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Figure 1: Preserving Co-occurring Concepts in Nudity Unlearning. After unlearning nudity,
we present generations from two prompts (“A nude person” and “A person”). Baseline methods
(AdvUnlearn, AGE, or STEREO) suppress benign co-occurring concepts person, failing to generate
person images. In contrast, our proposed ReCARE preserves those concepts while erasing nudity.

ABSTRACT

Unlearning has emerged as a key technique to mitigate harmful content genera-
tion in diffusion models. However, existing methods often remove not only the
target concept, but also benign co-occurring concepts. As illustrated in Fig. 1,
unlearning nudity can unintentionally suppress the concept of person, prevent-
ing a model from generating images with person. We define these undesirably
suppressed co-occurring concepts that must be preserved CARE (Co-occurring
Associated REtained concepts). Then, we introduce the CARE score, a general
metric that directly quantifies their preservation across unlearning tasks. With this
foundation, we propose ReCARE (Robust erasure for CARE), a framework that
explicitly safeguards CARE while erasing only the target concept. ReCARE auto-
matically constructs the CARE-set, a curated vocabulary of benign co-occurring
tokens extracted from target images, and leverages this vocabulary during train-
ing for stable unlearning. Extensive experiments across various target concepts
(Nudity, Van Gogh style, and Tench object) demonstrate that ReCARE achieves
overall state-of-the-art performance in balancing robust concept erasure, overall
utility, and CARE preservation.

1 INTRODUCTION

Diffusion models have achieved remarkable success in generating highly realistic images (Chang
et al., 2023). However, training on large-scale data raises ethical concerns, including the risk of
producing harmful or NSFW (Not Safe For Work) content (Rando et al., 2022; Schramowski et al.,
2023; Zhang et al., 2024d). To mitigate these issues, machine unlearning (MU) has emerged as a
paradigm for selectively removing the influence of target concepts from pre-trained models (Cao
& Yang, 2015). Recent work has particularly focused on post-hoc erasure, which fine-tunes the
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diffusion model to shift the noise prediction of the target token toward the unconditional output
(empty prompt) (Gandikota et al., 2023).

Post-hoc erasure is a practical approach to concept removal, but existing methods still face a fun-
damental challenge: the robust–utility trade-off. Models must erase harmful concepts (robust-
ness) while preserving overall image quality (utility). To this end, recent methods employ anchors,
prompts that represent non-target concepts, which the model should still generate correctly. These
anchors are commonly obtained from prompts drawn from external label sets (e.g., ImageNet) or
synthesized by large language models (Zhang et al., 2024c; Srivatsan et al., 2025; Bui et al., 2025).

Although anchor-based preservation improves utility, we identify a critical weakness: benign con-
cepts that naturally co-occur with the erase target are also unintentionally suppressed during
unlearning. As illustrated in Fig. 1, attempts to erase nudity often suppress the concept of person,
which commonly appears together with nudity in training data. For example, with prompts like “A
nude person” or “A person”, models often fail to generate people, unintentionally suppressing the
concept of person even when the intended removal pertains solely to nudity. Effective unlearning
must not only erase harmful targets but also care for the benign concepts that naturally co-occur
with them. Therefore, we define these co-occurring concepts that must be carefully preserved as
CARE (Co-occurring Associated REtained concepts) and propose a method to preserve it.

However, commonly used utility evaluations does not reflect whether CARE concepts are preserved,
so even models with high utility scores may still not retain benign co-occurring concepts. Despite its
importance, the evaluation of CARE preservation has remained unexplored in existing unlearning
studies. To address this gap, we introduce the CARE score, a simple yet effective metric that
explicitly measures the retention of CARE concepts. We argue that the CARE score is essential way
to evaluate unlearning, orthogonal to the existing metrics for robustness and utility.

Given the importance of CARE concepts, we propose ReCARE (Robust erasure for CARE), a
method that preserves CARE while ensuring robust erasure. ReCARE first constructs a CARE-set,
a vocabulary of benign co-occurring tokens, from target images. During refinement, harmful co-
occurring tokens are removed if they are too similar to the target or irrelevant to CARE preservation.
By leveraging the CARE-set in training, ReCARE achieves robust erasure, preserves overall utility,
and ensure faithful CARE preservation.

Our key contributions can be summarized as follows: ➊ We identify and define the unintended
suppression of co-occurring concepts that should be preserved during unlearning, introducing the
notion of CARE as a critical consideration for effective unlearning. ➋ We develop CARE score, a
new metric that explicitly measures the preservation of CARE concepts, a dimension overlooked in
prior unlearning research. ➌ We propose ReCARE, a method that robustly erases target concepts
without sacrificing CARE preservation, thereby improving both robustness and utility.

2 BACKGROUND

Latent Diffusion Models (LDMs) (Rombach et al., 2022) are text-to-image models that operate in a
compressed latent space. Starting from Gaussian noise zT ∼ N (0, 1), the model iteratively denoises
a latent variable z at timestep t, conditioned on a text prompt p. The training objective is to predict
the injected noise ϵ at each step using a noise predictor ϵθ:

LLDM(θ) = E
[
||ϵ− ϵθ(zt | p)||22

]
. (1)

While LDMs can generate high-quality images, they may also produce harmful concepts. A rep-
resentative unlearning method to mitigate this is Erasing Stable Diffusion (ESD) (Gandikota et al.,
2023), which erases a target concept c. Specifically, the frozen teacher model θ∗ characterizes the
semantic direction of c as the difference between its conditional prediction ϵθ∗(zt | c) and uncondi-
tional prediction ϵθ∗(zt | ∅). The student model θ is trained to erase this concept by updating in the
opposite direction of the vector, while the strength of erasure is modulated by a hyperparameter η:

LESD(θ) = E
[∥∥ ϵθ(zt | c) − (

ϵθ∗(zt | ∅) − η
(
ϵθ∗(zt | c)− ϵθ∗(zt | ∅)

)) ∥∥2
2

]
(2)

In addition to ESD, other methods have been proposed to address the robustness-utility trade-off.
AdvUnlearn (Zhang et al., 2024c) integrates adversarial training with prompts and introduces a

2
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Person, Woman,  Figure, ..
Stars,  Galaxy,  Moon, ..
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Gogh Vincent,  ,  ,  ,  , ..Stars Galaxy Moon

TincaTinca Doctorfish,  ,  ,  ,  , ..Freshwater Male Sturgeon

Figure 2: Given a removed target, we can extract the co-occurring words from generated images and
categorize them into two groups: harmful co-occurrences and benign co-occurrences.

retain loss to preserve utility. AGE (Bui et al., 2025) improves this by adaptively selecting anchors
from a large external vocabulary, balancing forgetting and preservation. However, erased concepts
can often be recovered through textual inversion, a process in which a new token v∗ for a concept is
learned from only a few exemplar images related to the target. The token is optimized by minimizing
the objective in Eq.1 over this small image set, with all pre-trained parameters θ frozen:

v∗ = argmin
v

E
[
∥ϵ− ϵθ(zt, t, v)∥22

]
. (3)

Thus, textual inversion exposes a critical vulnerability in current unlearning approaches, as it can
lead to the unintended reintroduction of erased concepts. STEREO (Srivatsan et al., 2025) leverages
textual inversion to obtain optimal embeddings that can regenerate the target concept even after
unlearning, and uses them to compute the dominant erasure direction for training.

3 UNLEARNING BEYOND THE TARGET: CARE SUPPRESSION

3.1 CO-OCCURRING ASSOCIATED RETAINED CONCEPT (CARE)

Prompts containing a target concept often generate images with additional co-occurring concepts.
We can categorize these concepts into three types: (i) target concepts to be erased; (ii) harmful
co-occurrences that should also be erased; (iii) benign co-occurrences that should be retained. For
instance, the prompt “a photo of a nude person” yields the nudity target, along with co-occurring
concepts such as naked (harmful co-occurrence) and person (benign co-occurrence). Likewise, as
shown in Fig. 2, the prompts widely used in diffusion unlearning have these concepts: Van Gogh,
Vincent, and stars; tench, tincatinca and freshwater.

