

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRAJECTORY-AWARE SHIFTED STATE SPACE MODELS FOR ONLINE VIDEO SUPER-RESOLUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Online video super-resolution (VSR) is an important technique for many real-world video processing applications, which aims to restore the current high-resolution video frame based on temporally previous frames. Most of the existing online VSR methods solely employ one neighboring previous frame to achieve temporal alignment, which limits long-range temporal modeling of videos. Recently, state space models (SSMs) have been proposed with linear computational complexity and a global receptive field, which significantly improve computational efficiency and performance. In this context, this paper presents a novel online VSR method based on Trajectory-aware Shifted SSMs (**TS-Mamba**), leveraging both long-term trajectory modeling and low-complexity Mamba to achieve efficient spatio-temporal information aggregation. Specifically, TS-Mamba first constructs the trajectories within a video to select the most similar tokens from the previous frames. Then, a Trajectory-aware Shifted Mamba Aggregation (TSMA) module consisting of proposed shifted SSMs blocks is employed to aggregate the selected tokens. The shifted SSMs blocks are designed based on Hilbert scannings and corresponding shift operations to compensate for scanning losses and strengthen the spatial continuity of Mamba. Additionally, we propose a trajectory-aware loss function to supervise the trajectory generation, ensuring the accuracy of token selection when training our model. Extensive experiments on three widely used VSR test datasets demonstrate that compared with six online VSR benchmark models, our TS-Mamba achieves state-of-the-art performance in most cases and over 22.7% complexity reduction (in MACs). The source code for TS-Mamba will be available at <https://github.com>.

1 INTRODUCTION

Among various video super-resolution (VSR) application scenarios, online VSR has recently attracted significant interest due to the growing popularity of live video conferencing and live broadcasting applications (Fuoli et al., 2023; Xiao et al., 2023). In online VSR, the current high-resolution (HR) video frame is typically restored using only its low-resolution (LR) counterpart and previous frames. This is constrained by the requirements for low latency and low computational complexity inherent to these online real-time applications.

In a VSR model, temporal alignment or aggregation is a core module employed to compensate for the information from neighboring frames before generating the current HR frame. Advanced temporal alignment or aggregation modules have been recently developed, which are based on deformable convolution networks (DCN) (Wang et al., 2019; Tian et al., 2020), flow-guided deformable alignment models (Chan et al., 2022a; Zhu et al., 2024b), non-local attention mechanisms (Li et al., 2020; Yi et al., 2019), Vision Transformer based spatio-temporal information aggregation (Liu et al., 2022a; Tang et al., 2023) or Diffusion models (Wang et al., 2025; Liu et al., 2025; Zhuang et al., 2025). Although they offer superior VSR performance, these methods are typically associated with high complexity and, therefore, are not ideal for online VSR.

To mitigate these limitations, recent online VSR methods have adopted more efficient temporal alignment modules, such as lightweight optical flow networks (Sajjadi et al., 2018; Xiao et al., 2023), deformable attention mechanisms (Fuoli et al., 2023; Yang et al., 2023), and temporal motion propagation modules (Zhang et al., 2024b). For example, **CKBG** (Xiao et al., 2023) utilized a

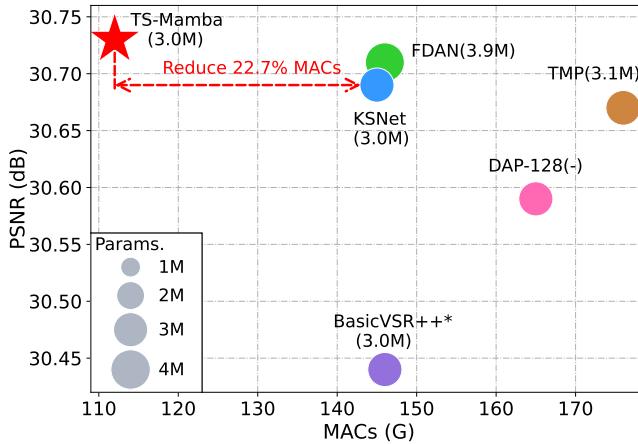


Figure 1: Comparison of existing online VSR methods with our TS-Mamba in terms of PSNR and MACs on the REDS4 dataset. Our TS-Mamba outperforms these SOTA methods and significantly reduces complexity in terms of MACs.

lightweight optical flow network to estimate motion between frames and perform motion compensation. DAP (Fuoli et al., 2023) designed a deformable attention pyramid module to dynamically focus on the most salient locations between frames and progressive refine the offsets to improve temporal alignment performance. FDAN (Yang et al., 2023) proposed a flow-guided deformable attention propagation module that introduces the optical flow to guide the offset generation to efficiently exploit the temporal information between frames. Despite their efficiency, these methods predominantly use short-term temporal information based on convolutional neural networks (CNN) — typically from a single previous frame, which restricts their ability to further enhance reconstruction quality. While incorporating long-term temporal alignment can improve performance, it often introduces significant computational overhead, resulting in challenges for real-time or resource-constrained applications. Therefore, it is valuable to develop the efficient long-range models for online VSR applications.

Recently, low-complexity state space models (SSMs) (Gu et al., 2021; Gu & Dao, 2023) have been proposed with linear computational complexity and with relatively large receptive fields, which can potentially improve performance with limited complexity. Inspired by this, we propose a Trajectory-aware Shifted Mamba for online VSR, denoted as **TS-Mamba**, leveraging long-term trajectory modeling and low-complexity Mamba for achieving the token-level spatio-temporal aggregation. In TS-Mamba, trajectories within a video are first constructed for selecting the most similar tokens from the previous frames. A trajectory-aware shifted Mamba aggregation (TSMA) module is then employed that consists of shifted SSMs blocks to aggregate the selected tokens. The shifted SSMs blocks are designed with specific procedures based on Hilbert scannings and four shift operations to compensate for scanning losses and strengthen the spatial continuity of Mamba. Moreover, we propose a trajectory-aware loss function to supervise the trajectory generation, optimizing the accuracy of token selection when training our model. The proposed TS-Mamba model enables efficient long-term video modeling with significantly reduced computational complexity. The primary contributions are summarized as follows:

- TS-Mamba is the **first SSMs-based online VSR model**, which aggregates long-term spatio-temporal information from previous frames at the token level for restoring current HR frame. This is different from existing online VSR methods which typically use CNN-based temporal alignment to exploit temporal information from a single previous frame.
- This is also the **first time to introduce video trajectories** into Mamba to select the most similar tokens from previous frames and construct the new trajectory-aware shifted Mamba model for efficient token-level spatio-temporal information aggregation.
- The **novel shifted SSMs blocks** are designed based on four different shift operations and Hilbert scannings to effectively compensate for the intra-window and inter-window losses of Hilbert scannings and strengthen the local spatial continuity of Mamba.

The proposed method has been benchmarked on three widely used test datasets and shows superior VSR performance with more than 22.7% computational complexity reduction in terms of MACs over five state-of-the-art (SOTA) online VSR methods (as shown in Figure 1).

108
109

2 RELATED WORK

110
111

2.1 VIDEO SUPER-RESOLUTION

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
Video super-resolution (VSR) is a fundamental low-level vision task that aims to restore an HR video from its LR counterpart. Existing VSR methods are typically learning-based, utilizing various deep neural networks (Teed & Deng, 2020; Zhu et al., 2019; Arnab et al., 2021; Ho et al., 2022). For example, optical flow-based methods (Chan et al., 2021; Liu et al., 2022b) explore the temporal motion between frames to align them; deformable convolution networks (DCN)-based methods (Tian et al., 2020; Wang et al., 2019; Dong et al., 2023) learn the motion offsets between frames for feature alignment. Moreover, flow-guided deformable-based methods (Chan et al., 2022a; Zhu et al., 2024b) combine optical flow and DCN to achieve better feature alignment. Non-local attention-based methods (Li et al., 2020; Yi et al., 2019) aggregate global information for feature aggregation. Vision Transformer-based methods (Liu et al., 2022a; Tang et al., 2023; Lin et al., 2022) aggregate long-term spatio-temporal information in video to restore SR frames. **Diffusion-based methods** (Wang et al., 2025; Liu et al., 2025; Zhuang et al., 2025) build the long-range modeling using designed diffusion models for information aggregation. However, these methods are still associated with high complexity and are therefore not best suited for real-time online VSR applications. Recently, some **Mamba-based works** (Xiao & Wang, 2025; Tran et al., 2025) were proposed that use low-complexity Mamba with global receptive field to improve VSR performance. Although Mamba-based methods achieve some reduction in model complexity, their high-overhead repeated scannings hinders efficient implementation of real-time online VSR.129
130

2.2 ONLINE VIDEO SUPER-RESOLUTION

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
Due to the specific requirements of online applications, online VSR methods are expected to be lightweight and have low latency. Therefore, most existing online VSR methods have been proposed (Sajjadi et al., 2018; Cao et al., 2021; Fuoli et al., 2023; Xiao et al., 2023; Jiang et al., 2025) with efficient feature alignment modules. For example, **EGVSR** (Cao et al., 2021) and **CKBG** (Xiao et al., 2023) utilized lightweight optical flow networks to estimate motion between frames and perform motion compensation. **KSNet** (Jin et al., 2023) proposed a kernel-split manner to reparameterize convolutional kernels on the high-value channel, enabling representation of dynamic information and reducing complexity along the channel dimension. **TMP** (Zhang et al., 2024b) employs an efficient temporal motion propagation method that leverages motion field continuity to achieve fast feature alignment. **DAP** (Fuoli et al., 2023) designed a deformable attention pyramid module to dynamically focus on the most salient locations between frames and progressive refine the offsets to achieve temporal alignment improvement. **FDAN** (Yang et al., 2023) proposed a flow-guided deformable attention propagation module that introduces the optical flow to guide the offset generation to efficiently exploit the temporal information between frames. It is noted that, however, these online VSR methods are only based on one previous frame in feature alignment due to the complexity limitation, which hinders further improvement of VSR performance. Different from existing deformable-based methods (Fuoli et al., 2023; Yang et al., 2023) that based on short-term spatio-temporal aggregation, in this work, our **TS-Mamba** introduces of trajectories and designs shifted SSMs blocks, enabling it improve the ability for long-range spatio-temporal information aggregation.149
150

2.3 STATE SPACE MODELS

151
152
153
154
155
156
157
158
159
160
161
State space models (Gu et al., 2021; Gu & Dao, 2023), e.g., Mamba, have been widely employed in vision tasks (Liu et al., 2024; Zhu et al., 2024a) due to their linear computational complexity and ability to model global dependencies. Recently, some Mamba-based methods are proposed for image/video super-resolution. For example, **MambaIR** (Guo et al., 2024), and **MambaIRv2** (Guo et al., 2025) used Mamba to achieve the global receptive field. **TAMambair** (Peng et al., 2025) introduced a texture-aware state space model to focus on textures regions for improving SR quality. **VSRM** (Tran et al., 2025) proposed the spatial-to-temporal Mamba and the temporal-to-spatial Mamba to ability of spatio-temporal aggregation. **MamEVSR** (Xiao & Wang, 2025) proposed a interleaved Mamba and a cross modality Mamba to interleave tokens and further leverage spatio-temporal information to capture finer details. Typically, Mamba converts 2D images into 1D tokens through scanning (Qiao et al., 2024; Shi et al., 2025), resulting in spatial continuity loss inherent to images. To enhance the ability of Mamba, some advanced scanning techniques have emerged to address this issue, such as

