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Abstract

Reconstruction of 3D scenes from a single image is a crucial step towards en-
abling next-generation AI-powered immersive experiences. However, existing
diffusion-based methods often struggle with reconstructing omnidirectional scenes
due to geometric distortions and inconsistencies across the generated novel views,
hindering accurate 3D recovery. To overcome this challenge, we propose Omni3D,
an approach designed to enhance the geometric fidelity of diffusion-generated
views for robust omnidirectional reconstruction. Our method leverages priors
from pose estimation techniques, such as MASt3R, to iteratively refine both the
generated novel views and their estimated camera poses. Specifically, we minimize
the 3D reprojection errors between paired views to optimize the generated images,
and simultaneously, correct the pose estimation based on the refined views. This
synergistic optimization process yields geometrically consistent views and accurate
poses, which are then used to build an explicit 3D Gaussian Splatting represen-
tation capable of omnidirectional rendering. Experimental results validate the
effectiveness of Omni3D, demonstrating significantly advanced 3D reconstruction
quality in the omnidirectional space, compared to previous state-of-the-art methods.
Project page: https://omni3d-neurips.github.io.

1 Introduction

3D scene reconstruction from 2D image plays a significant role in the future development of computer
vision technologies, paving the way for the next era of AI immersive media. However, this task is
inherently ill-posed due to the significant geometric ambiguity and limited information available from
a single input image. While recent progress, particularly with diffusion-based models [2, 11, 48, 34],
has shown promise in object-level 3D reconstruction [22, 41, 4],and also facilitates scene-level Novel
View Synthesis (NVS) [45, 10, 51] and scene reconstruction [20, 3] with 3D Gaussian Splatting
(3DGS) [12]. However, the existing diffusion-based methods often encounter significant hurdles
when applied to omnidirectional 3DGS reconstruction of real-world scenes. The main obstacle is
that the produced novel views tend to suffer from geometric distortions and critical inconsistencies,
especially when synthesizing views far from the original input perspective. Standard models may
misinterpret context in omnidirectional images due to non-uniform structures and optical properties
different from perspective images. These inaccuracies in geometry and appearance across generated
views fundamentally hinder the ability to recover a coherent and accurate 3DGS representation of the
full omnidirectional scene.

To address this challenge, we introduce Omni3D, a novel approach specifically designed to tackle
the geometric and content consistency issues inherent in diffusion-based view generation for omni-
directional 3D scene reconstruction. Our core idea is to explicitly incorporate and refine geometric
constraints throughout the view generation process. We achieve this by leveraging strong priors
obtained from state-of-the-art pose estimation techniques, such as MASt3R [17], to iteratively im-
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Figure 1: Example of Omni3D for omnidirectional 3D scene reconstruction from single image.

prove both the generated novel views and their corresponding camera pose estimations. Specifically,
Omni3D employs a synergistic Pose-View Optimization (PVO) strategy. It minimizes 3D reprojection
errors between pairs of generated views to progressively refine the image content, ensuring better
geometric alignment. Simultaneously, the estimated camera poses for these views are corrected
based on the feedback from the refined views. This iterative process of mutual refinement between
view content and pose estimation yields a set of geometrically consistent novel views with highly
accurate camera parameters. These consistent views and poses serve as high-quality input for building
an explicit 3D scene representation using 3D Gaussian Splatting, enabling flexible rendering with
advanced quality across the entire omnidirectional space. Figure 1 illustrates an example result,
demonstrating omnidirectional 3D scene reconstruction from a single image by the proposed Omni3D
approach.

Our primary contributions are concluded as:

• We propose a novel method, Omni3D, that significantly improves the geometric and content
consistency of diffusion-generated novel views for single-image omnidirectional 3D scene
reconstruction with Gaussian Splatting.

• We propose a synergistic Pose-View Optimization (PVO) process that leverages pose estima-
tion priors to iteratively refine both generated view content and camera poses by minimizing
3D reprojection errors.

• We demonstrate state-of-the-art performance in omnidirectional 3D scene reconstruction
from a single image, showing substantial improvements on rendering quality across a wide
range of view angles compared to previous methods.

