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ABSTRACT

Online video super-resolution (VSR) is an important technique for many real-world
video processing applications, which aims to restore the current high-resolution
video frame based on temporally previous frames. Most of the existing online
VSR methods solely employ one neighboring previous frame to achieve temporal
alignment, which limits long-range temporal modeling of videos. Recently, state
space models (SSMs) have been proposed with linear computational complexity
and a global receptive field, which significantly improve computational efficiency
and performance. In this context, this paper presents a novel online VSR method
based on Trajectory-aware Shifted SSMs (TS-Mamba), leveraging both long-
term trajectory modeling and low-complexity Mamba to achieve efficient spatio-
temporal information aggregation. Specifically, TS-Mamba first constructs the
trajectories within a video to select the most similar tokens from the previous
frames. Then, a Trajectory-aware Shifted Mamba Aggregation (TSMA) module
consisting of proposed shifted SSMs blocks is employed to aggregate the selected
tokens. The shifted SSMs blocks are designed based on Hilbert scannings and
corresponding shift operations to compensate for scanning losses and strengthen
the spatial continuity of Mamba. Additionally, we propose a trajectory-aware loss
function to supervise the trajectory generation, ensuring the accuracy of token
selection when training our model. Extensive experiments on three widely used
VSR test datasets demonstrate that compared with six online VSR benchmark
models, our TS-Mamba achieves state-of-the-art performance in most cases and
over 22.7% complexity reduction (in MACs). The source code for TS-Mamba will
be available at https://github.com.

1 INTRODUCTION

Among various video super-resolution (VSR) application scenarios, online VSR has recently attracted
significant interest due to the growing popularity of live video conferencing and live broadcasting
applications (Fuoli et al., 2023; Xiao et al., 2023). In online VSR, the current high-resolution (HR)
video frame is typically restored using only its low-resolution (LR) counterpart and previous frames.
This is constrained by the requirements for low latency and low computational complexity inherent
to these online real-time applications.

In a VSR model, temporal alignment or aggregation is a core module employed to compensate for the
information from neighboring frames before generating the current HR frame. Advanced temporal
alignment or aggregation modules have been recently developed, which are based on deformable
convolution networks (DCN) (Wang et al., 2019; Tian et al., 2020), flow-guided deformable alignment
models (Chan et al., 2022a; Zhu et al., 2024b), non-local attention mechanisms (Li et al., 2020; Yi
et al., 2019), Vision Transformer based spatio-temporal information aggregation (Liu et al., 2022a;
Tang et al., 2023) or Diffusion models (Wang et al., 2025; Liu et al., 2025; Zhuang et al., 2025).
Although they offer superior VSR performance, these methods are typically associated with high
complexity and, therefore, are not ideal for online VSR.

To mitigate these limitations, recent online VSR methods have adopted more efficient temporal
alignment modules, such as lightweight optical flow networks (Sajjadi et al., 2018; Xiao et al.,
2023), deformable attention mechanisms (Fuoli et al., 2023; Yang et al., 2023), and temporal motion
propagation modules (Zhang et al., 2024b). For example, CKBG (Xiao et al., 2023) utilized a
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Figure 1: Comparison of existing online VSR methods with our TS-Mamba in terms of PSNR and
MACs on the REDS4 dataset. Our TS-Mamba outperforms these SOTA methods and significantly
reduces complexity in terms of MACs.

lightweight optical flow network to estimate motion between frames and perform motion compensa-
tion. DAP (Fuoli et al., 2023) designed a deformable attention pyramid module to dynamically focus
on the most salient locations between frames and progressive refine the offsets to improve temporal
alignment performance. FDAN (Yang et al., 2023) proposed a flow-guided deformable attention
propagation module that introduces the optical flow to guide the offset generation to efficiently exploit
the temporal information between frames. Despite their efficiency, these methods predominantly use
short-term temporal information based on convolutional neural networks (CNN) — typically from a
single previous frame, which restricts their ability to further enhance reconstruction quality. While
incorporating long-term temporal alignment can improve performance, it often introduces significant
computational overhead, resulting in challenges for real-time or resource-constrained applications.
Therefore, it is valuable to develop the efficient long-range models for online VSR applications.

Recently, low-complexity state space models (SSMs) (Gu et al., 2021; Gu & Dao, 2023) have been
proposed with linear computational complexity and with relatively large receptive fields, which can
potentially improve performance with limited complexity. Inspired by this, we propose a Trajectory-
aware Shifted Mamba for online VSR, denoted as TS-Mamba, leveraging long-term trajectory
modeling and low-complexity Mamba for achieving the token-level spatio-temporal aggregation. In
TS-Mamba, trajectories within a video are first constructed for selecting the most similar tokens
from the previous frames. A trajectory-aware shifted Mamba aggregation (TSMA) module is then
employed that consists of shifted SSMs blocks to aggregate the selected tokens. The shifted SSMs
blocks are designed with specific procedures based on Hilbert scannings and four shift operations
to compensate for scanning losses and strengthen the spatial continuity of Mamba. Moreover,
we propose a trajectory-aware loss function to supervise the trajectory generation, optimizing the
accuracy of token selection when training our model. The proposed TS-Mamba model enables
efficient long-term video modeling with significantly reduced computational complexity. The primary
contributions are summarized as follows:

• TS-Mamba is the first SSMs-based online VSR model, which aggregates long-term spatio-
temporal information from previous frames at the token level for restoring current HR
frame. This is different from existing online VSR methods which typically use CNN-based
temporal alignment to exploit temporal information from a single previous frame.

• This is also the first time to introduce video trajectories into Mamba to select the most
similar tokens from previous frames and construct the new trajectory-aware shifted Mamba
model for efficient token-level spatio-temporal information aggregation.

• The novel shifted SSMs blocks are designed based on four different shift operations and
Hilbert scannings to effectively compensate for the intra-window and inter-window losses
of Hilbert scannings and strengthen the local spatial continuity of Mamba.

The proposed method has been benchmarked on three widely used test datasets and shows superior
VSR performance with more than 22.7% computational complexity reduction in terms of MACs over
five state-of-the-art (SOTA) online VSR methods (as shown in Figure 1).
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2 RELATED WORK

2.1 VIDEO SUPER-RESOLUTION

Video super-resolution (VSR) is a fundamental low-level vision task that aims to restore an HR video
from its LR counterpart. Existing VSR methods are typically learning-based, utilizing various deep
neural networks (Teed & Deng, 2020; Zhu et al., 2019; Arnab et al., 2021; Ho et al., 2022). For
example, optical flow-based methods (Chan et al., 2021; Liu et al., 2022b) explore the temporal
motion between frames to align them; deformable convolution networks (DCN)-based methods (Tian
et al., 2020; Wang et al., 2019; Dong et al., 2023) learn the motion offsets between frames for
feature alignment. Moreover, flow-guided deformable-based methods (Chan et al., 2022a; Zhu et al.,
2024b) combine optical flow and DCN to achieve better feature alignment. Non-local attention-based
methods (Li et al., 2020; Yi et al., 2019) aggregate global information for feature aggregation. Vision
Transformer-based methods (Liu et al., 2022a; Tang et al., 2023; Lin et al., 2022) aggregate long-
term spatio-temporal information in video to restore SR frames. Diffusion-based methods (Wang
et al., 2025; Liu et al., 2025; Zhuang et al., 2025) build the long-range modeling using designed
diffusion models for information aggregation. However, these methods are still associated with high
complexity and are therefore not best suited for real-time online VSR applications. Recently, some
Mamba-based works (Xiao & Wang, 2025; Tran et al., 2025) were proposed that use low-complexity
Mamba with global receptive filed to improve VSR performance. Although Mamba-based methods
achieve some reduction in model complexity, their high-overhead repeated scannings hinders efficient
implementation of real-time online VSR.