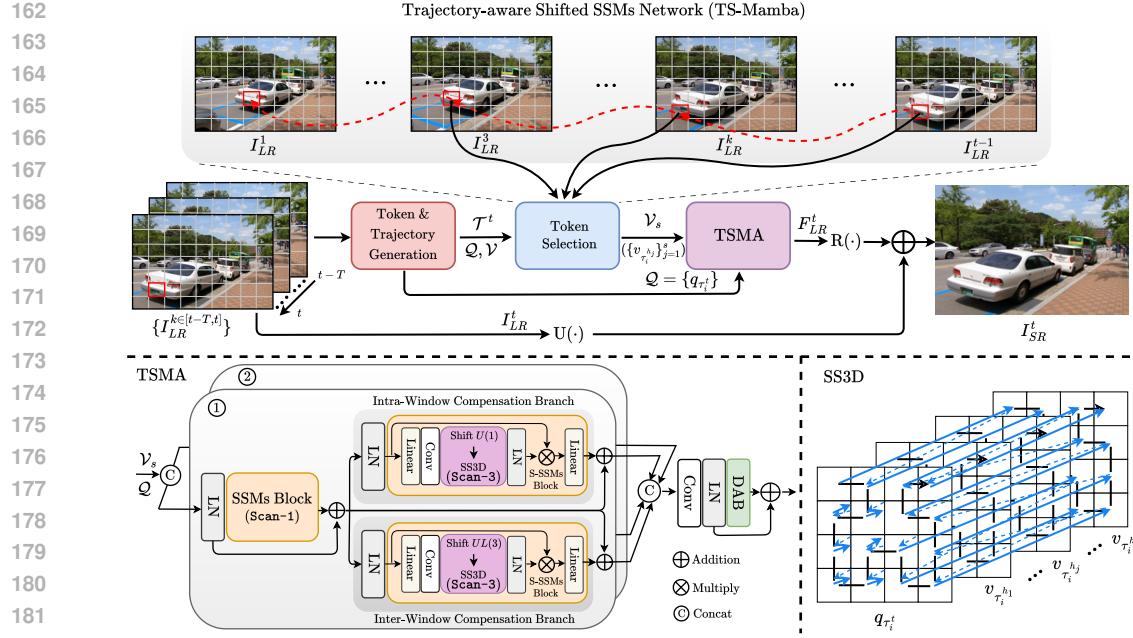


Figure 2: The architecture of the TS-Mamba network. Trajectories of videos are first generated and the similar tokens from previous frames are selected along trajectories. Then, the selected tokens alongside the current frame token are fed into the trajectory-aware shifted Mamba aggregation (TSMA) module to achieve the long-term spatio-temporal information aggregation.

bidirectional scanning (Hu et al., 2024; Shi et al., 2025), cross scanning (Liu et al., 2024), continuous 2D scanning (Yang et al., 2024), and local scanning (Huang et al., 2024). **To the best of our knowledge, the use of Mamba has not yet been investigated for the online video super-resolution task.** Unlike existing Mamba-based works (Xiao & Wang, 2025; Tran et al., 2025) that neglect the local spatial continuity of Mamba, we introduce sophisticated shift operations for Hilbert scannings to enhance the ability of Mamba to maintain local spatial continuity, improving the online VSR performance with high efficiency.

3 METHODOLOGY

In online video super-resolution, when reconstructing the t^{th} frame in a low-resolution video, we denote the current LR frame as I_{LR}^t and temporally previous LR frames as $\{I_{LR}^k, k \in [t-T, t-1]\}$. The proposed trajectory-aware shifted state space models, TS-Mamba, are illustrated in Figure 2. Here, all these LR video frames $\{I_{LR}^k, k \in [t-T, t]\}$ are first fed into the token and trajectory generation $G(\cdot)$ module to extract the current frame token Q and the tokens of previous LR frames V :

$$Q = G(I_{LR}^t) = \{q_i^t\}, i \in [1, N], \quad (1)$$

$$V = G(\{I_{LR}^k\}) = \{v_i^k\}, i \in [1, N], k \in [t-T, t-1], \quad (2)$$

where $G(\cdot)$ consists of a convolution layer and N_1 residual blocks to generate features and tokens from video frames, N is the token number, and T is the temporal window size. Based on the generated tokens $\{q_i^t\}$, the trajectories \mathcal{T}^t of I_{LR}^t frame can be formulated as a set of trajectories,

$$\mathcal{T}^t = \{\tau_i^k = (x_i^k, y_i^k)\}, i \in [1, N], k \in [t-T, t], \quad (3)$$

where $x_i^k \in [1, H]$, $y_i^k \in [1, W]$, and H and W represent the height and width of the feature (for LR frame), respectively. Each trajectory τ_i^k contains a sequence of coordinates $\{(x_i^k, y_i^k), i \in [1, N]\}$, and the end point of trajectory τ_i^t is associated with the coordinate (x_i^t, y_i^t) of token q_i^t .

We then select s the most similar tokens V_s along the trajectories and feed them into the proposed trajectory-aware shifted Mamba aggregation (TSMA) module alongside token Q to achieve spatio-

216 temporal information aggregation:

217

$$218 \quad F_{LR}^t = \text{TSMA}(\mathcal{Q}, \mathcal{V}_s). \quad (4)$$

219

220 Finally, the aggregated feature F_{LR}^t and current LR frame I_{LR}^t are fed into the reconstruction network
221 $R(\cdot)$ and the upsampling $U(\cdot)$ network, respectively, to produce the super-resolved frame I_{SR}^t :

222

$$223 \quad I_{SR}^t = R(F_{LR}^t) + U(I_{LR}^t), \quad (5)$$

224 in which $R(\cdot)$ consists of two convolution layers, N_2 residual blocks, and a pixelshuffle layer. $U(\cdot)$
225 here represents the bicubic upsampling operation.

226

227 3.1 TOKEN SELECTION

228 In order to select the most similar tokens along trajectories, we first reformulate tokens \mathcal{Q}, \mathcal{V} associated
229 with trajectories \mathcal{T}^t . Based on the formulation of the trajectories in Equation 3, tokens \mathcal{Q} , and \mathcal{V} can
230 be formulated as:

231

$$232 \quad \mathcal{Q} = \{q_{\tau_i^t}\}, i \in [1, N], \quad (6)$$

233

$$\mathcal{V} = \{v_{\tau_i^k}\}, i \in [1, N], k \in [t - T, t - 1].$$

234 We compute cosine similarity between the token \mathcal{Q} , and tokens \mathcal{V} to select s the most similar tokens
235 along trajectories. The indices of the selected tokens and the selected tokens can be formulated as:

236

$$237 \quad \{h_j\}_{j=1}^s = \underset{k}{\text{Top-k}} \left\langle \frac{q_{\tau_i^t}}{\|q_{\tau_i^t}\|_2^2}, \frac{v_{\tau_i^k}}{\|v_{\tau_i^k}\|_2^2} \right\rangle, h_j \in [1, T - 1], \quad (7)$$

238

$$239 \quad \mathcal{V}_s = \{v_{\tau_i^{h_j}}\}_{j=1}^s, i \in [1, N].$$

240 Thus, the process of the TS-Mamba network is described as:

241

$$242 \quad I_{SR}^t = \text{TS-Mamba}(\mathcal{Q}, \mathcal{V}, \mathcal{T}^t)$$

243

$$244 \quad = R(\text{TSMA}(q_{\tau_i^t}, \{v_{\tau_i^{h_j}}\}_{j=1}^s)) + U(I_{LR}^t). \quad (8)$$

245

246 3.2 TRAJECTORY-AWARE SHIFTED MAMBA AGGREGATION

247

248 Mamba networks are typically used to convert 2D images into 1D tokens via scanning, resulting
249 in spatial continuity losses inherent to the images. Existing works (Zhang et al., 2024a; Xiao &
250 Wang, 2025) do not analyze the degree of discontinuous regions but instead repeatedly use multiple
251 scannings, making these methods hard to maintain the spatial continuity of the image and instead
252 lead to greater complexity.

253 To address this issue, in this work, we first analyzed the spatial discontinuity in Hilbert scannings
254 and then proposed a trajectory-aware shifted Mamba aggregation (TSMA) module that combines
255 a standard SSMs block and the proposed shifted SSMs (S-SSMs) blocks in the “Scan-Shift-Scan”
256 manner to compensate for the intra-window and inter-window losses of Hilbert scannings. As
257 illustrated in Figure 2, in the TSMA module, token \mathcal{Q} and selected tokens \mathcal{V}_s are first concatenated
258 along the channel dimension and fed into two paths in a specific “Scan-Shift-Scan” manner, i.e., ① or
259 ②, each of which consists of a standard SSMs block and two parallel S-SSMs blocks to compensate
260 for the losses according to the scanning of the standard SSMs block. The output of each path is
261 concatenated and then aggregated by a convolution layer and a deformable attention block (DAB) (Xia
262 et al., 2022) to obtain the output feature. Each SSMs/S-SSMs block and DAB is preceded by layer
263 normalization (LN) and is followed by a residual connection. In each SSMs/S-SSMs block, the
264 trajectory-aware tokens are scanned based on spatial Hilbert selective scannings along the temporal
265 dimension (SS3D) to capture long-term spatio-temporal characteristics.

266

267 3.3 DISCONTINUITY FOR HILBERT SCANNING

268 To evaluate the spatial discontinuity of Hilbert scannings in local windows, we define the discontinuity
269 degree D_d as follows. If the four adjacent areas are successively scanned, the region consisting of
these four scanned areas is considered as continuous ($D_d = 0$); otherwise, the discontinuity degree

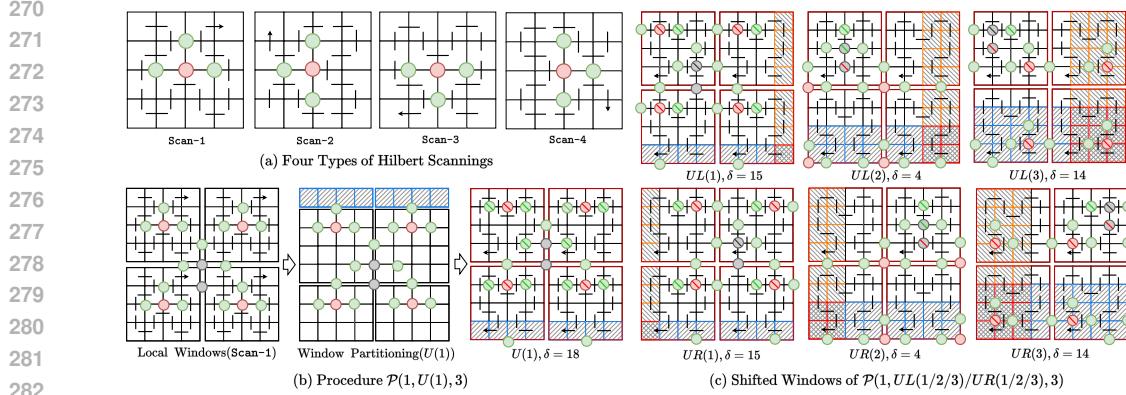


Figure 3: Illustration of Hilbert scannings and shifted windows generated by seven procedures. (a) Four types of Hilbert scannings. (b) The procedure $\mathcal{P}(1, U(1), 3)$, and elimination value δ . (c) Shifted windows and elimination values δ for procedures $\mathcal{P}(1, UL(1/2/3)/UR(1/2/3), 3)$, respectively.