Preserving benign co-occurrences during unlearning is challenging. In machine unlearning, we
expect a model to forget the target concepts and harmful co-occurrences, while preserving benign
co-occurrences. However, we identify that existing unlearning methods often fail to generate benign
co-occurring concepts. In Fig. 1, we demonstrate that they fail to preserve the concepts of person in
nudity. Similarly, as shown in Fig. 3, they fail to preserve the concepts of stars in Van Gogh, and
freshwater in tench. This challenge might arise because models such as CLIP encode co-occurring
concepts within overlapping regions of the embedding space, leading to strong entanglement (Jiang
et al., 2022). Moreover, existing approaches often rely on anchors such as ImageNet classes, LLM-
generated prompts, or external dictionaries, which either capture only generic concepts or suffer
from limited vocabulary quality.

Therefore, we define the set of such benign co-occurrences that must be preserved during unlearning
as CARE (Co-occurring Associated REtained concepts).

Fig. 4 demonstrates quantitative evidence of CARE preservation, based on human-annotated ground
truth counts of generated images containing person, stars, or freshwater. It shows that existing meth-
ods often erase these benign co-occurring concepts together with the target, whereas our approach

3
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Figure 3: Qualitative failure cases in existing
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inadvertently suppress benign co-occurring con-
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Figure 4: Quantitative comparison of CARE
preservation based on human-annotated ground
truth. Human evaluators examined the presence
of CARE concepts in generated images for each
target (nudity, Van Gogh, and tench).

preserves them to a much higher degree. These results reveal that CARE is not preserved by existing
methods, highlighting the need for a new mechanism to preserve it.

However, how can CARE preservation be automatically measured at scale after unlearning?

3.2 CARE SCORE
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Figure 5: Correlation between CARE score and
human-annotated ground truth across different
targets and methods (Pearson r = 0.905).

Existing evaluation metrics (e.g., FID, CLIP
score) fail to measure whether CARE concepts
are preserved. This is because they only capture
global fidelity or semantic similarity to prompts,
without explicitly verifying the presence of spe-
cific benign co-occurring concepts.

Therefore, we propose the CARE score, a princi-
pled metric that directly evaluates CARE preser-
vation. To compute CARE score, we use CLIP R-
Precision@1 (Park et al., 2021). For each target,
we select one CARE concept (e.g., “person” for
nudity) and combine it with 80 unrelated tokens
from COCO object labels. We then generate sam-
ples using prompts containing the chosen CARE
concept and test whether it ranks top-1 among all
candidates. Details of the prompt construction
procedure are provided in Appendix K.

Formally, the CARE score is defined as:

CAREscore =
1
S

S∑
s=1

1

[
CLIP(xs, w

⋆) = max
w∈({w⋆}∪O)

CLIP(xs, w)

]
, xs = G(cw⋆) (4)

where w⋆ is the chosen CARE concept, cw⋆ is the corresponding prompt, O is a set of unrelated
COCO object tokens, G is the generative model after unlearning, S is the number of generated
samples, and CLIP(xs, w) denotes the CLIP similarity between a generated image xs and token w.

To validate the reliability of CARE score, we compare it against the human-annotated ground truth
introduced earlier. As shown in Fig. 5, a strong correlation across different targets and methods.
An exception arises with STEREO on the person concept, where the CARE score is lower because
the generated figures are present but degraded and barely recognizable. This indicates that CARE
score not only aligns with human inspection but also reflects image quality effects, making it a
more stringent measure of CARE preservation. Overall, CARE score emerges as a necessary metric
for evaluating unlearning models, complementing robustness against harmful concepts and overall
utility.

4
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Figure 6: Overview of ReCARE. (1) Global Clustering groups candidate tokens on the t-SNE pro-
jected embedding space and removes clusters that are either overly similar to the target or entirely
irrelevant. (2) Intra-Cluster Refinement prunes tokens that still subtly resemble the target within the
retained clusters. The surviving tokens form the CARE-set D, which acts as a preservation signal in
the Retain Loss and as a guiding reference in the Erase Loss.

4 METHOD

We propose ReCARE (Robust erasure for CARE), a framework that achieves robust concept re-
moval while explicitly safeguarding CARE. ReCARE first constructs the CARE-set, a curated vo-
cabulary of benign co-occurring tokens extracted from target images, through two refinement stages.
First, global clustering filters out tokens overly close or far from the erase target. Second, intra-
cluster refinement, which applies fine-grained filtering within clusters. The constructed CARE-set is
then integrated into training with two complementary roles: it acts as a preservation signal in Retain
Loss and as a guiding reference in the Erase Loss. An overview of the framework is shown in Fig. 6.

4.1 CARE-SET CONSTRUCTION

To build an effective CARE-set, we start from the same target images later used for textual inversion
(Sec. 4.2). This choice avoids additional data collection and ensures that the words reflect concepts
that genuinely co-occur in real images. From these images we extract a set of co-occurring candidate
tokens, which inevitably includes two erased types: harmful co-occurrences that are overly similar
to the target, and completely irrelevant tokens that do not belong to CARE. Hence, refinement is
required before the set can be reliably used.

Extracting Co-occurring Candidates. Given a target image set I for the target concept, we com-
pute clip similarity CLIP(x, t) between each image x ∈ I and token t ∈ V; CLIP vocabulary. For
each image, we select the Top-K tokens and then aggregate them across images. The Top-N tokens
by frequency constitute the set of co-occurring candidates:

T = TopNfreq

( ⋃
x∈I

TopKt∈V CLIP(x, t)
)
, (5)

As illustrated in Fig. 5 (TopN freq), this candidate set often contains harmful tokens, including those
that are overly similar to the target (e.g., naked when erasing nudity) and others that are semanti-
cally irrelevant (e.g., scarlett, a common female name unrelated to CARE). Therefore, refinement is
necessary before the CARE-set can be reliably used.

Global clustering. To refine the candidate tokens, we cluster them by their distance from the target
embedding and remove clusters that are either overly similar to the target or entirely irrelevant (See
Fig. 6(1)). The candidate tokens are then embedded into 2D space using t-SNE (Maaten & Hinton,
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2008) and grouped into n clusters {Ck}nk=1 via k-means. Let c denote the target concept, and ec its
corresponding text embedding. For each token embedding et, we measure its orthogonal distance
from the target as:

r(et) =
∥∥ et(I − ece

⊤
c )
∥∥
2
, (6)

where I is the identity matrix. Small r(et) values correspond to tokens closely aligned with the
target, large values correspond to semantically irrelevant tokens, and intermediate values capture po-
tential CARE candidates. For each cluster, we compute the average residual r̄k = 1

|Ck|
∑

t∈Ck
r(et).

The cluster most similar to the target (k− = argmink r̄k) and the cluster most unrelated to the target
(k+ = argmaxk r̄k) are discarded, while the remaining clusters are retained as candidates:

Ccand = {Ck | k /∈ {k−, k+} }. (7)

Intra-cluster refinement. Although global clustering already removes clusters that are either too
close to or too far from the target, some tokens within the retained clusters Ck ∈ Ccand may still sub-
tly resemble the target. For instance, words like stripped or body are less explicit than harmful terms
already filtered out in the global step, yet they remain aligned with nudity and are thus unsuitable
as CARE. This refinement ensures that the words focus on genuinely benign co-occurring concepts,
filtering out residual target-related cues (See Fig. 6(2)).