2.2 ONLINE VIDEO SUPER-RESOLUTION

Due to the specific requirements of online applications, online VSR methods are expected to be
lightweight and have low latency. Therefore, most existing online VSR methods have been proposed
(Sajjadi et al., 2018; Cao et al., 2021; Fuoli et al., 2023; Xiao et al., 2023; Jiang et al., 2025) with
efficient feature alignment modules. For example, EGVSR (Cao et al., 2021) and CKBG (Xiao et al.,
2023) utilized lightweight optical flow networks to estimate motion between frames and perform
motion compensation. KSNet (Jin et al., 2023) proposed a kernel-split manner to reparameterize
convolutional kernels on the high-value channel, enabling representation of dynamic information and
reducing complexity along the channel dimension. TMP (Zhang et al., 2024b) employs an efficient
temporal motion propagation method that leverages motion field continuity to achieve fast feature
alignment. DAP (Fuoli et al., 2023) designed a deformable attention pyramid module to dynamically
focus on the most salient locations between frames and progressive refine the offsets to achieve
temporal alignment improvement. FDAN (Yang et al., 2023) proposed a flow-guided deformable
attention propagation module that introduces the optical flow to guide the offset generation to effi-
ciently exploit the temporal information between frames. It is noted that, however, these online VSR
methods are only based on one previous frame in feature alignment due to the complexity limitation,
which hinders further improvement of VSR performance. Different from existing deformable-based
methods (Fuoli et al., 2023; Yang et al., 2023) that based on short-term spatio-temporal aggregation,
in this work, our TS-Mamba introduces of trajectories and designs shifted SSMs blocks, enabling it
improve the ability for long-range spatio-temporal information aggregation.

2.3 STATE SPACE MODELS

State space models (Gu et al., 2021; Gu & Dao, 2023), e.g., Mamba, have been widely employed
in vision tasks (Liu et al., 2024; Zhu et al., 2024a) due to their linear computational complexity
and ability to model global dependencies. Recently, some Mamba-based methods are proposed for
image/video super-resolution. For example, MambaIR (Guo et al., 2024), and MambaIRv2 (Guo et al.,
2025) used Mamba to achieve the global receptive field. TAMambaIR (Peng et al., 2025) introduced
a texture-aware state space model to focus on textures regions for improving SR quality. VSRM (Tran
et al., 2025) proposed the spatial-to-temporal Mamba and the temporal-to-spatial Mamba to ability
of spatio-temporal aggregation. MamEVSR (Xiao & Wang, 2025) proposed a interleaved Mamba
and a cross modality Mamba to interleave tokens and further leverage spatio-temporal information to
capture finer details. Typically, Mamba converts 2D images into 1D tokens through scanning (Qiao
et al., 2024; Shi et al., 2025), resulting in spatial continuity loss inherent to images. To enhance the
ability of Mamba, some advanced scanning techniques have emerged to address this issue, such as
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Figure 2: The architecture of the TS-Mamba network. Trajectories of videos are first generated
and the similar tokens from previous frames are selected along trajectories. Then, the selected
tokens alongside the current frame token are fed into the trajectory-aware shifted Mamba aggregation
(TSMA) module to achieve the long-term spatio-temporal information aggregation.

bidirectional scanning (Hu et al., 2024; Shi et al., 2025), cross scanning (Liu et al., 2024), continuous
2D scanning (Yang et al., 2024), and local scanning (Huang et al., 2024). To the best of our knowledge,
the use of Mamba has not yet been investigated for the online video super-resolution task. Unlike
existing Mamba-based works (Xiao & Wang, 2025; Tran et al., 2025) that neglect the local spatial
continuity of Mamba, we introduce sophisticated shift operations for Hilbert scannings to enhance
the ability of Mamba to maintain local spatial continuity, improving the online VSR performance
with high efficiency.

3 METHODOLOGY

In online video super-resolution, when reconstructing the tth frame in a low-resolution video, we
denote the current LR frame as ItLR and temporally previous LR frames as {IkLR, k ∈ [t− T, t− 1]}.
The proposed trajectory-aware shifted state space models, TS-Mamba, are illustrated in Figure 2.
Here, all these LR video frames {IkLR, k ∈ [t − T, t]} are first fed into the token and trajectory
generation G(·) module to extract the current frame token Q and the tokens of previous LR frames V :

Q = G
(
ItLR

)
=

{
qti
}
, i ∈ [1, N ], (1)

V = G
(
{IkLR}

)
=

{
vki

}
, i ∈ [1, N ], k ∈ [t− T, t− 1], (2)

where G(·) consists of a convolution layer and N1 residual blocks to generate features and tokens
from video frames, N is the token number, and T is the temporal window size. Based on the generated
tokens {qti}, the trajectories T t of ItLR frame can be formulated as a set of trajectories,

T t =
{
τki =

(
xk
i , y

k
i

)}
, i ∈ [1, N ], k ∈ [t− T, t], (3)

where xk
i ∈ [1,H], yki ∈ [1,W ], and H and W represent the height and width of the feature (for LR

frame), respectively. Each trajectory τki contains a sequence of coordinates {
(
xk
i , y

k
i

)
, i ∈ [1, N ]},

and the end point of trajectory τ ti is associated with the coordinate (xt
i, y

t
i) of token qti .

We then select s the most similar tokens Vs along the trajectories and feed them into the proposed
trajectory-aware shifted Mamba aggregation (TSMA) module alongside token Q to achieve spatio-
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temporal information aggregation:

F t
LR = TSMA(Q,Vs). (4)

Finally, the aggregated feature F t
LR and current LR frame ItLR are fed into the reconstruction network

R(·) and the upsampling U(·) network, respectively, to produce the super-resolved frame ItSR:

ItSR = R(F t
LR) + U(ItLR), (5)

in which R(·) consists of two convolution layers, N2 residual blocks, and a pixelshuffle layer. U(·)
here represents the bicubic upsampling operation.

