

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CO-OCCURRING ASSOCIATED RETAINED CONCEPTS IN DIFFUSION UNLEARNING

Anonymous authors

Paper under double-blind review

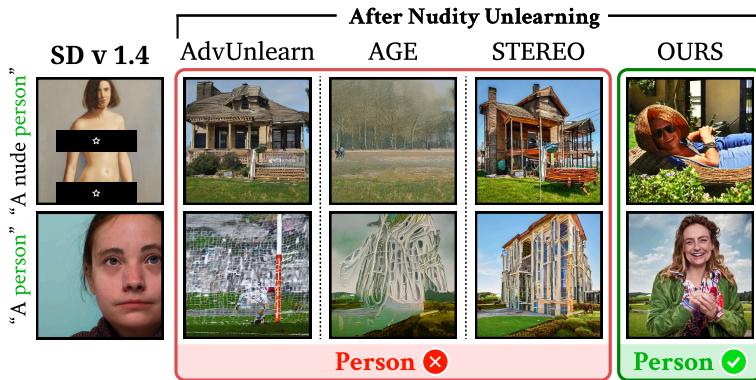


Figure 1: **Preserving Co-occurring Concepts in Nudity Unlearning.** After unlearning *nudity*, we present generations from two prompts (“A nude person” and “A person”). Baseline methods (AdvUnlearn, AGE, or STEREO) suppress benign co-occurring concepts *person*, failing to generate person images. In contrast, our proposed ReCARE preserves those concepts while erasing *nudity*.

ABSTRACT

Unlearning has emerged as a key technique to mitigate harmful content generation in diffusion models. However, existing methods often remove not only the target concept, but also benign co-occurring concepts. As illustrated in Fig. 1, unlearning *nudity* can unintentionally suppress the concept of *person*, preventing a model from generating images with *person*. We define these undesirably suppressed co-occurring concepts that must be preserved **CARE** (Co-occurring **R**Etained concepts). Then, we introduce the **CARE score**, a general metric that directly quantifies their preservation across unlearning tasks. With this foundation, we propose **ReCARE** (Robust **e**rasure for **CARE**), a framework that explicitly safeguards CARE while erasing only the target concept. ReCARE automatically constructs the CARE-set, a curated vocabulary of benign co-occurring tokens extracted from target images, and leverages this vocabulary during training for stable unlearning. Extensive experiments across various target concepts (*Nudity*, *Van Gogh* style, and *Tench* object) demonstrate that ReCARE achieves overall state-of-the-art performance in balancing robust concept erasure, overall utility, and CARE preservation.

1 INTRODUCTION

Diffusion models have achieved remarkable success in generating highly realistic images (Chang et al., 2023). However, training on large-scale data raises ethical concerns, including the risk of producing harmful or NSFW (Not Safe For Work) content (Rando et al., 2022; Schramowski et al., 2023; Zhang et al., 2024d). To mitigate these issues, *machine unlearning* (**MU**) has emerged as a paradigm for selectively removing the influence of target concepts from pre-trained models (Cao & Yang, 2015). Recent work has particularly focused on post-hoc erasure, which fine-tunes the

054 diffusion model to shift the noise prediction of the target token toward the unconditional output
 055 (empty prompt) (Gandikota et al., 2023).
 056

057 Post-hoc erasure is a practical approach to concept removal, but existing methods still face a fundamental challenge: the **robust–utility trade-off**. Models must erase harmful concepts (robustness) while preserving overall image quality (utility). To this end, recent methods employ *anchors*,
 058 prompts that represent non-target concepts, which the model should still generate correctly. These
 059 anchors are commonly obtained from prompts drawn from external label sets (e.g., ImageNet) or
 060 synthesized by large language models (Zhang et al., 2024c; Srivatsan et al., 2025; Bui et al., 2025).
 061

062 Although anchor-based preservation improves utility, we identify a critical weakness: **benign concepts that naturally co-occur with the erase target** are also unintentionally suppressed during
 063 unlearning. As illustrated in Fig. 1, attempts to erase *nudity* often suppress the concept of *person*,
 064 which commonly appears together with *nudity* in training data. For example, with prompts like “A
 065 nude person” or “A person”, models often fail to generate people, unintentionally suppressing the
 066 concept of *person* even when the intended removal pertains solely to *nudity*. Effective unlearning
 067 must not only erase harmful targets but also *care for* the benign concepts that naturally co-occur
 068 with them. Therefore, we define these co-occurring concepts that must be *carefully preserved* as
 069 **CARE** (Co-occurring Related concepts) and propose a method to preserve it.
 070

071 However, commonly used utility evaluations does not reflect whether CARE concepts are preserved,
 072 so even models with high utility scores may still not retain benign co-occurring concepts. Despite its
 073 importance, the evaluation of CARE preservation has remained unexplored in existing unlearning
 074 studies. To address this gap, we introduce the **CARE score**, a simple yet effective metric that
 075 explicitly measures the retention of CARE concepts. We argue that the CARE score is essential way
 076 to evaluate unlearning, orthogonal to the existing metrics for robustness and utility.
 077

078 Given the importance of CARE concepts, we propose **ReCARE** (Robust Care for Removal), a
 079 method that preserves CARE while ensuring robust erasure. ReCARE first constructs a CARE-set,
 080 a vocabulary of benign co-occurring tokens, from target images. During refinement, harmful co-
 081 occurring tokens are removed if they are too similar to the target or irrelevant to CARE preservation.
 082 By leveraging the CARE-set in training, ReCARE achieves robust erasure, preserves overall utility,
 083 and ensure faithful CARE preservation.
 084

085 Our key contributions can be summarized as follows: **1** We identify and define the unintended
 086 suppression of co-occurring concepts that should be preserved during unlearning, introducing the
 087 notion of CARE as a critical consideration for effective unlearning. **2** We develop CARE score, a
 088 new metric that explicitly measures the preservation of CARE concepts, a dimension overlooked in
 089 prior unlearning research. **3** We propose ReCARE, a method that robustly erases target concepts
 090 without sacrificing CARE preservation, thereby improving both robustness and utility.
 091

092 2 BACKGROUND

093 Latent Diffusion Models (LDMs) (Rombach et al., 2022) are text-to-image models that operate in a
 094 compressed latent space. Starting from Gaussian noise $z_T \sim \mathcal{N}(0, 1)$, the model iteratively denoises
 095 a latent variable z at timestep t , conditioned on a text prompt p . The training objective is to predict
 096 the injected noise ϵ at each step using a noise predictor ϵ_θ :
 097

$$\mathcal{L}_{\text{LDM}}(\theta) = \mathbb{E} \left[\|\epsilon - \epsilon_\theta(z_t | p)\|_2^2 \right]. \quad (1)$$

098 While LDMs can generate high-quality images, they may also produce harmful concepts. A representative
 099 unlearning method to mitigate this is Erasing Stable Diffusion (ESD) (Gandikota et al.,
 100 2023), which erases a target concept c . Specifically, the frozen teacher model θ^* characterizes the
 101 semantic direction of c as the difference between its conditional prediction $\epsilon_{\theta^*}(z_t | c)$ and uncondi-
 102 tional prediction $\epsilon_{\theta^*}(z_t | \emptyset)$. The student model θ is trained to erase this concept by updating in the
 103 opposite direction of the vector, while the strength of erasure is modulated by a hyperparameter η :
 104

$$\mathcal{L}_{\text{ESD}}(\theta) = \mathbb{E} \left[\left\| \epsilon_\theta(z_t | c) - \left(\epsilon_{\theta^*}(z_t | \emptyset) - \eta(\epsilon_{\theta^*}(z_t | c) - \epsilon_{\theta^*}(z_t | \emptyset)) \right) \right\|_2^2 \right] \quad (2)$$

105 In addition to ESD, other methods have been proposed to address the robustness-utility trade-off.
 106 AdvUnlearn (Zhang et al., 2024c) integrates adversarial training with prompts and introduces a
 107

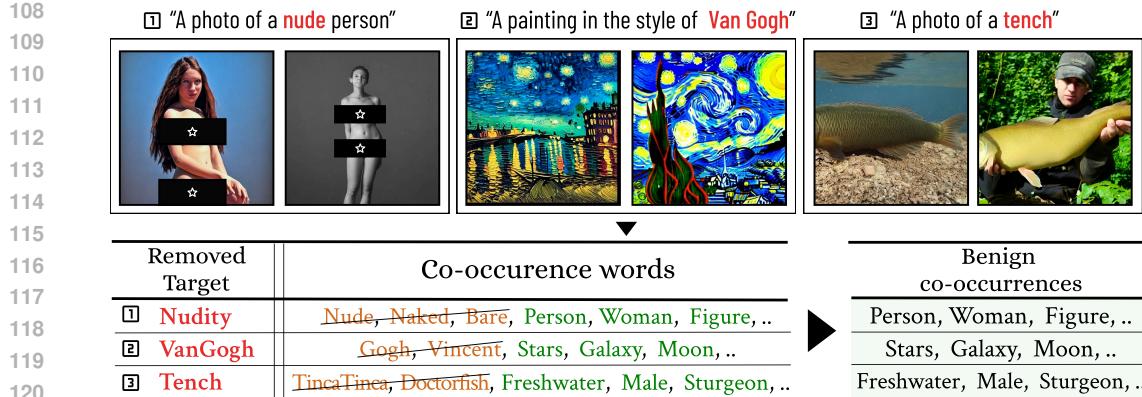


Figure 2: Given a removed target, we can extract the co-occurring words from generated images and categorize them into two groups: harmful co-occurrences and benign co-occurrences.

retain loss to preserve utility. AGE (Bui et al., 2025) improves this by adaptively selecting anchors from a large external vocabulary, balancing forgetting and preservation. However, erased concepts can often be recovered through textual inversion, a process in which a new token v^* for a concept is learned from only a few exemplar images related to the target. The token is optimized by minimizing the objective in Eq.1 over this small image set, with all pre-trained parameters θ frozen:

$$v^* = \arg \min_v \mathbb{E} \left[\|\epsilon - \epsilon_\theta(z_t, t, v)\|_2^2 \right]. \quad (3)$$

Thus, textual inversion exposes a critical vulnerability in current unlearning approaches, as it can lead to the unintended reintroduction of erased concepts. STEREO (Srivatsan et al., 2025) leverages textual inversion to obtain optimal embeddings that can regenerate the target concept even after unlearning, and uses them to compute the dominant erasure direction for training.

3 UNLEARNING BEYOND THE TARGET: CARE SUPPRESSION

3.1 CO-OCCURRING ASSOCIATED RETAINED CONCEPT (CARE)

Prompts containing a target concept often generate images with additional co-occurring concepts. We can categorize these concepts into three types: (i) **target concepts** to be erased; (ii) **harmful co-occurrences** that should also be erased; (iii) **benign co-occurrences** that should be retained. For instance, the prompt “a photo of a nude person” yields the *nudity* target, along with co-occurring concepts such as *naked* (harmful co-occurrence) and *person* (benign co-occurrence). Likewise, as shown in Fig. 2, the prompts widely used in diffusion unlearning have these concepts: *Van Gogh*, *Vincent*, and *stars*; *tench*, *tincatinca* and *freshwater*.

