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ABSTRACT

In silico design and optimization of new materials primarily relies on high-
accuracy atomic simulators that perform density functional theory (DFT) calcula-
tions. While recent works showcase the strong potential of machine learning to ac-
celerate the material design process, they mostly consist of generative approaches
that do not use direct DFT signals as feedback to improve training and generation
mainly due to DFT’s high computational cost. To aid the adoption of direct DFT
signals in the materials design loop through online reinforcement learning (RL),
we propose CrystalGym, an open-source RL environment for crystalline material
discovery. Using CrystalGym, we benchmark common value- and policy-based
reinforcement learning algorithms for designing various crystals conditioned on
target properties. Concretely, we optimize for challenging properties like the band
gap, bulk modulus, and density, which are directly calculated from DFT in the
environment. While none of the algorithms we benchmark solve all CrystalGym
tasks, our extensive experiments and ablations show different sample efficiencies
and ease of convergence to optimality for different algorithms and environment
settings. Our goal is for CrystalGym to serve as a test bed for reinforcement learn-
ing researchers and material scientists to address these real-world design problems
with practical applications. Furthermore, we introduce a novel class of challenges
for reinforcement learning methods dealing with time-consuming reward signals,
paving the way for future interdisciplinary research for machine learning moti-
vated by real-world applications.

1 INTRODUCTION

Reinforcement learning (RL) methods have demonstrated immense success for complex decision-
making problems, robotics (Khan et al., 2020; Xu et al., 2024), autonomous driving systems, and
language models (Liu et al., 2023). Recently, the scope of RL has expanded to a variety of scientific
areas including energy optimization, quantum systems Martı́n-Guerrero & Lamata (2021), scientific
discovery (Vinuesa et al., 2024), biology, and neuroscience. RL applications in chemistry have been
studied for tasks such as molecular design, geometry optimization, and retrosynthesis Sridharan
et al. (2024). Yet, RL has been investigated on such applications only on a limited scale because of
four main reasons.

First, the diversity of the chemical applications means there is no standardized way of formulating
the problem from a RL perspective. Every practioner models their specific problem differently,
and proposes solutions tailored towards said problem. It is thus hard to assess if results from one
problem apply to another one. Second, next to the required RL expertise, domain expertise is also
required to benchmark and evaluate performances on chemistry domains. Both these reasons result
in a high barrier of entry for investigating RL-based methods on chemistry applications. Third, the
synthetic nature of formulating chemistry applications as sequential decision-making problems, and
the immensely diversified nature of the chemical space produce policies that are hard for humans
to understand and interpret, especially compared to games and robotics. Fourth, these chemical
applications offer unique challenges that have been less studied in the RL literature, such as noisy
and time-consuming reward-signals.
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Material discovery is one of the applications affected by these challenges. Accelerating material dis-
covery is an important avenue within scientific discovery, the applications of which include design-
ing sustainable and industrially useful materials (Miret et al., 2024). This often involves optimizing
for a set of desired properties, computed using physical simulators based on first principles. Density
Functional Theory (DFT) (Jones, 2015) is a modeling method that simulates atomic-level properties
of molecules and materials using quantum mechanical laws. Considering the time-consuming nature
of DFT calculations and the expertise required to operate them, most of the existing generative and
language models for material generation do not incorporate them as feedback for material optimiza-
tion (Gruver et al., 2024; Ding et al., 2024; Levy et al., 2025; AI4Science et al., 2023). However,
the predictions made by ML models are very different from DFT computations. For example, the
generative models from Gruver et al. (2024), Ding et al. (2024) produce crystals of which 50% are
stable according to M3GNet, the state-of-the-art predictor for stability, while only 11% are actually
stable according to DFT calculations. Reinforcement learning offers a complementary approach to
this problem by directly learning from signals obtained from DFT, potentially without relying on
large datasets. Given the dearth of dedicated RL environments and benchmarks for material discov-
ery problems and the domain expertise involved in them, it is difficult for practitioners to investigate
RL approaches for these tasks. To this end, we propose CrystalGym, a novel and open-source RL
environment for crystalline material discovery that offers a way to learn optimal policies from re-
wards obtained directly from DFT. We focus particularly on optimizing the composition of a crystal
by framing it as a sequential decision-making problem and formulating a deterministic Markov De-
cision Process (MDP), as initially proposed by Govindarajan et al. (2024) – the agent sequentially
places a chemical element at a given atomic site in a crystal. We design reward functions based
on DFT outputs, individually targeting three challenging properties – band gap, bulk modulus, and
density. As the methods and parameters for DFT calculations are preset, they need not be modi-
fied unless necessary, hence making it easier for RL practitioners to adopt the environment without
explicitly focusing on the correctness of domain-related aspects.

The goal of this environment and benchmark is to design and test RL algorithms for optimizing
DFT-based rewards, and to promote future research in this new class of tasks involving optimization
of time-consuming reward signals. We provide tasks where the RL agent is expected to explore
the exponentially large chemical search space and drive the policy toward designing high-reward
crystals. Our work considerably differs from previous works on crystal generation that used gen-
erative models (Zeni et al., 2025; Levy et al., 2025; Jiao et al., 2023) without involving DFT in
the training loop or active learning works that do not attempt to optimize for functional materials
properties(Merchant et al., 2023). The electronic and elastic properties we optimize for have plenty
of practical and industrial applications, including efficient semiconductor and battery design, pho-
tovoltaics, and hydraulic and aerospace materials. Overall, material discovery directly influences
sustainability and climate change mitigation.

Our unique contributions to this work are as follows.