3.1 TOKEN SELECTION

In order to select the most similar tokens along trajectories, we first reformulate tokens Q, V associated
with trajectories T t. Based on the formulation of the trajectories in Equation 3, tokens Q, and V can
be formulated as:

Q = {qτt
i
}, i ∈ [1, N ],

V = {vτk
i
}, i ∈ [1, N ], k ∈ [t− T, t− 1].

(6)

We compute cosine similarity between the token Q, and tokens V to select s the most similar tokens
along trajectories. The indices of the selected tokens and the selected tokens can be formulated as:

{hj}sj=1 = Top-k
k

⟨
qτt

i

∥ qτt
i
∥2
2

,
vτk

i

∥ vτk
i
∥2
2

⟩, hj ∈ [1, T − 1],

Vs = {v
τ
hj
i

}sj=1, i ∈ [1, N ].

(7)

Thus, the process of the TS-Mamba network is described as:

ItSR = TS-Mamba(Q,V, T t)

= R(TSMA
τk
i ∈T t

(qτt
i
, {v

τ
hj
i

}sj=1)) + U(ItLR).
(8)

3.2 TRAJECTORY-AWARE SHIFTED MAMBA AGGREGATION

Mamba networks are typically used to convert 2D images into 1D tokens via scanning, resulting
in spatial continuity losses inherent to the images. Existing works (Zhang et al., 2024a; Xiao &
Wang, 2025) do not analyze the degree of discontinuous regions but instead repeatedly use multiple
scannings, making these methods hard to maintain the spatial continuity of the image and instead
lead to greater complexity.

To address this issue, in this work, we first analyzed the spatial discontinuity in Hilbert scannings
and then proposed a trajectory-aware shifted Mamba aggregation (TSMA) module that combines
a standard SSMs block and the proposed shifted SSMs (S-SSMs) blocks in the “Scan-Shift-Scan”
manner to compensate for the intra-window and inter-window losses of Hilbert scannings. As
illustrated in Figure 2, in the TSMA module, token Q and selected tokens Vs are first concatenated
along the channel dimension and fed into two paths in a specific “Scan-Shift-Scan” manner, i.e., 1⃝ or
2⃝, each of which consists of a standard SSMs block and two parallel S-SSMs blocks to compensate

for the losses according to the scanning of the standard SSMs block. The output of each path is
concatenated and then aggregated by a convolution layer and a deformable attention block (DAB) (Xia
et al., 2022) to obtain the output feature. Each SSMs/S-SSMs block and DAB is preceded by layer
normalization (LN) and is followed by a residual connection. In each SSMs/S-SSMs block, the
trajectory-aware tokens are scanned based on spatial Hilbert selective scannings along the temporal
dimension (SS3D) to capture long-term spatio-temporal characteristics.

3.3 DISCONTINUITY FOR HILBERT SCANNING

To evaluate the spatial discontinuity of Hilbert scannings in local windows, we define the discontinuity
degree Dd as follows. If the four adjacent areas are successively scanned, the region consisting of
these four scanned areas is considered as continuous (Dd = 0); otherwise, the discontinuity degree
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Figure 3: Illustration of Hilbert scannings and shifted windows generated by seven procedures. (a)
Four types of Hilbert scannings. (b) The procedure P(1, U(1), 3), and elimination value δ. (c) Shifted
windows and elimination values δ for procedures P(1, UL(1/2/3)/UR(1/2/3), 3), respectively.

Dd equals the number of areas that are not successively scanned. For a region consisting of four
adjacent areas, the range of discontinuity degree is Dd ∈ {0, 1, 2, 3}. This is illustrated in Figure 3
(a), where four typical Hilbert scannings, i.e., GScan= {Scan-1, Scan-2, Scan-3, Scan-4},
are shown on a 4×4 grid. Here the region with Dd = 1 is marked by a green circle and the region
with Dd = 2 is marked by a red circle.

Moreover, we extend the general case to that based on the 8×8 grid to further discuss the discontinuity
degrees. An 8×8 region is partitioned into four 4×4 local regions and we illustrate the discontinuity
degree Dd within and between local windows under Scan-1 in Figure 3 (b). It can be observed
that both intra-window discontinuity and inter-window discontinuity exist. In particular, due to the
nature of Hilbert scanning, the central region between windows is widely spaced (the inter-window
discontinuity), resulting in inter-level gaps. Here, the discontinuity degree Dd equals 3 - we mark
this region with a gray circle in Figure 3 (b).

3.4 SHIFTED SSMS BLOCK

To eliminate the discontinuity of Hilbert scannings, we propose the “Scan-Shift-Scan” manner that
combines window shifting with specific Hilbert scannings to strengthen the continuity of SSMs. The
shifting can be defined based on the shift direction and shift position, e.g., Up 1 position (U (1)),
Up Left 1 position (UL(1)) and Down Right 2 position (DR(2)). Our “Scan-Shift-Scan” manner is
designed based on the four Hilbert scannings (shown in Figure 3 (a)) and these window shifting
processes. As shown in Figure 3 (b), we illustrate the procedure of Scan-1→U(1)→Scan-3 as
an example. The local windows are first partitioned by U(1) shift operation and then cyclic fed as the
shifted windows. It can be inferred that the second scanning (Scan-3) on the shifted window can
eliminate the discontinuity of first scanning (Scan-1). To simplify the description of procedure, we
define the procedure as:

P(l,Sf(p), j) = Sc1(l) → Sf(p) → Sc2(j), (9)

where the first and the second scannings are denoted as Sc1(l),Sc2(j) ∈ GScan, l, j ∈ {1, 2, 3, 4}.
Shift operations are denoted as Sf (p) ∈ {U(p), UL(p), UR(p), D(p), DL(p), DR(p), p ∈
{1, 2, 3}}. Therefore, procedure Scan-1→U(1)→Scan-3 can be formulated as P(1, U(1), 3).

To evaluate the discontinuity elimination, we set three symbols and define an elimination value
δ to mark and calculate the elimination. Specifically, we use “\”, “\”, and “\” on the circle
for representation that eliminates 1, 2, and 3 discontinuity degrees, respectively, in Figure 3 (b)-
(c). The elimination value δ is calculated by summing the eliminated discontinuity degrees that
consist of intra-window discontinuity elimination and inter-window discontinuity elimination, i.e.,
δ = δintra + δinter. We have investigated possible procedures and illustrated the representative shifted
windows generated by six shift operations, i.e., UL(1), UL(2), UL(3), and UR(1), UR(2), UR(3),
under the first scanning (Scan-1) and second scanning (Scan-3) in Figure 3 (c). It can be inferred
from Figure 3 (b)-(c) that procedure P(1, U(1), 3) achieves the best elimination (δ=18), and the best
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intra-window discontinuity elimination (δintra=18) but doesn’t eliminate inter-window discontinuity
(δinter=0). We infer that the other three procedures also achieve the best elimination: P(2, L(1), 4),
P(3, D(1), 1), P(4, R(1), 2). Moreover, procedures P(1, UL(3), 3), and P(1, UR(3), 3) have the
best inter-window discontinuity elimination (δinter=6) but worse than procedure P(1, U(1), 3) for
intra-window discontinuity elimination (δintra=8). The more procedures and details are provided in
the supplementary.