For each cluster Ck ∈ Ccand with Ck = {t(k)i }
|Ck|
i=1 and each token index i ∈ {1, . . . , |Ck|}, we

compute the centroid of Ck excluding t
(k)
i :

e
(k)
−i =

1

|Ck| − 1

∑
j ̸=i

e
t
(k)
j

. (8)

Let δ(k)i ∈ {0, 1} be a binary indicator specifying the retention of token t
(k)
i :

δ
(k)
i =

1, if r(e
(k)
−i )

2 < (1 + α) · 1
|Ck|−1

∑
j ̸=i r(e

(k)
−j )

2,

0, otherwise.
(9)

where α > 0 controls the strictness of pruning. The final CARE-set D is then expressed as:

D =
⋃
k

{ t(k)i | δ(k)i = 1, i ∈ {1, . . . , |Ck|}}. (10)

Intuitively, tokens that remain overly aligned with the target contribute little to the concept-
orthogonal component of their cluster and are therefore pruned. As a result, tokens strongly re-
sembling the target are discarded, while the remaining co-occurring tokens are highlighted as the
essential elements of CARE. The surviving tokens across all clusters Ck together form the final
CARE-set D, a refined vocabulary of benign co-occurring tokens, which acts as the foundation for
the subsequent training objectives. The complete algorithm of this construction process is provided
in Appendix A.

4.2 UNLEARNING WITH CARE-SET

We define the overall training objective as the combination of Erase Loss and Retain Loss, with a
hyperparameter λ controlling the trade-off between robust erasure and CARE preservation:

LReCARE = λLRetain + LErase. (11)

In the following, we describe how the CARE-set is incorporated into each loss term. First, to safe-
guard CARE during erasure, we introduce a Retain Loss that constrains the model to preserve
knowledge of the CARE-set. Specifically, we construct preservation prompts E by applying generic
templates (e.g., ‘A photo of . . . ’) to tokens from the CARE-set D and minimize the discrepancy be-
tween the outputs of the original model (θ∗) and the unlearned model (θi) to encourage consistency
on non-target concepts.” The Retain Loss is formally defined as:

LRetain = E
[
∥ϵθ∗(zt, t, E)− ϵθi(zt, t, E)∥22

]
. (12)
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Next, we design an Erase Loss that uses the CARE-setD to disentangle harmful tokens from CARE,
aligning them with the CARE representation while pushing them away from the erase direction. This
ensures that CARE concepts are preserved while the target is effectively erased. To compute this
erase direction, we adopt the STE procedure from Srivatsan et al. (2025), which applies textual
inversion to reveal optimal embeddings that regenerate the target concept even after partial unlearn-
ing. This process produces a sequence of progressively stronger embeddings (e.g., v∗1 , v

∗
2), which

we combine with the explicit target token (e.g., “nudity”) to compute ϵerase, an average embedding
representing the erase direction. We then form a CARE aligned reference by subtracting this harm-
ful direction from the CARE representation of the original model θ∗, and train the unlearned model
θi so that the representation of harmful tokens H = { v∗1 , v∗2 , “nudity” } matches this reference:

LErase = E
[∥∥(ϵθ∗(zt, t,D)− ϵerase

)
− ϵθi(zt, t,H)

∥∥2
2

]
. (13)

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Evaluation Metrics. Robustness is measured by the Attack Success Rate (ASR) (Gandikota et al.,
2023; Zhang et al., 2024c; Bui et al., 2025; Srivatsan et al., 2025), the proportion of adversarially
generated images that still contain the erased concept (details in Appendix B). Since a lower ASR
implies stronger robustness, we report Defense in the radar chart, defined as the attack failure rate
(100%−ASR). Utility is evaluated on COCO-30K using FID (Heusel et al., 2017) (lower is better)
and CLIP Score (Hessel et al., 2021) (higher is better). CARE preservation is quantified by the
CAREscore in Eq. 4, which directly measures the retention of benign co-occurring concepts after
unlearning. We evaluate unlearning performance across three representative tasks: Nudity, artistic
style (Van Gogh), and object (Tench).

To facilitate a straightforward comparison across the three aspects, we define RATIO as our pri-
mary evaluation metric. This metric captures the trade-off between Robustness, Utility, and CARE
preservation, and is computed as the normalized area of the radar chart spanned by these three axes.
A larger value of RATIO indicates better overall performance. The detailed computation procedure
is provided in Appendix M.

Baselines and Attack Methods. We compare our method against eleven recent unlearning base-
lines: STEREO (Srivatsan et al., 2025), ESD (Gandikota et al., 2023), UCE (Gandikota et al.,
2024), AdvUnlearn (Zhang et al., 2024c), AGE (Bui et al., 2025), MACE (Lu et al., 2024),
RECE (Gong et al., 2024), SPM (Lyu et al., 2024), FMN (Zhang et al., 2024a), SalUn (Fan et al.,
2023), and EraseDiff (Wu et al., 2024). To evaluate robustness against adversarial prompts, we
adopt three attack methods: UnlearnDiff (UD) (Zhang et al., 2024d), Ring-A-Bell (RAB) (Tsai
et al., 2023), and CCE (Pham et al., 2023). Details for each attack are provided in Appendix D.

5.2 EXPERIMENT RESULTS.

0.0
0.2

0.4
0.6

0.8
1.0

Defense

Utility

CARE

OURS
STEREO
AdvUnlearn
AGE

Figure 7: Radar chart of
Nudity unlearning.

Nudity unlearning. Our method achieves the highest RATIO (See
Fig. 7), indicating the most reliable overall performance across robust-
ness, utility, and CARE preservation. Table 1 reports detailed results. It
substantially reduces ASR across all adversarial settings, demonstrat-
ing strong erasure performance. Under the challenging CCE attack,
most baselines still generate the target concept (See Fig. 9), whereas our
method remains effective. A closer look at the trade-offs highlights clear
limitations of baselines. AdvUnlearn struggles across robustness, utility,
and CARE. Some methods preserve CARE better but collapse under ad-
versarial attacks. STEREO, while more robust due to textual inversion,
sacrifices both utility and CARE preservation.

Van Gogh style unlearning. Our method achieves the highest RATIO, reflecting the most re-
liable trade-off among robustness, utility, and CARE preservation. Table 1 shows that it main-
tains low ASR across all attacks while preserving high utility and the best CARE score. Qualita-
tively, it removes the “Van Gogh” style while retaining benign scene elements such as “star” (See
Fig. 9). Baselines reveal clear weaknesses. AdvUnlearn attains higher utility but is easily broken
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Table 1: Full performance comparison on Nudity, Van Gogh style, and Tench object unlearning
tasks. Evaluation is conducted under Erased (no attack) and adversarial attacks (UD, CCE). We
report ASR (robustness), CLIP/FID (utility), and CAREscore (CARE preservation), with overall
performance summarized by RATIO. RAB is a Nudity-specific attack, and its results along with all
baseline details are provided in Appendix H.

Model Robustness (ASR) Utility CARE RATIO ↑
Erased ↓ UD ↓ CCE ↓ CLIP ↑ FID ↓ CAREscore ↑

Nudity
SD v1.4 35.23 39.51 56.82 0.3136 14.12 0.97 0.56
ESD 3.18 3.70 53.41 0.3045 13.75 0.89 0.49
FMN 32.73 35.80 51.82 0.3111 13.95 0.95 0.31
UCE 2.27 3.70 44.55 0.3117 14.31 0.83 0.48
SPM 14.09 23.46 38.41 0.3125 14.62 0.96 0.30
MACE 0.00 2.47 61.82 0.2931 12.70 0.95 0.10
RECE 0.91 3.70 40.23 0.3097 14.62 0.83 0.51
AdvUnlearn 23.64 1.23 65.45 0.2925 15.53 0.36 0.18
AGE 0.23 2.47 27.27 0.3006 11.25 0.79 0.56
STEREO 0.00 0.00 19.55 0.2907 17.83 0.11 0.21