2 Related Works

2.1 Traditional View Synthesis

Early methods for Novel View Synthesis (NVS) often relied on geometric primitives or layered
representations. Multiplane Images (MPI) [54, 36, 39, 47, 15, 49] represent a scene using multiple
semi-transparent planes at different depths. Methods like SinMPI [26] and AdaMPI [8] extended
MPIs for single-image NVS, sometimes incorporating diffusion models to hallucinate out-of-view
content. However, MPI-based methods can struggle with representing complex non-planar geometry
and may exhibit flatness artifacts. Another line of work [46, 31, 29, 35] utilizes depth-based warping,
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where an estimated depth map is used to project the input view to a novel viewpoint, followed by
inpainting occluded regions . These methods are highly sensitive to depth estimation errors and can
produce artifacts near object boundaries or inconsistent content in inpainted areas. While effective
for limited view changes, these traditional techniques often struggle with the large baselines and
distortions inherent in omnidirectional reconstruction.

2.2 Generative Image-3D Reconstruction

Pre-trained text-to-image (T2I) diffusion models possess rich semantic and structural priors. Several
works [30, 32, 27] aim to distill these priors for 3D generation and NVS. Some approaches [38, 25,
18, 42] optimize 3D representations using scores distilled from a 2D diffusion model as supervision.
Others [21, 33] fine-tune 2D diffusion models to be conditioned on camera viewpoints, enabling
them to generate novel views directly. While powerful, these methods often focus on object or simple
scene reconstruction and may lack generalization to complex and large-scale scenes. Furthermore,
controlling camera pose accurately can be challenging, as poses are treated as high-level prompts
rather than precise geometric inputs. Besides, Chung et al. [5] and Yu et al. [50] employ diffusion-
based inpainting models to lift 2D images to 3D scenes.

More recently, Latent Video Diffusion Models (LVDMs) [2] trained on large-scale video datasets have
emerged as a promising source of 3D priors, implicitly learning about motion, temporal coherence,
and scene dynamics. Several works [7, 14, 23, 24, 41] leverage LVDMs for single-image-to-3D
reconstruction at the object level, and meanwhile, [45, 51] focus on scene-level 3D NVS and
reconstruction. However, the inherent stochasticity and iterative denoising process in diffusion
models may introduce geometric distortions and inconsistencies across generated views, hindering
accurate 3D reconstruction in the scenario of large angle changes. The latest method LiftImage3D [3]
employs distortion-aware Gaussian representations to mitigate view inconsistencies, but nevertheless
it still reconstructs 3D in limited angles from the single input image, instead of the challenging task
of omnidirectional 3D scene reconstruction.

2.3 Pose Estimation

In early years, Ummenhofer et al. [40] and Zhou et al. [53] proposed estimating depthmaps and
relative camera pose given the grountruth camera intrinsic parameters. Later, the DUSt3R [43]
method was proposed in 2024, which represents a significant departure from traditional pipelines.
It is designed to perform camera pose estimation from unconstrained image collections, requiring
no prior knowledge of camera intrinsics. In the same time of pose etimation, the camera intrinsics
can also be calculated. In the following, MASt3R [17] is built upon the backbone of DUSt3R with a
focus on local feature matching for improving image matching accuracy.

3 Method

3.1 Overall Framework

The overall framework of the proposed Omni3D is illustrated in Figure 2-(a), outlining a multi-stage
approach to achieve omnidirectional 3D reconstruction from a single image.

In Stage I, beginning with a single input image (shown as ), we employ a Multi-View Diffusion
(MVD) model to synthesize an initial set of novel views ( ). These views are generated along four
cardinal orbits (left, right, up, and down) to broadly cover the frontal hemisphere relative to the input.
Subsequently, the proposed Pose-View Optimization (PVO) module is applied to the generated views.
The PVO module collaboratively refines the estimated camera poses and corrects the generated view
content, thereby mitigating geometric distortions and inconsistencies inherent in the initial MVD
outputs. During the PVO process, the camera intrinsic parameters are also calculated [43].