Based on the formula of procedure, we can calculate the elimination value δ of the a procedure
P(l,Sf(p), j). We summary all the procedures with our supplementary and we can infer its range
value of elimination value δ ∈ [4, 18], the range value of intra-window discontinuity elimination
δintra = [0, 18] and the range value of inter-window discontinuity elimination δinter = [0, 6]. There-
fore, we elaborately find out the combinations of shift operations and Hilbert scannings to construct
two S-SSMs blocks in parallel branches, i.e., intra-window compensation branch (IntraWCB) and
inter-window compensation branch (InterWCB), to optimally eliminate corresponding discontinuities.
As illustrated in Figure 2, we set two procedures for the parallel SSMs blocks to construct our
TSMA module: 1⃝: P(1, U(1), 3)+P(1, UL(3), 3); 2⃝: P(2, L(1), 4)+P(2, LU(3), 4) to achieve
sufficient elimination of discontinuity.

3.5 SELECTIVE SCANNING ALONG TEMPORAL DIMENSION

To achieve temporal token aggregation, we implement spatial Hilbert-based selective scanning along
the temporal dimension, i.e., SS3D. As shown in Figure 2, we showcase the SS3D processing with
Scan-1. The current token {qτt

i
} and selected tokens {v

τ
hj
i

}sj=1 are scanned to convert spatio-

temporal neighboring pixels into a 1D token sequence. Each token sequence undergoes selective
scanning based on the local windows. This process interweaves selected tokens with current tokens,
enabling information to interact across spatial and temporal dimensions to capture long-term spatio-
temporal characteristics. By scanning spatio-temporally adjacent pixels, SS3D preserves local spatial
information and progressively captures global temporal patterns.

3.6 LOSS FUNCTION

We adopt Charbonnier loss (Lai et al., 2018) as the spatial loss function to supervise the SR frame
generation:

Lspa =

√
∥ItHR − ItSR∥

2
+ ϵ2, (10)

in which ItHR is the HR frame and the ϵ is set to 1× 10−4.

To supervise the trajectory generation for ensuring the accuracy of token selection, we first employ
the formulation of trajectories of LR video in Equation 3 to generate trajectories of HR video:

T t
HR =

{
τki(HR) =

(
xk
i , y

k
i

)}
, i ∈ [1,M ], k ∈ [t− T, t]. (11)

Based on this, we propose our trajectory-aware loss function:

Ltrj =
∥∥T t − ((T t

HR) ↓ŝ)/ŝ
∥∥, (12)

where ↓ŝ is the downsampling with scale factor ŝ that subsamples every ŝ coordinate to LR size.

Overall, the total loss is:
Ltotal = Lspa + λLtrj , (13)

in which the hyperparameter λ is set to 0.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Following previous online VSR research (Jin et al., 2023; Zhang et al., 2024b), we use REDS (Nah
et al., 2019), and Vimeo-90K (Xue et al., 2019) as training datasets. REDS4 is used for evaluating the
models trained on the REDS dataset, while Vimeo-90K-T and Vid4 (Liu & Sun, 2013) are utilized
for benchmarking the models trained on the Vimeo-90K dataset. Two degradations, BI (bicubic) and
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Table 1: Comparison with state-of-the-art online VSR methods. The runtime, FPS, parameters, and
PSNR(dB)/SSIM are reported on three benchmarks with BI and BD degradations.

C
at

eg
or

y

Methods Supp.
Frame R

-T
.Run.↓

(ms)
FPS↑
(1/s)

MACs↓
(G)

Params.↓
(M)

BI degradation BD degradation

REDS4(RGB)↑
(PSNR/SSIM)

Vid4(Y)↑
(PSNR/SSIM)

Vimeo-90K-T(Y)↑
(PSNR/SSIM)

Vid4(Y)↑
(PSNR/SSIM)

B
id

ir
ec

tio
na

l

BasicVSR P+F ✗ 63 15.9 397 6.3 31.42/0.8909 27.24/0.8251 37.53/0.9498 27.96/0.8553
IconVSR P+F ✗ 70 14.3 452 8.7 31.67/0.8948 27.39/0.8279 37.84/0.9524 28.04/0.8570

BasicVSR++ P+F ✗ 77 13.0 418 7.3 32.39/0.9069 27.79/0.8400 38.21/0.9550 29.04/0.8753
SSL-bi P+F ✗ 24 41.7 92 1.0 31.06/0.8933 27.15/0.8208 37.06/0.9458 27.56/0.8431

DFVSR P+F ✗ - - - 7.1 32.76/0.9081 27.92/0.8427 38.51/0.9571 29.56/0.8983
MIA-VSR P+F ✗ 318 3.1 3220 16.5 32.78/0.9220 28.20/0.8507 - -

IART P+F ✗ 180 5.6 5020 13.4 32.90/0.9138 28.26/0.8517 38.62/0.9579 29.68/0.8884
VSRM P+F ✗ 223 4.5 2174 17.1 33.11/0.9162 28.44/0.8552 - -

O
nl

in
e

Bicubic N ✓ - - - - 26.14/0.7292 23.78/0.6347 31.30/0.8687 21.80/0.5246
RRN P ✓ 34 29.4 193 3.4 28.82/0.8234 25.85/0.7660 36.69/0.9432 27.69/0.8488

BasicVSR++* P ✓ 40 25.0 146 3.0 30.44/0.8686 27.06/0.8173 37.11/0.9464 27.49/0.8426
DAP-128 P ✓ 38 26.3 165 - 30.59/0.8703 - 37.29/0.9476 -

FDAN P ✓ 34 29.4 146 3.9 30.71/0.8723 27.14/0.8206† 37.36/0.9483† 27.76/0.8471
KSNet P ✓ 31 32.3 145 3.0 30.69/0.8724 27.14/0.8208 37.34/0.9490 27.63/0.8444†

TMP P ✓ 25 40.1 176 3.1 30.67/0.8710 27.10/0.8167 37.33/0.9481 27.61/0.8428
VSRM* P ✓ 31 32.7 136 3.1 30.64/0.8701 27.10/0.8163 37.28/0.9477 27.57/0.8423

TS-Mamba P ✓ 29 33.5 112 3.0 30.73/0.8727 27.17/0.8209 37.36/0.9482 27.70/0.8473

blur degradation (BD), are used to perform downsampling and the downsampling factor is set to ŝ =
4. For BI downsampling, the HR frame is downsampled by a bicubic filter. For BD downsampling,
the HR frame is first blurred by a Gaussian filter with standard deviation σ = 1.6, and then the blurred
frame is subsampled for every ŝ pixels to generate the LR frame. PSNR and SSIM are adopted as
performance evaluation metrics. Runtime (Run.), FPS (frames per second), MACs, and parameters
(Params.) are computed on an LR frame of size 180×320 to evaluate model complexity and speed.