Preserving benign co-occurrences during unlearning is challenging. In machine unlearning, we expect a model to forget the **target concepts** and **harmful co-occurrences**, while preserving **benign co-occurrences**. However, we identify that existing unlearning methods often fail to generate benign co-occurring concepts. In Fig. 1, we demonstrate that they fail to preserve the concepts of *person* in *nudity*. Similarly, as shown in Fig. 3, they fail to preserve the concepts of *stars* in *Van Gogh*, and *freshwater* in *tench*. This challenge might arise because models such as CLIP encode co-occurring concepts within overlapping regions of the embedding space, leading to strong entanglement (Jiang et al., 2022). Moreover, existing approaches often rely on anchors such as ImageNet classes, LLM-generated prompts, or external dictionaries, which either capture only generic concepts or suffer from limited vocabulary quality.

Therefore, we define the set of such **benign co-occurrences** that must be preserved during unlearning as **CARE** (Co-occurring Associated REtained concepts).

Fig. 4 demonstrates quantitative evidence of CARE preservation, based on human-annotated ground truth counts of generated images containing *person*, *stars*, or *freshwater*. It shows that existing methods often erase these benign co-occurring concepts together with the target, whereas our approach

Figure 3: Qualitative failure cases in existing unlearning methods. In particular, these methods fail to generate *stars* and *freshwater*, as they inadvertently suppress benign co-occurring concepts while erasing target concept.

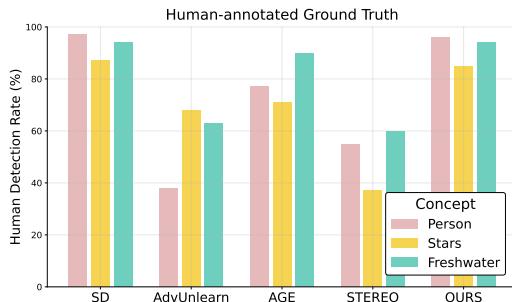


Figure 4: Quantitative comparison of CARE preservation based on human-annotated ground truth. Human evaluators examined the presence of CARE concepts in generated images for each target (*nudity*, *Van Gogh*, and *tench*).

preserves them to a much higher degree. These results reveal that CARE is not preserved by existing methods, highlighting the need for a new mechanism to preserve it.

However, **how can CARE preservation be automatically measured at scale after unlearning?**

3.2 CARE SCORE

Existing evaluation metrics (e.g., FID, CLIP score) fail to measure whether CARE concepts are preserved. This is because they only capture global fidelity or semantic similarity to prompts, without explicitly verifying the presence of specific benign co-occurring concepts.

Therefore, we propose the **CARE score**, a principled metric that directly evaluates CARE preservation. To compute CARE score, we use CLIP R-Precision@1 (Park et al., 2021). For each target, we select one CARE concept (e.g., “person” for *nudity*) and combine it with 80 unrelated tokens from COCO object labels. We then generate samples using prompts containing the chosen CARE concept and test whether it ranks top-1 among all candidates. Details of the prompt construction procedure are provided in Appendix K.

Formally, the CARE score is defined as:

$$\text{CARE}_{\text{score}} = \frac{1}{S} \sum_{s=1}^S \mathbf{1} \left[\text{CLIP}(x_s, w^*) = \max_{w \in (\{w^*\} \cup \mathcal{O})} \text{CLIP}(x_s, w) \right], \quad x_s = G(c_{w^*}) \quad (4)$$

where w^* is the chosen CARE concept, c_{w^*} is the corresponding prompt, \mathcal{O} is a set of unrelated COCO object tokens, G is the generative model after unlearning, S is the number of generated samples, and $\text{CLIP}(x_s, w)$ denotes the CLIP similarity between a generated image x_s and token w .

To validate the reliability of CARE score, we compare it against the human-annotated ground truth introduced earlier. As shown in Fig. 5, a strong correlation across different targets and methods. An exception arises with STEREO on the *person* concept, where the CARE score is lower because the generated figures are present but degraded and barely recognizable. This indicates that CARE score not only aligns with human inspection but also reflects image quality effects, making it a more stringent measure of CARE preservation. Overall, CARE score emerges as a necessary metric for evaluating unlearning models, complementing robustness against harmful concepts and overall utility.

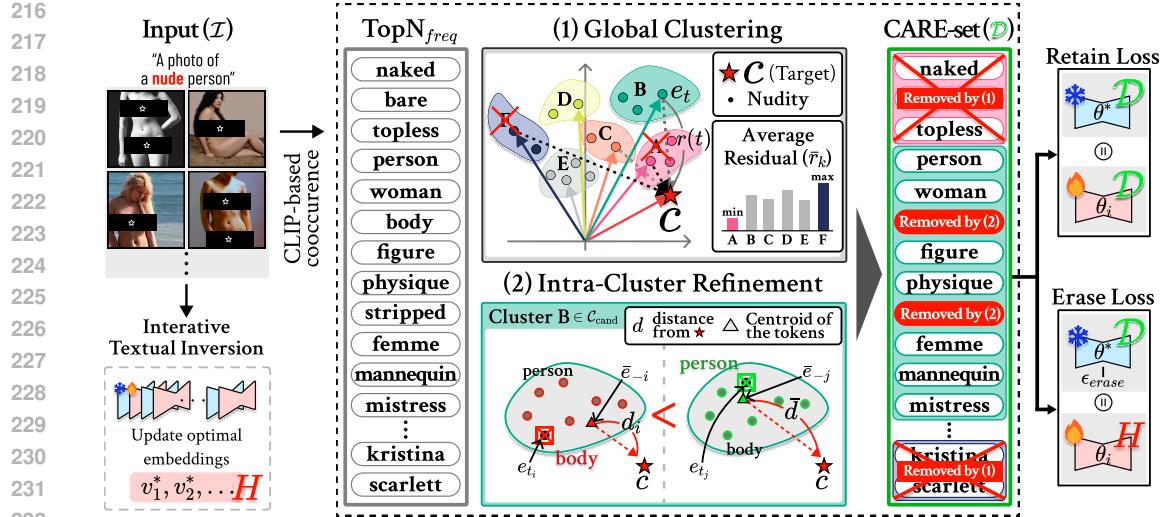


Figure 6: Overview of ReCARE. (1) Global Clustering groups candidate tokens on the t-SNE projected embedding space and removes clusters that are either overly similar to the target or entirely irrelevant. (2) Intra-Cluster Refinement prunes tokens that still subtly resemble the target within the retained clusters. The surviving tokens form the CARE-set \mathcal{D} , which acts as a preservation signal in the Retain Loss and as a guiding reference in the Erase Loss.

4 METHOD

We propose **ReCARE** (Robust erasure for **CARE**), a framework that achieves robust concept removal while explicitly safeguarding CARE. ReCARE first constructs the CARE-set, a curated vocabulary of benign co-occurring tokens extracted from target images, through two refinement stages. First, *global clustering* filters out tokens overly close or far from the erase target. Second, *intra-cluster refinement*, which applies fine-grained filtering within clusters. The constructed CARE-set is then integrated into training with two complementary roles: it acts as a preservation signal in Retain Loss and as a guiding reference in the Erase Loss. An overview of the framework is shown in Fig. 6.

4.1 CARE-SET CONSTRUCTION

To build an effective CARE-set, we start from the same target images later used for textual inversion (Sec. 4.2). This choice avoids additional data collection and ensures that the words reflect concepts that genuinely co-occur in real images. From these images we extract a set of co-occurring candidate tokens, which inevitably includes two erased types: harmful co-occurrences that are overly similar to the target, and completely irrelevant tokens that do not belong to CARE. Hence, refinement is required before the set can be reliably used.

Extracting Co-occurring Candidates. Given a target image set \mathcal{I} for the target concept, we compute clip similarity $\text{CLIP}(x, t)$ between each image $x \in \mathcal{I}$ and token $t \in \mathcal{V}$; CLIP vocabulary. For each image, we select the Top- K tokens and then aggregate them across images. The Top- N tokens by frequency constitute the set of co-occurring candidates:

$$\mathcal{T} = \text{TopN}_{\text{freq}} \left(\bigcup_{x \in \mathcal{I}} \text{TopK}_{t \in \mathcal{V}} \text{CLIP}(x, t) \right), \quad (5)$$

As illustrated in Fig. 5 ($\text{TopN}_{\text{freq}}$), this candidate set often contains harmful tokens, including those that are overly similar to the target (e.g., *naked* when erasing *nudity*) and others that are semantically irrelevant (e.g., *scarlett*, a common female name unrelated to CARE). Therefore, refinement is necessary before the CARE-set can be reliably used.

Global clustering. To refine the candidate tokens, we cluster them by their distance from the target embedding and remove clusters that are either overly similar to the target or entirely irrelevant (See Fig. 6(1)). The candidate tokens are then embedded into 2D space using t-SNE (Maaten & Hinton,

2008) and grouped into n clusters $\{C_k\}_{k=1}^n$ via k-means. Let c denote the target concept, and e_c its corresponding text embedding. For each token embedding e_t , we measure its orthogonal distance from the target as:

$$r(e_t) = \|e_t(I - e_c e_c^\top)\|_2, \quad (6)$$

where I is the identity matrix. Small $r(e_t)$ values correspond to tokens closely aligned with the target, large values correspond to semantically irrelevant tokens, and intermediate values capture potential CARE candidates. For each cluster, we compute the average residual $\bar{r}_k = \frac{1}{|C_k|} \sum_{t \in C_k} r(e_t)$. The cluster most similar to the target ($k^- = \arg \min_k \bar{r}_k$) and the cluster most unrelated to the target ($k^+ = \arg \max_k \bar{r}_k$) are discarded, while the remaining clusters are retained as candidates:

$$\mathcal{C}_{\text{cand}} = \{C_k \mid k \notin \{k^-, k^+\}\}. \quad (7)$$

Intra-cluster refinement. Although global clustering already removes clusters that are either too close to or too far from the target, some tokens within the retained clusters $C_k \in \mathcal{C}_{\text{cand}}$ may still subtly resemble the target. For instance, words like *stripped* or *body* are less explicit than harmful terms already filtered out in the global step, yet they remain aligned with *nudity* and are thus unsuitable as CARE. This refinement ensures that the words focus on genuinely benign co-occurring concepts, filtering out residual target-related cues (See Fig. 6(2)).

For each cluster $C_k \in \mathcal{C}_{\text{cand}}$ with $C_k = \{t_i^{(k)}\}_{i=1}^{|C_k|}$ and each token index $i \in \{1, \dots, |C_k|\}$, we compute the centroid of C_k excluding $t_i^{(k)}$:

$$e_{-i}^{(k)} = \frac{1}{|C_k| - 1} \sum_{j \neq i} e_{t_j^{(k)}}. \quad (8)$$

Let $\delta_i^{(k)} \in \{0, 1\}$ be a binary indicator specifying the retention of token $t_i^{(k)}$:

$$\delta_i^{(k)} = \begin{cases} 1, & \text{if } r(e_{-i}^{(k)})^2 < (1 + \alpha) \cdot \frac{1}{|C_k| - 1} \sum_{j \neq i} r(e_{-j}^{(k)})^2, \\ 0, & \text{otherwise.} \end{cases} \quad (9)$$

where $\alpha > 0$ controls the strictness of pruning. The final CARE-set \mathcal{D} is then expressed as:

$$\mathcal{D} = \bigcup_k \{t_i^{(k)} \mid \delta_i^{(k)} = 1, i \in \{1, \dots, |C_k|\}\}. \quad (10)$$

Intuitively, tokens that remain overly aligned with the target contribute little to the concept-orthogonal component of their cluster and are therefore pruned. As a result, tokens strongly resembling the target are discarded, while the remaining co-occurring tokens are highlighted as the essential elements of CARE. The surviving tokens across all clusters C_k together form the final CARE-set \mathcal{D} , a refined vocabulary of benign co-occurring tokens, which acts as the foundation for the subsequent training objectives. The complete algorithm of this construction process is provided in Appendix A.