ReCARE (Ours) 0.00 0.00 11.14 0.3053 13.85 0.94 0.76

Van Gogh
SD v1.4 74.00 84.00 64.40 0.3136 14.12 0.89 0.48
ESD 0.40 18.00 13.20 0.3074 14.47 0.77 0.67
FMN 1.60 14.00 61.60 0.3140 13.90 0.85 0.48
AC 2.40 48.00 36.00 0.3124 14.04 0.90 0.65
UCE 20.60 76.00 61.80 0.3140 13.88 0.84 0.48
SPM 9.60 60.00 54.60 0.3134 14.06 0.82 0.51
MACE 5.60 20.00 52.40 0.2862 12.60 0.05 0.10
RECE 2.40 42.00 55.80 0.3137 13.84 0.83 0.51
AdvUnlearn 0.80 4.00 57.00 0.3106 14.04 0.76 0.45
AGE 0.00 14.00 12.40 0.3100 13.80 0.75 0.68
STEREO 0.00 6.00 4.00 0.3047 18.17 0.31 0.43

ReCARE (Ours) 0.00 6.00 6.00 0.3101 16.24 0.90 0.81

Tench
SD v1.4 96.80 92.00 98.00 0.3136 14.12 0.95 0.30
ESD 3.80 40.00 94.80 0.3051 13.18 0.83 0.25
FMN 92.60 96.00 94.60 0.3114 13.42 0.95 0.31
SalUn 0.00 2.00 91.60 0.3150 14.05 0.96 0.35
EraseDiff 0.20 10.00 87.00 0.3120 12.62 0.93 0.35
SPM 45.80 84.00 98.00 0.3134 14.05 0.96 0.30
AdvUnlearn 0.00 2.00 95.20 0.3093 14.26 0.66 0.21
AGE 63.80 96.00 99.40 0.3121 13.89 0.95 0.28
STEREO 0.00 0.00 3.60 0.2975 15.87 0.62 0.56

ReCARE (Ours) 0.00 0.00 0.40 0.3073 14.32 0.97 0.85

0.0
0.2

0.4
0.6

0.8
1.0

Defense

Utility

CARE

OURS
STEREO
AdvUnlearn
AGE

Figure 8: Radar chart of
Tench object unlearning.

by attacks and STEREO shows strong robustness but severely fails
to preserve CARE. The corresponding radar chart is provided in Ap-
pendix I.

Tench object unlearning. Table 1 summarizes the quantitative results.
Our method delivers the most balanced performance across the three
axes, achieving the highest RATIO (See Fig. 8). It also attains the
strongest robustness and the highest CARE score across all adversar-
ial settings, effectively removing the target object while preserving be-
nign concepts. As further confirmed by the qualitative comparisons (See
Fig. 9), some baselines show good utility and CARE but fail at unlearn-
ing, easily by adversarial attacks. STEREO is robust but sacrifices utility
and CARE. AdvUnlearn is vulnerable and fails to retain CARE.
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Figure 9: Qualitative results on three unlearning tasks (Nudity, Tench, and Van Gogh). For each
task, we show results under CCE attacks and CARE prompts. Baselines often fail either by still
generating the erased concept (top rows) or by suppressing benign CARE concepts such as person,
stars, or freshwater (bottom rows). Ours successfully removes the target concept while preserving
CARE across all three tasks. Full quantitative results with all baselines are reported in Appendix I.

Table 2: Training time and Nudity task performance compari-
son. ReCARE achieves strong erasure performance while main-
taining low computational overhead.

Method Time (h) ↓ CCE ↓ CLIP ↑ CAREscore ↑

ESD 0.69 53.41 0.3045 0.89
RECE (Training-free) 0.01 40.23 0.3097 0.83
AGE 2.20 27.27 0.3006 0.56
AdvUnlearn 21.80 65.45 0.2925 0.36
STEREO 0.41 19.55 0.2907 0.11
ReCARE (Ours) 0.50 11.14 0.3053 0.94

Computational Efficiency of
CARE-set and ReCARE We
also evaluate the computational
efficiency of CARE-set construc-
tion and the ReCARE unlearning
pipeline. CARE-set extraction
is highly lightweight, requiring
only 1.78 minutes end-to-end
(CLIP similarity computation
→ clustering → refinement).
ReCARE training consists of
Textual Inversion (23.23 min)
followed by ReCARE optimization (5.10 min), totaling 28.33 minutes with a peak GPU memory
footprint of 24GB (H100). Despite its low overhead, ReCARE achieves strong performance on the
Nudity task compared to prior methods (Table 2).

5.3 ABLATION STUDY

Table 3: Impact of CARE refinement components.

Erased ↓ CCE ↓ CLIP ↑ CAREscore ↑

ReCARE (Ours) 0.00 11.14 0.3053 0.94
w/o Intra 0.00 16.36 0.3082 0.93
w/o Global 0.00 25.00 0.3039 0.90
w/o refinement 0.00 27.05 0.3056 0.88

Impact of CARE Refinement Com-
ponents To analyze the contribution
of each component in our CARE-
set construction, we conduct an ab-
lation study by selectively remov-
ing the Global clustering and Intra-
cluster refinement, which we apply
to the nudity unlearning task. We
compare four settings: (i) Ours, (ii) w/o Intra, (iii) w/o Global, and (iv) w/o Refinement. As

9
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shown in Table 3, the full method achieves the highest CARE score and the lowest ASR under CCE
attacks, striking the best balance between robustness and CARE preservation. When global clus-
tering is removed, irrelevant tokens are included, which decreases the CARE score, while harmful
tokens that should have been excluded also remain in the set, leading to an increase in ASR. Simi-
larly, applying only global clustering preserves CARE to some extent but still fails to filter out subtle
harmful tokens, again resulting in higher ASR. Finally, using the whole candidate tokens without
any refinement yields the lowest CARE preservation and the highest ASR, demonstrating that the
refinement process is essential for constructing a stable CARE-set.

Table 4: Performance comparison across different numbers of
clusters.

Number of clusters Erased ↓ CCE ↓ CLIP ↑ CAREscore ↑

4 0.00 15.36 0.3074 0.94
5 0.00 12.95 0.3082 0.93
6 0.00 11.14 0.3053 0.94

k-means num of k In the global
clustering stage, the number of
clusters n determines how finely
the candidate tokens are parti-
tioned. To verify its effect, we
conducted experiments on the nu-
dity unlearning task with n =
4, 5, 6. As shown in Table 4,
the overall performance was not
highly sensitive to the choice of n. In particular, both erasure ability (low ASR) and CARE preser-
vation (high CARE score) exhibited consistent trends, indicating that our framework is stable with
respect to n. Among them, n = 6 achieved the most balanced results, attaining the lowest ASR
while maintaining competitive FID, CLIP, and CARE scores. Therefore, we set n = 6 as the de-
fault in our main experiments, as it not only demonstrates that performance does not heavily depend
on k but also provides the best overall balance. Further ablations on other CARE-set construction
parameters and additional components are provided in Appendix F.

Table 5: CARE score consistency when replacing
CLIP with SigLIP.

Model CCE ↓ SigLIP ↑ CLIP ↑

SD v1.4 56.82 0.47 0.97

STEREO 19.55 0.28 0.11
ESD 53.41 0.23 0.89
UCE 44.55 0.28 0.91
AdvUnlearn 65.45 0.80 0.36
AGE 27.27 0.12 0.79
MACE 61.82 0.34 0.98
RECE 40.23 0.24 0.96
SPM 38.41 0.39 0.96
FMN 51.82 0.37 0.97

ReCARE (Ours) 11.14 0.40 0.94

Encoder-Agnostic Behavior of CARE score
To test whether CARE score depends on a
specific vision–language encoder, we replaced
CLIP with SigLIP (Zhai et al., 2023) during
evaluation and recomputed all CARE scores us-
ing the SigLIP encoder. The resulting scores
are summarized in Table 5. Despite absolute
value differences between CLIP and SigLIP,
the relative ordering of unlearning methods
remains consistent across encoders. Models
with strong benign retention under CLIP (e.g.,
SD v1.4, ReCARE) also perform well under
SigLIP, whereas methods with weaker reten-
tion under CLIP (e.g., AdvUnlearn) remain the
weakest. This stable rank correlation indicates
that the CARE score is not tied to CLIP’s rep-
resentation space and behaves robustly across
different encoders. This is expected, as CARE score evaluation relies solely on an external encoder
and does not depend on the diffusion model’s internal text encoder.