In the experiments, the numbers of residual blocks N1 and N2 are set to 2 and 13, respectively. The
token size is 4×4 and the window size is 8×8. The selected token number s is set as 3. Random
flips, rotations, and temporal inversion operations are performed for data augmentation. Adam
optimizer (Kingma, 2014), and Cosine Annealing scheme (Loshchilov & Hutter, 2016) are used
during network training. The HR patch size is 256×256 and the batch size is 8. The total number of
iterations is 600K. The proposed method is implemented on the PyTorch platform with two NVIDIA
GeForce RTX 3090 GPUs. Following (Liu et al., 2022a), a lightweight optical flow network (Kong
et al., 2021) is adopted to update trajectories. The temporal window size T is set as 15 based
on (Zhang et al., 2024b) when training on REDS (Nah et al., 2019). For the Vimeo-90K (Xue et al.,
2019) dataset, the original sequence is temporally flipped to obtain a 14-frame sequence.

We compare our approach with five SOTA online VSR methods, including RRN (Isobe et al., 2020),
DAP-128 (Fuoli et al., 2023), FDAN (Yang et al., 2023), KSNet (Jin et al., 2023), and TMP (Zhang
et al., 2024b), and eight bidirectional propagation VSR methods, BasicVSR (Chan et al., 2021),
IconVSR (Chan et al., 2021), BasicVSR++ (Chan et al., 2022a), SSL (Xia et al., 2023), DFVSR (Dong
et al., 2023), MIA-VSR (Zhou et al., 2024), IART (Xu et al., 2024) and VSRM (Tran et al., 2025)).
Additionally, we implemented another methods, i.e.,“BasicVSR++*” and “VSRM*”, by removing
the backward propagation branch of VSR models, i.e., BasicVSR++ and VSRM, and reducing its
model size for online VSR application. We use “P”,“F” and “N” to represent those with the previous
support (supp.) frames, future support frames and no support frames.

4.2 OVERALL PERFORMANCE

As shown in Table 1, the quantitative results demonstrate the superior performance of the proposed
method over other online VSR models in terms of PSNR and SSIM. We also supplement the results
of FDAN and KSNet models on Vid4 and Vimeo-90K-T datasets based on their released pre-trained
models and source codes for a comprehensive comparison. These results are reported in Table 1 with
“†”. Figure 4 presents qualitative comparisons, from which we can observe that our method shows
better visual quality than other online VSR methods for both BI and BD degradations.
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REDS4 011 011 (BI) GT BasicVSR++* FDAN KSNet TMP TS-Mamba

Vid4 City 009 (BI) GT BasicVSR++* FDAN KSNet TMP TS-Mamba

Vimeo90K-T 001 0837(BD) GT BasicVSR++* FDAN KSNet TMP TS-Mamba

Vid4 Foliage 025 (BD) GT BasicVSR++* FDAN KSNet TMP TS-Mamba

Figure 4: Visual results on BI degradation (REDS4, Vid4) and BD degradation (Vimeo-90K-T, Vid4).

Table 2: Results of the ablation study on REDS4 dataset.

Models PSNR(dB)↑ / SSIM↑ Params.(M)↓ Run.(ms)↓ MACs(G)↓
(v1.1) w/o Trajectory 30.45 / 0.8678 1.7 20 84
(v1.2) w/o Ltrj 30.70 / 0.8721 3.0 29 112

(v1.3) w/o IntraWCB 30.58 / 0.8702 2.8 25 97
(v1.4) w/o InterWCB 30.61 / 0.8706 2.8 25 97
(v1.5) w/o IntraWCB+InterWCB 30.52 / 0.8689 2.4 21 85

(v1.6) w/o U(1)/D(1) 30.65 / 0.8710 3.0 27 112
(v1.7) w/o UL(3)/DL(3) 30.67 / 0.8714 3.0 27 112
(v1.8) w/o (v1.6) + (v1.7) 30.61 / 0.8702 3.0 25 111

TS-Mamba (ours) 30.73 / 0.8727 3.0 29 112

Following (Fuoli et al., 2023; Zhang et al., 2024b), VSR methods that can process 720p (1280×720)
videos in at least 24 in terms of FPS are recognized as real-time (R-T.) methods (Fuoli et al., 2023),
and we have labelled all the tested methods in Table 1 according to their runtime. It is noted that our
TS-Mamba model achieves the second fastest inference speed among all online VSR methods. TMP
is the one with the fastest runtime as it was implemented with the CUDA accelerator (high MACs but
low runtime) while TS-Mamba is not. Moreover, TS-Mamba also offers a significant reduction in
terms of MACs (about 36.3%) and a marginal reduction in parameter numbers compared to TMP, as
shown in Figure 1.

4.3 ABLATION STUDY

To further verify the effectiveness of our contributions, we have conducted ablation studies on the
REDS4 dataset with BI degradation.

We first confirmed the contribution of two trajectory-aware designs, i.e., trajectory generation and
trajectory-aware loss, by creating the following variants. (v1.1) w/o Trajectory - G(·) and Token
Selection module were removed from TS-Mamba; (v1.2) w/o Ltrj - the trajectory-aware loss function
was removed when training the TS-Mamba model. We further verified our proposed TSMA module

9
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GT w/o Trajectory w/o Ltrj w/o IntraWCB w/o InterWCB

REDS4 000 045 (BI) w/o IntraWCB
+ InterWCB

w/o
U(1)/D(1)

w/o
UL(3)/DL(3)

w/o
(v1.6)+(v1.7)

TS-Mamba
(ours)

Figure 5: Visual results of the ablation study on REDS4 dataset.

s PSNR(dB)↑/SSIM↑ Params.↓
(M)

Run.↓
(ms)

MACs↓
(G)

1 30.64/0.8712 2.8 25 96
2 30.68/0.8720 2.9 27 104
3 30.73/0.8727 3.0 29 112
4 30.74/0.8727 3.1 31 120

Table 3: Ablation study of selected token number s.

REDS4 015 049 GT FDAN

TMP VSRM* TS-Mamba
Figure 6: A failure case on REDS4 dataset.

in terms of compensation branches and shift operations, by obtaining (v1.3) w/o IntraWCB and (v1.4)
w/o InterWCB - IntraWCB and InterWCB were removed from the TSMA module, respectively; (v1.5)
w/o IntraWCB + InterWCB - both IntraWCB and InterWCB were removed from the TSMA module.
We also tested the adopted shift operations in compensation branches, and implemented (v1.6) w/o
U(1)/L(1) - the U(1)/L(1) shift operations were removed in IntraWCB, (v1.7) w/o UL(3)/LU(3) -
the UL(3)/LU(3) shift operations were removed in InterWCB and (v1.8) w/o (v1.6)+(v1.7) - all the
shift operations were removed in TSMA module. As shown in Table 2, the performance of all these
variants is evidently lower than that of the full TS-Mamba, which fully confirms the effectiveness of
each key component in our design. Moreover, we further provide the visual results of these variants
on REDS4 dataset in Figure 5. It is found that the visual results demonstrates the contributions of our
designs, particularly in realistic textures and fine details of the car.
To confirm the value of the token number s in our TS-Mamba, we tested different s values with our
TS-Mamba, and presented the results in Table 3. It is noted that as s increases, the VSR performance
improves, but with higher model complexity. When s = 4, it is difficult to obviously improve VSR
performance. To trade off between complexity and performance, we set s = 3 in this work.