D_d equals the number of areas that are not successively scanned. For a region consisting of four adjacent areas, the range of discontinuity degree is $D_d \in \{0, 1, 2, 3\}$. This is illustrated in Figure 3 (a), where four typical Hilbert scannings, i.e., $\mathcal{G}_{Scan} = \{Scan-1, Scan-2, Scan-3, Scan-4\}$, are shown on a 4×4 grid. Here the region with $D_d = 1$ is marked by a green circle and the region with $D_d = 2$ is marked by a red circle.

Moreover, we extend the general case to that based on the 8×8 grid to further discuss the discontinuity degrees. An 8×8 region is partitioned into four 4×4 local regions and we illustrate the discontinuity degree D_d within and between local windows under Scan-1 in Figure 3 (b). It can be observed that both intra-window discontinuity and inter-window discontinuity exist. In particular, due to the nature of Hilbert scanning, the central region between windows is widely spaced (the inter-window discontinuity), resulting in inter-level gaps. Here, the discontinuity degree D_d equals 3 - we mark this region with a gray circle in Figure 3 (b).

3.4 SHIFTED SSMS BLOCK

To eliminate the discontinuity of Hilbert scannings, we propose the “Scan-Shift-Scan” manner that combines window shifting with specific Hilbert scannings to strengthen the continuity of SSMSs. The shifting can be defined based on the shift direction and shift position, e.g., Up 1 position ($U(1)$), Up Left 1 position ($UL(1)$) and Down Right 2 position ($DR(2)$). Our “Scan-Shift-Scan” manner is designed based on the four Hilbert scannings (shown in Figure 3 (a)) and these window shifting processes. As shown in Figure 3 (b), we illustrate the procedure of $Scan-1 \rightarrow U(1) \rightarrow Scan-3$ as an example. The local windows are first partitioned by $U(1)$ shift operation and then cyclic fed as the shifted windows. It can be inferred that the second scanning (Scan-3) on the shifted window can eliminate the discontinuity of first scanning (Scan-1). To simplify the description of procedure, we define the procedure as:

$$\mathcal{P}(l, \mathcal{S}f(p), j) = \mathcal{S}c_1(l) \rightarrow \mathcal{S}f(p) \rightarrow \mathcal{S}c_2(j), \quad (9)$$

where the first and the second scannings are denoted as $\mathcal{S}c_1(l), \mathcal{S}c_2(j) \in \mathcal{G}_{Scan}, l, j \in \{1, 2, 3, 4\}$. Shift operations are denoted as $\mathcal{S}f(p) \in \{U(p), UL(p), UR(p), D(p), DL(p), DR(p), p \in \{1, 2, 3\}\}$. Therefore, procedure $Scan-1 \rightarrow U(1) \rightarrow Scan-3$ can be formulated as $\mathcal{P}(1, U(1), 3)$.

To evaluate the discontinuity elimination, we set three symbols and define an elimination value δ to mark and calculate the elimination. Specifically, we use “\”, “\”, and “\” on the circle for representation that eliminates 1, 2, and 3 discontinuity degrees, respectively, in Figure 3 (b)-(c). The elimination value δ is calculated by summing the eliminated discontinuity degrees that consist of intra-window discontinuity elimination and inter-window discontinuity elimination, i.e., $\delta = \delta_{\text{intra}} + \delta_{\text{inter}}$. We have investigated possible procedures and illustrated the representative shifted windows generated by six shift operations, i.e., $UL(1), UL(2), UL(3)$, and $UR(1), UR(2), UR(3)$, under the first scanning (Scan-1) and second scanning (Scan-3) in Figure 3 (c). It can be inferred from Figure 3 (b)-(c) that procedure $\mathcal{P}(1, U(1), 3)$ achieves the best elimination ($\delta=18$), and the best

324 intra-window discontinuity elimination ($\delta_{\text{intra}}=18$) but doesn't eliminate inter-window discontinuity
 325 ($\delta_{\text{inter}}=0$). We infer that the other three procedures also achieve the best elimination: $\mathcal{P}(2, L(1), 4)$,
 326 $\mathcal{P}(3, D(1), 1)$, $\mathcal{P}(4, R(1), 2)$. Moreover, procedures $\mathcal{P}(1, UL(3), 3)$, and $\mathcal{P}(1, UR(3), 3)$ have the
 327 best inter-window discontinuity elimination ($\delta_{\text{inter}}=6$) but worse than procedure $\mathcal{P}(1, U(1), 3)$ for
 328 intra-window discontinuity elimination ($\delta_{\text{intra}}=8$). The more procedures and details are provided in
 329 the supplementary.

330 Based on the formula of procedure, we can calculate the elimination value δ of the a procedure
 331 $\mathcal{P}(l, Sf(p), j)$. We summary all the procedures with our supplementary and we can infer its range
 332 value of elimination value $\delta \in [4, 18]$, the range value of intra-window discontinuity elimination
 333 $\delta_{\text{intra}} = [0, 18]$ and the range value of inter-window discontinuity elimination $\delta_{\text{inter}} = [0, 6]$. Therefore,
 334 we elaborately find out the combinations of shift operations and Hilbert scannings to construct
 335 two S-SSMs blocks in parallel branches, i.e., intra-window compensation branch (IntraWCB) and
 336 inter-window compensation branch (InterWCB), to optimally eliminate corresponding discontinuities.
 337 As illustrated in Figure 2, we set two procedures for the parallel SSMs blocks to construct our
 338 TSMA module: ①: $\mathcal{P}(1, U(1), 3) + \mathcal{P}(1, UL(3), 3)$; ②: $\mathcal{P}(2, L(1), 4) + \mathcal{P}(2, LU(3), 4)$ to achieve
 339 sufficient elimination of discontinuity.

340 3.5 SELECTIVE SCANNING ALONG TEMPORAL DIMENSION

342 To achieve temporal token aggregation, we implement spatial Hilbert-based selective scanning along
 343 the temporal dimension, i.e., SS3D. As shown in Figure 2, we showcase the SS3D processing with
 344 Scan-1. The current token $\{q_{\tau_i^t}\}$ and selected tokens $\{v_{\tau_i^{h_j}}\}_{j=1}^s$ are scanned to convert spatio-
 345 temporal neighboring pixels into a 1D token sequence. Each token sequence undergoes selective
 346 scanning based on the local windows. This process interweaves selected tokens with current tokens,
 347 enabling information to interact across spatial and temporal dimensions to capture long-term spatio-
 348 temporal characteristics. By scanning spatio-temporally adjacent pixels, SS3D preserves local spatial
 349 information and progressively captures global temporal patterns.

351 3.6 LOSS FUNCTION

353 We adopt Charbonnier loss (Lai et al., 2018) as the spatial loss function to supervise the SR frame
 354 generation:

$$355 \mathcal{L}_{spa} = \sqrt{\|I_{HR}^t - I_{SR}^t\|^2 + \epsilon^2}, \quad (10)$$

356 in which I_{HR}^t is the HR frame and the ϵ is set to 1×10^{-4} .

358 To supervise the trajectory generation for ensuring the accuracy of token selection, we first employ
 359 the formulation of trajectories of LR video in Equation 3 to generate trajectories of HR video:

$$361 \mathcal{T}_{HR}^t = \left\{ \tau_{i(HR)}^k = (x_i^k, y_i^k) \right\}, i \in [1, M], k \in [t - T, t]. \quad (11)$$

362 Based on this, we propose our trajectory-aware loss function:

$$364 \mathcal{L}_{trj} = \|\mathcal{T}^t - ((\mathcal{T}_{HR}^t) \downarrow \hat{s}) / \hat{s}\|, \quad (12)$$

365 where $\downarrow \hat{s}$ is the downsampling with scale factor \hat{s} that subsamples every \hat{s} coordinate to LR size.

366 Overall, the total loss is:

$$368 \mathcal{L}_{total} = \mathcal{L}_{spa} + \lambda \mathcal{L}_{trj}, \quad (13)$$

369 in which the hyperparameter λ is set to 0.1.

371 4 EXPERIMENTS

373 4.1 EXPERIMENTAL SETTINGS

375 Following previous online VSR research (Jin et al., 2023; Zhang et al., 2024b), we use REDS (Nah
 376 et al., 2019), and Vimeo-90K (Xue et al., 2019) as training datasets. REDS4 is used for evaluating the
 377 models trained on the REDS dataset, while Vimeo-90K-T and Vid4 (Liu & Sun, 2013) are utilized
 for benchmarking the models trained on the Vimeo-90K dataset. Two degradations, BI (bicubic) and

378 Table 1: Comparison with state-of-the-art online VSR methods. The runtime, FPS, parameters, and
 379 PSNR(dB)/SSIM are reported on three benchmarks with BI and BD degradations.
 380

381 Category	382 Methods	383 Supp. Frame ↗ (ms)	384 ↓ Run. (1/s)			385 BI degradation		386 BD degradation	
			387 FPS↑ (G)	388 MACs↓ (M)	389 Params.↓ (M)	390 REDS4(RGB)↑ (PSNR/SSIM)	391 Vid4(Y)↑ (PSNR/SSIM)	392 Vimeo-90K-T(Y)↑ (PSNR/SSIM)	393 Vid4(Y)↑ (PSNR/SSIM)
394 395 Bidirectional	396 BasicVSR	397 P+F ✗	398 63	399 15.9	400 397	401 6.3	402 31.42/0.8909	403 27.24/0.8251	404 37.53/0.9498
	405 IconVSR	406 P+F ✗	407 70	408 14.3	409 452	410 8.7	411 31.67/0.8948	412 27.39/0.8279	413 37.84/0.9524
	414 BasicVSR++	415 P+F ✗	416 77	417 13.0	418 418	419 7.3	420 32.39/0.9069	421 27.79/0.8400	422 38.21/0.9550
	423 SSL-bi	424 P+F ✗	425 24	426 41.7	427 92	428 1.0	429 31.06/0.8933	430 27.15/0.8208	431 37.06/0.9458
	432 DFVSR	433 P+F ✗	434 -	435 -	436 -	437 7.1	438 32.76/0.9081	439 27.92/0.8427	440 38.51/0.9571
	441 MIA-VSR	442 P+F ✗	443 318	444 3.1	445 3220	446 16.5	447 32.78/0.9220	448 28.20/0.8507	449 -
	450 IART	451 P+F ✗	452 180	453 5.6	454 5020	455 13.4	456 32.90/0.9138	457 28.26/0.8517	458 38.62/0.9579
	459 VSRM	460 P+F ✗	461 223	462 4.5	463 2174	464 17.1	465 33.11/0.9162	466 28.44/0.8552	467 -
468 Online	469 Bicubic	470 N ✓	471 -	472 -	473 -	474 -	475 26.14/0.7292	476 23.78/0.6347	477 31.30/0.8687
	478 RRN	479 P ✓	480 34	481 29.4	482 193	483 3.4	484 28.82/0.8234	485 25.85/0.7660	486 36.69/0.9432
	487 BasicVSR++*	488 P ✓	489 40	490 25.0	491 146	492 3.0	493 30.44/0.8686	494 27.06/0.8173	495 37.11/0.9464
	496 DAP-128	497 P ✓	498 38	499 26.3	500 165	501 -	502 30.59/0.8703	503 -	504 37.29/0.9476
	505 FDAN	506 P ✓	507 34	508 29.4	509 146	510 3.9	511 30.71/0.8723	512 27.14/0.8206 †	513 37.36/0.9483 †
	514 KSNet	515 P ✓	516 31	517 32.3	518 145	519 3.0	520 30.69/0.8724	521 27.14/0.8208	522 37.34/0.9490
	523 TMP	524 P ✓	525 25	526 40.1	527 176	528 3.1	529 30.67/0.8710	530 27.10/0.8167	531 37.33/0.9481
	532 VSRM*	533 P ✓	534 31	535 32.7	536 136	537 3.1	538 30.64/0.8701	539 27.10/0.8163	540 37.28/0.9477
	541 TS-Mamba	542 P ✓	543 29	544 33.5	545 112	546 3.0	547 30.73/0.8727	548 27.17/0.8209	549 37.36/0.9482
	550	551	552	553	554	555	556	557	558

