tile (t),
st =

∑N
i=1 ri · ai,where r, a ∈ [0, 1]. These scores are used directly for the regression task.

For the classification task, we assign tiles with a non-zero agreement score to be in the
mitotic class and those with a zero agreement score to be classed as not mitotic.

Training Setup We describe our training data on the basis of unique mitotic events and
tiles without any mitotic events (negative samples). Because of the nature of the problem,
many tiles do not have any mitotic events and due to our sub-tiling strategy, most mitotic
events appear on multiple tiles. Therefore, we assign a unique identifier to each mitotic
event. To obtain a data point (tile) from the dataset, we first sample a mitotic event ID.
Then we sample a tile from the pool of tiles that contain the sampled mitotic event. Using
this two-step process (referred to as “sampling strategy”), we clearly define the number of
mitotic events used during training and introduce an augmentation as the mitotic event
is effectively moved around the tile as a result of the different crops. Binary classification
models are trained with negative samples (1:1 ratio) and regression and object detection
models are trained with various ratios (0:1 to 10:1 ratios).

All models are implemented in PyTorch (Paszke et al., 2019) using torchvision. We
leverage built-in functions and pipelines which can easily be reproduced (specific code for
this study will not be released). Please see the Appendix for additional training details.
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Table 2: Labeled data summary

Partition Type # Source # Mitotic
WSI Events

Train Crowd 61 42,203
Validation Crowd 9 10,484
Test Expert 5 612

The number of tiles per WSI varies, see
Section 3.1

Table 3: Label acquisition comparison

Fleiss Time Mean
Kappa (sec) Accuracy

Binary
Classification 0.709 2.7 89%
Bounding Box
Placement 0.618 39 88%

Table 4: Summary of model performance on the test dataset. The model threshold is
reported where relevant and NS refers to the ratio of negative to positive samples
in the training data.

Model BC Reg Reg Reg Reg Reg Det Det Det-WL Det-WL
Threshold 0.5 0.6 0.4 0.15 0.2 0.25 0.95 0.95 0.95 0.95
NS 0:1 0:1 1:1 2:1 4:1 10:1 0:1 1:1 0:1 1:1
TPR % ↑ 91.4 75.8 86.7 93.8 89.1 79.8 90.6 67.5 93.2 80.5
FPR % ↓ 40.8 53.3 26.0 42.3 24.5 12.4 30.6 13.3 43.5 25.6

4. Results

4.1. Labeling Results

The labeled data are summarized in Table 2. In the expert data, only 506 out of 4,000
tiles are mitotic for a total of 612 mitotic events. In the crowd-sourced data, 34,987 out of
56,260 tiles are labeled mitotic with a total of 52,687 mitotic events.

Table 3 compares the two labeling tasks amongst the expert labelers. In both settings,
moderate concordance is achieved, although concordance is higher in the binary task, as
measured by Fleiss kappa. Unsurprisingly, tile-level annotations are faster to acquire. Once
tile size is accounted for, the time to acquire the same number of annotated pixels is ap-
proximately the same: there are 16 non-overlapping 250 × 250 pixel tiles per each 1k ×
1k tile and 2.7 sec × 16 ≈ 40 sec. However, the diversity of tile-level annotations collected
can be greater given the same time budget by selecting a more spatially diverse set. We
also report accuracy, where ground truth is based on the majority expert vote, and find no
appreciable difference in the two tasks.

As the crowd-sourced labelers have less experience, we generally expect their labels to
have more errors. We observe that the rate of mitotic events per WSI is much higher among
crowd-sourced data. To assess the quality of the crowd-source label results, we asked the
experts to assess the predictions. We randomly selected 500 tiles from the crowd-sourced
data and asked the experts to confirm/reject the box as well as add any missing boxes. The
experts placed no new boxes and confirmed ≈85% of the bounding boxes.