5 LIMITATIONS

We investigate our results and find out the failure cases. A failure case when highly dynamic rotation
occurs is visualized in Figure 6. The generated trajectories and compensated manner of our TS-
Mamba are inaccurate enough when dynamic rotation occurs in car tire and rotation information
cannot be reconstructed, thus limiting the performance of our method. Due to the high difficulty of
modeling rotation, other online VSR methods also fail to obtain complete rotation information.

6 CONCLUSION

In this paper, we proposed a Trajectory-aware Shifted SSMs (TS-Mamba) for online VSR, leveraging
long-term trajectory modeling and low-complexity Mamba to achieve efficient spatio-temporal
information aggregation. In TS-Mamba, trajectories in a video are first constructed to select the most
similar tokens from the previous frames. A trajectory-aware shifted Mamba aggregation module is
then employed, which consists of shifted SSMs blocks to aggregate the selected tokens. The shifted
SSMs blocks are designed based on Hilbert scannings and shift operations to compensate for the
scanning losses and strengthen the spatial continuity of Mamba. Extensive experiments on three
widely used VSR benchmarks have demonstrated the effectiveness and efficiency of our method.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
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7 APPENDIX

In this section, we will provide more analysis of our designs and experimental results of our TS-
Mamba model. Specifically, we first provide a more detailed analysis of the trajectory-aware shifted
Mamba aggregation (TSMA) module for evidence of our designed procedures. Then, additional
experimental results are provided for the more comprehensive comparison.

7.1 MORE ANALYSIS FOR TSMA MODULE

In this section, we provide a full analysis of the evidence of our procedures in our TSMA module.
Four Hilbert scannings (as shown in Figure 7) and ten shift operations (U(1), D(1), L(1), R(1),
UL(1/2/3), UR(1/2/3)) are adopted to determine the suitable procedures for the best elimination
performance.

Figure 7: Four types of Hilbert scannings.

We first provide the procedures of previous methods (Zhang et al., 2024a; Xiao & Wang, 2025),
i.e., multiple scannings with no shift operations, to prove the necessity of shift operations. Four
procedures of previous methods under Scan-1 and their corresponding elimination values δ are
illustrated in Figure 8:
Scan-1→ Scan-1; Scan-1→ Scan-2;
Scan-1→ Scan-3; Scan-1→ Scan-4.
It can be found from Figure 8 that the discontinuity of Scan-1 cannot be eliminated when using
Scan-1 as the second scanning. A few of the intra-window discontinuity can be eliminated and
the inter-window discontinuity cannot be eliminated when using Scan-2/Scan-3/Scan-4 as the
second scanning. These results imply that using multiple scannings on local windows makes it hard
to eliminate the discontinuity of Hilbert scans.

Based on this problem, we introduce the shift operations under Hilbert scannings to enhance the
discontinuity elimination. To find suitable shift operations for specific scanning to achieve the
best elimination performance. We attempt some procedures under first scanning is Scan-1 with
four different shift operations (U(1), D(1), L(1), R(1)) to determine the second scanning. These
procedures are illustrated in Figure 9. We can find from Figure 9 that:
Scan-1→U(1)→Scan-3 has the best elimination performance (δ=18).
Scan-1→U(1)→Scan-1/Scan-2/Scan-4 have the same elimination value (δ=14).
Scan-1→D(1)→Scan-1/Scan-2/Scan-3/Scan-4 have the same elimination value (δ=14).
Scan-1→L(1)→Scan-1/Scan-2/Scan-3/Scan-4 have the same elimination value (δ=14).
Scan-1→R(1)→Scan-1/Scan-2/Scan-3/Scan-4 have the same elimination value (δ=14).
From these results, it can be inferred that the procedure (1): Scan-1→U(1)→Scan-3 is the most
suitable procedure.

Based on the observation, we extend the procedure (1) to other first scannings to construct the other
three procedures:
(2):Scan-2→L(1)→Scan-4;
(3):Scan-3→D(1)→Scan-1;
(4):Scan-4→R(1)→Scan-2.
These four procedures and their elimination values δ are illustrated in Figure 10. It can be inferred
that these four procedures can obtain the best elimination performance. Besides, we also found
that these procedures have obvious symmetry. Furthermore, the UL(1/2/3) and UR(1/2/3) shift
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Figure 8: Four procedures of previous methods and the corresponding elimination values.

Figure 9: Determining suitable procedures under first scanning Scan-1 and four shift operations.

operations also have the same symmetry. The procedures of the UL(1/2/3) and UR(1/2/3) shift
operations are illustrated in the Figure. 3 (c) in our paper (also shown in Figure 11 in this file).
Therefore, in our paper, we have determined to use the procedures (1) and (2) to construct our shifted
SSMs blocks in the TSMA module. It is noted that although the second Hilbert scanning brings
new discontinuous areas, these areas have already been overcome in the first scanning because the
discontinuous areas do not overlap when using the two Hilbert scannings.

7.2 ADDITIONAL EXPERIMENTS

In this section, we conduct the additional experiments of ablation study and compared methods for a
comprehensive comparison.

7.2.1 ADDITIONAL ABLATION STUDIES

(1) Ablation Study of Different Deformable-based Modules for Our TS-Mamba. We implement
these alignments, i.e., deformable convolution network (DCN), flow-guided deformable alignment
(FGDA), deformable attention (DA), and flow-guided deformable attention (FDA) to replace the
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Figure 10: Four procedures and corresponding elimination δ.

Figure 11: Six procedures and elimination value δ for Scan-1 → UL(1/2/3)/UR(1/2/3) →
Scan-3.

TSMA module in our TS-Mamba for comparison. Their corresponding results are reported in Table 4.
It can be see that our TSMA module achieves the best PSNR/SSIM performance and the lowest
complexity, which demonstrates the effectiveness of our TSMA module.

Table 4: Comparison with different alignments with our TS-Mamba.