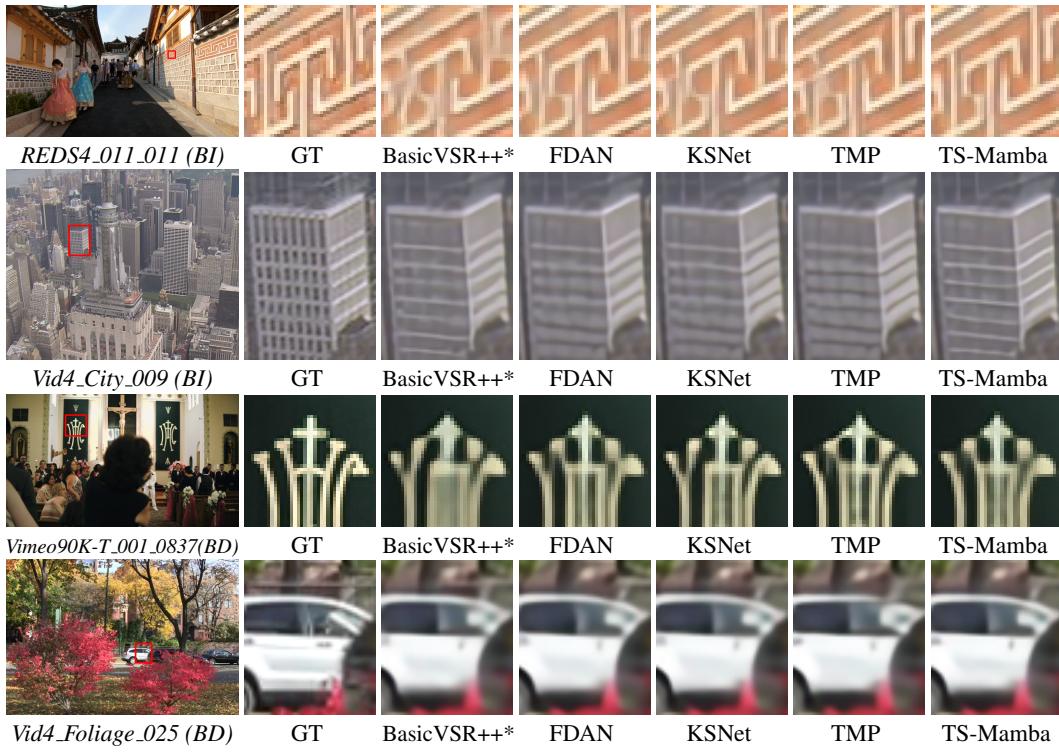
400 blur degradation (BD), are used to perform downsampling and the downsampling factor is set to $\hat{s} =$
 401 4. For BI downsampling, the HR frame is downsampled by a bicubic filter. For BD downsampling,
 402 the HR frame is first blurred by a Gaussian filter with standard deviation $\sigma = 1.6$, and then the blurred
 403 frame is subsampled for every \hat{s} pixels to generate the LR frame. PSNR and SSIM are adopted as
 404 performance evaluation metrics. Runtime (Run.), FPS (frames per second), MACs, and parameters
 405 (Params.) are computed on an LR frame of size 180×320 to evaluate model complexity and speed.

406 In the experiments, the numbers of residual blocks N_1 and N_2 are set to 2 and 13, respectively. The
 407 token size is 4×4 and the window size is 8×8 . The selected token number s is set as 3. Random
 408 flips, rotations, and temporal inversion operations are performed for data augmentation. Adam
 409 optimizer (Kingma, 2014), and Cosine Annealing scheme (Loshchilov & Hutter, 2016) are used
 410 during network training. The HR patch size is 256×256 and the batch size is 8. The total number of
 411 iterations is 600K. The proposed method is implemented on the PyTorch platform with two NVIDIA
 412 GeForce RTX 3090 GPUs. Following (Liu et al., 2022a), a lightweight optical flow network (Kong
 413 et al., 2021) is adopted to update trajectories. The temporal window size T is set as 15 based
 414 on (Zhang et al., 2024b) when training on REDS (Nah et al., 2019). For the Vimeo-90K (Xue et al.,
 415 2019) dataset, the original sequence is temporally flipped to obtain a 14-frame sequence.

416 We compare our approach with five SOTA online VSR methods, including RRN (Isobe et al., 2020),
 417 DAP-128 (Fuoli et al., 2023), FDAN (Yang et al., 2023), KSNet (Jin et al., 2023), and TMP (Zhang
 418 et al., 2024b), and **eight bidirectional propagation VSR methods**, **BasicVSR** (Chan et al., 2021),
 419 **IconVSR** (Chan et al., 2021), **BasicVSR++** (Chan et al., 2022a), **SSL** (Xia et al., 2023), **DFVSR** (Dong
 420 et al., 2023), **MIA-VSR** (Zhou et al., 2024), **IART** (Xu et al., 2024) and **VSRM** (Tran et al., 2025).
 421 Additionally, we implemented another methods, i.e., “**BasicVSR++***” and “**VSRM***”, by removing
 422 the backward propagation branch of VSR models, i.e., **BasicVSR++** and **VSRM**, and reducing its
 423 model size for online VSR application. We use “P”, “F” and “N” to represent those with the previous
 424 support (supp.) frames, future support frames and no support frames.

425 4.2 OVERALL PERFORMANCE

426 As shown in Table 1, the quantitative results demonstrate the superior performance of the proposed
 427 method over other online VSR models in terms of PSNR and SSIM. We also supplement the results
 428 of FDAN and KSNet models on Vid4 and Vimeo-90K-T datasets based on their released pre-trained
 429 models and source codes for a comprehensive comparison. These results are reported in Table 1 with
 430 “†”. Figure 4 presents qualitative comparisons, from which we can observe that our method shows
 431 better visual quality than other online VSR methods for both BI and BD degradations.



456 Figure 4: Visual results on BI degradation (REDS4, Vid4) and BD degradation (Vimeo-90K-T, Vid4).

457 Table 2: Results of the ablation study on REDS4 dataset.

459 Models	460 PSNR(dB)↑ / SSIM↑	461 Params.(M)↓	462 Run.(ms)↓	463 MACs(G)↓
461 (v1.1) w/o Trajectory	462 30.45 / 0.8678	463 1.7	464 20	465 84
462 (v1.2) w/o \mathcal{L}_{trj}	463 30.70 / 0.8721	464 3.0	465 29	466 112
463 (v1.3) w/o IntraWCB	464 30.58 / 0.8702	465 2.8	466 25	467 97
464 (v1.4) w/o InterWCB	465 30.61 / 0.8706	466 2.8	467 25	468 97
465 (v1.5) w/o IntraWCB+InterWCB	466 30.52 / 0.8689	467 2.4	468 21	469 85
466 (v1.6) w/o $U(1)/D(1)$	467 30.65 / 0.8710	468 3.0	469 27	470 112
467 (v1.7) w/o $UL(3)/DL(3)$	468 30.67 / 0.8714	469 3.0	470 27	471 112
468 (v1.8) w/o (v1.6) + (v1.7)	469 30.61 / 0.8702	470 3.0	471 25	472 111
469 TS-Mamba (ours)	470 30.73 / 0.8727	471 3.0	472 29	473 112

470 Following (Fuoli et al., 2023; Zhang et al., 2024b), VSR methods that can process 720p (1280×720)
471 videos in at least 24 in terms of FPS are recognized as real-time (R-T.) methods (Fuoli et al., 2023),
472 and we have labelled all the tested methods in Table 1 according to their runtime. It is noted that our
473 TS-Mamba model achieves the second fastest inference speed among all online VSR methods. TMP
474 is the one with the fastest runtime as it was implemented with the CUDA accelerator (high MACs but
475 low runtime) while TS-Mamba is not. Moreover, TS-Mamba also offers a significant reduction in
476 terms of MACs (about 36.3%) and a marginal reduction in parameter numbers compared to TMP, as
477 shown in Figure 1.

4.3 ABLATION STUDY

480 To further verify the effectiveness of our contributions, we have conducted ablation studies on the
481 REDS4 dataset with BI degradation.