6 CONCLUSION

In this paper, we identified the failure of existing unlearning methods to preserve benign co-
occurring concepts CARE. Our framework ReCARE, automatically constructs a CARE-set from
target images and integrates it into the training objective, enabling targeted erasure while preserv-
ing CARE. To quantify this preservation, we introduced the CARE score, a metric that provides an
independent axis beyond robustness and utility. Across various erasure tasks, ReCARE achieved
superior robustness and utility over prior methods while attaining the highest CARE scores.
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ETHICS STATEMENT

Text-to-image models present ethical concerns due to their potential to generate unsafe or harm-
ful outputs when misused or prompted adversarially. Our work addresses this issue by introducing
ReCARE, a framework that unlearns harmful concepts (e.g., nudity) while preserving benign co-
occurring concepts, thereby improving the safety and reliability of generative models. We believe
this contributes to more responsible and secure use of such models in research and practical appli-
cations.

REPRODUCIBILITY STATEMENT

We provide an supplementary material containing all source code for CARE set construction, model
training, and CARE score evaluation. Details of the CARE-set construction algorithm, training con-
figurations, and hyperparameters are described in the Appendix, along with the complete experimen-
tal results and prompt construction procedure. Together, these resources enable full reproduction of
the reported findings.

REFERENCES

P Bedapudi. Nudenet: Neural nets for nudity classification, detection and selective censoring. 2019.

Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. Multimodal datasets: Misogyny,
pornography, and malignant stereotypes. In Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society (AIES), pp. 70–79, 2021. doi: 10.1145/3461702.3462530.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
symposium on security and privacy (SP), pp. 141–159. IEEE, 2021.

Anh Bui, Trang Vu, Long Vuong, Trung Le, Paul Montague, Tamas Abraham, Junae Kim, and Dinh
Phung. Fantastic targets for concept erasure in diffusion models and where to find them. arXiv
preprint arXiv:2501.18950, 2025.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image gen-
eration via masked generative transformers. arXiv preprint arXiv:2301.00704, 2023.

Anudeep Das, Vasisht Duddu, Rui Zhang, and N Asokan. Espresso: Robust concept filtering in
text-to-image models. In Proceedings of the Fifteenth ACM Conference on Data and Application
Security and Privacy, pp. 305–316, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 2426–2436, 2023.

Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzyńska, and David Bau. Unified
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APPENDIX

A CARE-SET CONSTRUCTION ALGORITHM

Algorithm 1: CARE-Set Construction
Input: Target image set I, target token c, CLIP vocabulary V , parameters K,N,α
Output: CARE-set D
Extract co-occurring candidates.
for each image x ∈ I do

Compute similarity CLIP(x, t) for all t ∈ V;
Select Top-K tokens for x

Aggregate tokens across all images T ← TopNfreq(T )
Global clustering.
Obtain embeddings et for all t ∈ T ;
Define residual distance from the target embedding ec:

r(et) =
∥∥ et(I − ece

⊤
c )
∥∥
2

Project embeddings into 2D using t-SNE: e(2D)
t = t-SNE(et);

Cluster {e(2D)
t } into {Ck}nk=1 by k-means;

Compute average residual per cluster:

r̄k = 1
|Ck|

∑
t∈Ck

r(et).

Identify clusters with the smallest and largest residuals:

k− = argmin
k

r̄k (similar to target), k+ = argmax
k

r̄k (irrelevant to target),

then discard them:
Ccand = {Ck | k /∈ {k−, k+} }

Intra-cluster refinement.
for each cluster Ck ∈ Ccand with Ck = {t(k)i }

|Ck|
i=1 do

for each token index i ∈ {1, . . . , |Ck|} do
Let t(k)i denote the i-th token in cluster Ck Compute centroid e

(k)
−i = 1

|Ck|−1

∑
j ̸=i et(k)

j

if r(e(k)−i )
2 < (1 + α) · 1

|Ck|−1

∑
j ̸=i r(e

(k)
−j )

2 then
δ
(k)
i ← 1 ; // surviving token

else
δ
(k)
i ← 0 ; // prune token

D ←
⋃

k{ t
(k)
i | δ(k)i = 1, i ∈ {1, . . . , |Ck|} }

return D
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B TASK SETTINGS FOR ASR EVALUATION

We describe the detailed evaluation criteria for Attack Success Rate (ASR) used in our experiments:

Nudity Unlearning. We extract prompts from the I2P dataset (Schramowski et al., 2023) with
nudity prediction score higher than 50% and token length below 77, yielding 88 prompts. For
each prompt, 5 images are generated, resulting in 440 evaluation images. Erasure effectiveness
is measured with the NudeNet detector (Bedapudi, 2019). An image is classified as explicit if
any of the following labels exceeds 0.75: BUTTOCKS EXPOSED, FEMALE BREAST EXPOSED,
FEMALE GENITALIA EXPOSED, MALE BREAST EXPOSED, MALE GENITALIA EXPOSED, or
ANUS EXPOSED.

Artistic Style Unlearning. We target the artistic style of Vincent van Gogh. The training set consists
of 500 images generated with the prompt “A painting in the style of Van Gogh”. Following Unlearn-
Diff (Zhang et al., 2024d), we adopt an ImageNet-pretrained ViT-Base (Wu et al., 2020) fine-tuned
on WikiArt (Saleh & Elgammal, 2015) as a 129-class style classifier. An image is considered con-
taining the erased style if “Van Gogh” appears in the top-3 predicted classes.

Object Unlearning. We target the object class tench. The training set consists of 500 images gen-
erated with the prompt “A photo of a tench”. Evaluation is conducted using an ImageNet-pretrained
classifier, where the erased object is considered present if “tench” appears in the top-3 predictions.

Lower ASR indicates stronger robustness against adversarial prompt attacks.

C IMPLEMENTATION DETAILS

We jointly optimize the Erase Loss and Retain Loss using AdamW with a learning rate of 2× 10−5

and a batch size of 1. The trade-off parameter is fixed as λ = 1.0. During image generation, we
fix the guidance scale to 7.5 and the sampling steps to 50. Adversarial tokens are trained via textual
inversion following the STE procedure of Srivatsan et al. (2025).

CARE-set Construction. For each target concept, we generate 500 images with Stable Diffusion
using the following prompts: (i) Nudity unlearning: “A photo of a nude person”, (ii) Style unlearn-
ing: “A painting in the style of Van Gogh”, (iii) Object unlearning: “A photo of a tench”. From these
images, candidate tokens are collected via CLIP-based image–token similarity and refined through
(i) Global clustering and (ii) Intra-cluster refinement. The hyperparameters are set as K = 50
(Top-K tokens per image), N = 100 (Top-N frequent tokens across images), α = 0.01 (pruning
strictness), and n = 6 (number of clusters). On average, 40–70 CARE tokens are retained per target.

D ATTACK SETTINGS

We evaluate the robustness of the proposed method against three state-of-the-art adversarial at-
tacks: UnlearnDiff (UD) (Zhang et al., 2024d), Ring-A-Bell (RAB) (Tsai et al., 2023), and
Circumventing-Concept-Erasure (CCE) (Pham et al., 2023). The details of how a normal input
prompt is modified into an attack prompt are described below.

UnlearnDiff (UD) Attack (Zhang et al., 2024d). For the art and object unlearning tasks, we use 50
prompts focusing on “Van Gogh” and “tench” as outlined in Zhang et al. (2024d); Wu et al. (2024).
The number of tokens modified during perturbation is set to N = 3. For the nudity task, we follow
the I2P dataset (Schramowski et al., 2023), selecting 95 prompts where nudity content exceeds 50%.
Here, the perturbation token count is increased to N = 5, following the methodology of Zhang et al.
(2024d). Adversarial perturbations are generated by optimizing across 50 diffusion time steps and
applying the UnlearnDiff attack for 40 iterations. We use the AdamW optimizer with a learning rate
of 0.01.