Models PSNR(dB)↑/SSIM↑ Params.(M)↓ Run.(ms)↓ MACs(G)↓

DCN 30.59/0.8696 2.8 30 132
FGDA 30.64/0.8701 3.1 42 148
DA 30.67/0.8706 3.0 33 145
FDA 30.69/0.8714 3.0 31 142

TSMA (ours) 30.73/0.8727 3.0 29 112

(2) Ablation Study of Temporal Window Size. We set different temporal window size T from 3 to
23 to determine the optimal size of temporal window and the corresponding results are provided
in Table 5. Besides, previous works also use the T=15 as the fixed window size, in our experiment,
for fair comparison, we also set our temporal window size T as 15. From Table 5 see that when T is
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Table 5: Comparison of different temporal window sizes with our TS-Mamba.

Models PSNR(dB)↑/SSIM↑ Params.(M)↓ Run.(ms)↓ MACs(G)↓

T = 3 30.57/0.8698 2.4 23 96
T = 7 30.65/0.8713 2.7 25 103
T = 11 30.70/0.8722 2.8 27 107
T = 15 (ours) 30.73/0.8727 3.0 29 112
T = 19 30.73/0.8730 3.3 31 118
T = 23 30.74/0.8731 3.7 33 123

increase, the PSNR is increase, which indicates that longer temporal information can help optimize
the designed models and achieve the better VSR performance.

7.2.2 ADDITIONAL COMPARISONS

(1) Comparisons of Mamba-based Methods. We first discuss the designs of MambaIR (Shi et al.,
2025), MambaIRv2 (Guo et al., 2025), TAMambaIR (Peng et al., 2025), and VSRM (Tran et al.,
2025) with our TS-Mamba. MambaIR proposes a residue state space block with local enhancement
and channel redundancy reduction based on four directions scannings to boost the restoration ability
of Mamba. MambaIRv2 designs an attentive state-space model with a semantic-guided neighboring
mechanism to encourage strong interaction between pixels under a single direction scanning, which
effectively eliminating the high complexity and redundancy of multi-directional scans in existing
methods. TAMambaIR introduces a texture-aware state space model that modulates the transition
matrix of Mamba with multi-directional perception blocks and focus on regions with complex
textures to enhance texture awareness. In the VSR task, VSRM introduces a spatial-to-temporal
Mamba and a temporal-to-spatial Mamba blocks based bidirectional scannings to extract long-range
spatio-temporal features and enhance receptive fields efficiently. These Mamba-based methods
usually use the multiply scannings or extra interaction module to enhance the ability of Mamba
but they neglect the local spatial continuity of Mamba, which cause the limited SR performance.
Our TS-Mamba analyzes the local spatial discontinuity and definites the degree of discontinuity
and combines the Hilbert scannings and shift operations to obtain strength the ability of Mamba.
Notes that Hilbert scannings have the better spatial continuity than bidirectional scannings and cross
scannings, and introduce of shift operations is a simple yet efficient way that strength the local spatial
continuity of Mamba and without increasing the complexity, which is effectively help our TS-Mamba
achieves the high efficiency spatio-temporal information aggregation.

Table 6: Comparison of Mamba-based methods with our TS-Mamba on REDS4 dataset.

Category Methods PSNR(dB)↑/SSIM↑ Params.(M)↓ MACs(G)↓

Image SR

MambaIR 32.25/0.9019 20.42 779.7
MambaIRv2 32.48/0.9054 23.10 1567.2
TAMambaIR - - -
MambaIR-light 26.89/0.8195 0.92 84.6
MambaIRv2-light 27.36/0.8389 0.79 75.6

Video SR
VSRM 33.11/0.9162 17.1 2174
VSRM* 30.64/0.8701 3.1 136
TS-MAamba (ours) 30.73/0.8727 3.0 112

To evaluate these methods with our TS-Mamba, we conduct experiments of MambaIR, Mam-
baIRv2, and VSRM on REDS4 dataset with BI degradation and implement a transformed method,
i.e.,“VSRM*”, by removing the backward propagation branch of VSRM and reducing its model size
for online VSR application. Their results are provided in Table 6. It is found that Mamba-based VSR
methods has better SR performance than Mamba-based ISR methods, which due to the temporal
information lose impacts the restoration quality. Besides, VSRM has the best performance than other
methods but its high complexity leads to suitable for online real-time applications. Compared with
two Mamba-based online methods, i.e., VRSM* and TS-Mamba, our TS-Mamba achieves the high
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Table 7: Comparison of Mamba-based image SR methods.

Methods Set5 BSDS100 Manga109 Params. MACs
PSNR/SSIM PSNR/SSIM PSNR/SSIM (M)↓ (G)↓

MambaIR 38.57/0.9627 32.58/0.9048 40.28/0.9806 20.42 221.0
TAMambaIR 38.58/0.9627 32.58/0.9048 40.35/0.9810 16.07 180.0
MambaIRv2 38.65/0.9631 32.62/0.9053 40.42/0.9810 22.90 445.8

Table 8: Comparison different RealVSR methods with our TS-Mamba on RealVSR dataset.

Methods ILNIQE↓/NRQM↑ Params.(M)↓ Run.(ms)↓

RealVSR 34.39/3.795 2.7 772
BasicRealVSR 30.37/6.582 6.3 73
RealViformer 28.61/6.588 5.3 49

VSRM 30.29/6.613 17.1 223
VSRM* 33.29/4.368 3.1 31
TS-Mamba (ours) 32.54/5.161 3.0 29

PSNR and low complexity, which due to the long-range spatio-temporal information aggregation
and shifted Mamba compensation, while VRSM* only use two previous frames to aggregate tem-
poral information, limiting the exploration of long-range spatio-temporal information. Due to the
TAMambaIR method without releasing its source code, we cannot compared it with other methods.
To compare it with other methods as much as possible, we collect the image SR results of three
image SR methods from their papers as a reference and are provided in Table 7. It can be found
that TAMambaIR reduces the complexity compared with MambaIR and MambaIRv2, but it did not
exceed MambaIRv2 in SR performance.

(2) Comparisons of Real-world VSR Methods. We conduct a latest Mamba-based VSR model, i.e.,
VSRM, its variant VSRM* and our TS-Mamba model on RealVSR dataset for evaluation on real-
world scenarios. For further making a comprehensive comparison, we adopted three representative
real-world VSR methods, i.e., RealVSR (Yang et al., 2021), BasicRealVSR (Chan et al., 2022b),
RealViformer (Zhang & Yao, 2024) on RealVSR dataset, the corresponding experimental results of
compared methods and our method are provided in Table 8. It is found that since no noise or unknown
complex degradations were introduced during the training process, the general VSR results are not as
effective as the RealVSR methods. Compared to the RealVSR, our TS-Mamba achieves better VSR
results while maintaining lower complexity, making it a potential replacement for RealVSR.

(3) Comparisons of Recent VSR Methods. Recently, some methods use advanced structures such
as CNN, Transformer and diffusion models, to achieve the promising VSR performance. Here, we
discuss some representative methods and compared them with our TS-Mamba.