Stage II focuses on expanding the view coverage laterally. Key views from the periphery of the
frontal hemisphere generated in Stage I (e.g., the leftmost and rightmost views, depicted as ) serve
as new conditional inputs for the MVD model. This step synthesizes additional novel views ( )
that extend into the left and right hemispheres. These newly generated views then undergo the PVO
optimization to ensure their geometric accuracy and consistency.
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Figure 2: (a) The overall framework of the proposed Omni3D approach. Omni3D generates novel
views in omnidirectional space across three stages. In each stage, the generated views are optimized
by the Pose-View Optimization (PVO) module, which progressively applies a pairwise iterative PVO
process to refine both view contents and pose estimation. This mitigates geometrical distortions and
inconsistencies in the generated novel views, facilitating the final stage to represent the omnidirec-
tional 3D scene with 3DGS. (b) The proposed pairwise iterative Pose-View Optimization (PVO)
module. For each view pair, this module first estimates the initial camera poses and intrinsics, and
then overfits a lightweight network for 3D and 2D optimization of a generated view by minimizing 3D
reprojection errors between reference and generated views. Camera poses and camera intrinsics are
then updated once the optimization loss converges. This process repeats iteratively for synergistically
refining both the views and their corresponding poses.

Stage III addresses the back hemisphere to achieve fully omnidirectional coverage. In this stage,
the backmost view ( ) is used to condition the MVD model for the synthesis of the final set of
novel views ( ) required to complete the omnidirectional scene representation. As with the previous
stages, these views are meticulously processed by the PVO module. Upon completion of this stage, a
comprehensive set of geometrically consistent and pose-accurate omnidirectional views is obtained.

Finally, in Stage IV, this complete collection of PVO-optimized views, along with their refined camera
poses and intrinsic parameters, is leveraged to reconstruct the 3D scene. Specifically, we train a 3D
Gaussian Splatting (3DGS) model using these views. The resulting 3DGS model facilitates freely
rendering of novel views in omnidirectional angles.
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3.2 Multi-View Diffusion (MVD)

For the default implementation of Omni3D, we follow [37] to employ LoRA-tuned CogVideoX [48]
as MVD models. These models are configured to generate 48 novel views per orbit, in addition
to the original input view. The MVD models were trained on carefully selected samples from the
DL3DV-10K dataset [19], with a strict separation maintained between the training and test sets. It is
worth pointing out that Omni3D’s effectiveness is not contingent on the choice of MVD model, and
has the generalization capabilities across different MVD backbones, which is validated in Section 4.3.

3.3 Pose-View Optimization (PVO)

This section introduces our Pose-View Optimization (PVO) module, a core component of the Omni3D
method. The PVO module employs a progressive pairing scheme to systematically process sequences
of generated novel views. Coupled with this is an iterative optimization process designed to syner-
gistically refine both the content of these views and their corresponding camera poses. This process
yields views with enhanced geometric consistency and more accurate pose information, playing a
critical role in facilitating robust omnidirectional 3D scene reconstruction with 3DGS.

3.3.1 Progressive Pairing

The progressive optimization process, illustrated in Figure 2-(a), is applied to each view generation
orbit. To illustrate, we describe the procedure for a single orbit (e.g., the right orbit in Stage I), and
views within all other orbits across Stages I, II, and III are processed analogously.

Let x0 denote the initial input view for an orbit, and let {xi}Ii=1 represent the sequence of I novel
views generated along this orbit. The optimization proceeds in a sliding window manner. Initially, x0

serves as the reference view and is paired with the first N generated novel views, {xi}Ni=1. For each
pair (x0,xi) where i ∈ {1, . . . , N}, the novel view xi undergoes our pairwise iterative Pose-View
Optimization (PVO), as detailed in Section 3.3.2. This step yields an optimized view x̂i and its
corresponding refined pose p̂i. After this initial set of N views is optimized, the N -th optimized
view, x̂N (along with its pose p̂N ), becomes the new reference view. This new reference, x̂N , is then
paired with the subsequent block of N views, i.e., (x̂N ,xN+i) for i ∈ {1, . . . , N}. These pairs then
undergo the same PVO process. This progressive, sliding-window optimization scheme continues
until all I generated views within the orbit have been processed and refined.

This strategy is adopted to balance two competing factors. We note that consistently using the initial
global input view as the reference for all pairs across an entire orbit would lead to progressively
larger viewpoint disparities. Such large angular differences can significantly challenge the robustness
of pose estimation and the efficacy of the PVO. Conversely, using each immediately preceding
optimized view x̂i−1 as the reference for the current view xi might introduce error accumulation and
propagation along the generation path of orbits.

In Omni3D, we address this trade-off by empirically setting the window size N = I/4. For our
default setting where I = 48 views are generated per orbit, N is therefore set to 12. This approach
ensures that the maximum angular difference between the reference view and any target view within
its optimization window remains manageable (e.g., approximately 22.5◦ under our default settings),
facilitating a stable PVO process.