4.2. Modeling Results

The test results for the seven model classes are summarized in Table 4. Regression models
with negative samples achieved the highest true positive rate and lowest false positive rate,
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Figure 2: Left: TPR and FPR as a function of training samples. Right: Performance
improves with more negative samples in almost all instances. TPR and FPR for
various Reg-NS models using all 43K mitotic events. Each color represents a ratio
of negative to positives samples, from 0:1 to 1:1. Each star represents a threshold
from 0.15 to 0.60 with a step size of 0.05.

although not in the same model. Taking both metrics into account, regression with negative
samples (Reg-NS) using a 4:1 negative to positive sample ratio had the best performance.
Overall, we observe benefit from including negative samples and the agreement score. When
looking at how the performance changes as a function of dataset size, we generally observe
both TPR and FPR increasing together as dataset size increases (see Fig. 2, App. Tab. 5).

Depending on the particular setting, the relative importance of the TPR and FPR
performance will vary. This trade-off can be explicitly addressed by setting prediction
thresholds. We investigated the impact of this threshold, along with different levels of
negatives samples, on performance (see Fig. 2 and Appendix Fig. 3, Tables 6-9). It is
important to acknowledge that the expert data testing set has a large class imbalance, as
is expected. The dataset consists of 196,000 250 × 250 tiles: 1,835 tiles have at least one
mitotic event and 194,165 tiles have no mitotic events. Rather small changes in the FPR
greatly change the number of tiles that are predicted positive.

For Det and Det-WL models, we also explored loading the ResNet50 backbone obtained
from the regression task to see whether a pathology-specific pre-training task could improve
the performance of the detection model. However, the performance was worse than our
normal setting starting from PyTorch pre-trained weights using ImageNet (see Appendix
Table 8). We hypothesize that this is due to the small number of samples used to train the
regression model as compared to the size of ImageNet.

We also performed comparisons of aggregating all tiles with mitotic events into the
training dataset, in contrast to the sampling strategy applied, and found similar to worse
performance depending on the exact setting. However in all settings, the naive aggregation
greatly increased the computational cost, thereby motivating our sampling approach.
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5. Discussion

When given the opportunity to consider the full ML pipeline from label collection to model
training, there will be many factors to consider such as labeler availability, cost, and quality,
and desired model output. Because of the diversity of settings, hard-and-fast rules are not
possible, however we present recommendations based on our findings.

Our analysis shows the utility of crowd-sourced data along with the importance of expert
data and therefore, we recommend gathering both. The crowd-sourced data was relatively
inexpensive, though noisy, and the expert data was critical for performance evaluation. In
practice, we recommend using some expert data to fine-tune models after training with
crowd-sourced data. We also stress the importance of multiple reviews per instance. Our
concordance analysis highlights the challenging nature of the task. Leveraging metrics such
as the agreement score largely improved performance.

In the context of framing the problem as a regression vs object detection problem, we
admit initial surprise by the success of the regression models. A priori we assumed that
the signal-to-noise ratio would be much lower for tile-level annotations and that this would
negatively impact model performance. However, particularly when comparing the Reg and
Reg-NS results, it becomes clear that negative samples are valuable for improving model
performance. Most tiles do not have mitotic events and explicitly using the negative samples
when calculating the loss function is important. This is a notable difference with object
detection in natural images, where negative samples are typically rare.

Promising directions for future work are more sophisticated incorporation of negative
instances and uncertainty during training. And although the regression models had strong
performance, the object detection model provides the additional information of the box,
which inherently renders the model more interpretable.
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Appendix A. Further description of training tasks

Classification A mitosis detection classification model takes a tile as input and outputs
a continuous value ĉ ∈ [0, 1] which can then be thresholded to generate a binary indicator
for the presence of mitosis (Fig. 1i). In a well calibrated model, it is expected that tiles
resulting in larger predicted values of ĉ are more likely to contain mitotic events. If the
total count of mitotic events is the desired output, multi-class classification can also be
considered. Typically, classification models are trained using cross-entropy loss. The work
of Dusenberry and Hu (2018) is an example of binary classification for mitotic detection.
Albarqouni et al. (2016) also uses classification, and notably considers different sources of
labeling.
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Regression Although mitosis is most typically cast as a binary indicator, the presence
of mitosis can be recast as a continuous representation, e.g. by aggregating the labeling
of multiple raters by average the binary labels. The resulting regression model takes a tile
as input and outputs a confidence score, â ∈ R, by replacing the last layer of the binary
classification architecture with a layer which generates a scalar output (Fig. 1i). The model
is trained using the mean-squared error loss.