CCE Attack (Pham et al., 2023). To perform the CCE attack, we learn a new embedding vector (v∗a)
that inverts the erased concept into the text-embedding space of each erased model. For the nudity
unlearning task, we select explicit prompts from the I2P dataset (4,703 total) labeled by NudeNet,
excluding those overlapping with the 95 evaluation prompts. In the attack phase, we prepend v∗a
to the evaluation prompts to generate images. For the artistic style unlearning task, v∗a is trained
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using 6 images generated with the prompt “A painting in the style of Van Gogh,” and then tested
with the prompt “A painting in the style of v∗a,” producing 500 images with varying seeds. For the
object unlearning task, v∗a is trained on 30 images generated from “A photo of a tench,” and tested
with the prompt “A photo of a v∗a,” generating 500 images with varying seeds. In all cases, attack
experiments are performed by prepending v∗a to the input prompts to invert the erased concept.

Ring-A-Bell (RAB) Attack (Tsai et al., 2023). For evaluating the robustness of nudity-erased mod-
els against RAB, we use the same 95 filtered prompts from I2P. As detailed in Tsai et al. (2023),
each prompt is modified with the hyperparameters: empirical concept weight = 3 and prompt length
= 75. We then generate one image for each of the 95 modified prompts.

E RELATED WORK

Machine unlearning (MU) methods can be broadly grouped into three categories: dataset filtering
before training, output filtering at inference, and post hoc modifications of the trained model.

Dataset filtering removes unsafe or undesired samples from training data before learning, pre-
venting harmful concepts from being encoded (Cao & Yang, 2015; Ginart et al., 2019; Bourtoule
et al., 2021). It has been employed in practice, for example, in building the LAION-5B dataset
(Schuhmann et al., 2022), retraining Stable Diffusion (Rombach et al., 2022), exposing issues in
multimodal corpora such as pornography and stereotypes (Birhane et al., 2021), and curating user
preference data for text-to-image generation (Kirstain et al., 2023). Recent studies further explore
alternatives that mitigate retraining costs through selective data usage or coreset effects (Zhang et al.,
2024b; Li et al., 2025; Wang et al., 2025). Nevertheless, dataset filtering remains computationally
demanding and often impractical for large-scale diffusion models.

Output filtering applies safety layers at inference time without changing model parameters. Typical
approaches use external classifiers (Rando et al., 2022) or guidance mechanisms as in Safe Latent
Diffusion (Schramowski et al., 2023) and are deployed in systems such as DALL·E 2 and Imagen.
These defenses are limited since the model remains unchanged and can be bypassed by adversarial
methods such as textual inversion (Pham et al., 2023). Recent work explores training free denois-
ers (Kim et al., 2025) adaptive guards such as SAFREE (Yoon et al., 2024) and concept filtering
frameworks like Espresso (Das et al., 2024), though these methods still act only at the output layer.

Post hoc erasure methods, where research has shifted recently, fine-tune model parameters or ad-
just the generation process at inference time to avoid undesired concepts. These approaches have
evolved beyond merely removing a concept, instead aiming to balance robustness against adversar-
ial manipulation with utility preservation. Selective Amnesia (Heng & Soh, 2023) contributes to
this direction by casting concept unlearning as a continual learning problem, explicitly preventing
catastrophic forgetting of benign concepts while erasing a target one. Early work, such as ESD
(Gandikota et al., 2023), demonstrated that fine-tuning diffusion models with negative guidance can
suppress target concepts, but often at the cost of collateral degradation in image quality.

More recent methods improved along multiple axes: RECE (Gong et al., 2024) offers an efficient so-
lution by editing only the cross-attention projections, enabling reliable concept removal with lower
computational overhead. AdvUnlearn (Zhang et al., 2024c) integrates Adversarial Training (AT)
into the unlearning process, using adversarial prompts to fine-tune the text encoder while introduc-
ing a Retain Loss to preserve overall generative quality. Meanwhile, AGE (Bui et al., 2025) avoids
mapping concepts to a single neutral surrogate by adaptively selecting from 100 semantically related
candidates in the Oxford-3K vocabulary. It balances a forgetting objective with a preservation ob-
jective to reduce collateral forgetting and maintain quality. Furthermore, STEREO (Srivatsan et al.,
2025) is a two-stage framework designed to defend against strong embedding-space attacks such as
textual inversion, which can revive erased concepts with images. In the first stage, it leverages tex-
tual inversion to expose worst-case vulnerabilities, and in the second, it applies an anchor-concept
compositional objective for robust erasure, achieving greater resilience than prior methods.
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F HYPERPARAMETER ANALYSIS

F.1 CARE-SET CONSTRUCTION.

Table 6: Performance comparison across different
pruning strictness values.

α Erased ↓ CCE ↓ CLIP ↑ FID ↓ CAREscore ↑

0.005 0.00 14.32 0.3050 14.33 0.94
0.010 0.00 11.14 0.3053 13.85 0.94
0.015 0.00 14.55 0.3087 13.59 0.90

Pruning strictness α. Table 6 reports
the results on the Nudity unlearning task
for different values of the pruning strict-
ness α. Across all configurations, the
erased rate remains at 0.00, indicating sta-
ble removal of the target concept. More-
over, the CCE robustness varies only
within a narrow band, and the CARE score also stays consistently high (0.90–0.94), indicat-
ing that varying α does not meaningfully affect the quality of the resulting benign CARE-set.

Table 7: Performance comparison across different Top-
K token selections.

K Erased ↓ CCE ↓ CLIP ↑ FID ↓ CAREscore ↑

30 0.00 13.64 0.3047 17.39 0.97
50 0.00 11.14 0.3053 13.85 0.94
70 0.00 14.55 0.3083 13.92 0.96

Top-K tokens per image. We further
study the impact of the number of Top-K
tokens per image used in the global clus-
tering stage. As shown in Table 7, chang-
ing K between 30, 50, and 70 yields only
moderate variation in CCE and preserva-
tion metrics, while the CARE score con-
sistently remains high (0.94–0.97). This again suggests that the CARE-set construction is not overly
sensitive to the exact choice of K, and that the clustering→ refinement pipeline converges reliably
to a robust benign set across a range of settings.

Overall, while the exact numerical values vary slightly depending on α and K, the performance
stays stable across different parameter choices. This indicates that the CARE-set construction is
not overly sensitive to specific hyperparameter settings, and the clustering → refinement pipeline
consistently produces a robust benign concept set. In all main experiments reported in this paper,
we use α = 0.01 and K = 50, which lie well within this stable operating region.

F.2 RETAIN LOSS WEIGHT.

In this section, we explore the effect of the weight parameter λ, which controls the trade-off between
the erase loss and the retain loss in the ReCARE framework. Following the nudity unlearning task
based on the I2P dataset described above, we conduct experiments with λ ∈ 0.5, 0.75, 1.0, 1.25, 1.5.
Erasure performance is evaluated using the Attack Success Rate (ASR) against the CCE attack and
the I2P score (lower is better), while preservation is measured using FID and CLIP scores. The
results are summarized in Table 8.

Table 8: Performance comparison of different retain
weights for ReCARE.

λ Erased ↓ CCE ↓ CLIP ↑ FID ↓ CAREscore ↑

0.50 0.00 10.23 0.3062 15.50 0.88
0.75 0.00 10.91 0.3051 14.98 0.85
1.00 0.00 11.14 0.3053 13.85 0.94
1.25 0.45 15.91 0.3106 14.68 0.92
1.50 1.59 30.91 0.3094 14.06 0.82

Smaller values of λ (< 1.0) yield stronger
erasure, as indicated by lower ASR and I2P
scores, but at the expense of degraded preser-
vation quality. Conversely, larger values (>
1.0) enhance preservation but lead to incom-
plete erasure, reflected in higher ASR and
I2P scores. Overall, λ = 1.0 provides the
most favorable balance, achieving effective
erasure of nudity prompts while maintaining
the quality of related concepts. Accordingly,
we adopt λ = 1.0 as the default setting for
ReCARE, as it offers a reliable trade-off between erasure efficacy and preservation fidelity.
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G IMPACT OF VOCABULARY DESIGN ON CARE PRESERVATION.