3.3.2 Pairwise Iterative PVO

Framework. To simplify the notations, we use the pair (x0,xi) as an example to introduce the
pairwise iterative PVO network. The same process is utilized to all other pairs. As Figure 2-(b)
illustrated, we overfit a lightweight (θi) network1 on view pair (x0,xi) to learn a Homography matrix
(H), a flow map (F) and residual (R) for 3D and 2D optimization (O) of the generated view xi. The
optimized view x̂i can be expressed as:

x̂i = O(xi, θi) = W(T (xi,H),F) +R, (1)

1As Figure 2-(b) shows, the Homography branch contains three CNN layers with strides of 1, 2 and 2,
respectivaly, and a fully connected layer. The flow and residual branches have a residual block and an output
layer in each. All CNN layers use the kernal size of 3 with 32 channels, except the output layers for flow and
residual, whose channel numbers are 2 and 3, respectively.
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where T (·,H) and W(·,F) denotes the Homography transformation and 2D warping, respectively.
It is worth point out that each network (θi) is overfit for each pair (x0,xi) in an online training
manner, and the weights do not share across pairs. Besides, it is important that the parameters in the
lighweight network is zero-initialized, expect the bias of the output layer for Homography matrix,
which initially outputs I3×3. As such, the refined view x̂i is initialized as the input xi, i.e.,

x̂init
i = xi, given H = I3×3,F = 0, and R = 0. (2)

Next, we employ the MASt3R [17] network to produce the pointmaps of x0 and x̂i (initially xi)
as P 0 and P̂ i, respectively. Note that P 0 and P̂ i are presented in a some coordinate, which we
denote as the world coordinate. Then, the Perspective-n-Point (PnP) [9, 16] pose computation method
with RANSAC [6] scheme is applied to estimate the camera poses (camera-to-world), which are
defined as p0 and p̂i for the views x0 and x̂i, respectively. Meanwhile, we can also obtain the camera
intrinsics K given the estimated poses [43], containing focal values (fx, fy) and the coordinates of
the principal point (cx, cy).

In the following, with the input view x0, its pointmap P 0, the pose of the target view p̂i and camera
intrinsics, we are able to reproject x0 to the target view in the 3D space. Specifically, we first convert
the camera pose p̂i to the world-to-camera matrix p̂′i, i.e.,

p̂′i =

(
R̂′

i T̂ ′
i

0T 1

)
= p̂−1

i =

(
R̂i T̂i

0T 1

)−1

, (3)

and then transform the pointmap P 0 to the target view’s coordinate

P ′
0 = R̂′

iP 0 + T̂ ′
i , (4)

to reproject it into the 2D screen coordinate (ui, vi) of the target view using camera intrinsics, i.e.,(
ũi

ṽi
zi

)
= KP ′

0 =

(
fx 0 cx
0 fy cy
0 0 1

)(
X
Y
Z

)
, where P ′

0 =

(
X
Y
Z

)
, (5)

and we define (ui, vi) = (ũi/zi, ṽi/zi). Finally, the RGB values x0 of each 3D point of P 0 can be
mapped into its projected location (ui, vi) in the target view’s coordinate, considering the depth Z
for visibility and blending overlapping points, i.e.,

x0→i = Render
(
(ui, vi),x0, Z

)
. (6)

Similarity, the 3D reprojection from x̂i to x0, i.e., x̂i→0, can be calculated in the same manner2.

After obtaining x̂i→0 and x0→i, we define the loss function as

L = M0 · ||x0 − x̂i→0||2︸ ︷︷ ︸
L0

+M i · ||x̂i − x0→i||2︸ ︷︷ ︸
Li

, (7)

where M0 and M i mask out the black pixels resulting from occlusion. The loss function is
minimized to overfit the lightweight network for refining the generated view in an online training
manner. Note that, during the training process, the MASt3R network itself remains unchanged, but
its differentiability is crucial as it allows error back-propagation.