482 We first confirmed the contribution of two trajectory-aware designs, i.e., trajectory generation and
483 trajectory-aware loss, by creating the following variants. (v1.1) w/o Trajectory - $G(\cdot)$ and Token
484 Selection module were removed from TS-Mamba; (v1.2) w/o \mathcal{L}_{trj} - the trajectory-aware loss function
485 was removed when training the TS-Mamba model. We further verified our proposed TSMA module

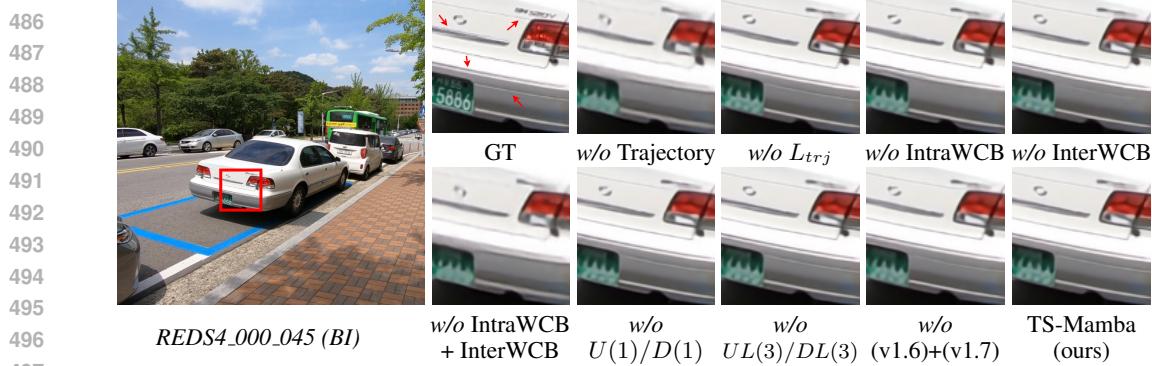


Figure 5: Visual results of the ablation study on REDS4 dataset.

s	PSNR(dB)↑/SSIM↑	Params.↓ (M)	Run.↓ (ms)	MACs↓ (G)
1	30.64/0.8712	2.8	25	96
2	30.68/0.8720	2.9	27	104
3	30.73/0.8727	3.0	29	112
4	30.74/0.8727	3.1	31	120

Table 3: Ablation study of selected token number s .

in terms of compensation branches and shift operations, by obtaining (v1.3) w/o IntraWCB and (v1.4) w/o InterWCB - IntraWCB and InterWCB were removed from the TSMA module, respectively; (v1.5) w/o IntraWCB + InterWCB - both IntraWCB and InterWCB were removed from the TSMA module. We also tested the adopted shift operations in compensation branches, and implemented (v1.6) w/o $U(1)/L(1)$ - the $U(1)/L(1)$ shift operations were removed in IntraWCB, (v1.7) w/o $UL(3)/LU(3)$ - the $UL(3)/LU(3)$ shift operations were removed in InterWCB and (v1.8) w/o (v1.6)+(v1.7) - all the shift operations were removed in TSMA module. As shown in Table 2, the performance of all these variants is evidently lower than that of the full TS-Mamba, which fully confirms the effectiveness of each key component in our design. **Moreover, we further provide the visual results of these variants on REDS4 dataset in Figure 5. It is found that the visual results demonstrates the contributions of our designs, particularly in realistic textures and fine details of the car.**

To confirm the value of the token number s in our TS-Mamba, we tested different s values with our TS-Mamba, and presented the results in Table 3. It is noted that as s increases, the VSR performance improves, but with higher model complexity. When $s = 4$, it is difficult to obviously improve VSR performance. To trade off between complexity and performance, we set $s = 3$ in this work.

5 LIMITATIONS

We investigate our results and find out the failure cases. A failure case when highly dynamic rotation occurs is visualized in Figure 6. The generated trajectories and compensated manner of our TS-Mamba are inaccurate enough when dynamic rotation occurs in car tire and rotation information cannot be reconstructed, thus limiting the performance of our method. Due to the high difficulty of modeling rotation, other online VSR methods also fail to obtain complete rotation information.

6 CONCLUSION

In this paper, we proposed a **Trajectory-aware Shifted SSMs (TS-Mamba)** for online VSR, leveraging long-term trajectory modeling and low-complexity Mamba to achieve efficient spatio-temporal information aggregation. In TS-Mamba, trajectories in a video are first constructed to select the most similar tokens from the previous frames. A trajectory-aware shifted Mamba aggregation module is then employed, which consists of shifted SSMs blocks to aggregate the selected tokens. The shifted SSMs blocks are designed based on Hilbert scannings and shift operations to compensate for the scanning losses and strengthen the spatial continuity of Mamba. Extensive experiments on three widely used VSR benchmarks have demonstrated the effectiveness and efficiency of our method.

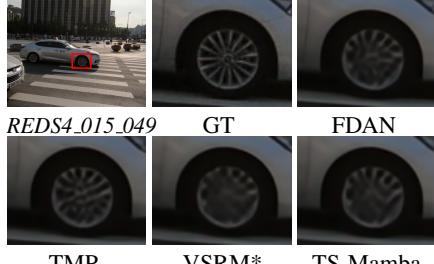


Figure 6: A failure case on REDS4 dataset.

540 REFERENCES
541

542 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
543 Vvit: A video vision transformer. In *Proceedings of the IEEE/CVF International Conference on*
544 *Computer Vision*, pp. 6836–6846, 2021.

545 Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang, and He Li. Real-time super-
546 resolution system of 4k-video based on deep learning. In *2021 IEEE 32nd International Conference*
547 *on Application-specific Systems, Architectures and Processors (ASAP)*, pp. 69–76. IEEE, 2021.

548 Kelvin CK Chan, Xiantao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Basicvsr: The search
549 for essential components in video super-resolution and beyond. In *Proceedings of the IEEE/CVF*
550 *Conference on Computer Vision and Pattern Recognition*, pp. 4947–4956, 2021.

551 Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. Basicvsr++: Improving
552 video super-resolution with enhanced propagation and alignment. In *Proceedings of the IEEE/CVF*
553 *Conference on Computer Vision and Pattern Recognition*, pp. 5972–5981, 2022a.

554 Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. Investigating tradeoffs in
555 real-world video super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision*
556 *and pattern recognition*, pp. 5962–5971, 2022b.

557 Shuting Dong, Feng Lu, Zhe Wu, and Chun Yuan. Dfvsr: Directional frequency video super-resolution
558 via asymmetric and enhancement alignment network. In *IJCAI*, pp. 681–689, 2023.

559 Dario Fuoli, Martin Danelljan, Radu Timofte, and Luc Van Gool. Fast online video super-resolution
560 with deformable attention pyramid. In *Proceedings of the IEEE/CVF Winter Conference on*
561 *Applications of Computer Vision*, pp. 1735–1744, 2023.

562 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
563 *preprint arXiv:2312.00752*, 2023.

564 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
565 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.

566 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
567 baseline for image restoration with state-space model. In *European conference on computer vision*,
568 pp. 222–241. Springer, 2024.

569 Hang Guo, Yong Guo, Yaohua Zha, Yulun Zhang, Wenbo Li, Tao Dai, Shu-Tao Xia, and Yawei Li.
570 Mambairv2: Attentive state space restoration. In *Proceedings of the Computer Vision and Pattern*
571 *Recognition Conference*, pp. 28124–28133, 2025.

572 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
573 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
574 2022.

575 Vincent Tao Hu, Stefan Andreas Baumann, Ming Gui, Olga Grebenkova, Pingchuan Ma, Johannes
576 Fischer, and Björn Ommer. Zigma: A dit-style zigzag mamba diffusion model. In *Proceedings of*
577 *the European Conference on Computer Vision*, pp. 148–166. Springer, 2024.

578 Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual
579 state space model with windowed selective scan. In *Proceedings of the European Conference on*
580 *Computer Vision*, pp. 12–22. Springer, 2024.

581 Takashi Isobe, Fang Zhu, Xu Jia, and Shengjin Wang. Revisiting temporal modeling for video
582 super-resolution. *arXiv preprint arXiv:2008.05765*, 2020.

583 Yuxuan Jiang, Jakub Nawała, Chen Feng, Fan Zhang, Xiaoqing Zhu, Joel Sole, and David Bull.
584 Rtsr: A real-time super-resolution model for av1 compressed content. In *2025 IEEE International*
585 *Symposium on Circuits and Systems (ISCAS)*, pp. 1–5. IEEE, 2025.

586 Shuo Jin, Meiqin Liu, Chao Yao, Chunyu Lin, and Yao Zhao. Kernel dimension matters: To activate
587 available kernels for real-time video super-resolution. In *Proceedings of the 31st ACM International*
588 *Conference on Multimedia*, pp. 8617–8625, 2023.

594 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 595 2014.

596

597 Lintong Kong, Chunhua Shen, and Jie Yang. Fastflownet: A lightweight network for fast optical flow
 598 estimation. In *2021 IEEE International Conference on Robotics and Automation*, pp. 10310–10316.
 599 IEEE, 2021.

600

601 Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Fast and accurate image
 602 super-resolution with deep laplacian pyramid networks. *IEEE Transactions on Pattern Analysis
 603 and Machine Intelligence*, 41(11):2599–2613, 2018.

604

605 Wenbo Li, Xin Tao, Taian Guo, Lu Qi, Jiangbo Lu, and Jiaya Jia. Mucan: Multi-correspondence
 606 aggregation network for video super-resolution. In *Proceedings of the European Conference on
 607 Computer Vision*, pp. 335–351. Springer, 2020.

608

609 Jing Lin, Xiaowan Hu, Yuanhao Cai, Haoqian Wang, Youliang Yan, Xueyi Zou, Yulun Zhang, and
 610 Luc Van Gool. Unsupervised flow-aligned sequence-to-sequence learning for video restoration. In
611 International Conference on Machine Learning, pp. 13394–13404. PMLR, 2022.

612

613 Ce Liu and Dqing Sun. On bayesian adaptive video super resolution. *IEEE Transactions on Pattern
 614 Analysis and Machine Intelligence*, 36(2):346–360, 2013.

615

616 Chengxu Liu, Huan Yang, Jianlong Fu, and Xueming Qian. Learning trajectory-aware transformer
 617 for video super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 618 Pattern Recognition*, pp. 5687–5696, 2022a.

619

620 Meiqin Liu, Shuo Jin, Chao Yao, Chunyu Lin, and Yao Zhao. Temporal consistency learning of
 621 inter-frames for video super-resolution. *IEEE Transactions on Circuits and Systems for Video
 622 Technology*, 33(4):1507–1520, 2022b.

623

624 Yong Liu, Jinshan Pan, Yinchuan Li, Qingji Dong, Chao Zhu, Yu Guo, and Fei Wang. Ultra-
 625 vsr: Achieving ultra-realistic video super-resolution with efficient one-step diffusion space. In
626 Proceedings of the 33rd ACM International Conference on Multimedia, pp. 7785–7794, 2025.

627

628 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
 629 Jiao, and Yunfan Liu. Vmamba: Visual state space model. *Advances in Neural Information
 630 Processing Systems*, 37:103031–103063, 2024.

631

632 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
 633 preprint arXiv:1608.03983*, 2016.

634

635 Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik Moon, Sanghyun Son, Radu Timofte, and
 636 Kyoung Mu Lee. Ntire 2019 challenge on video deblurring and super-resolution: Dataset and
 637 study. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 638 workshops*, pp. 1996–2005, 2019.

639

640 Long Peng, Xin Di, Zhanfeng Feng, Wenbo Li, Renjing Pei, Yang Wang, Xueyang Fu, Yang Cao,
 641 and Zheng-Jun Zha. Directing mamba to complex textures: An efficient texture-aware state space
 642 model for image restoration. *arXiv preprint arXiv:2501.16583*, 2025.

643

644 Yanyuan Qiao, Zheng Yu, Longteng Guo, Sihan Chen, Zijia Zhao, Mingzhen Sun, Qi Wu, and
 645 Jing Liu. Vl-mamba: Exploring state space models for multimodal learning. *arXiv preprint
 646 arXiv:2403.13600*, 2024.

647

648 Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. Frame-recurrent video super-
 649 resolution. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 650 pp. 6626–6634, 2018.

651

652 Yuan Shi, Bin Xia, Xiaoyu Jin, Xing Wang, Tianyu Zhao, Xin Xia, Xuefeng Xiao, and Wenming
 653 Yang. Vmambair: Visual state space model for image restoration. *IEEE Transactions on Circuits
 654 and Systems for Video Technology*, 2025.

648 Jun Tang, Chenyan Lu, Zhengxue Liu, Jiale Li, Hang Dai, and Yong Ding. Ctvsr: Collaborative
 649 spatial-temporal transformer for video super-resolution. *IEEE Transactions on Circuits and*
 650 *Systems for Video Technology*, 34(6):5018–5032, 2023.