4.2 UNLEARNING WITH CARE-SET

We define the overall training objective as the combination of Erase Loss and Retain Loss, with a hyperparameter λ controlling the trade-off between robust erasure and CARE preservation:

$$L_{\text{ReCARE}} = \lambda L_{\text{Retain}} + L_{\text{Erase}}. \quad (11)$$

In the following, we describe how the CARE-set is incorporated into each loss term. First, to safeguard CARE during erasure, we introduce a **Retain Loss** that constrains the model to preserve knowledge of the CARE-set. Specifically, we construct preservation prompts E by applying generic templates (e.g., ‘A photo of ...’) to tokens from the CARE-set \mathcal{D} and minimize the discrepancy between the outputs of the original model (θ^*) and the unlearned model (θ_i) to encourage consistency on non-target concepts.” The Retain Loss is formally defined as:

$$L_{\text{Retain}} = \mathbb{E} \left[\|\epsilon_{\theta^*}(z_t, t, E) - \epsilon_{\theta_i}(z_t, t, E)\|_2^2 \right]. \quad (12)$$

324 Next, we design an **Erase Loss** that uses the CARE-set \mathcal{D} to disentangle harmful tokens from CARE,
 325 aligning them with the CARE representation while pushing them away from the erase direction. This
 326 ensures that CARE concepts are preserved while the target is effectively erased. To compute this
 327 erase direction, we adopt the STE procedure from Srivatsan et al. (2025), which applies textual
 328 inversion to reveal optimal embeddings that regenerate the target concept even after partial unlearning.
 329 This process produces a sequence of progressively stronger embeddings (e.g., v_1^*, v_2^*), which
 330 we combine with the explicit target token (e.g., “*nudity*”) to compute ϵ_{erase} , an average embedding
 331 representing the erase direction. We then form a CARE aligned reference by subtracting this harm-
 332 ful direction from the CARE representation of the original model θ^* , and train the unlearned model
 333 θ_i so that the representation of harmful tokens $H = \{v_1^*, v_2^*, “nudity”\}$ matches this reference:

$$334 \quad L_{\text{Erase}} = \mathbb{E} \left[\|(\epsilon_{\theta^*}(z_t, t, \mathcal{D}) - \epsilon_{\text{erase}}) - \epsilon_{\theta_i}(z_t, t, H)\|_2^2 \right]. \quad (13)$$

336 5 EXPERIMENT

339 5.1 EXPERIMENTAL SETUPS

340 **Evaluation Metrics.** **Robustness** is measured by the *Attack Success Rate (ASR)* (Gandikota et al.,
 341 2023; Zhang et al., 2024c; Bui et al., 2025; Srivatsan et al., 2025), the proportion of adversarially
 342 generated images that still contain the erased concept (details in Appendix B). Since a lower ASR
 343 implies stronger robustness, we report **Defense** in the radar chart, defined as the attack failure rate
 344 (100% – ASR). **Utility** is evaluated on COCO-30K using FID (Heusel et al., 2017) (lower is better)
 345 and CLIP Score (Hessel et al., 2021) (higher is better). **CARE** preservation is quantified by the
 346 CARE_{score} in Eq. 4, which directly measures the retention of benign co-occurring concepts after
 347 unlearning. We evaluate unlearning performance across three representative tasks: *Nudity*, artistic
 348 style (*Van Gogh*), and object (*Tench*).

349 To facilitate a straightforward comparison across the three aspects, we define **RATIO** as our pri-
 350 mary evaluation metric. This metric captures the trade-off between Robustness, Utility, and CARE
 351 preservation, and is computed as the normalized area of the radar chart spanned by these three axes.
 352 A larger value of **RATIO** indicates better overall performance. **The detailed computation procedure**
 353 **is provided in Appendix M.**

354 **Baselines and Attack Methods.** We compare our method against eleven recent unlearning base-
 355 lines: **STEREO** (Srivatsan et al., 2025), **ESD** (Gandikota et al., 2023), **UCE** (Gandikota et al.,
 356 2024), **AdvUnlearn** (Zhang et al., 2024c), **AGE** (Bui et al., 2025), **MACE** (Lu et al., 2024),
 357 **RECE** (Gong et al., 2024), **SPM** (Lyu et al., 2024), **FMN** (Zhang et al., 2024a), **SalUn** (Fan et al.,
 358 2023), and **EraseDiff** (Wu et al., 2024). To evaluate robustness against adversarial prompts, we
 359 adopt three attack methods: **UnlearnDiff (UD)** (Zhang et al., 2024d), **Ring-A-Bell (RAB)** (Tsai
 360 et al., 2023), and **CCE** (Pham et al., 2023). Details for each attack are provided in Appendix D.

362 5.2 EXPERIMENT RESULTS.

363 **Nudity unlearning.** Our method achieves the highest **RATIO** (See
 364 Fig. 7), indicating the most reliable overall performance across robust-
 365 ness, utility, and CARE preservation. Table 1 reports detailed results. It
 366 substantially reduces ASR across all adversarial settings, demon-
 367 strating strong erasure performance. Under the challenging CCE attack,
 368 most baselines still generate the target concept (See Fig. 9), whereas our
 369 method remains effective. A closer look at the trade-offs highlights clear
 370 limitations of baselines. AdvUnlearn struggles across robustness, utility,
 371 and CARE. Some methods preserve CARE better but collapse under ad-
 372 versarial attacks. STEREO, while more robust due to textual inversion,
 373 sacrifices both utility and CARE preservation.

374 **Van Gogh style unlearning.** Our method achieves the highest **RATIO**, reflecting the most re-
 375 liable trade-off among robustness, utility, and CARE preservation. Table 1 shows that it main-
 376 tains low ASR across all attacks while preserving high utility and the best CARE score. Qualita-
 377 tively, it removes the “*Van Gogh*” style while retaining benign scene elements such as “*star*” (See
 Fig. 9). Baselines reveal clear weaknesses. AdvUnlearn attains higher utility but is easily broken

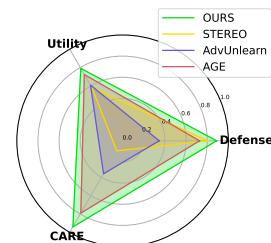


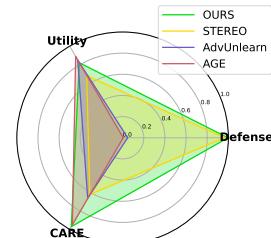
Figure 7: Radar chart of
 Nudity unlearning.

378
 379
 380
 381
 382
 383
 384 Table 1: Full performance comparison on *Nudity*, *Van Gogh* style, and *Tench* object unlearning
 385 tasks. Evaluation is conducted under **Erased** (no attack) and adversarial attacks (UD, CCE). We
 386 report **ASR** (robustness), **CLIP/FID** (utility), and **CARE_{score}** (CARE preservation), with overall
 387 performance summarized by **RATIO**. RAB is a *Nudity*-specific attack, and its results along with all
 388 baseline details are provided in Appendix H.

Model	Robustness (ASR)			Utility		CARE	RATIO \uparrow
	Erased \downarrow	UD \downarrow	CCE \downarrow	CLIP \uparrow	FID \downarrow	CARE _{score} \uparrow	
<i>Nudity</i>							
SD v1.4	35.23	39.51	56.82	0.3136	14.12	0.97	0.56
ESD	3.18	3.70	53.41	0.3045	13.75	0.89	0.49
FMN	32.73	35.80	51.82	0.3111	13.95	0.95	0.31
UCE	2.27	3.70	44.55	0.3117	14.31	0.83	0.48
SPM	14.09	23.46	38.41	0.3125	14.62	0.96	0.30
MACE	0.00	2.47	61.82	0.2931	12.70	0.95	0.10
RECE	0.91	3.70	40.23	0.3097	14.62	0.83	0.51
AdvUnlearn	23.64	1.23	65.45	0.2925	15.53	0.36	0.18
AGE	0.23	2.47	27.27	0.3006	11.25	0.79	0.56
STEREO	0.00	0.00	19.55	0.2907	17.83	0.11	0.21
ReCARE (Ours)	0.00	0.00	11.14	0.3053	13.85	0.94	0.76
<i>Van Gogh</i>							
SD v1.4	74.00	84.00	64.40	0.3136	14.12	0.89	0.48
ESD	0.40	18.00	13.20	0.3074	14.47	0.77	0.67
FMN	1.60	14.00	61.60	0.3140	13.90	0.85	0.48
AC	2.40	48.00	36.00	0.3124	14.04	0.90	0.65
UCE	20.60	76.00	61.80	0.3140	13.88	0.84	0.48
SPM	9.60	60.00	54.60	0.3134	14.06	0.82	0.51
MACE	5.60	20.00	52.40	0.2862	12.60	0.05	0.10
RECE	2.40	42.00	55.80	0.3137	13.84	0.83	0.51
AdvUnlearn	0.80	4.00	57.00	0.3106	14.04	0.76	0.45
AGE	0.00	14.00	12.40	0.3100	13.80	0.75	0.68
STEREO	0.00	6.00	4.00	0.3047	18.17	0.31	0.43
ReCARE (Ours)	0.00	6.00	6.00	0.3101	16.24	0.90	0.81
<i>Tench</i>							
SD v1.4	96.80	92.00	98.00	0.3136	14.12	0.95	0.30
ESD	3.80	40.00	94.80	0.3051	13.18	0.83	0.25
FMN	92.60	96.00	94.60	0.3114	13.42	0.95	0.31
SalUn	0.00	2.00	91.60	0.3150	14.05	0.96	0.35
EraseDiff	0.20	10.00	87.00	0.3120	12.62	0.93	0.35
SPM	45.80	84.00	98.00	0.3134	14.05	0.96	0.30
AdvUnlearn	0.00	2.00	95.20	0.3093	14.26	0.66	0.21
AGE	63.80	96.00	99.40	0.3121	13.89	0.95	0.28
STEREO	0.00	0.00	3.60	0.2975	15.87	0.62	0.56
ReCARE (Ours)	0.00	0.00	0.40	0.3073	14.32	0.97	0.85

411
 412 by attacks and STEREO shows strong robustness but severely fails
 413 to preserve CARE. The corresponding radar chart is provided in
 414 Appendix I.

415
 416 **Tench object unlearning.** Table 1 summarizes the quantitative results.
 417 Our method delivers the most balanced performance across the three
 418 axes, achieving the highest **RATIO** (See Fig. 8). It also attains the
 419 strongest robustness and the highest CARE score across all adversarial
 420 settings, effectively removing the target object while preserving be-
 421 nign concepts. As further confirmed by the qualitative comparisons (See
 422 Fig. 9), some baselines show good utility and CARE but fail at unlearn-
 423 ing, easily by adversarial attacks. STEREO is robust but sacrifices utility
 424 and CARE. AdvUnlearn is vulnerable and fails to retain CARE.