Iterative optimization. In the proposed PVO method, we employ an iterative optimization scheme
to jointly optimize the generated view and refine the estimated camera pose. Recall that at the
beginning of optmization, we have x̂init

i = xi and we calculate the initial pose estimations (p0 and p̂i)
and camera intrinsics. Given these parameters, we train the lightweight network θi to optimize the
generated view x̂i by minimizing the loss function defined in Equation (7). During this training phase,
the estimated poses (p0 and p̂i) and camera intrinsics are held constant, and only x̂i is optimized.
Once convergence is observed for the view optimization, we update the poses p0 and p̂i based on
the refined view, and also camera intrinsics. This updated pose and intrinsics are then used in the
next iteration to further optimize x̂i. This cycle of optimizing the view with fixed poses, followed

2For the 3D reprojection operations, we utilize PyTorch3D [28], which provides differentiable rasterization
and rendering functions.
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by updating the poses and intrinsics based on the refined view, is repeated until the estimated poses
converge.

This iterative refinement process simultaneously addresses geometric distortions and inconsistent
content in x̂i and improves the accuracy of the pose estimation. In our experiments, we empirically
observed that the estimated poses consistently converge after three updates (in addition to the initial
pose estimation). Consequently, we set the number of iterations to 3 in our proposed PVO method.

3.3.3 Parallelism

Leveraging the pairing scheme introduced in Section 3.3.1, the PVO process of view pairs that
share the same reference view are independent from each other, allowing significant parallelism in
computation. To be specific, in Stage I, the PVO of at most 4N pairs can be computed in parallel. In
Stages II and III, there are at most 3N and 2N pairs can be optimized concurrently, respectively. In
our experiments, the machine with 8 NVIDIA A100 GPUs allows the paralleled PVO of 24 pairs.
Hence, given N = 12, we are able to parallelly compute PVO on N pairs of two orbits. This way,
the entire framework requires only 24 serial PVO computations across all stages, i.e., 8, 12 and
4 serial PVOs in Stages I, II and III, respectively. This does not significantly increase the overall
computational time. We analyze the time consumptions in Section 4.5.

4 Experiments

4.1 Evaluation Protocol

The proposed Omni3D method represents the reconstructed 3D scene using 3D Gaussian Splatting
(3DGS). Consequently, we evaluate the reconstruction performance by rendering views from the
3DGS model at the camera poses corresponding to the groundtruth views and comparing these
rendered images to the groundtruth. To facilitate this comparison, it is essential to align the 3D
coordinates of groundtruth with the MASt3R coordinates employed in our method. Therefore, we
associate each groundtruth view with four specific reference views used in Omni3D, depicted as ,

and in Figure 2-(a), and then utilize MASt3R to estimate the pose of each groundtruth view.
During this pose estimation process, the poses of the four selected Omni3D reference views are
held fixed. By doing so, we effectively align the estimated poses of the groundtruth views to our
established MASt3R coordinate system. This alignment allows us to render images from 3DGS at the
poses of the groundtruth for evaluation. It is crucial that after aligning the coordinates of groundtruth,
the groundtruth views are not included for the training of 3DGS, and are only used in evaluation.

4.2 Experimental Setup

We quantitatively evaluate the 3D scene reconstruction quality of Omni3D on three distinct datasets:
the Tanks and Temples [13], Mip-NeRF 360 [1], and DL3DV [19] datasets. For Tanks and Tem-
ples [13] and Mip-NeRF 360 [1], we evaluate Omni3D on their whole test sets. For DL3DV [19],
we randomly select test scenes non-overlapping with the training samples of MVD. In each test
sample, we randomly select groundtruth views in the entire omnidirectional space. We compare
the performance of the proposed Omni3D against previous state-of-the-art open-sourced methods,
including ZeroNVS [33], ViewCrafter [51], and LiftImage3D [3], in terms of PSNR, SSIM [44] and
LPIPS [52]. Furthermore, we conduct comprehensive ablation studies to validate the effectiveness of
the proposed PVO and analyze the computational time required for each component of the Omni3D
framework. More experimental results are in Appendix.

4.3 Main Results

Table 1 presents a quantitative summary of our results. As demonstrated in the table, our proposed
Omni3D approach consistently outperforms all compared methods across all evaluated datasets and
metrics. Notably, on the Tanks and Temples dataset, we achieve a significant PSNR improvement of
1.45 dB compared to the recent LiftImage3D [3], and approximately 2.4 dB over ViewCrafter [51].
For perceptual quality metrics SSIM and LPIPS, Omni3D also clearly surpasses the compared
methods. Similar performance gains are also observed on the Mip-NeRF 360 and DL3DV datasets,
where Omni3D advances the PSNR results of LiftImage3D by 1.62 dB and 0.87 dB, respectively, and
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Table 1: Evaluation of rendered views in omnidirectional space.