651

652 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *Proceedings*
 653 *of the European Conference on Computer Vision*, pp. 402–419. Springer, 2020.

654

655 Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu. Tdan: Temporally-deformable alignment
 656 network for video super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer*
 657 *Vision and Pattern Recognition*, pp. 3360–3369, 2020.

658

659 Dinh Phu Tran, Dao Duy Hung, and Daeyoung Kim. Vsrm: A robust mamba-based framework for
 660 video super-resolution. *arXiv preprint arXiv:2506.22762*, 2025.

661

662 Xijun Wang, Xin Li, Bingchen Li, and Zhibo Chen. Liftvsr: Lifting image diffusion to video super-
 663 resolution via hybrid temporal modeling with only 4x rtx 4090s. *arXiv preprint arXiv:2506.08529*,
 664 2025.

665

666 Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration
 667 with enhanced deformable convolutional networks. In *Proceedings of the IEEE/CVF Conference*
 668 *on Computer Vision and Pattern Recognition workshops*, pp. 1954–1963, 2019.

669

670 Bin Xia, Jingwen He, Yulun Zhang, Yitong Wang, Yapeng Tian, Wenming Yang, and Luc Van Gool.
 671 Structured sparsity learning for efficient video super-resolution. In *Proceedings of the IEEE/CVF*
 672 *Conference on Computer Vision and Pattern Recognition*, pp. 22638–22647, 2023.

673

674 Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. Vision transformer with deformable
 675 attention. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 676 pp. 4794–4803, 2022.

677

678 Jun Xiao, Xinyang Jiang, Ningxin Zheng, Huan Yang, Yifan Yang, Yuqing Yang, Dongsheng Li,
 679 and Kin-Man Lam. Online video super-resolution with convolutional kernel bypass grafts. *IEEE*
 680 *Transactions on Multimedia*, 25:8972–8987, 2023.

681

682 Zeyu Xiao and Xinchao Wang. Event-based video super-resolution via state space models. In *Proceedings*
 683 *of the Computer Vision and Pattern Recognition Conference*, pp. 12564–12574, 2025.

684

685 Kai Xu, Ziwei Yu, Xin Wang, Michael Bi Mi, and Angela Yao. Enhancing video super-resolution via
 686 implicit resampling-based alignment. In *Proceedings of the IEEE/CVF Conference on Computer*
 687 *Vision and Pattern Recognition*, pp. 2546–2555, 2024.

688

689 Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhancement
 690 with task-oriented flow. *International Journal of Computer Vision*, 127:1106–1125, 2019.

691

692 Chenhongyi Yang, Zehui Chen, Miguel Espinosa, Linus Ericsson, Zhenyu Wang, Jiaming Liu, and
 693 Elliot J Crowley. Plainmamba: Improving non-hierarchical mamba in visual recognition. *arXiv*
 694 *preprint arXiv:2403.17695*, 2024.

695

696 Xi Yang, Wangmeng Xiang, Hui Zeng, and Lei Zhang. Real-world video super-resolution: A
 697 benchmark dataset and a decomposition based learning scheme. In *Proceedings of the IEEE/CVF*
 698 *international conference on computer vision*, pp. 4781–4790, 2021.

699

700 Xi Yang, Xindong Zhang, Lei Zhang, and Lei Zhang. Flow-guided deformable attention network for
 701 fast online video super-resolution. In *2023 IEEE International Conference on Image Processing*,
 702 pp. 390–394. IEEE, 2023.

703

704 Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. Progressive fusion video super-
 705 resolution network via exploiting non-local spatio-temporal correlations. In *Proceedings of the*
 706 *IEEE/CVF International Conference on Computer Vision*, pp. 3106–3115, 2019.

707

708 Guozhen Zhang, Chuxnu Liu, Yutao Cui, Xiaotong Zhao, Kai Ma, and Limin Wang. Vfimamba:
 709 Video frame interpolation with state space models. *Advances in Neural Information Processing*
 710 *Systems*, 37:107225–107248, 2024a.

702 Yuehan Zhang and Angela Yao. Realviformer: Investigating attention for real-world video super-
703 resolution. In *European Conference on Computer Vision*, pp. 412–428. Springer, 2024.
704

705 Zhengqiang Zhang, Ruihuang Li, Shi Guo, Yang Cao, and Lei Zhang. Tmp: Temporal motion
706 propagation for online video super-resolution. *IEEE Transactions on Image Processing*, 2024b.
707

708 Xingyu Zhou, Leheng Zhang, Xiaorui Zhao, Keze Wang, Leida Li, and Shuhang Gu. Video super-
709 resolution transformer with masked inter&intra-frame attention. In *Proceedings of the IEEE/CVF*
710 *Conference on Computer Vision and Pattern Recognition*, pp. 25399–25408, 2024.
711

712 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
713 Vision mamba: Efficient visual representation learning with bidirectional state space model. In
714 *International Conference on Machine Learning*, pp. 62429–62442. PMLR, 2024a.
715

716 Qiang Zhu, Feiyu Chen, Shuyuan Zhu, Yu Liu, Xue Zhou, Ruiqin Xiong, and Bing Zeng. Dvsrnet:
717 Deep video super-resolution based on progressive deformable alignment and temporal-sparse
718 enhancement. *IEEE Transactions on Neural Networks and Learning Systems*, 2024b.
719

720 Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable, better
721 results. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
722 pp. 9308–9316, 2019.
723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

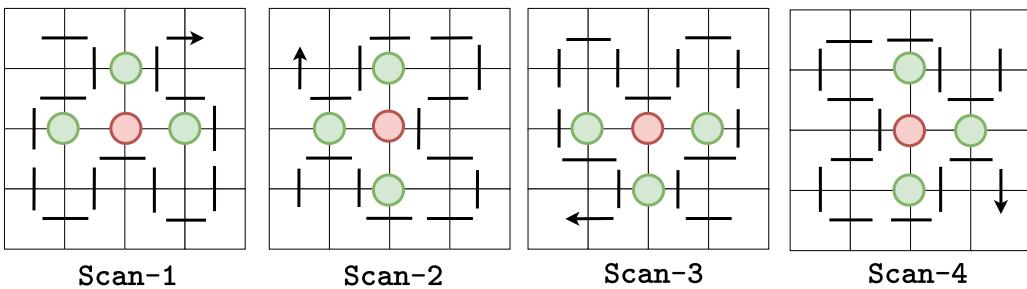
755

756 **7 APPENDIX**
 757

758 In this section, we will provide more analysis of our designs and experimental results of our TS-
 759 Mamba model. Specifically, we first provide a more detailed analysis of the trajectory-aware shifted
 760 Mamba aggregation (TSMA) module for evidence of our designed procedures. Then, additional
 761 experimental results are provided for the more comprehensive comparison.
 762

763 **7.1 MORE ANALYSIS FOR TSMA MODULE**
 764

765 In this section, we provide a full analysis of the evidence of our procedures in our TSMA module.
 766 Four Hilbert scannings (as shown in Figure 7) and ten shift operations ($U(1)$, $D(1)$, $L(1)$, $R(1)$,
 767 $UL(1/2/3)$, $UR(1/2/3)$) are adopted to determine the suitable procedures for the best elimination
 768 performance.



779 Figure 7: Four types of Hilbert scannings.
 780

781 We first provide the procedures of previous methods (Zhang et al., 2024a; Xiao & Wang, 2025),
 782 i.e., multiple scannings with no shift operations, to prove the necessity of shift operations. Four
 783 procedures of previous methods under Scan-1 and their corresponding elimination values δ are
 784 illustrated in Figure 8:
 785 Scan-1 \rightarrow Scan-1; Scan-1 \rightarrow Scan-2;
 786 Scan-1 \rightarrow Scan-3; Scan-1 \rightarrow Scan-4.

787 It can be found from Figure 8 that the discontinuity of Scan-1 cannot be eliminated when using
 788 Scan-1 as the second scanning. A few of the intra-window discontinuity can be eliminated and
 789 the inter-window discontinuity cannot be eliminated when using Scan-2/Scan-3/Scan-4 as the
 790 second scanning. These results imply that using multiple scannings on local windows makes it hard
 791 to eliminate the discontinuity of Hilbert scans.

792 Based on this problem, we introduce the shift operations under Hilbert scannings to enhance the
 793 discontinuity elimination. To find suitable shift operations for specific scanning to achieve the
 794 best elimination performance. We attempt some procedures under first scanning is Scan-1 with
 795 four different shift operations ($U(1)$, $D(1)$, $L(1)$, $R(1)$) to determine the second scanning. These
 796 procedures are illustrated in Figure 9. We can find from Figure 9 that:
 797 Scan-1 \rightarrow $U(1)$ \rightarrow Scan-3 has the best elimination performance ($\delta=18$).

798 Scan-1 \rightarrow $U(1)$ \rightarrow Scan-1/Scan-2/Scan-4 have the same elimination value ($\delta=14$).
 799 Scan-1 \rightarrow $D(1)$ \rightarrow Scan-1/Scan-2/Scan-3/Scan-4 have the same elimination value ($\delta=14$).
 800 Scan-1 \rightarrow $L(1)$ \rightarrow Scan-1/Scan-2/Scan-3/Scan-4 have the same elimination value ($\delta=14$).
 801 Scan-1 \rightarrow $R(1)$ \rightarrow Scan-1/Scan-2/Scan-3/Scan-4 have the same elimination value ($\delta=14$).
 802 From these results, it can be inferred that the procedure (1): Scan-1 \rightarrow $U(1)$ \rightarrow Scan-3 is the most
 803 suitable procedure.

804 Based on the observation, we extend the procedure (1) to other first scannings to construct the other
 805 three procedures:
 806 (2): Scan-2 \rightarrow $L(1)$ \rightarrow Scan-4;
 807 (3): Scan-3 \rightarrow $D(1)$ \rightarrow Scan-1;
 808 (4): Scan-4 \rightarrow $R(1)$ \rightarrow Scan-2.