Object detection Object detection models are trained using a vector which describes
the bounding box, i.e., coordinates corresponding to specific regions on the tile and the
corresponding box size, e.g., [x1, y1, w, h]. The detection model takes a tile as input and
outputs (possibly zero) bounding boxes and an associated score (Fig. 1h). The Faster-RCNN
((Ren et al., 2015)) is one of the most widely used object detection models for natural images.
It utilizes the representation from CNN (ResNet50) backbone to predict the location and
class of bounding boxes. The model is trained with smoothed L1 loss for positions of the
box and cross-entropy loss for the objectiveness and the class of bounding box. Compared
to regression models, object detection models provide the extra information of the exact
locations of mitotic events in the tile. This inherently enables a more interpretable output
as compared to classification and regression, as labelers typically interact with data of this
form. Several studies have considered Faster-RCNNs and related RCNN methods for mitosis
detection (e.g., Li et al., 2018; Lei et al., 2019; Sebai et al., 2020b; Sohail et al., 2021).

Appendix B. Additional training details

Based on initial tuning experiments, for the BC, Reg, and Reg-NS models, we choose
a batch size of 32, learning rate of 0.005, and used the Adam optimizer ((Kingma and
Ba, 2014)) with a step learning rate scheduler (γ = 0.1 and step size of 15). Models
are trained for 60 epochs. For all Det(-) models, we choose a batch size of 16, learning
rate of 0.005, and used the SGD optimizer with a step learning rate scheduler (γ = 0.1
and step size of 20). Models are trained for 30 epochs. For all models, during training,
we applied random horizontal flip and random photo-metric distortion from torchvision
helper function as image augmentation. For BC, Reg, and Reg-NS, we chose to start with
torchvision’s pre-trained ResNet50 and modified the last layer. For BC, Reg, and Reg-NS,
the best model is saved when the loss is lowest on the validation set. For all Det(-), we used
the pre-trained fastrcnn-resnet50-fpn model with built-in object detection helper functions
to evaluate trained model on validation set and saved the model with the best performance.
We also investigated the use of validation data containing negative samples for the selection
of detection models (Det and Det-WL) and found that this decreased performance.

Appendix C. Additional model performance data

Please see Tables 5, 6, 7, and 8 for detailed results on the effect of training data size,
negative sample size and threshold and ResNet backbone, respectively.
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Table 5: Detailed data of Fig 2 of model performance with different training samples.

Model
#Samples

1K 2.5K 5K 10K 20K 42K (All) All NS

BC (0.5) 91.4/40.8
Reg (0.6) 100/100 89.9/83.2 99.6/98 53.2/37 64.9/42.1 75.8/53.3
Reg-NS (0.35) 90.1/31.5
Det 75.1/27 87.7/37.9 88.5/34.9 90.6/30.6 90.1/36.5 89.7/39.2
Det-WL 72.5/28.4 88.9/41.1 90.6/39.3 89.7/32.8 92.6/40.6 93.2/43.5

Table 6: Detailed data of Fig 2 of model performance with different negative samples and
different score threshold.

Model
#NS

0 1K 2.5K 5K 10K 20K 42K (All)

Reg (0.6) 75.8/53.3
Reg (0.7) 6.9/3.6
Reg-NS (0.15) 97.7/72.5 96.9/57.4
Reg-NS (0.2) 96.7/67.4 95.7/50.3
Reg-NS (0.25) 96.8/67.5 95.7/61.6 94.7/43.7
Reg-NS (0.3) 95.5/60.4 94.3/54.9 92.4/37.4
Reg-NS (0.35) 92.8/52.1 92.5/47.1 90.1/31.5
Reg-NS (0.4) 93.8/67.8 89.2/42.8 88.7/38.7 86.7/26
Reg-NS (0.45) 88.1/54.7 83.5/33.2 84.4/30.4 82.3/20.8
Reg-NS (0.5) 82.9/51.9 79/40.8 75.4/24.1 77/22.7 76.4/16
Reg-NS (0.55) 78.6/59 65.1/29.5 67.2/27.7 65.7/16.1 69.8/15.9 68.8/11.7
Reg-NS (0.6) 52.9/23.3 46.5/16 51.9/16.8 52.9/9.7 60.2/10.3 60.8/8
BC 91.4/40.8
Det 89.7/39.2
Det-WL 93.2/43.5
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Table 7: Detailed data of Fig 2 of model performance with different negative samples and
different score threshold.