Methods Tanks and Temples Mip-NeRF 360 DL3DV

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

ZeroNVS [33] 12.67 0.4647 0.7506 13.40 0.2413 0.8299 11.28 0.4725 0.7074
ViewCrafter [51] 13.91 0.4714 0.5886 14.06 0.2420 0.7649 16.61 0.6185 0.3883
LiftImage3D [3] 14.85 0.4841 0.5781 14.27 0.2491 0.6479 16.21 0.6020 0.4844

Our Omni3D 16.30 0.5308 0.5166 15.89 0.2859 0.6369 17.08 0.6649 0.3348

GroundtruthViewCrafter LiftImage3D Our Omni3DZeroNVS

Figure 3: Visual results of rendered views of our Omni3D and compared approaches.

Table 2: Results of user study on our Omni3D and compared methods.
Methods Tanks and Temples Mip-NeRF 360 DL3DV

ZeroNVS [33] 1.0 1.3 0.8
ViewCrafter [51] 4.3 4.7 7.4
LiftImage3D [3] 5.1 4.5 5.8

Our Omni3D 7.6 7.9 8.2

also achieve superior perceptual quality. We illustrate the visual results in Figure 3. In comparison
with pervious methods, our Omni3D approach achieves rendered views with higher visual quality,
less distortions or artifacts, and better geometrical accuracy to the groundtruth. These visual results
align with the conclusion from the numerical evaluations, validating the effectiveness of Omni3D.

We further conducted a user study with 10 non-expert users, who are requested to rate the reconstructed
3D scenes with scores from 0 (poorest quality) to 10 (perfect quality). In the user study, we render the
images with omnidirectional trajectories from the 3DGS generated by our Omni3D and the compared
methods and send them to the users in video format, to reduce the hardware requirements for the
users’ personal computers. The average ratings are shown in Table 2. It can be seen from Table 2 that
our Omni3D approach has obvious superior perceptual quality performance, which aligns with the
numerical results.
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Figure 4: Ablation visual example of 3D-reprojected views before (left) and after (right) PVO.

Table 3: Ablation study on MVD and PVO
PSNR ↑ SSIM ↑ LPIPS ↓

Omni3D w/o PVO 15.56 0.5198 0.5346
Omni3D 16.30 0.5308 0.5166

LiftImage3D [3] 14.85 0.4841 0.5781
LiftImage3D + PVO 15.28 0.4964 0.5446

4.4 Ablation study

Figure 4 visually illustrates the effects of the proposed PVO method. It can be seen from Figure 4
that before PVO, the reprojected images xi→0 and x0→i contain obviously difference on the objects’
positions in comparison with the target views. For example, the relative position between the women’s
head and the background in x0 and xi→0, and the relative position between the man’s head and the
tree in xi and x0→i (highlighted by red squares). These indicate the geometrical inconsistency in
these views. This inconsistency may be not very noticeable in NVS, however, may significantly
challenge the accurate reconstruction with 3DGS. After applying the proposed PVO, it can be seen
that the geometrical error in the 3D-reprojected views has been effectively corrected, reflecting the
improved consistency between the optimized view x̂i and the reference view x0. As such, the PVO
facilitates our Omni3D achieving state-of-the-art performance on omnidirectional 3D reconstruction.

Table 3 shows numerical results for the ablation studies on the Tanks and Temples dataset [13].
In comparison with the baseline model without PVO (Omni3D w/o PVO), the proposed Omni3D
achieves 0.74 dB improvement in terms of PSNR, and also better SSIM and LPIPS performance.
Moreover, Table 3 also indicated the generalizability of the proposed PVO method to various MVDs.
We conduct experiments for utilizing PVO on LiftImage3D [3], whose MVD employs MotionCtrl [45].
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Table 4: Time consumption on 8×A100 GPUs.
MVD Pose calc. 3DGS Total

ZeroNVS [33] - - - 133.7 min
ViewCrafter [51] 2.1 min - 12.8 min 14.9 min
LiftImage3D [3] 3.5 min 1.5 min 67.4 min 72.4 min

Our Omni3D 10.8 min 10.5 min 12.8 min 34.1 min

Table 5: Time consumption on a single A100 GPU.
MVD Pose calc. 3DGS Total

ZeroNVS [33] - - - 133.7 min
ViewCrafter [51] 4.3 min - 12.8 min 17.1 min
LiftImage3D [3] 12.0 min 1.5 min 67.4 min 80.9 min

Our Omni3D 21.6 min 83.9 min 12.8 min 118.3 min

Table 3 shows that the proposed PVO method successfully advances the performance of LiftImage3D
by 0.37 dB in terms of PSNR, and also benefits the SSIM and LPIPS performance.