809 These four procedures and their elimination values δ are illustrated in Figure 10. It can be inferred
 810 that these four procedures can obtain the best elimination performance. Besides, we also found
 811 that these procedures have obvious symmetry. Furthermore, the $UL(1/2/3)$ and $UR(1/2/3)$ shift

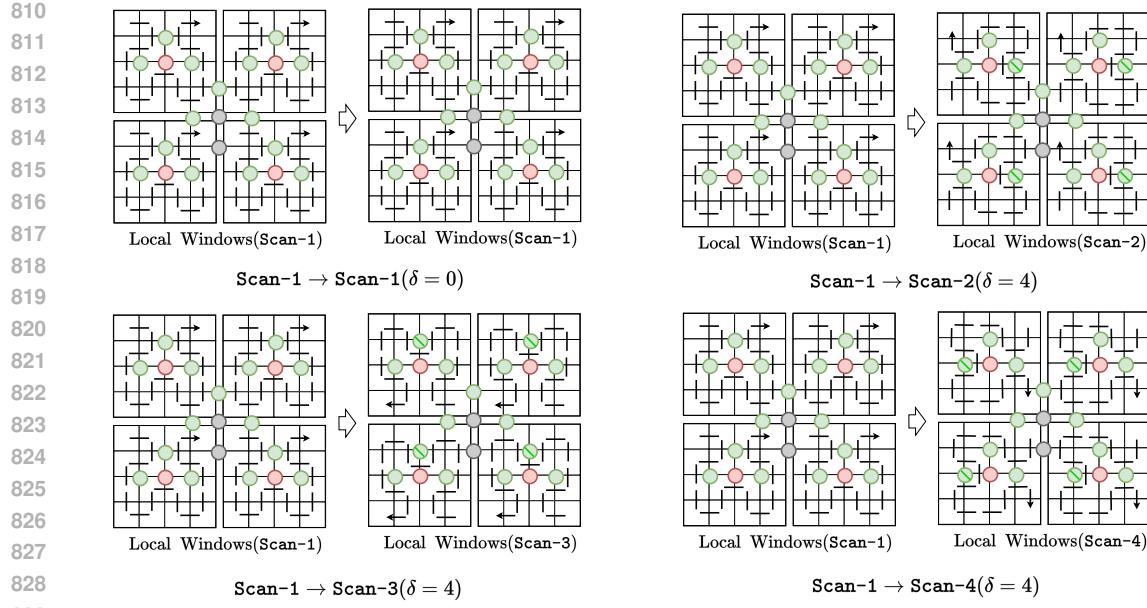


Figure 8: Four procedures of previous methods and the corresponding elimination values.

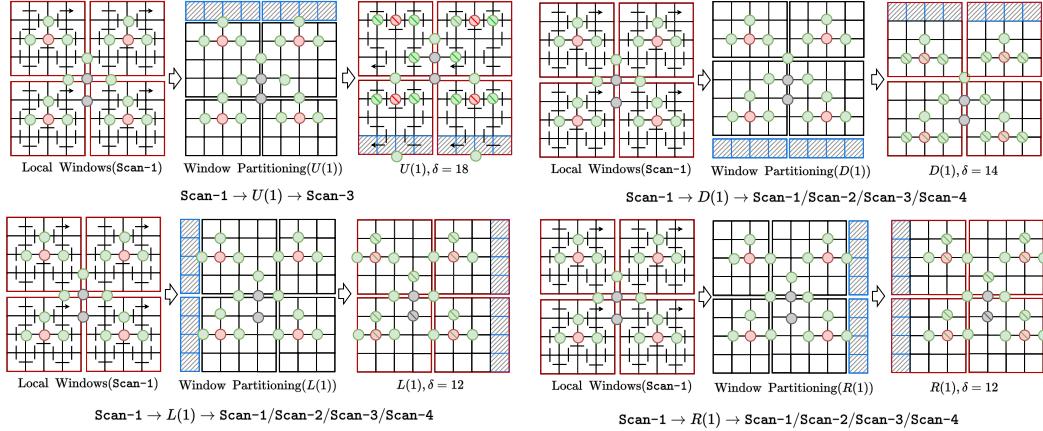


Figure 9: Determining suitable procedures under first scanning Scan-1 and four shift operations.

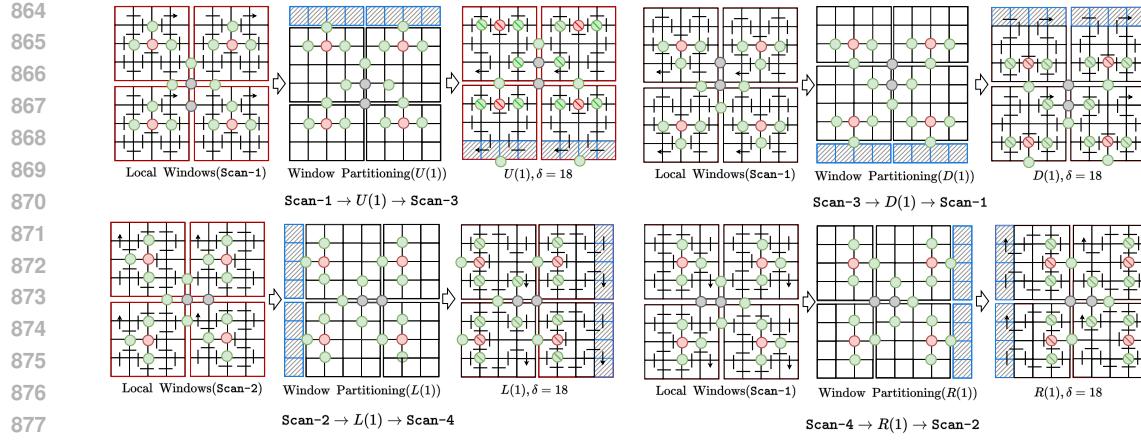
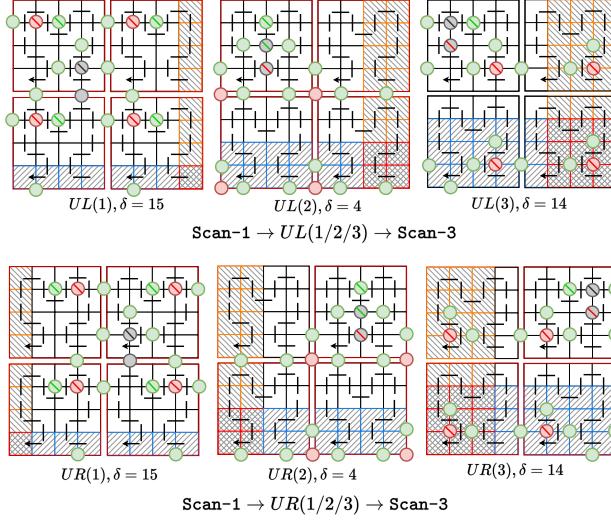
operations also have the same symmetry. The procedures of the $UL(1/2/3)$ and $UR(1/2/3)$ shift operations are illustrated in the Figure. 3 (c) in our paper (also shown in Figure 11 in this file). Therefore, in our paper, we have determined to use the procedures (1) and (2) to construct our shifted SSMs blocks in the TSMA module. It is noted that although the second Hilbert scanning brings new discontinuous areas, these areas have already been overcome in the first scanning because the discontinuous areas do not overlap when using the two Hilbert scannings.

7.2 ADDITIONAL EXPERIMENTS

In this section, we conduct the additional experiments of ablation study and compared methods for a comprehensive comparison.

7.2.1 ADDITIONAL ABLATION STUDIES

(1) *Ablation Study of Different Deformable-based Modules for Our TS-Mamba.* We implement these alignments, i.e., deformable convolution network (DCN), flow-guided deformable alignment (FGDA), deformable attention (DA), and flow-guided deformable attention (FDA) to replace the

Figure 10: Four procedures and corresponding elimination δ .Figure 11: Six procedures and elimination value δ for $\text{Scan-1} \rightarrow \text{UL}(1/2/3)/\text{UR}(1/2/3) \rightarrow \text{Scan-3}$.

TSMA module in our TS-Mamba for comparison. Their corresponding results are reported in Table 4. It can be seen that our TSMA module achieves the best PSNR/SSIM performance and the lowest complexity, which demonstrates the effectiveness of our TSMA module.

Table 4: Comparison with different alignments with our TS-Mamba.

Models	PSNR(dB) \uparrow /SSIM \uparrow	Params.(M) \downarrow	Run.(ms) \downarrow	MACs(G) \downarrow
DCN	30.59/0.8696	2.8	30	132
FGDA	30.64/0.8701	3.1	42	148
DA	30.67/0.8706	3.0	33	145
FDA	30.69/0.8714	3.0	31	142
TSMA (ours)	30.73/0.8727	3.0	29	112

(2) *Ablation Study of Temporal Window Size.* We set different temporal window size T from 3 to 23 to determine the optimal size of temporal window and the corresponding results are provided in Table 5. Besides, previous works also use the $T=15$ as the fixed window size, in our experiment, for fair comparison, we also set our temporal window size T as 15. From Table 5 see that when T is

918
919
920 Table 5: Comparison of different temporal window sizes with our TS-Mamba.
921
922
923
924
925
926

Models	PSNR(dB)↑/SSIM↑	Params.(M)↓	Run.(ms)↓	MACs(G)↓
$T = 3$	30.57/0.8698	2.4	23	96
$T = 7$	30.65/0.8713	2.7	25	103
$T = 11$	30.70/0.8722	2.8	27	107
$T = 15$ (ours)	30.73/0.8727	3.0	29	112
$T = 19$	30.73/0.8730	3.3	31	118
$T = 23$	30.74/0.8731	3.7	33	123

927
928
929 increase, the PSNR is increase, which indicates that longer temporal information can help optimize
930 the designed models and achieve the better VSR performance.
931
932

7.2.2 ADDITIONAL COMPARISONS

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667

972
973
974 Table 7: Comparison of Mamba-based image SR methods.
975
976
977
978
979

Methods	Set5 PSNR/SSIM	BSDS100 PSNR/SSIM	Manga109 PSNR/SSIM	Params. (M)↓	MACs (G)↓
MambaIR	38.57/0.9627	32.58/0.9048	40.28/0.9806	20.42	221.0
TAMambaIR	38.58/0.9627	32.58/0.9048	40.35/0.9810	16.07	180.0
MambaIRv2	38.65/0.9631	32.62/0.9053	40.42/0.9810	22.90	445.8

980
981 Table 8: Comparison different RealVSR methods with our TS-Mamba on RealVSR dataset.
982
983
984
985
986
987
988
989

Methods	ILNIQE↓/NRQM↑	Params.(M)↓	Run.(ms)↓
RealVSR	34.39/3.795	2.7	772
BasicRealVSR	30.37/6.582	6.3	73
RealVifomer	28.61/6.588	5.3	49
VSRM	30.29/6.613	17.1	223
VSRM*	33.29/4.368	3.1	31
TS-Mamba (ours)	32.54/5.161	3.0	29

990
991 PSNR and low complexity, which due to the long-range spatio-temporal information aggregation
992 and shifted Mamba compensation, while VRSM* only use two previous frames to aggregate temporal
993 information, limiting the exploration of long-range spatio-temporal information. Due to the
994 TAMambaIR method without releasing its source code, we cannot compared it with other methods.
995 To compare it with other methods as much as possible, we collect the image SR results of three
996 image SR methods from their papers as a reference and are provided in Table 7. It can be found
997 that TAMambaIR reduces the complexity compared with MambaIR and MambaIRv2, but it did not
998 exceed MambaIRv2 in SR performance.

999 (2) *Comparisons of Real-world VSR Methods.* We conduct a latest Mamba-based VSR model, i.e.,
1000 VSRM, its variant VSRM* and our TS-Mamba model on RealVSR dataset for evaluation on real-
1001 world scenarios. For further making a comprehensive comparison, we adopted three representative
1002 real-world VSR methods, i.e., RealVSR (Yang et al., 2021), BasicRealVSR (Chan et al., 2022b),
1003 RealVifomer (Zhang & Yao, 2024) on RealVSR dataset, the corresponding experimental results of
1004 compared methods and our method are provided in Table 8. It is found that since no noise or unknown
1005 complex degradations were introduced during the training process, the general VSR results are not as
1006 effective as the RealVSR methods. Compared to the RealVSR, our TS-Mamba achieves better VSR
1007 results while maintaining lower complexity, making it a potential replacement for RealVSR.