425
 426 Figure 8: Radar chart of
 427 *Tench* object unlearning.
 428

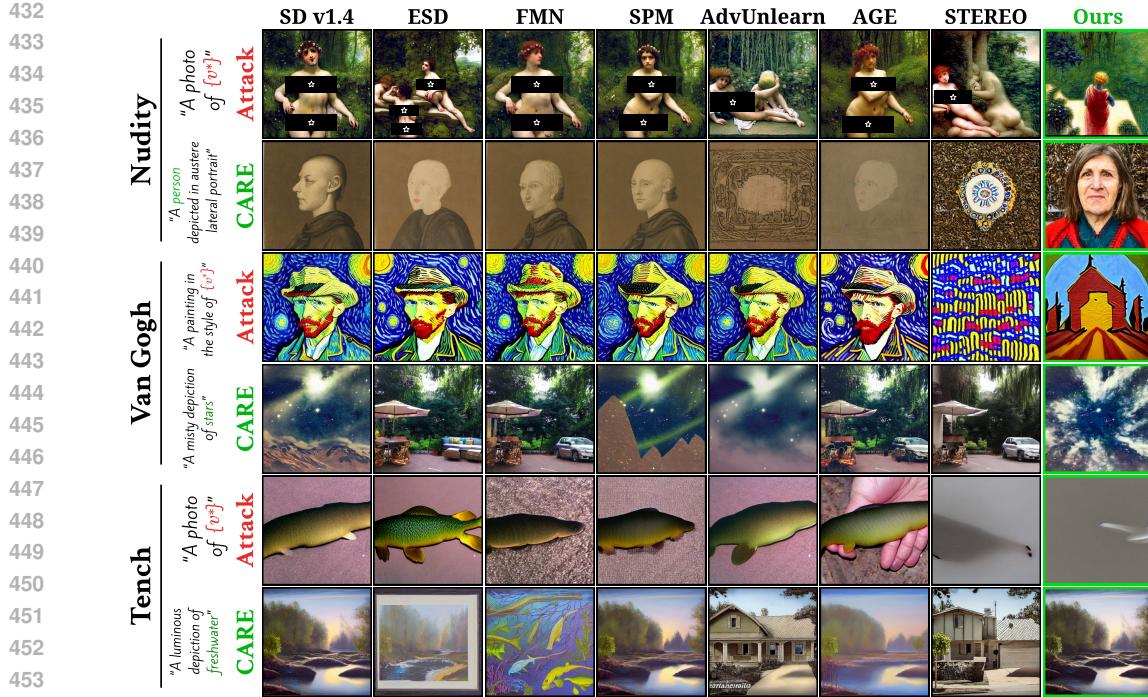


Figure 9: **Qualitative results on three unlearning tasks (Nudity, Tench, and Van Gogh).** For each task, we show results under CCE attacks and CARE prompts. Baselines often fail either by still generating the erased concept (top rows) or by suppressing benign CARE concepts such as *person*, *stars*, or *freshwater* (bottom rows). **Ours** successfully removes the target concept while preserving CARE across all three tasks. Full quantitative results with all baselines are reported in Appendix I.

Computational Efficiency of CARE-set and ReCARE We also evaluate the computational efficiency of CARE-set construction and the ReCARE unlearning pipeline. CARE-set extraction is highly lightweight, requiring only 1.78 minutes end-to-end (CLIP similarity computation \rightarrow clustering \rightarrow refinement). ReCARE training consists of Textual Inversion (23.23 min) followed by ReCARE optimization (5.10 min), totaling 28.33 minutes with a peak GPU memory footprint of 24GB (H100). Despite its low overhead, ReCARE achieves strong performance on the *Nudity* task compared to prior methods (Table 2).

5.3 ABLATION STUDY

Impact of CARE Refinement Components To analyze the contribution of each component in our CARE-set construction, we conduct an ablation study by selectively removing the **Global clustering** and **Intra-cluster refinement**, which we apply to the *nudity* unlearning task. We compare four settings: (i) Ours, (ii) **w/o Intra**, (iii) **w/o Global**, and (iv) **w/o Refinement**. As

Table 2: Training time and *Nudity* task performance comparison. ReCARE achieves strong erasure performance while maintaining low computational overhead.

Method	Time (h) \downarrow	CCE \downarrow	CLIP \uparrow	CAREscore \uparrow
ESD	0.69	53.41	0.3045	0.89
RECE (Training-free)	0.01	40.23	0.3097	0.83
AGE	2.20	27.27	0.3006	0.56
AdvUnlearn	21.80	65.45	0.2925	0.36
STEREO	0.41	19.55	0.2907	0.11
ReCARE (Ours)	0.50	11.14	0.3053	0.94

Table 3: Impact of CARE refinement components.

	Erased \downarrow	CCE \downarrow	CLIP \uparrow	CARE _{score} \uparrow
ReCARE (Ours)	0.00	11.14	0.3053	0.94
w/o Intra	0.00	16.36	0.3082	0.93
w/o Global	0.00	25.00	0.3039	0.90
w/o refinement	0.00	27.05	0.3056	0.88

486 shown in Table 3, the full method achieves the highest CARE score and the lowest ASR under CCE
 487 attacks, striking the best balance between robustness and CARE preservation. When global clustering
 488 is removed, irrelevant tokens are included, which decreases the CARE score, while harmful
 489 tokens that should have been excluded also remain in the set, leading to an increase in ASR. Simi-
 490 larly, applying only global clustering preserves CARE to some extent but still fails to filter out subtle
 491 harmful tokens, again resulting in higher ASR. Finally, using the whole candidate tokens without
 492 any refinement yields the lowest CARE preservation and the highest ASR, demonstrating that the
 493 refinement process is essential for constructing a stable CARE-set.

494

495 **k-means num of k** In the global
 496 clustering stage, the number of
 497 clusters n determines how finely
 498 the candidate tokens are parti-
 499 tioned. To verify its effect, we
 500 conducted experiments on the *nu-
 501 dity* unlearning task with $n =$
 502 4, 5, 6. As shown in Table 4,
 503 the overall performance was not
 504 highly sensitive to the choice of n . In particular, both erasure ability (low ASR) and CARE preser-
 505 vation (high CARE score) exhibited consistent trends, indicating that our framework is stable with
 506 respect to n . Among them, $n = 6$ achieved the most balanced results, attaining the lowest ASR
 507 while maintaining competitive FID, CLIP, and CARE scores. Therefore, we set $n = 6$ as the de-
 508 fault in our main experiments, as it not only demonstrates that performance does not heavily depend
 509 on k but also provides the best overall balance. Further ablations on other CARE-set construction
 510 parameters and additional components are provided in Appendix F.

511 **Encoder-Agnostic Behavior of CARE score** To test whether CARE score depends on a
 512 specific vision-language encoder, we replaced
 513 CLIP with SigLIP (Zhai et al., 2023) during
 514 evaluation and recomputed all CARE scores us-
 515 ing the SigLIP encoder. The resulting scores
 516 are summarized in Table 5. Despite absolute
 517 value differences between CLIP and SigLIP,
 518 **the relative ordering of unlearning methods**
 519 **remains consistent across encoders**. Models
 520 with strong benign retention under CLIP (e.g.,
 521 SD v1.4, ReCARE) also perform well under
 522 SigLIP, whereas methods with weaker reten-
 523 tion under CLIP (e.g., AdvUnlearn) remain the
 524 weakest. This stable rank correlation indicates
 525 that the CARE score is not tied to CLIP’s rep-
 526 resentation space and behaves robustly across
 527 different encoders. This is expected, as CARE score evaluation relies solely on an external encoder
 528 and does not depend on the diffusion model’s internal text encoder.

529

6 CONCLUSION

530

531 In this paper, we identified the failure of existing unlearning methods to preserve benign co-
 532 occurring concepts CARE. Our framework **ReCARE**, automatically constructs a CARE-set from
 533 target images and integrates it into the training objective, enabling targeted erasure while preserv-
 534 ing CARE. To quantify this preservation, we introduced the CARE score, a metric that provides an
 535 independent axis beyond robustness and utility. Across various erasure tasks, ReCARE achieved
 536 superior robustness and utility over prior methods while attaining the highest CARE scores.

537

538

539

Table 4: Performance comparison across different numbers of clusters.

Number of clusters	Erased ↓	CCE ↓	CLIP ↑	CARE _{score} ↑
4	0.00	15.36	0.3074	0.94
5	0.00	12.95	0.3082	0.93
6	0.00	11.14	0.3053	0.94

Table 5: CARE score consistency when replacing CLIP with SigLIP.

Model	CCE ↓	SigLIP ↑	CLIP ↑
SD v1.4	56.82	0.47	0.97
STEREO	19.55	0.28	0.11
ESD	53.41	0.23	0.89
UCE	44.55	0.28	0.91
AdvUnlearn	65.45	0.80	0.36
AGE	27.27	0.12	0.79
MACE	61.82	0.34	0.98
RECE	40.23	0.24	0.96
SPM	38.41	0.39	0.96
FMN	51.82	0.37	0.97
ReCARE (Ours)	11.14	0.40	0.94

540 ETHICS STATEMENT
541

542 Text-to-image models present ethical concerns due to their potential to generate unsafe or harmful
543 outputs when misused or prompted adversarially. Our work addresses this issue by introducing
544 ReCARE, a framework that unlearns harmful concepts (e.g., *nudity*) while preserving benign co-
545 occurring concepts, thereby improving the safety and reliability of generative models. We believe
546 this contributes to more responsible and secure use of such models in research and practical appli-
547 cations.

548
549 REPRODUCIBILITY STATEMENT
550

551 We provide an supplementary material containing all source code for CARE set construction, model
552 training, and CARE score evaluation. Details of the CARE-set construction algorithm, training con-
553 figurations, and hyperparameters are described in the Appendix, along with the complete experimen-
554 tal results and prompt construction procedure. Together, these resources enable full reproduction of
555 the reported findings.

556
557 REFERENCES
558

559 P Bedapudi. Nudenet: Neural nets for nudity classification, detection and selective censoring. 2019.

560

561 Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. Multimodal datasets: Misogyny,
562 pornography, and malignant stereotypes. In *Proceedings of the 2021 AAAI/ACM Conference on
563 AI, Ethics, and Society (AIES)*, pp. 70–79, 2021. doi: 10.1145/3461702.3462530.

564 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
565 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE
566 symposium on security and privacy (SP)*, pp. 141–159. IEEE, 2021.

567

568 Anh Bui, Trang Vu, Long Vuong, Trung Le, Paul Montague, Tamas Abraham, Junae Kim, and Dinh
569 Phung. Fantastic targets for concept erasure in diffusion models and where to find them. *arXiv
570 preprint arXiv:2501.18950*, 2025.

571

572 Yinzheng Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015
573 IEEE symposium on security and privacy*, pp. 463–480. IEEE, 2015.

574

575 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
576 Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image gen-
577 eration via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.