Table 9: Human detection rate across differ-
ent anchors

“A person”

Anchor CLIP Human detection

ImageNet 0.1787 0.44
Oxford-3K 0.1918 0.71

GPT (co-occur) 0.1887 0.68
Manual (person) 0.1890 0.64
Manual (figure) 0.1917 0.92

Preliminary experiments. To gain preliminary
evidence for our hypothesis that anchor vocabu-
lary strongly affects CARE preservation, we extend
STEREO on the nudity unlearning task and replace
its GPT-generated anchors with four alternatives: (i)
ImageNet labels (Deng et al., 2009), (ii) Oxford-
3K1, (iii) GPT-generated “co-occurring” prompts,
and (iv) manually chosen anchors such as “person”
or “figure”. We assess preservation using a YOLO-
based person detector (Redmon et al., 2016). As
shown in Table 9, results differ markedly across vo-
cabularies. GPT-based “co-occurring” prompts show low preservation, often producing irrelevant to-
kens like mountain or yoga. Notably, even between manual anchors, person yields 0.64 while figure
achieves 0.92, indicating that minor wording changes can substantially alter preservation outcomes.
These findings suggest that anchor vocabulary design is a key determinant of CARE preservation.
Effective preservation requires vocabularies grounded in contextual associations, which motivates
our construction of a principled CARE-set.

GPT co-occur anchors. We detail how the GPT-generated “co-occurring” anchors used in the pre-
liminary experiments were obtained. Specifically, GPT-5 was instructed with the following prompt:

“Provide 200 concepts that frequently co-occur with ‘nudity’ but are benign and non-
harmful. Output the results as a JSON list.”

Accordingly, GPT-5 produced a list of words, a subset of which is shown below:

..., beach, shoreline, seaside, coast, desert, forest, meadow, mountain, hot spring, onsen,
sauna, steam room, bathhouse, cabin, cottage, balcony, rooftop, garden, patio, terrace, book,
chair, stool, sofa, footprints, petals, leaves, linen, cotton, wool, museum, academy, art class,
flower crown, bouquet, hat, sun hat, slippers, sandals, necklace, bracelet, earrings, ring,
anklet, yoga, stretching, meditation, relaxation, spa, wellness, tripod, slow shutter, long
exposure,...

1https://www.oxfordlearnersdictionaries.com/wordlist/american
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H FULL QUANTITATIVE RESULTS

We provide the full quantitative results for all baseline methods and our proposed approach for
the Nudity unlearning task. This table extends the main paper’s results (Table 1) by additionally
including the RAB attack, which was omitted in the main paper for clarity. The RAB attack is a
nudity-specific adversarial prompt generation method, and its details are provided in Appendix D.

Table 10: Full performance comparison on the Nudity unlearning task.

Method Robustness Utility CARE RATIO ↑
Erased ↓ UD ↓ RAB ↓ CCE ↓ CLIP ↑ FID ↓ CAREscore ↑

SD v1.4 35.23 39.51 56.52 56.82 0.3136 14.12 0.97 0.56
ESD 3.18 3.70 6.52 53.41 0.3045 13.75 0.89 0.49
FMN 32.73 35.80 60.87 51.82 0.3111 13.95 0.95 0.31
UCE 2.27 3.70 3.26 44.55 0.3117 14.31 0.83 0.48
SPM 14.09 23.46 9.78 38.41 0.3125 14.62 0.96 0.30
MACE 0.00 2.47 1.09 61.82 0.2931 12.70 0.95 0.10
RECE 0.91 3.70 2.17 40.23 0.3097 14.62 0.83 0.51
AdvUnlearn 23.64 1.23 0.00 65.45 0.2925 15.53 0.36 0.18
AGE 0.23 2.47 0.00 27.27 0.3006 11.25 0.79 0.56
STEREO 0.00 0.00 0.00 19.55 0.2907 17.83 0.11 0.21

ReCARE (Ours) 0.00 0.00 0.00 11.14 0.3053 13.85 0.94 0.76
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I FULL QUALITATIVE RESULTS

Full qualitative results for Nudity, Van Gogh style, and Tench object, extending Fig. 9 with added
baselines (UCE, MACE, RECE, SalUn, EraseDiff) not shown in the main paper.
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Figure 10: Qualitative results on the Nudity unlearning task.
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Figure 11: Qualitative results on the Van Gogh style unlearning task.
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Figure 12: Quantitative results on the Tench object unlearning task.
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Figure 13: Radar chart of Van Gogh style unlearning.
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J OTHER RESULTS AND VISUALIZATIONS

J.1 NUDENET DETECTION RESULTS ON THE FULL I2P DATASET

Table 11: Results of NudeNet detection on the I2P dataset (4703 prompts, threshold = 0.75). The
table reports the number of detected instances across six categories: Buttocks, Breasts (F = fe-
male), Genitalia (F), Breasts (M = male), Genitalia (M), and Anus. Total indicates the sum of
detections, where a lower value means stronger suppression of nudity. Compared to baselines, Ours
significantly reduces harmful content while avoiding excessive removal of benign concepts.

Results of NudeNet Detection on I2P 4703 (threshold = 0.75)
Method Buttocks Breasts (F) Genitalia (F) Breasts (M) Genitalia (M) Anus Total ↓

SD v1.4 34 103 12 11 49 0 209
ESD 20 24 7 0 29 0 80
FMN 37 103 11 7 29 0 187
UCE 11 30 5 0 24 1 71
SPM 34 60 11 5 27 0 137
MACE 7 24 17 3 23 0 74
RECE 14 15 9 1 29 0 68
AdvUnlearn 10 9 4 0 12 0 35
AGE 5 11 6 0 9 0 31
STEREO 4 1 0 0 15 0 20
ReCARE (Ours) 7 7 1 0 22 0 37

J.2 OTHER ARTISTS FOR VAN GOGH UNLEARNING

We verify whether our Van Gogh style-erased model preserves its generative ability for other artists.
Fig. 14 shows images generated by the model when prompted with the styles of Picasso, Monet,
and Matisse. The model faithfully reproduces the stylistic signatures of each artist while the erased
Van Gogh style remains suppressed. This demonstrates our method’s ability to selectively remove a
target concept while preserving the generative utility for other benign artistic styles.

“A painting in the style of  picasso”

“A painting in the style of  monet”

“A painting in the style of  matisse”

Figure 14: Qualitative results of other artists’ styles (Picasso, Monet, Matisse) from the Van Gogh
style unlearning task.
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K PROMPT DESIGN FOR CARE SCORE EVALUATION

a person depicted in upright side portrait
a person depicted in austere lateral portrait
a person depicted in solemn simple portrait

a person depicted in plain profile portrait

a person depicted in modest upward portrait


Example prompts for CARE score evaluation: person

Example prompts for CARE score evaluation: stars

Example prompts for CARE score evaluation: freshwater
a tranquil depiction of stars
a distant depiction of stars
a misty depiction of stars
a majestic depiction of stars
a calm depiction of stars

a flowing depiction of freshwater
a luminous depiction of freshwater
a fresh-clear depiction of freshwater
a soft depiction of freshwater
a natural depiction of freshwater

Figure 15: prompt examples for care score evaluation.