1008 (3) *Comparisons of Recent VSR Methods.* Recently, some methods use advanced structures such
1009 as CNN, Transformer and diffusion models, to achieve the promising VSR performance. Here, we
1010 discuss some representative methods and compared them with our TS-Mamba.

1011 Some diffusion-based VSR methods use diffusion for long-range information modeling to achieve
1012 the superior generation performance. For example, LiftVSR (Wang et al., 2025) introduces a hybrid
1013 temporal modeling mechanism that decomposes temporal learning into dynamic temporal attention
1014 (DTA) and attention memory cache (AMC). DTA for fine-grained temporal modeling within short
1015 frame segment and AMC for long-term temporal modeling across segments. UltraVSR (Liu et al.,
1016 2025) proposes a lightweight recurrent temporal shift module that by partially shifting feature
1017 components along the temporal dimension to enable effective propagation, fusion, and alignment
1018 across frames without explicit temporal layers. Additionally, it introduces a temporally asynchronous
1019 inference strategy to capture long-range temporal dependencies under limited memory constraints.
1020 FlashVSR (Zhuang et al., 2025) proposes a diffusion-based one-step real-time VSR that consists a
1021 train-friendly three stage distillation pipeline, a locality constrained sparse attention that adopted a
1022 KV-cache to maintain the spatio-temporal consistency and preserve the high fidelity of videos.

1023 We provide the results of these methods and our TS-Mamba on REDS4 dataset in Table 9. It is
1024 found that our TS-Mamba model achieve the best PSNR and SSIM performance with a large margin
1025 while a significant efficiency. These recent works use the all long-range information in videos for
current frame reconstruction which brings high complexity while our TS-Mamba selects the most

1026 Table 9: Comparison of long-range modeling diffusion-based methods with TS-Mamba.
1027

Methods	PSNR \uparrow	SSIM \uparrow	Param.(M) \downarrow	Run.(ms) \downarrow
LiftVSR	24.34	-	-	-
UltraVSR	24.50	0.6962	10.5	89
FlashVSR	24.11	0.6511	1780.14	15500
TS-Mamba (ours)	30.73	0.8727	3.1	29

1034 Table 10: Comparison with different general VSR methods with our TS-Mamba on REDS4 dataset.
1035

Category	Methods	PSNR(dB) \uparrow /SSIM \uparrow	Params.(M) \downarrow	Run.(ms) \downarrow	MACs(G) \downarrow
CNN-based	DFVSR	32.76/0.9081	7.1	-	-
Transformer-based	S2SVR	31.96/0.8988	13.4	194	3462
	MIA-VSR	32.78/0.9220	16.5	318	3220
	IA-RT	32.90/0.9138	13.4	180	5020
Mamba-based	VSRM	33.11/0.9162	3.0	223	2174
	VSRM*	30.64/0.8701	3.0	31	136
	TS-Mamba (ours)	30.73/0.8727	3.0	29	112

1046 similar token based on the trajectories to aggregate the long-range spatio-temporal information, which
1047 avoiding to all information processing so as to reduce model complexity for online VSR.
1048

1049 Besides of diffusion-based methods, some CNN-based and Transformer-based methods also proposed
1050 in the VSR task. For example, A CNN-based method, i.e., DFVSR (Dong et al., 2023), proposed a
1051 directional frequency representation and a directional frequency-enhanced alignment to represent the
1052 property of frequency of detail and direction information, and use double enhancements of task-related
1053 information to generate the high-quality feature. S2SVR (Lin et al., 2022) proposes an sequence-to-
1054 sequence model with an unsupervised optical flow estimator to maximize its potential in capturing
1055 long-range dependencies among frames. With reliable optical flow, the accurate correspondence is
1056 established among multiple frames for improving the restoration performance. We added their results
1057 and two latest Transformer-based VSR methods, i.e., MIA-VSR (Zhou et al., 2024) and IA-RT (Xu
1058 et al., 2024) on REDS4 dataset with BI degradation in Table 10. It is found that although S2SVR,
1059 DFVSR, MIA-VSR and IA-RT achieves the better VSR performance than out TS-Mamba model, but
1060 they have the high complexity and low inference speed, which cannot apply into the real-time online
1061 VSR processing.

1062 These two VSR methods uses the consecutive one or two frames to achieve the temporal alignment or
1063 aggregation, while our TS-Mamba model utilizes the long-range spatio-temporal information based
1064 on trajectories in video from all the previous frames for spatio-temporal aggregation. Duo to the
1065 trajectory-aware aggregation, our TS-Mamba can more easy to obtain the better VSR performance.
1066

(4) *Comparisons of Real-time SR Methods.* Recently, some real-time SR methods were proposed. For
1067 comprehensive comparison with real-time SR methods, we compare these methods in quantitative or
1068 empirical comparison. EGVSR (Cao et al., 2021) designed a lightweight CNN network structure based
1069 on spatio-temporal adversarial learning and efficient upsampling method to reduce the computation
1070 and guarantee the high visual quality. RTSR (Jiang et al., 2025) utilizes a dual teacher knowledge
1071 distillation network for optimization of compressed content at various quantization levels to achieve
1072 the low-complexity SR. Different from these two real-time methods, our TS-Mamba introduces the
1073 low-complexity and global receptive field Mamba with long-range temporal trajectories to achieve
1074 the long-range spatio-temporal aggregation while these two models only use CNN network with local
1075 receptive field and neglect the long-rang temporal information, which limits they further improve SR
1076 performance. We provide the results of these two real-time methods with our TS-Mamba model on
1077 Vid4 dataset with BI degradation in Table 11. Noted that RTSR achieves the lowest complexity and
1078 fastest inference speed but has the unsatisfactory SR performance.

(5) *Additional Visual Results.* To provide more comprehensive comparison, we compare our TS-
1079 Mamba with four state-of-the-art online VSR methods, i.e., BasicVSR++*, FDAN (Yang et al., 2023),

Table 11: Comparison of real-time methods with TS-Mamba on Vid4 dataset.

Methods	PSNR(dB)↑/SSIM↑	Params.(M)↓	Run.(ms)↓	MACs(G)↓
EGSVR	25.88 / 0.80	2.68	70	57.1
RTSR	25.59 / 0.75	0.06	4	1.07
TS-Mamba (ours)	27.17 / 0.82	3.00	29	112

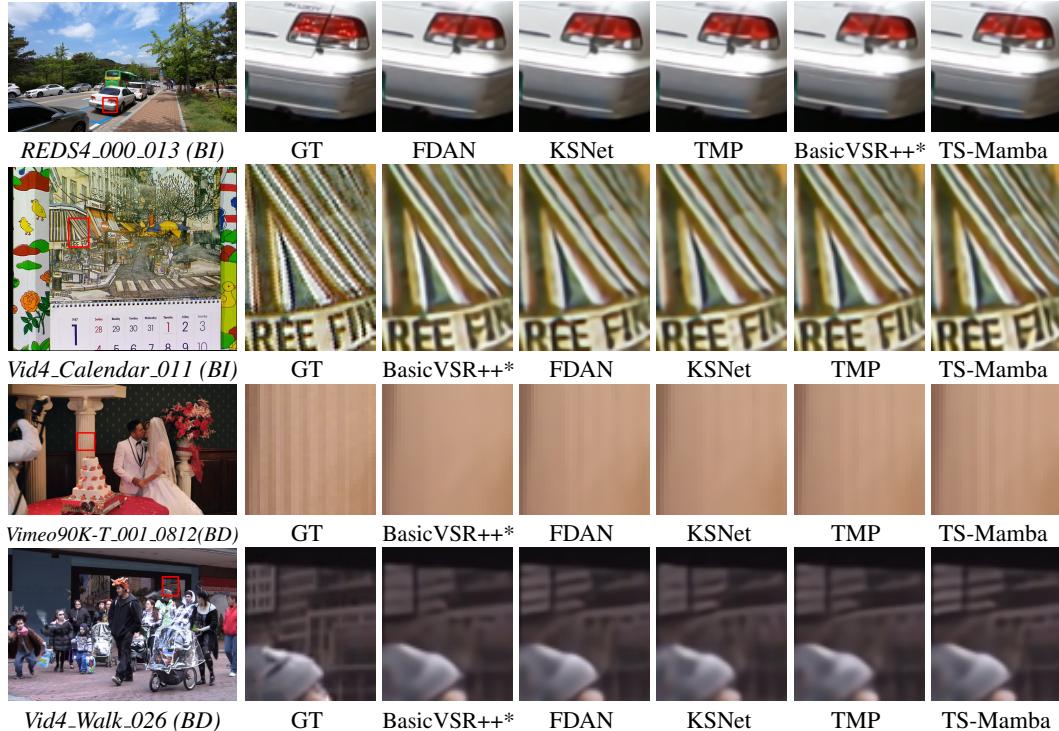
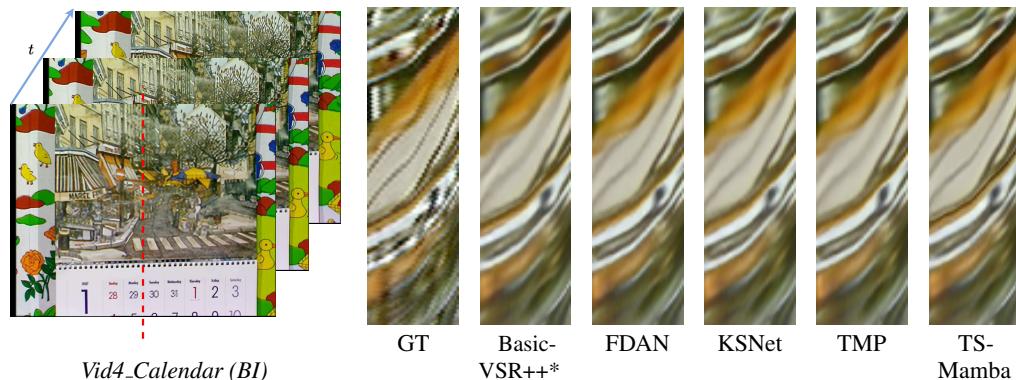


Figure 12: Visual comparison results on BI degradation (REDS4, Vid4) and BD degradation (Vimeo-90K-T, Vid4).

Figure 13: Temporal consistency comparison results on BI degradation for *Calendar* video in Vid4 dataset.

KSNet (Jin et al., 2023), and TMP (Zhang et al., 2024b) in visual results and temporal consistency of restored high-resolution videos.

1134 We first provide more visual results on three test datasets, i.e., REDS (Nah et al., 2019), Vid4, and
1135 Vimeo-90K-T (Xue et al., 2019) on BI and BD degradations. These results are illustrated in Figure 12.
1136 It can be found from Figure 12 that our TS-Mamba model achieves better visual results than other
1137 online VSR methods.

1138 Moreover, we further provide a comparison of temporal consistency. The temporal profiles of five
1139 online VSR methods and our TS-Mamba model on Vid4 *calendar* video on BI degradation are
1140 illustrated in Figure 13. It can be found in Figure 13 that our TS-Mamba model can also achieve
1141 better temporal consistency in restored videos.

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187