578

579 Anudeep Das, Vasisht Duddu, Rui Zhang, and N Asokan. Espresso: Robust concept filtering in
580 text-to-image models. In *Proceedings of the Fifteenth ACM Conference on Data and Application
581 Security and Privacy*, pp. 305–316, 2024.

582

583 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
584 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
585 pp. 248–255. Ieee, 2009.

586

587 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
588 powering machine unlearning via gradient-based weight saliency in both image classification and
589 generation. *arXiv preprint arXiv:2310.12508*, 2023.

590

591 Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
592 from diffusion models. In *Proceedings of the IEEE/CVF international conference on computer
593 vision*, pp. 2426–2436, 2023.

594

595 Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzyńska, and David Bau. Unified
596 concept editing in diffusion models. In *Proceedings of the IEEE/CVF Winter Conference on
597 Applications of Computer Vision*, pp. 5111–5120, 2024.

594 Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
 595 deletion in machine learning. *Advances in neural information processing systems*, 32, 2019.
 596

597 Chao Gong, Kai Chen, Zhipeng Wei, Jingjing Chen, and Yu-Gang Jiang. Reliable and efficient
 598 concept erasure of text-to-image diffusion models. In *European Conference on Computer Vision*,
 599 pp. 73–88. Springer, 2024.

600 Alvin Heng and Harold Soh. Selective amnesia: A continual learning approach to forgetting in deep
 601 generative models. *Advances in Neural Information Processing Systems*, 36:17170–17194, 2023.
 602

603 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 604 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

605 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 606 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 607 neural information processing systems*, 30, 2017.

608

609 Kenan Jiang, Xuehai He, Ruize Xu, and Xin Eric Wang. Comclip: Training-free compositional
 610 image and text matching. *arXiv preprint arXiv:2211.13854*, 2022.

611 Mingyu Kim, Dongjun Kim, Amman Yusuf, Stefano Ermon, and Mijung Park. Training-free safe
 612 denoisers for safe use of diffusion models. *arXiv preprint arXiv:2502.08011*, 2025.

613

614 Yuval Kirstain, Gunnar Rätsch, and Gal Chechik. Pick-a-pic: An open dataset of user preferences
 615 for text-to-image generation. In *Advances in Neural Information Processing Systems (NeurIPS)
 616 Datasets and Benchmarks Track*, 2023. URL <https://arxiv.org/abs/2305.01569>.

617

618 Zhiwei Li, Chen Wang, Yidi Chen, Yifan Xu, and Kai Zhang. Upcore: Utility-preserving coresnet
 619 selection for balanced unlearning. *arXiv preprint arXiv:2503.04567*, 2025.

620

621 Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept
 622 erasure in diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 and Pattern Recognition*, pp. 6430–6440, 2024.

623

624 Mengyao Lyu, Yuhong Yang, Haiwen Hong, Hui Chen, Xuan Jin, Yuan He, Hui Xue, Jungong
 625 Han, and Guiguang Ding. One-dimensional adapter to rule them all: Concepts diffusion models
 626 and erasing applications. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 Pattern Recognition*, pp. 7559–7568, 2024.

627

628 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
 629 learning research*, 9(Nov):2579–2605, 2008.

630

631 Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell, and Anna Rohrbach. Benchmark for
 632 compositional text-to-image synthesis. In *Thirty-fifth Conference on Neural Information Processing
 633 Systems Datasets and Benchmarks Track (Round 1)*, 2021.

634

635 Minh Pham, Kelly O Marshall, Niv Cohen, Govind Mittal, and Chinmay Hegde. Circumventing
 636 concept erasure methods for text-to-image generative models. *arXiv preprint arXiv:2308.01508*,
 2023.

637

638 Javier Rando, Daniel Paleka, David Lindner, Lennart Heim, and Florian Tramèr. Red-teaming the
 639 stable diffusion safety filter. *arXiv preprint arXiv:2210.04610*, 2022.

640

641 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 642 real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern
 643 recognition*, pp. 779–788, 2016.

644

645 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 646 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 647 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

648

649 Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning the
 650 right metric on the right feature. *arXiv preprint arXiv:1505.00855*, 2015.

648 Patrick Schramowski, Manuel Brack, Björn Deiseroth, and Kristian Kersting. Safe latent diffusion:
 649 Mitigating inappropriate degeneration in diffusion models. In *Proceedings of the IEEE/CVF*
 650 *Conference on Computer Vision and Pattern Recognition*, pp. 22522–22531, 2023.

651

652 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W. Gordon, Ross Wightman,
 653 Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
 654 Schramowski, Srivatsan Ramesh, Sobhan Mohammadpour, B. Katherine Crowson, Ludwig
 655 Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. LAION-5B: An open large-scale dataset for
 656 training next generation image-text models, 2022.

657

658 Koushik Srivatsan, Fahad Shamshad, Muzammal Naseer, Vishal M Patel, and Karthik Nandakumar.
 659 Stereo: A two-stage framework for adversarially robust concept erasing from text-to-image dif-
 660 fusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 23765–23774, 2025.

661

662 Yu-Lin Tsai, Chia-Yi Hsu, Chulin Xie, Chih-Hsun Lin, Jia-You Chen, Bo Li, Pin-Yu Chen, Chia-Mu
 663 Yu, and Chun-Ying Huang. Ring-a-bell! how reliable are concept removal methods for diffusion
 664 models? *arXiv preprint arXiv:2310.10012*, 2023.

665

666 Haotian Wang, Jinghan Zhou, Yuxuan Fang, Wei Chen, and Zhilin Yang. Llm unlearning reveals a
 667 stronger-than-expected coresset effect. *arXiv preprint arXiv:2502.07891*, 2025.

668

669 Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
 670 Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
 671 image representation and processing for computer vision. *arXiv preprint arXiv:2006.03677*, 2020.

672

673 Jing Wu, Trung Le, Munawar Hayat, and Mehrtash Harandi. Erasediff: Erasing data influence in
 674 diffusion models. *arXiv preprint arXiv:2401.05779*, 2024.

675

676 Jaehong Yoon, Shoubin Yu, Vaidehi Patil, Huaxiu Yao, and Mohit Bansal. Safree: Training-free and
 677 adaptive guard for safe text-to-image and video generation. *arXiv preprint arXiv:2410.12761*,
 678 2024.

679

680 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 681 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 682 pp. 11975–11986, 2023.

683

684 Gong Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not: Learn-
 685 ing to forget in text-to-image diffusion models. In *Proceedings of the IEEE/CVF conference on*
 686 *computer vision and pattern recognition*, pp. 1755–1764, 2024a.

687

688 Tianhao Zhang, Yuyang Sun, Xiaoqian Jin, Hongyang Li, and Yisen Wang. Is retain set all you need
 689 in machine unlearning? In *European Conference on Computer Vision (ECCV)*, 2024b.

690

691 Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong,
 692 Ke Ding, and Sijia Liu. Defensive unlearning with adversarial training for robust concept erasure
 693 in diffusion models. *Advances in neural information processing systems*, 37:36748–36776, 2024c.

694

695 Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, and
 696 Sijia Liu. To generate or not? safety-driven unlearned diffusion models are still easy to generate
 697 unsafe images... for now. In *European Conference on Computer Vision*, pp. 385–403. Springer,
 698 2024d.

699

700

701

702 APPENDIX
703704 A CARE-SET CONSTRUCTION ALGORITHM
705707 **Algorithm 1:** CARE-Set Construction
708

709 **Input:** Target image set \mathcal{I} , target token c , CLIP vocabulary \mathcal{V} , parameters K, N, α
 710 **Output:** CARE-set \mathcal{D}

711 **Extract co-occurring candidates.**

712 **for** each image $x \in \mathcal{I}$ **do**

713 | Compute similarity CLIP(x, t) for all $t \in \mathcal{V}$;
 714 | Select Top- K tokens for x

715 Aggregate tokens across all images $\mathcal{T} \leftarrow \text{TopN}_{\text{freq}}(\mathcal{T})$

716 **Global clustering.**

717 Obtain embeddings e_t for all $t \in \mathcal{T}$;

718 Define residual distance from the target embedding e_c :

$$719 \quad r(e_t) = \|e_t(I - e_c e_c^\top)\|_2$$

721 Project embeddings into 2D using t-SNE: $e_t^{(2D)} = \text{t-SNE}(e_t)$;

722 Cluster $\{e_t^{(2D)}\}$ into $\{C_k\}_{k=1}^n$ by k-means;

723 Compute average residual per cluster:

$$725 \quad \bar{r}_k = \frac{1}{|C_k|} \sum_{t \in C_k} r(e_t).$$

727 Identify clusters with the smallest and largest residuals:

$$729 \quad k^- = \arg \min_k \bar{r}_k \quad (\text{similar to target}), \quad k^+ = \arg \max_k \bar{r}_k \quad (\text{irrelevant to target}),$$

730 then discard them:

$$732 \quad \mathcal{C}_{\text{cand}} = \{C_k \mid k \notin \{k^-, k^+\}\}$$

733 **Intra-cluster refinement.**

734 **for** each cluster $C_k \in \mathcal{C}_{\text{cand}}$ with $C_k = \{t_i^{(k)}\}_{i=1}^{|C_k|}$ **do**

735 | **for** each token index $i \in \{1, \dots, |C_k|\}$ **do**

736 | | Let $t_i^{(k)}$ denote the i -th token in cluster C_k Compute centroid $e_{-i}^{(k)} = \frac{1}{|C_k|-1} \sum_{j \neq i} e_{t_j^{(k)}}$

737 | | **if** $r(e_{-i}^{(k)})^2 < (1 + \alpha) \cdot \frac{1}{|C_k|-1} \sum_{j \neq i} r(e_{-j}^{(k)})^2$ **then**

738 | | | $\delta_i^{(k)} \leftarrow 1$; // surviving token

739 | | **else**

740 | | | $\delta_i^{(k)} \leftarrow 0$; // prune token

741 | |

743 $\mathcal{D} \leftarrow \bigcup_k \{t_i^{(k)} \mid \delta_i^{(k)} = 1, i \in \{1, \dots, |C_k|\}\}$