Some diffusion-based VSR methods use diffusion for long-range information modeling to achieve
the superior generation performance. For example, LiftVSR (Wang et al., 2025) introduces a hybrid
temporal modeling mechanism that decomposes temporal learning into dynamic temporal attention
(DTA) and attention memory cache (AMC). DTA for fine-grained temporal modeling within short
frame segment and AMC for long-term temporal modeling across segments. UltraVSR (Liu et al.,
2025) proposes a lightweight recurrent temporal shift module that by partially shifting feature
components along the temporal dimension to enable effective propagation, fusion, and alignment
across frames without explicit temporal layers. Additionally, it introduces a temporally asynchronous
inference strategy to capture long-range temporal dependencies under limited memory constraints.
FlashVSR (Zhuang et al., 2025) proposes a diffusion-based one-step real-time VSR that consists a
train-friendly three stage distillation pipeline, a locality constrained sparse attention that adopted a
KV-cache to maintain the spatio-temporal consistency and preserve the high fidelity of videos.

We provide the results of these methods and our TS-Mamba on REDS4 dataset in Table 9. It is
found that our TS-Mamba model achieve the best PSNR and SSIM performance with a large margin
while a significant efficiency. These recent works use the all long-range information in videos for
current frame reconstruction which brings high complexity while our TS-Mamba selects the most
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Table 9: Comparison of long-range modeling diffusion-based methods with TS-Mamba.

Methods PSNR↑ SSIM↑ Param.(M)↓ Run.(ms)↓

LiftVSR 24.34 - - -
UltraVSR 24.50 0.6962 10.5 89
FlashVSR 24.11 0.6511 1780.14 15500

TS-Mamba (ours) 30.73 0.8727 3.1 29

Table 10: Comparison with different general VSR methods with our TS-Mamba on REDS4 dataset.

Category Methods PSNR(dB)↑/SSIM↑ Params.(M)↓ Run.(ms)↓ MACs(G)↓

CNN-based DFVSR 32.76/0.9081 7.1 - -

S2SVR 31.96/0.8988 13.4 194 3462
Transformer-based MIA-VSR 32.78/0.9220 16.5 318 3220

IA-RT 32.90/0.9138 13.4 180 5020

VSRM 33.11/0.9162 3.0 223 2174
Mamba-based VSRM* 30.64/0.8701 3.0 31 136

TS-Mamba (ours) 30.73/0.8727 3.0 29 112

similar token based on the trajectories to aggregate the long-range spatio-temporal information, which
avoiding to all information processing so as to reduce model complexity for online VSR.

Besides of diffusion-based methods, some CNN-based and Transformer-based methods also proposed
in the VSR task. For example, A CNN-based method, i.e., DFVSR (Dong et al., 2023), proposed a
directional frequency representation and a directional frequency-enhanced alignment to represent the
property of frequency of detail and direction information, and use double enhancements of task-related
information to generate the high-quality feature. S2SVR (Lin et al., 2022) proposes an sequence-to-
sequence model with an unsupervised optical flow estimator to maximize its potential in capturing
long-range dependencies among frames. With reliable optical flow, the accurate correspondence is
established among multiple frames for improving the restoration performance. We added their results
and two latest Transformer-based VSR methods, i.e., MIA-VSR (Zhou et al., 2024) and IA-RT (Xu
et al., 2024) on REDS4 dataset with BI degradation in Table 10. It is found that although S2SVR,
DFVSR, MIA-VSR and IA-RT achieves the better VSR performance than out TS-Mamba model, but
they have the high complexity and low inference speed, which cannot apply into the real-time online
VSR processing.

These two VSR methods uses the consecutive one or two frames to achieve the temporal alignment or
aggregation, while our TS-Mamba model utilizes the long-range spatio-temporal information based
on trajectories in video from all the previous frames for spatio-temporal aggregation. Duo to the
trajectory-aware aggregation, our TS-Mamba can more easy to obtain the better VSR performance.

(4) Comparisons of Real-time SR Methods. Recently, some real-time SR methods were proposed. For
comprehensive comparison with real-time SR methods, we compare these methods in quantitative or
empirical comparison. EGVSR (Cao et al., 2021) designed a lightweight CNN network structure based
on spatio-temporal adversarial learning and efficient upsampling method to reduce the computation
and guarantee the high visual quality. RTSR (Jiang et al., 2025) utilizes a dual teacher knowledge
distillation network for optimization of compressed content at various quantization levels to achieve
the low-complexity SR. Different from these two real-time methods, our TS-Mamba introduces the
low-complexity and global receptive field Mamba with long-range temporal trajectories to achieve
the long-range spatio-temporal aggregation while these two models only use CNN network with local
receptive field and neglect the long-rang temporal information, which limits they further improve SR
performance. We provide the results of these two real-time methods with our TS-Mamba model on
Vid4 dataset with BI degradation in Table 11. Noted that RTSR achieves the lowest complexity and
fastest inference speed but has the unsatisfactory SR performance.

(5) Additional Visual Results. To provide more comprehensive comparison, we compare our TS-
Mamba with four state-of-the-art online VSR methods, i.e., BasicVSR++*, FDAN (Yang et al., 2023),
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Table 11: Comparison of real-time methods with TS-Mamba on Vid4 dataset.

Methods PSNR(dB)↑/SSIM↑ Params.(M)↓ Run.(ms)↓ MACs(G)↓

EGSVR 25.88 / 0.80 2.68 70 57.1
RTSR 25.59 / 0.75 0.06 4 1.07

TS-Mamba (ours) 27.17 / 0.82 3.00 29 112

REDS4 000 013 (BI) GT FDAN KSNet TMP BasicVSR++* TS-Mamba

Vid4 Calendar 011 (BI) GT BasicVSR++* FDAN KSNet TMP TS-Mamba

Vimeo90K-T 001 0812(BD) GT BasicVSR++* FDAN KSNet TMP TS-Mamba

Vid4 Walk 026 (BD) GT BasicVSR++* FDAN KSNet TMP TS-Mamba

Figure 12: Visual comparison results on BI degradation (REDS4, Vid4) and BD degradation (Vimeo-
90K-T, Vid4).

Vid4 Calendar (BI)
GT Basic-

VSR++*
FDAN KSNet TMP TS-

Mamba

Figure 13: Temporal consistency comparison results on BI degradation for Calendar video in Vid4
dataset.

KSNet (Jin et al., 2023), and TMP (Zhang et al., 2024b) in visual results and temporal consistency of
restored high-resolution videos.
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We first provide more visual results on three test datasets, i.e., REDS (Nah et al., 2019), Vid4, and
Vimeo-90K-T (Xue et al., 2019) on BI and BD degradations. These results are illustrated in Figure 12.
It can be found from Figure 12 that our TS-Mamba model achieves better visual results than other
online VSR methods.

Moreover, we further provide a comparison of temporal consistency. The temporal profiles of five
online VSR methods and our TS-Mamba model on Vid4 calendar video on BI degradation are
illustrated in Figure 13. It can be found in Figure 13 that our TS-Mamba model can also achieve
better temporal consistency in restored videos.
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