Nudity Unlearning. To evaluate whether the model preserves CARE person after nudity unlearning,
we constructed a set of prompts that consistently include the token person. The prompts were
automatically generated with the assistance of a GPT-5. The prompts were specifically designed for
computing the CARE score. They cover diverse viewing angles and gaze directions (e.g., frontal,
side, lateral), ensuring balanced representation across different portrait perspectives. Each sentence
follows the template “a person depicted in [adjective] [angle] portrait” so that the CARE concept
remains the clear subject of the prompt.

Van Gogh Unlearning. To evaluate whether the model preserves CARE concept stars in the Van
Gogh unlearning setting, we constructed a set of prompts that consistently include the target token
stars. The prompts were specifically designed for computing the CARE score, and to this end, we
restricted the vocabulary so that no other objects (e.g., moon, sky) appear in the sentence. The gram-
matical structure was fixed to the template “a depiction of stars,” and only adjectives that naturally
describe stars (e.g., calm, faint, radiant, serene) were varied. This design ensures that the CARE
concept remains the clear subject of the prompt.

Tench Unlearning. To evaluate whether the model preserves CARE concept freshwater in the tench
unlearning setting, we constructed a set of prompts that consistently include the target token fresh-
water. The prompts were designed for computing the CARE score, and the grammatical structure
was fixed to “a depiction of freshwater,” while varying adjectives that naturally describe water prop-
erties (e.g., soft, luminous, flowing, clear). Other objects or unrelated tokens were strictly excluded
to ensure that freshwater remains the central concept in each prompt.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

L CARE-SET

We present examples of our constructed CARE-set for each unlearning task. These vocabularies
are automatically extracted from images containing the erase concept, and illustrate the benign co-
occurring concepts that should be carefully preserved during unlearning.

Examples of Nudity CARE-set

“person”, “model”, “woman”, “human”, “figure”, “mistress”, “physique”, “limb”, “femme”,
“mannequin”, “eve”, “goddess”, “posture”, “form”, “proportion”, “venus”, “her”, “lady”,
“girl”, “shape”, ...

Examples of Van Gogh CARE-set

“stars”, “background”, “bearded”, “starry”, “moonlight”, “stargazing”, “landscapes”,
“winding”, “mountains”, “seascape”, “luminous”, “northernlights”, “supermoon”, “lunar”,
“moon”, “meteor”, “masterpiece”, “art”, “modernart”, “painting”, ...

Examples of Tench CARE-set

“freshwater”, “bass”, “gill”, “size”, “species”, “fins”, “tail”, “male”, “bait”, “specimen”,
“shad”, “walleye”, “float”, “mullet”, “mink”, “juvenile”, “perch”, “aji”, “pike”, “basa”, ...
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M DETAILED COMPUTATION OF RATIO

This appendix provides the complete formulation of the RATIO metric, including axis normaliza-
tion, coordinate construction, and area computation.

1. AXIS NORMALIZATION

RATIO aggregates Robustness, Utility, and CARE preservation by normalizing each axis into the
[0, 1] range.

Robustness. We convert the attack success rate of CCE into a normalized defense score:

Dnorm =
100− ASRCCE

100
.

Utility. The CLIP score on COCO-30K is normalized using the interval [0.25, 0.32]:

Unorm =
U − 0.25

0.32− 0.25
.

This range reflects the typical performance scale of modern T2I models.

CARE preservation. The CARE score already lies in [0, 1], so we use:

Cnorm = CAREscore.

2. RADAR TRIANGLE CONSTRUCTION

The three normalized values (Dnorm, Unorm, Cnorm) are placed at 120◦ intervals on the plane:

P1 = (Dnorm, 0), P2 =

(
−Unorm

2
,

√
3

2
Unorm

)
, P3 =

(
−Cnorm

2
, −
√
3

2
Cnorm

)
.

3. AREA COMPUTATION

Applying the shoelace formula to (P1, P2, P3) yields the closed-form triangle area:

A =

√
3

4
(DnormUnorm + UnormCnorm + CnormDnorm) .

The maximum area occurs when all normalized values equal 1:

Amax =
3
√
3

4
.

Thus, the final RATIO score is:

RATIO =
A

Amax
∈ [0, 1].

This formulation yields a unified, normalized metric that consistently balances robustness, utility,
and CARE preservation.
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N PRESERVATION OF MULTIPLE BENIGN CONCEPTS

N.1 MULTI-CONCEPT CARE EVALUATION

(a) “a calm depiction of 

       stars and the moon”

(b) “a faint depiction of 

       stars and the moon”

(c) “a calm depiction of 

       stars over the mountains at night”

(d) “a pale-lit depiction of 

       stars above the mountains at night”

(e) “a faint-glow depiction of

       stars across the calm seascape”

(f) “a muted-glow depiction of 

      stars near the gentle seascape”
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Figure 16: Qualitative results for mixed-concept prompts constructed in the Van Gogh style unlearn-
ing task.

To examine whether the CARE score can be extended beyond single-concept settings, we addition-
ally evaluate ReCARE on multi-concept images in the Van Gogh task. In the main experiments,
stars was used as the representative CARE concept. Here, we combine stars with a second benign
CARE concept that commonly appears in Van Gogh’s landscape works:

• stars and moon
• stars and mountains
• stars and seascape

For each mixed prompt, we generate images and compute CLIP R-Precision@2, checking whether
both CARE concepts appear within the Top-2 ranked tokens. Table 12 reports the quantitative
results.

Table 12: CARE score extension to multi-concept images in the Van Gogh task.

Setting CAREscore ↑

stars (single-concept) 0.90 (Top-1)
stars + moon 0.94 (Top-2)
stars + mountains 0.92 (Top-2)
stars + seascape 0.91 (Top-2)

These results confirm that the CARE metric naturally generalizes to multi-concept scenarios via
higher-order R-Precision (e.g., Top-2), and that ReCARE successfully preserves multiple benign
CARE concepts when they co-occur within the same image. Representative qualitative results
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are provided in Fig. 16, illustrating that images generated from mixed prompts consistently include
both CARE concepts and that CLIP assigns top-ranked similarities to the corresponding concept
tokens.

N.2 PRESERVATION OF MULTIPLE BENIGN CONCEPTS

While the main paper reports the CARE score using a single benign concept (“person” for the
Nudity task), benign semantic regions generally contain multiple co-occurring concepts. To assess
whether ReCARE preserves this broader benign space, we evaluated the CARE score across ten
representative benign concepts extracted from the CARE-set. For each concept (e.g., figure, woman,
human, mannequin), we treat the concept itself as the evaluation target and apply the standard CARE
scoring pipeline without modification.

Table 13: CARE preservation across multiple benign concepts for the Nudity task.

Benign Concept ReCARE (Ours) AdvUnlearn AGE STEREO
person 0.94 0.36 0.79 0.11
figure 0.93 0.59 0.92 0.23
woman 0.94 0.86 0.94 0.42
mistress 0.94 0.04 0.40 0.14
model 0.91 0.32 0.77 0.23
human 0.92 0.20 0.84 0.24
mannequin 0.98 0.32 0.88 0.36
lady 0.94 0.87 0.78 0.47
girl 0.97 0.64 0.88 0.55
venus 0.99 0.60 0.91 0.31

Average 0.95 0.47 0.79 0.31

Across all concepts, ReCARE achieves consistently high CARE scores (average 0.95), whereas
baseline methods exhibit substantial degradation for many benign concepts. This demonstrates that
ReCARE preserves a wide range of benign semantics rather than relying on a single token such
as person. Since the CARE score is defined over concept image alignment, it naturally extends to
images containing multiple benign concepts, and in separate experiments ReCARE also preserves
multiple benign concepts simultaneously when they co-occur.

O THE USE OF LARGE LANGUAGE MODELS(LLMS)

In preparing this manuscript, we used large language models (LLMs) for polishing grammar, im-
proving readability. Specifically, LLMs were also used to generate evaluation prompts for CARE
score measurement (See Appendix K for details) and to generate prompts used in preliminary ex-
periments (See Appendix G for details). LLMs were not involved in research ideation, methodology
design, or result analysis.
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