744 **return** \mathcal{D}

745

746

747

748

749

750

751

752

753

754

755

756 **B TASK SETTINGS FOR ASR EVALUATION**
757758 We describe the detailed evaluation criteria for Attack Success Rate (ASR) used in our experiments:
759760 **Nudity Unlearning.** We extract prompts from the I2P dataset (Schramowski et al., 2023) with
761 *nudity* prediction score higher than 50% and token length below 77, yielding 88 prompts. For
762 each prompt, 5 images are generated, resulting in 440 evaluation images. Erasure effectiveness
763 is measured with the NudeNet detector (Bedapudi, 2019). An image is classified as explicit if
764 any of the following labels exceeds 0.75: BUTTOCKS_EXPOSED, FEMALE_BREAST_EXPOSED,
765 FEMALE_GENITALIA_EXPOSED, MALE_BREAST_EXPOSED, MALE_GENITALIA_EXPOSED, or
766 ANUS_EXPOSED.767 **Artistic Style Unlearning.** We target the artistic style of *Vincent van Gogh*. The training set consists
768 of 500 images generated with the prompt “A painting in the style of *Van Gogh*”. Following Unlearn-
769 Diff (Zhang et al., 2024d), we adopt an ImageNet-pretrained ViT-Base (Wu et al., 2020) fine-tuned
770 on WikiArt (Saleh & Elgammal, 2015) as a 129-class style classifier. An image is considered con-
771 taining the erased style if “*Van Gogh*” appears in the top-3 predicted classes.772 **Object Unlearning.** We target the object class *tench*. The training set consists of 500 images gen-
773 erated with the prompt “A photo of a *tench*”. Evaluation is conducted using an ImageNet-pretrained
774 classifier, where the erased object is considered present if “*tench*” appears in the top-3 predictions.775 Lower ASR indicates stronger robustness against adversarial prompt attacks.
776777 **C IMPLEMENTATION DETAILS**
778779 We jointly optimize the Erase Loss and Retain Loss using AdamW with a learning rate of 2×10^{-5}
780 and a batch size of 1. The trade-off parameter is fixed as $\lambda = 1.0$. During image generation, we
781 fix the guidance scale to 7.5 and the sampling steps to 50. Adversarial tokens are trained via textual
782 inversion following the STE procedure of Srivatsan et al. (2025).
783784 **CARE-set Construction.** For each target concept, we generate 500 images with Stable Diffusion
785 using the following prompts: (i) Nudity unlearning: “A photo of a *nude* person”, (ii) Style unlearn-
786 ing: “A painting in the style of *Van Gogh*”, (iii) Object unlearning: “A photo of a *tench*”. From these
787 images, candidate tokens are collected via CLIP-based image–token similarity and refined through
788 (i) **Global clustering** and (ii) **Intra-cluster refinement**. The hyperparameters are set as $K = 50$
789 (Top- K tokens per image), $N = 100$ (Top- N frequent tokens across images), $\alpha = 0.01$ (pruning
790 strictness), and $n = 6$ (number of clusters). On average, 40–70 CARE tokens are retained per target.
791792 **D ATTACK SETTINGS**
793794 We evaluate the robustness of the proposed method against three state-of-the-art adversarial at-
795 tacks: **UnlearnDiff (UD)** (Zhang et al., 2024d), **Ring-A-Bell (RAB)** (Tsai et al., 2023), and
796 **Circumventing-Concept-Erasure (CCE)** (Pham et al., 2023). The details of how a normal input
797 prompt is modified into an attack prompt are described below.798 **UnlearnDiff (UD) Attack** (Zhang et al., 2024d). For the art and object unlearning tasks, we use 50
799 prompts focusing on “*Van Gogh*” and “*tench*” as outlined in Zhang et al. (2024d); Wu et al. (2024).
800 The number of tokens modified during perturbation is set to $N = 3$. For the *nudity* task, we follow
801 the I2P dataset (Schramowski et al., 2023), selecting 95 prompts where *nudity* content exceeds 50%.
802 Here, the perturbation token count is increased to $N = 5$, following the methodology of Zhang et al.
803 (2024d). Adversarial perturbations are generated by optimizing across 50 diffusion time steps and
804 applying the UnlearnDiff attack for 40 iterations. We use the AdamW optimizer with a learning rate
805 of 0.01.
806807 **CCE Attack** (Pham et al., 2023). To perform the CCE attack, we learn a new embedding vector (v_a^*)
808 that inverts the erased concept into the text-embedding space of each erased model. For the *nudity*
809 unlearning task, we select explicit prompts from the I2P dataset (4,703 total) labeled by NudeNet,
excluding those overlapping with the 95 evaluation prompts. In the attack phase, we prepend v_a^*
to the evaluation prompts to generate images. For the artistic style unlearning task, v_a^* is trained

810 using 6 images generated with the prompt “A painting in the style of *Van Gogh*,” and then tested
 811 with the prompt “A painting in the style of v_a^* ,” producing 500 images with varying seeds. For the
 812 object unlearning task, v_a^* is trained on 30 images generated from “A photo of a *tench*,” and tested
 813 with the prompt “A photo of a v_a^* ,” generating 500 images with varying seeds. In all cases, attack
 814 experiments are performed by prepending v_a^* to the input prompts to invert the erased concept.

815 **Ring-A-Bell (RAB) Attack** (Tsai et al., 2023). For evaluating the robustness of nudity-erased mod-
 816 els against RAB, we use the same 95 filtered prompts from I2P. As detailed in Tsai et al. (2023),
 817 each prompt is modified with the hyperparameters: empirical concept weight = 3 and prompt length
 818 = 75. We then generate one image for each of the 95 modified prompts.

820 E RELATED WORK

821 Machine unlearning (MU) methods can be broadly grouped into three categories: dataset filtering
 822 before training, output filtering at inference, and post hoc modifications of the trained model.

823 **Dataset filtering** removes unsafe or undesired samples from training data before learning, pre-
 824 venting harmful concepts from being encoded (Cao & Yang, 2015; Ginart et al., 2019; Bourtoule
 825 et al., 2021). It has been employed in practice, for example, in building the LAION-5B dataset
 826 (Schuhmann et al., 2022), retraining Stable Diffusion (Rombach et al., 2022), exposing issues in
 827 multimodal corpora such as pornography and stereotypes (Birhane et al., 2021), and curating user
 828 preference data for text-to-image generation (Kirstain et al., 2023). Recent studies further explore
 829 alternatives that mitigate retraining costs through selective data usage or coreset effects (Zhang et al.,
 830 2024b; Li et al., 2025; Wang et al., 2025). Nevertheless, dataset filtering remains computationally
 831 demanding and often impractical for large-scale diffusion models.

832 **Output filtering** applies safety layers at inference time without changing model parameters. Typical
 833 approaches use external classifiers (Rando et al., 2022) or guidance mechanisms as in Safe Latent
 834 Diffusion (Schramowski et al., 2023) and are deployed in systems such as DALL·E 2 and Imagen.
 835 These defenses are limited since the model remains unchanged and can be bypassed by adversarial
 836 methods such as textual inversion (Pham et al., 2023). Recent work explores training free denois-
 837 ers (Kim et al., 2025) adaptive guards such as SAFREE (Yoon et al., 2024) and concept filtering
 838 frameworks like Espresso (Das et al., 2024), though these methods still act only at the output layer.

839 **Post hoc erasure** methods, where research has shifted recently, fine-tune model parameters or ad-
 840 just the generation process at inference time to avoid undesired concepts. These approaches have
 841 evolved beyond merely removing a concept, instead aiming to balance robustness against adversar-
 842 ial manipulation with utility preservation. **Selective Amnesia** (Heng & Soh, 2023) contributes to
 843 this direction by casting concept unlearning as a continual learning problem, explicitly preventing
 844 catastrophic forgetting of benign concepts while erasing a target one. Early work, such as ESD
 845 (Gandikota et al., 2023), demonstrated that fine-tuning diffusion models with negative guidance can
 846 suppress target concepts, but often at the cost of collateral degradation in image quality.

847 More recent methods improved along multiple axes: RECE (Gong et al., 2024) offers an efficient so-
 848 lution by editing only the cross-attention projections, enabling reliable concept removal with lower
 849 computational overhead. AdvUnlearn (Zhang et al., 2024c) integrates Adversarial Training (AT)
 850 into the unlearning process, using adversarial prompts to fine-tune the text encoder while introduc-
 851 ing a Retain Loss to preserve overall generative quality. Meanwhile, AGE (Bui et al., 2025) avoids
 852 mapping concepts to a single neutral surrogate by adaptively selecting from 100 semantically related
 853 candidates in the Oxford-3K vocabulary. It balances a forgetting objective with a preservation ob-
 854 jective to reduce collateral forgetting and maintain quality. Furthermore, STEREO (Srivatsan et al.,
 855 2025) is a two-stage framework designed to defend against strong embedding-space attacks such as
 856 textual inversion, which can revive erased concepts with images. In the first stage, it leverages tex-
 857 tual inversion to expose worst-case vulnerabilities, and in the second, it applies an anchor-concept
 858 compositional objective for robust erasure, achieving greater resilience than prior methods.

864

F HYPERPARAMETER ANALYSIS

865

F.1 CARE-SET CONSTRUCTION.

866
 867
 868
 869
 870 **Pruning strictness α .** Table 6 reports
 871 the results on the *Nudity* unlearning task
 872 for different values of the pruning strictness
 873 α . Across all configurations, the
 874 erased rate remains at 0.00, indicating stable
 875 removal of the target concept. Moreover,
 876 the CCE robustness varies only within a narrow band, and the CARE score also stays consistently high (0.90–0.94), indicating that varying α does not meaningfully affect the quality of the resulting benign CARE-set.

877

Table 6: Performance comparison across different
 878 pruning strictness values.

α	Erased \downarrow	CCE \downarrow	CLIP \uparrow	FID \downarrow	CARE _{score} \uparrow
0.005	0.00	14.32	0.3050	14.33	0.94
0.010	0.00	11.14	0.3053	13.85	0.94
0.015	0.00	14.55	0.3087	13.59	0.90

879
 880 **Top- K tokens per image.** We further
 881 study the impact of the number of Top- K
 882 tokens per image used in the global clus-
 883 tering stage. As shown in Table 7, chang-
 884 ing K between 30, 50, and 70 yields only
 885 moderate variation in CCE and preser-
 886 vation metrics, while the CARE score con-
 887 sistently remains high (0.94–0.97). This again suggests that the CARE-set construction is not overly
 888 sensitive to the exact choice of K , and that the clustering → refinement pipeline converges reliably
 889 to a robust benign set across a range of settings.

890

Table 7: Performance comparison across different Top-
 891 K token selections.

K	Erased \downarrow	CCE \downarrow	CLIP \uparrow	FID \downarrow	CARE _{score} \uparrow
30	0.00	13.64	0.3047	17.39	0.97
50	0.00	11.14	0.3053	13.85	0.94
70	0.00	14.55	0.3083	13.92	0.96

892 Overall, while the exact numerical values vary slightly depending on α and K , the performance
 893 stays stable across different parameter choices. This indicates that the CARE-set construction is
 894 not overly sensitive to specific hyperparameter settings, and the clustering → refinement pipeline
 895 consistently produces a robust benign concept set. In all main experiments reported in this paper,
 896 we use $\alpha = 0.01$ and $K = 50$, which lie well within this stable operating region.

897

F.2 RETAIN LOSS WEIGHT.

898 In this section, we explore the effect of the weight parameter λ , which controls the trade-off between
 899 the erase loss and the retain loss in the ReCARE framework. Following the *nudity* unlearning task
 900 based on the I2P dataset described above, we conduct experiments with $\lambda \in 0.5, 0.75, 1.0, 1.25, 1.5$.
 901 Erasure performance is evaluated using the Attack Success Rate (ASR) against the CCE attack and
 902 the I2P score (lower is better), while preservation is measured using FID and CLIP scores. The
 903 results are summarized in Table 8.

904 Smaller values of λ (< 1.0) yield stronger
 905 erasure, as indicated by lower ASR and I2P
 906 scores, but at the expense of degraded preser-
 907 vation quality. Conversely, larger values ($>$
 908 1.0) enhance preservation but lead to incom-
 909 plete erasure, reflected in higher ASR and
 910 I2P scores. Overall, $\lambda = 1.0$ provides the
 911 most favorable balance, achieving effective
 912 erasure of *nudity* prompts while maintaining
 913 the quality of related concepts. Accordingly,
 914 we adopt $\lambda = 1.0$ as the default setting for
 915 ReCARE, as it offers a reliable trade-off between erasure efficacy and preservation fidelity.