Model
#NS

1:1 (All) 2:1 4:1 10:1

Reg (0.6) 75.8/53.3
Reg (0.7) 6.9/3.6
Reg-NS (0.15) 96.9/57.4 93.8/42.3 91.7/30.8 87.2/20.6
Reg-NS (0.2) 95.7/50.3 91.9/34.7 89.1/24.5 82.8/15.8
Reg-NS (0.25) 94.7/43.7 89.2/28.7 85.1/19.6 79.8/12.4
Reg-NS (0.3) 92.4/37.4 85.6/23.6 82.1/15.7 75.4/9.8
Reg-NS (0.35) 90.1/31.5 81.7/19.2 77.5/12.5 70.7/7.8
Reg-NS (0.4) 86.7/26 77.6/15.3 73.5/9.8 67.0/6.2
Reg-NS (0.45) 82.3/20.8 72.8/12.0 68.5/7.5 62.8/4.9
Reg-NS (0.5) 76.4/16 66.2/9.1 63.0/5.7 58.6/3.8
Reg-NS (0.55) 68.8/11.7 59.4/6.7 56.2/4.1 53.6/2.9
Reg-NS (0.6) 60.8/8 51.9/4.6 47.5/2.8 47.6/2.2
BC 91.4/40.8
Det-NS 67.4/13.3 63.5/9.4 36.9/2.7 16.7/2.2
Det-WL-NS 80.5/25.6 76.0/24.4 76.0/26.4 66.5/24.9

Table 8: Performance of Detection model by loading ResNet50 backbone weights pre-
trained on Regression task

Det Model
Backbone

Reg1K Reg2.5K Reg5K Reg10K Reg20K Reg42K(All) ImageNet

Det 1K 3.1/2.4 3.6/2.5 1.9/1.5 4.4/4.2 6.9/3.3 2/0.7 75.1/27
Det 2.5K 11/8.5 20.2/13.5 11.6/7.3 15.2/10.8 24.8/13.5 15/7.8 87.7/37.9
Det 5K 17.9/12.1 28.7/18.7 19.7/9.9 20.8/12.5 30.1/15.1 19.9/12.3 88.5/34.9
Det 10K 24.4/17.9 32.9/18.6 21.5/11.5 27.2/15.7 29.6/15.3 22.7/14.3 90.6/36.6
Det 20K 26/17.8 47.5/23.1 31.9/20 43.6/21.4 35/18.7 13.7/7.1 90.1/36.5
Det 42K(All) 41.9/18.1 58.7/22.1 28.6/13.8 53.4/22.9 34.4/17.2 26.6/17.3 89.7/39.2
Det-WL 1K 5.6/4.1 2.7/4.8 3.1/1.2 7/6.3 10.9/5.6 3.1/1.9 72.5/28.4
Det-WL 10K 20.2/15.6 27.5/18.2 14.3/7.4 28.2/17.4 35.1/18.9 18.4/12.1 89.7/32.8
Det-WL 20K 34.4/23.5 43.3/26.8 24/13.5 31.7/17.5 39.7/21.6 32.1/22.2 92.6/40.6
Det-WL 42K(All) 39.5/19.1 57.4/24.9 30/16.80 37.5/14.7 34.4/16.7 26.5/14.1 93.2/43.5
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Table 9: Detailed data of Fig. 3 of model performance with different prediction thresholds
for the detection models.

Threshold
Model

Det Det-NS Det-WL Det-WL-NS

0.925 93.5/47.1 75.2/19.5 95.9/51.2 86.0/33.1
0.95 90.6/30.6 67.6/30.6 93.2/43.5 80.5/25.6
0.975 82.2/26.4 49.3/5.3 86.7/30.2 63.4/13.2

Figure 3: The true positive and false positive rates for various models using different pre-
diction thresholds. The regression results (stars) are reproduced from Fig. 2 in
the text and include only the top performing models. The detection models have
greater sensitivity to threshold (step size of 0.025 as compared to 0.05 in the
regression case) and consistently underperform or perform no better than the re-
gression models.
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