4.5 Time consumption

Table 4 shows the analysis on the time consumption of each component of our Omni3D and compared
methods. We conduct experiments on a machine with 8 NVIDIA A100 GPUs. In the compared
methods, ZeroNVS [33] employs Score Distillation Sampling (SDS) for novel view generation.
Since NeRF distillation is very time-consuming, it takes > 2 hours for the inference of ZeroNVS.
In our Omni3D, we utilize a standard 3DGS, whose training is much faster than the distortion-
aware 3DGS in LiftImage3D [3]. Most importantly, thanks to the parallelism scheme of Omni3D
introduced in Section 3.3.3, the proposed PVO method does not significantly increase the total
time consumption. The paralleled PVO takes 10.5 min, which is less than the time used for 3DGS
optimization. As a result, the whole framework of Omni3D takes about 34 min for an omnidirectional
3DGS reconstruction from single image. It is obviously faster than ZeroNVS and LiftImage3D. Note
that we also run the compared methods with maximal parallelism on the same hardware as ours.

In Table 5, We further show the results on a single A100 GPU. It can be seen from Table 3 that
when the parallelism capability is limited to a single A100 GPU, the proposed Omni3D approach
consumes additional 46.2% of computational time compared with LiftImage3D [3], and still faster
than ZeroNVS [33] (CVPR’24). However, our Omni3D approach is able to reconstruct the en-
tire omnidirectional 3D space, instead of only the forward-facing views, and also achieves better
reconstruction quality.

5 Conclusion

In this paper, we introduced Omni3D, a novel framework specifically designed to enhance the
geometric accuracy of diffusion-generated views for robust omnidirectional 3D Gaussian Splatting.
Our key innovation lies in the synergistic Pose-View Optimization (PVO) process. By iteratively
refining both the generated view content and their estimated camera poses, guided by geometric
priors from techniques like MASt3R and minimizing 3D reprojection errors, Omni3D produces a
set of geometrically consistent novel views with high pose accuracy. These refined views and poses
serve as advanced foundation for constructing an explicit 3D Gaussian Splatting representation. As
demonstrated by our experimental results, Omni3D achieves state-of-the-art performance in single-
image omnidirectional 3D scene reconstruction, yielding substantially improved rendering quality
across a wide range of view angles compared to existing methods. This work represents a significant
step towards enabling accurate and high-quality 3D reconstruction of complex, omnidirectional
environments from a single image.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes all details of the methodology, evaluation protocol,
experiments setup, and computer resources to reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release codes upon internal approval. The datasets we used are publicly
available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper includes all details on datasets, hyperparameters, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experiments are conducted on datasets with sufficient samples and the
results are statistically significant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information of computer resources in Section 4.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms in every respect with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We introduced the societal impacts in Section I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credited the original owners of assets well and properly respected their
license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Detailed Network Architecture

Figure 5 illustrates detailed architecture of the lightweight network in our PVO method. In this figure,
the convolutional layers are denoted as “Conv, filter size, filter number”, and we use ↓ 2 to denote the
stride of 2. “GeLU” indicates the activation function of Gaussian Error Linear Unit. Besides, the
output layer in the Homography branch is a dense layer with 8 nodes, whose outputs are defined as
O1 ∼ O8, respectively. They form the Homography matrix H as

H =

(
O1 O2 O3

O4 O5 O6

O7 O8 1

)
. (8)

Recall that all parameters in convolutional layers and weights in the dense layer are zero-initialized
and the bias of the dense layer are initialized as [1, 0, 0, 0, 1, 0, 0, 0]T . As such, we have

x̂init
i = xi, given H = I3×3,F = 0, and R = 0 (9)

to initialize the refined view x̂i with its original input xi at the beginning of PVO.
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Figure 5: Detailed architecture of the lightweight network in PVO.