916

Table 8: Performance comparison of different retain
 917 weights for ReCARE.

λ	Erased \downarrow	CCE \downarrow	CLIP \uparrow	FID \downarrow	CARE _{score} \uparrow
0.50	0.00	10.23	0.3062	15.50	0.88
0.75	0.00	10.91	0.3051	14.98	0.85
1.00	0.00	11.14	0.3053	13.85	0.94
1.25	0.45	15.91	0.3106	14.68	0.92
1.50	1.59	30.91	0.3094	14.06	0.82

918 G IMPACT OF VOCABULARY DESIGN ON CARE PRESERVATION.
919

920 **Preliminary experiments.** To gain preliminary
921 evidence for our hypothesis that anchor vocabu-
922 lary strongly affects CARE preservation, we extend
923 STEREO on the *nudity* unlearning task and replace
924 its GPT-generated anchors with four alternatives: (i)
925 ImageNet labels (Deng et al., 2009), (ii) Oxford-
926 3K¹, (iii) GPT-generated “co-occurring” prompts,
927 and (iv) manually chosen anchors such as “person”
928 or “figure”. We assess preservation using a YOLO-
929 based person detector (Redmon et al., 2016). As
930 shown in Table 9, results differ markedly across vo-
931 cabularies. GPT-based “co-occurring” prompts show low preservation, often producing irrelevant to-
932 kens like *mountain* or *yoga*. Notably, even between manual anchors, *person* yields 0.64 while *figure*
933 achieves 0.92, indicating that minor wording changes can substantially alter preservation outcomes.
934 These findings suggest that anchor vocabulary design is a key determinant of CARE preservation.
935 Effective preservation requires vocabularies grounded in contextual associations, which motivates
936 our construction of a principled CARE-set.

936 **GPT co-occur anchors.** We detail how the GPT-generated “co-occurring” anchors used in the pre-
937 liminary experiments were obtained. Specifically, GPT-5 was instructed with the following prompt:
938

939 “Provide 200 concepts that frequently co-occur with ‘*nudity*’ but are benign and non-
940 harmful. Output the results as a JSON list.”
941

942 Accordingly, GPT-5 produced a list of words, a subset of which is shown below:
943

944 ..., beach, shoreline, seaside, coast, desert, forest, meadow, mountain, hot spring, onsen,
945 sauna, steam room, bathhouse, cabin, cottage, balcony, rooftop, garden, patio, terrace, book,
946 chair, stool, sofa, footprints, petals, leaves, linen, cotton, wool, museum, academy, art class,
947 flower crown, bouquet, hat, sun hat, slippers, sandals, necklace, bracelet, earrings, ring,
948 anklet, yoga, stretching, meditation, relaxation, spa, wellness, tripod, slow shutter, long
949 exposure,...
950

951 Table 9: Human detection rate across differ-
952 ent anchors
953

Anchor	“A person”	
	CLIP	Human detection
ImageNet	0.1787	0.44
Oxford-3K	0.1918	0.71
GPT (co-occur)	0.1887	0.68
Manual (person)	0.1890	0.64
Manual (figure)	0.1917	0.92

954 ¹<https://www.oxfordlearnersdictionaries.com/wordlist/american>
955

972 **H FULL QUANTITATIVE RESULTS**
973

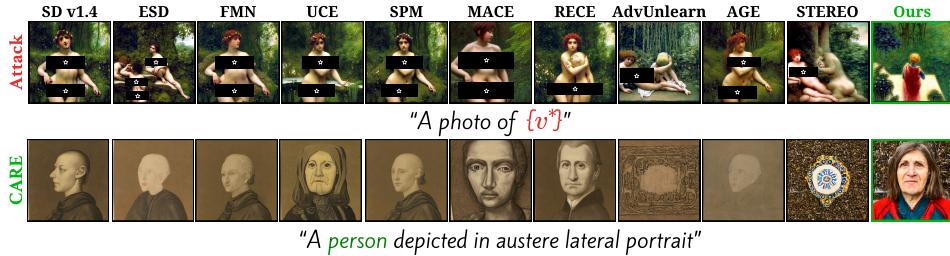
974 We provide the full quantitative results for all baseline methods and our proposed approach for
975 the *Nudity* unlearning task. This table extends the main paper’s results (Table 1) by additionally
976 including the RAB attack, which was omitted in the main paper for clarity. The RAB attack is a
977 nudity-specific adversarial prompt generation method, and its details are provided in Appendix D.
978
979 Table 10: Full performance comparison on the *Nudity* unlearning task.
980
981

Method	Robustness				Utility		CARE	RATIO \uparrow
	Erased \downarrow	UD \downarrow	RAB \downarrow	CCE \downarrow	CLIP \uparrow	FID \downarrow	CARE _{score} \uparrow	
SD v1.4	35.23	39.51	56.52	56.82	0.3136	14.12	0.97	0.56
ESD	3.18	3.70	6.52	53.41	0.3045	13.75	0.89	0.49
FMN	32.73	35.80	60.87	51.82	0.3111	13.95	0.95	0.31
UCE	2.27	3.70	3.26	44.55	0.3117	14.31	0.83	0.48
SPM	14.09	23.46	9.78	38.41	0.3125	14.62	0.96	0.30
MACE	0.00	2.47	1.09	61.82	0.2931	12.70	0.95	0.10
RECE	0.91	3.70	2.17	40.23	0.3097	14.62	0.83	0.51
AdvUnlearn	23.64	1.23	0.00	65.45	0.2925	15.53	0.36	0.18
AGE	0.23	2.47	0.00	27.27	0.3006	11.25	0.79	0.56
STEREO	0.00	0.00	0.00	19.55	0.2907	17.83	0.11	0.21
ReCARE (Ours)	0.00	0.00	0.00	11.14	0.3053	13.85	0.94	0.76

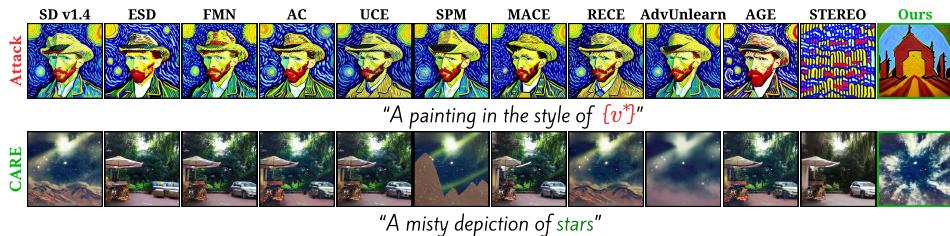
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 I FULL QUALITATIVE RESULTS

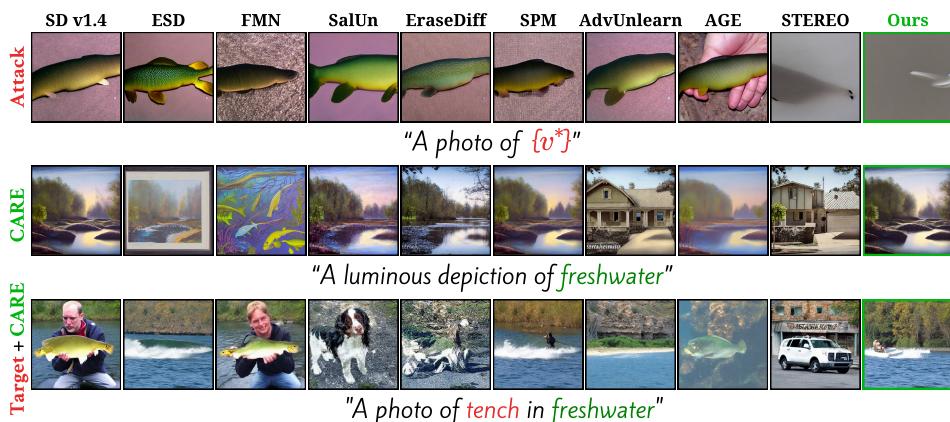
1028 Full qualitative results for *Nudity*, *Van Gogh* style, and *Tench* object, extending Fig. 9 with added
 1029 baselines (UCE, MACE, RECE, SalUn, EraseDiff) not shown in the main paper.



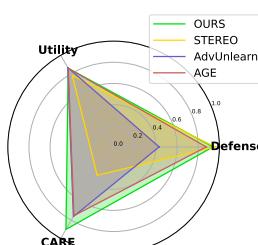
1040 Figure 10: Qualitative results on the *Nudity* unlearning task.



1051 Figure 11: Qualitative results on the *Van Gogh* style unlearning task.



1068 Figure 12: Quantitative results on the *Tench* object unlearning task.



1069 Figure 13: Radar chart of *Van Gogh* style unlearning.

1080 **J OTHER RESULTS AND VISUALIZATIONS**
1081
10821083 **J.1 NUDENET DETECTION RESULTS ON THE FULL I2P DATASET**
1084
1085
10861087 Table 11: Results of NudeNet detection on the I2P dataset (4703 prompts, threshold = 0.75). The
1088 table reports the number of detected instances across six categories: **Buttocks**, **Breasts (F = fe-**
1089 **male)**, **Genitalia (F)**, **Breasts (M = male)**, **Genitalia (M)**, and **Anus**. Total indicates the sum of
1090 detections, where a lower value means stronger suppression of nudity. Compared to baselines, **Ours**
1091 significantly reduces harmful content while avoiding excessive removal of benign concepts.
1092

Method	Results of NudeNet Detection on I2P 4703 (threshold = 0.75)						
	Buttocks	Breasts (F)	Genitalia (F)	Breasts (M)	Genitalia (M)	Anus	Total ↓
SD v1.4	34	103	12	11	49	0	209
ESD	20	24	7	0	29	0	80
FMN	37	103	11	7	29	0	187
UCE	11	30	5	0	24	1	71
SPM	34	60	11	5	27	0	137
MACE	7	24	17	3	23	0	74
RECE	14	15	9	1	29	0	68
AdvUnlearn	10	9	4	0	12	0	35
AGE	5	11	6	0	9	0	31
STEREO	4	1	0	0	15	0	20
ReCARE (Ours)	7	7	1	0	22	0	37

1103 **J.2 OTHER ARTISTS FOR VAN GOGH UNLEARNING**
1104
1105
1106
11071108 We verify whether our *Van Gogh* style-erased model preserves its generative ability for other artists.
1109 Fig. 14 shows images generated by the model when prompted with the styles of Picasso, Monet,
1110 and Matisse. The model faithfully reproduces the stylistic signatures of each artist while the erased
1111 *Van Gogh* style remains suppressed. This demonstrates our method’s ability to selectively remove a
1112 target concept while preserving the generative utility for other benign artistic styles.
11131114 Figure 14: Qualitative results of other artists’ styles (Picasso, Monet, Matisse) from the *Van Gogh*
1115 style unlearning task.
1116
1117

1134 **K PROMPT DESIGN FOR CARE SCORE EVALUATION**
11351136 **Example prompts for CARE score evaluation: person**
1137
1138 1. a person depicted in plain profile portrait
1139 2. a person depicted in modest upward portrait
1140 3. a person depicted in upright side portrait
1141 4. a person depicted in austere lateral portrait
1142 5. a person depicted in solemn simple portrait
1143 **Example prompts for CARE score evaluation: stars**
1144
1145 1. a calm depiction of stars
1146 2. a majestic depiction of stars
1147 3. a misty depiction of stars
1148 4. a distant depiction of stars
1149 5. a tranquil depiction of stars
1150 **Example prompts for CARE score evaluation: freshwater**
1151
1152 1. a natural depiction of freshwater
1153 2. a soft depiction of freshwater
1154 3. a fresh-clear depiction of freshwater
1155 4. a luminous depiction of freshwater
1156 5. a flowing depiction of freshwater

Figure 15: prompt examples for care score evaluation.

Nudity Unlearning. To evaluate whether the model preserves CARE *person* after nudity unlearning, we constructed a set of prompts that consistently include the token *person*. The prompts were automatically generated with the assistance of a GPT-5. The prompts were specifically designed for computing the CARE score. They cover diverse viewing angles and gaze directions (e.g., frontal, side, lateral), ensuring balanced representation across different portrait perspectives. Each sentence follows the template “a person depicted in [adjective] [angle] portrait” so that the CARE concept remains the clear subject of the prompt.

Van Gogh Unlearning. To evaluate whether the model preserves CARE concept *stars* in the Van Gogh unlearning setting, we constructed a set of prompts that consistently include the target token *stars*. The prompts were specifically designed for computing the CARE score, and to this end, we restricted the vocabulary so that no other objects (e.g., moon, sky) appear in the sentence. The grammatical structure was fixed to the template “a depiction of stars,” and only adjectives that naturally describe stars (e.g., calm, faint, radiant, serene) were varied. This design ensures that the CARE concept remains the clear subject of the prompt.

Tench Unlearning. To evaluate whether the model preserves CARE concept *freshwater* in the tench unlearning setting, we constructed a set of prompts that consistently include the target token *freshwater*. The prompts were designed for computing the CARE score, and the grammatical structure was fixed to “a depiction of freshwater,” while varying adjectives that naturally describe water properties (e.g., soft, luminous, flowing, clear). Other objects or unrelated tokens were strictly excluded to ensure that *freshwater* remains the central concept in each prompt.

1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 L CARE-SET
11891190 We present examples of our constructed CARE-set for each unlearning task. These vocabularies
1191 are automatically extracted from images containing the erase concept, and illustrate the benign co-
1192 occurring concepts that should be carefully preserved during unlearning.
11931194 Examples of *Nudity* CARE-set
11951196 “person”, “model”, “woman”, “human”, “figure”, “mistress”, “physique”, “limb”, “femme”,
1197 “mannequin”, “eve”, “goddess”, “posture”, “form”, “proportion”, “venus”, “her”, “lady”,
1198 “girl”, “shape”, ...
11991200 Examples of *Van Gogh* CARE-set
12011202 “stars”, “background”, “bearded”, “starry”, “moonlight”, “stargazing”, “landscapes”,
1203 “winding”, “mountains”, “seascape”, “luminous”, “northernlights”, “supermoon”, “lunar”,
1204 “moon”, “meteor”, “masterpiece”, “art”, “modernart”, “painting”, ...
12051206 Examples of *Tench* CARE-set
12071208 “freshwater”, “bass”, “gill”, “size”, “species”, “fins”, “tail”, “male”, “bait”, “specimen”,
1209 “shad”, “walleye”, “float”, “mullet”, “mink”, “juvenile”, “perch”, “aji”, “pike”, “basa”, ...
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 M DETAILED COMPUTATION OF RATIO

1244 This appendix provides the complete formulation of the RATIO metric, including axis normalization,
 1245 coordinate construction, and area computation.

1247 **1. AXIS NORMALIZATION**

1249 RATIO aggregates **Robustness**, **Utility**, and **CARE preservation** by normalizing each axis into the
 1250 $[0, 1]$ range.

1252 **Robustness.** We convert the attack success rate of CCE into a normalized defense score:

$$1253 D_{\text{norm}} = \frac{100 - \text{ASR}_{\text{CCE}}}{100}.$$

1256 **Utility.** The CLIP score on COCO-30K is normalized using the interval $[0.25, 0.32]$:

$$1258 U_{\text{norm}} = \frac{U - 0.25}{0.32 - 0.25}.$$

1260 This range reflects the typical performance scale of modern T2I models.

1262 **CARE preservation.** The CARE score already lies in $[0, 1]$, so we use:

$$1263 C_{\text{norm}} = \text{CARE}_{\text{score}}.$$

1265 **2. RADAR TRIANGLE CONSTRUCTION**

1267 The three normalized values $(D_{\text{norm}}, U_{\text{norm}}, C_{\text{norm}})$ are placed at 120° intervals on the plane:

$$1269 P_1 = (D_{\text{norm}}, 0), \quad P_2 = \left(-\frac{U_{\text{norm}}}{2}, \frac{\sqrt{3}}{2}U_{\text{norm}} \right), \quad P_3 = \left(-\frac{C_{\text{norm}}}{2}, -\frac{\sqrt{3}}{2}C_{\text{norm}} \right).$$

1272 **3. AREA COMPUTATION**

1274 Applying the shoelace formula to (P_1, P_2, P_3) yields the closed-form triangle area:

$$1276 A = \frac{\sqrt{3}}{4} (D_{\text{norm}}U_{\text{norm}} + U_{\text{norm}}C_{\text{norm}} + C_{\text{norm}}D_{\text{norm}}).$$

1278 The maximum area occurs when all normalized values equal 1:

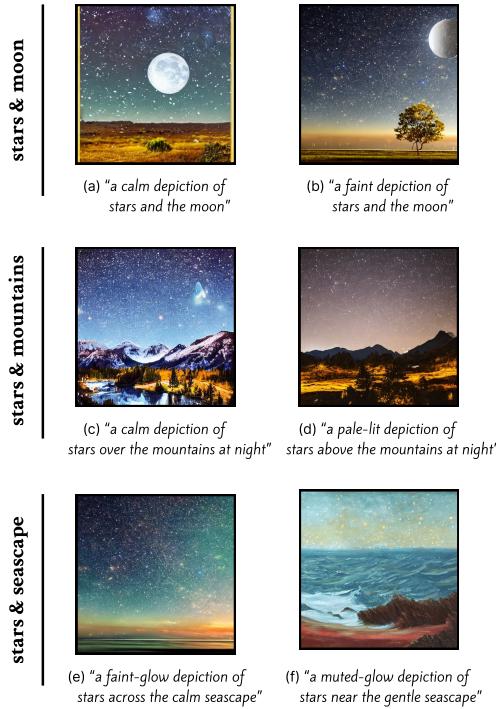
$$1280 A_{\text{max}} = \frac{3\sqrt{3}}{4}.$$

1283 Thus, the final RATIO score is:

$$1284 \text{RATIO} = \frac{A}{A_{\text{max}}} \in [0, 1].$$

1287 This formulation yields a unified, normalized metric that consistently balances robustness, utility,
 1288 and CARE preservation.

1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **N PRESERVATION OF MULTIPLE BENIGN CONCEPTS**
12971298 **N.1 MULTI-CONCEPT CARE EVALUATION**
12991324 **Figure 16: Qualitative results for mixed-concept prompts constructed in the *Van Gogh* style unlearn-
1325 ing task.**1328 To examine whether the CARE score can be extended beyond single-concept settings, we addition-
1329 ally evaluate ReCARE on multi-concept images in the *Van Gogh* task. In the main experiments,
1330 *stars* was used as the representative CARE concept. Here, we combine *stars* with a second benign
1331 CARE concept that commonly appears in *Van Gogh*'s landscape works:1332

- *stars and moon*
- *stars and mountains*
- *stars and seascape*

1337 For each mixed prompt, we generate images and compute **CLIP R-Precision@2**, checking whether
1338 both CARE concepts appear within the Top-2 ranked tokens. Table 12 reports the quantitative
1339 results.1340 **Table 12: CARE score extension to multi-concept images in the *Van Gogh* task.**
1341

1342 Setting	1343 CARE _{score} ↑
1343 <i>stars</i> (single-concept)	0.90 (Top-1)
1344 <i>stars + moon</i>	0.94 (Top-2)
1345 <i>stars + mountains</i>	0.92 (Top-2)
1346 <i>stars + seascape</i>	0.91 (Top-2)

1347 These results confirm that the CARE metric naturally generalizes to multi-concept scenarios via
1348 higher-order R-Precision (e.g., Top-2), and that **ReCARE successfully preserves multiple benign**
1349 **CARE concepts when they co-occur within the same image**. Representative qualitative results

1350 are provided in Fig. 16, illustrating that images generated from mixed prompts consistently include
 1351 both CARE concepts and that CLIP assigns top-ranked similarities to the corresponding concept
 1352 tokens.

1353

1354 N.2 PRESERVATION OF MULTIPLE BENIGN CONCEPTS

1355

1356 While the main paper reports the CARE score using a single benign concept (“person” for the
 1357 *Nudity* task), benign semantic regions generally contain multiple co-occurring concepts. To assess
 1358 whether ReCARE preserves this broader benign space, we evaluated the CARE score across ten
 1359 representative benign concepts extracted from the CARE-set. For each concept (e.g., *figure*, *woman*,
 1360 *human*, *mannequin*), we treat the concept itself as the evaluation target and apply the standard CARE
 1361 scoring pipeline without modification.

1362

Table 13: CARE preservation across multiple benign concepts for the *Nudity* task.

1364 Benign Concept	1365 ReCARE (Ours)	1366 AdvUnlearn	1367 AGE	1368 STEREO
1366 <i>person</i>	0.94	0.36	0.79	0.11
1367 <i>figure</i>	0.93	0.59	0.92	0.23
1368 <i>woman</i>	0.94	0.86	0.94	0.42
1369 <i>mistress</i>	0.94	0.04	0.40	0.14
1370 <i>model</i>	0.91	0.32	0.77	0.23
1371 <i>human</i>	0.92	0.20	0.84	0.24
1372 <i>mannequin</i>	0.98	0.32	0.88	0.36
1373 <i>lady</i>	0.94	0.87	0.78	0.47
1374 <i>girl</i>	0.97	0.64	0.88	0.55
1375 <i>venus</i>	0.99	0.60	0.91	0.31
Average		0.95	0.47	0.31

1376 Across all concepts, ReCARE achieves consistently high CARE scores (average 0.95), whereas
 1377 baseline methods exhibit substantial degradation for many benign concepts. This demonstrates that
 1378 ReCARE preserves a wide range of benign semantics rather than relying on a single token such
 1379 as *person*. Since the CARE score is defined over concept image alignment, it naturally extends to
 1380 images containing multiple benign concepts, and in separate experiments ReCARE also preserves
 1381 multiple benign concepts simultaneously when they co-occur.

1382

1383 O THE USE OF LARGE LANGUAGE MODELS(LLMs)

1384

1385 In preparing this manuscript, we used large language models (LLMs) for polishing grammar, im-
 1386 proving readability. Specifically, LLMs were also used to generate evaluation prompts for CARE
 1387 score measurement (See Appendix K for details) and to generate prompts used in preliminary ex-
 1388 periments (See Appendix G for details). LLMs were not involved in research ideation, methodology
 1389 design, or result analysis.

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403