B Additional Ablation Studies

Ablation study on N in progressive pairing. Recall that in Section 3.3.1, we proposed a progres-
sive pairing scheme with the window size of N , i.e., in each generation orbit, the first N generated
views undergo PVO with the reference of x0, and then the next N views takes the optimized N -th
view x̂N as reference. This progressive scheme continues until all generated views within the orbit
have been processed and refined. Table 6 shows the ablation study on the selection of N on the Tanks
and Temples dataset [13]. It can be seen from Table 6 that N = 12 results in the best performance.
This outcome is likely attributable to the fact that utilizing views with large disparities as references
(e.g., N = 24 or 48) can significantly impair the robustness of pose estimation and diminish the
efficacy of PVO. Conversely, employing each immediately preceding optimized view, x̂i−1 as the
reference for the current view xi (N = 1), may inadvertently introduce error accumulation and
propagation along the generation path of the orbits. Besides, setting N = 1 also considerably limits
parallelism.

Ablation study on iterations of pose updates in PVO. Recall that in Section 3.3.2, we proposed
a pairwise iterative PVO method. In the proposed PVO, given the initially estimated poses and
intrinsics, we refine the generated view by minimizing the reprojection error until convergence,
and then the poses and intrinsics are updated based on the refined views. This cycle is iteratively
conducted until estimated poses converge. Table 7 illustrates the performance on the Tanks and
Temples dataset [13] with different iterations of pose updates, in addition to the initial pose estimation.
It can be seen that the performance converges at 3 iterations, i.e., optimize the views and then update
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Table 6: Ablation on progressive pairing

PSNR ↑ SSIM ↑ LPIPS ↓
w/o PVO 15.56 0.5198 0.5346
N = 1 16.24 0.5305 0.5170
N = 12 16.30 0.5308 0.5166
N = 24 16.19 0.5281 0.5179
N = 48 15.98 0.5206 0.5254

Table 7: Ablation on iterations of pose updates in PVO,
in addition to the initial pose estimation

Iterations PSNR ↑ SSIM ↑ LPIPS ↓
0 (w/o PVO) 15.56 0.5198 0.5346

1 15.62 0.5207 0.5325
2 15.91 0.5254 0.5296
3 16.30 0.5308 0.5166

4 16.33 0.5311 0.5162

poses for three time. When the iteration number comes to 4, the performance negligibly increases.
This verifies the reasonability for setting the iterations to 3 in our approach.

C Limitations and Future Work

Current 3D reconstruction techniques, including the proposed Omni3D, ViewCrafter, and LiftImage,
largely rely on a multi-stage process where 2D novel view synthesis acts as a crucial intermediary for
generating 3D Gaussian Splatting (3DGS) reconstructions. This approach involves first synthesizing
numerous 2D images from different perspectives and then using these synthesized views to infer the
underlying 3D structure and appearance. While effective, this indirect methodology often introduces
computational overhead and can sometimes limit the fidelity of the final 3D output due to potential
errors or inconsistencies introduced during the 2D synthesis phase. The reliance on this intermediate
step means that the overall efficiency and quality of 3D reconstruction are often constrained by the
performance of the 2D view synthesis component.

The recent emergence of powerful foundation models across various domains presents a transforma-
tive opportunity for the field of 3D reconstruction. Instead of the current indirect approach, these
advanced models could enable a more direct paradigm: training models to generate 3DGS, or even
other sophisticated 3D formats, straight from a single 2D image input. This shift would fundamentally
bypass the computationally expensive 2D intermediate steps, leading to several significant advantages.
Not only could this potentially lead to a substantial improvement in the quality and realism of 3D
reconstructions by eliminating potential bottlenecks introduced by the 2D synthesis, but it would
also dramatically reduce the inference time. A direct generation pipeline would streamline the entire
process, making 3D reconstruction faster and more accessible for a wider range of applications, from
virtual reality to robotics.

Taking this vision even further, the ongoing development of world foundation models and AI agents
hints at an even more revolutionary future. Imagine a scenario where complex 4D (3D over time)
content could be generated directly from simple, high-level prompts, completely bypassing all 2D and
3D intermediaries. This would represent a paradigm shift, moving from data-driven reconstruction to
concept-driven generation, where AI understands and creates dynamic 3D environments and objects
based on abstract instructions. These ambitious directions, spanning from direct 3DGS generation
to holistic 4D content creation, represent some of the most significant and exciting avenues for
future research in artificial intelligence and computer graphics, promising to unlock unprecedented
capabilities in digital content creation and spatial computing.
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