1. Open-source RL environment (http://github.com/chandar-lab/crystal-gym) for crystal dis-
covery based on the Gymnasium framework (Towers et al., 2024), that is ready to be
adopted and customized by the RL and material science community.

2. Extensive analysis on performance and sample efficiency with different RL algorithms in-
cluding proximal policy optimization (PPO), soft actor-critic (SAC), Rainbow, and deep
Q-networks (DQN) (Schulman et al., 2017; Haarnoja et al., 2018; Hessel et al., 2018) with
appropriate graph networks for the policy.

3. We highlight several domain-related challenges in applying RL for material discovery and
in general problems that involve time-consuming and noisy reward signals, leading to po-
tentially interesting future directions.

2 BACKGROUND

2.1 RELATED WORK

Crystalline material generation has gained significant attention in recent years, with generative and
language models being more prominent in this space. Diffusion-based models have been proposed
to learn a generative distribution from a dataset of crystals. CDVAE (Xie et al., 2022) was one of
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the first approaches in this area, which follows an encoder-decoder model with a denoising diffusion
process, generating both the structure and composition of crystals. This was followed by models
that incorporate symmetric inductive biases, such as DiffCSP (Jiao et al., 2023) and SymmCD Levy
et al. (2025). MatterGen (Zeni et al., 2025) also used a diffusion model and performed post-training
optimization for properties like band gap, bulk modulus, and magnetic density. Large language
models such as Crystal-LLM Antunes et al., Crystal-Text-LLM (Gruver et al., 2024) and MatExpert
(Ding et al., 2024) are autoregressive approaches that used text-based representation of crystals in
the 3D space. While most of these approaches evaluated the generated samples with DFT, none
of them optimized for properties directly computed with DFT or used it as feedback for improving
learning. Further, while GNOME Merchant et al. (2023) used an active learning approach for mate-
rial generation by optimizing for stability with DFT calculations in the loop, it did not focus on other
important electronic and mechanical properties. Govindarajan et al. (2024) introduced a new way to
optimize crystal composition for properties like formation energy and band gap using a reinforce-
ment learning setup, where offline learning was done to mitigate the time-consuming nature of DFT
calculations. In our work, we adopt the MDP framework proposed by Govindarajan et al. (2024)
to build an environment and test bed for online RL algorithms. Our work is also loosely related
to ChemGymRL (Beeler et al., 2024), the first interactive RL environment focusing on chemical
discovery based on a simulated laboratory framework.

2.2 CRYSTALLINE MATERIALS

Crystalline materials are everywhere, from the photovoltaic cells of a solar panel to the semiconduc-
tors in every chip. They are characterized by a periodic arrangement of atoms in the 3-dimensional
space. They are usually described by a lattice, represented by a unit cell with vectors l1, l2, l3 ∈ R3

of length a, b, c ∈ R, such that for any atom u at position xu in the unit cell, u appears again at every
position {xu + n1l1 + n2l2 + n3l3 ∀n1, n2, n3 ∈ Z} in the lattice. The lattice displays various de-
grees of symetry encompassed in the space group of the crystal, ranging from 1 to 230, where higher
space group means higher level of symetry. While recent works focused on generative and language
models for generating a crystal’s lattice, atomic positions, and compositions together, we simplify
the problem such that the agent only predicts the identities of the atoms given fixed lattice and atom
positions. This also aligns with the goal of high-throughput virtual screening (HTVS) (Jain et al.,
2011), where atoms are combinatorially substituted in known crystal structures and validated using
DFT to design new materials computationally. Hence, we formulate the RL problem with discrete
action space and deterministic policies. For simplicity, the scope of this study is limited to only
cubic crystals (space groups 200-230) with 4-8 atoms, in which case DFT calculations are faster and
certain properties are easier to compute.

2.3 REINFORCEMENT LEARNING

In reinforcement learning (RL), an agent learns to optimize its behaviour by interacting with the
environment. Such a setting is modeled as a Markov decision process (MDP), a tuple M =
⟨S,A, T , R, γ⟩, with state space S, action space A, transition probabilities T (s′|s,a) : S × S ×
A → [0, 1] , reward function R(s,a) : S × A → R, and discount factor γ ∈ [0, 1]. At timestep t,
the agent is in state st, and selects action at using a policy of the form π(at | st). Under the policy
π, we call V π(s) = E

∑
t [γ

trt | π, st = s] the value, i.e., the expected sum of discounted rewards
(or return). The policy that maximizes the value is said to be the optimal policy π∗ = maxπ V

π .
Closely related to the value is the Q-value, Qπ(s, a) = E

∑
t [γ

trt | π, st = s, at = a].

One of the common approaches to learn Q∗ is through the Bellman equation, Q(st, at) ← (1 −
α)Q(st, at)+αδ, where δ = rt + γmaxaQ(st+1, a) is often referred to as the temporal-difference
target. Deep Q-networks (DQN) approximate Q with a neural network Qθ parametrized by θ, by
minimizing (Qθ(st, at) − δθ′)2, where Qθ′ is a periodically updated copy of Qθ used to stabilize
learning (Mnih et al., 2015). Many recent value-based algorithms still use DQN as their foundation,
which is why we use it throughout our experiments to compare the different settings we introduce.
Notably, Rainbow (Hessel et al., 2018) integrates the improvements of multiple DQN extensions,
such as Dueling DQN (Wang et al., 2016), Double DQN (Van Hasselt et al., 2016), and prioritized
experience replay (Schaul et al., 2016) into a single algorithm.

Next to value-based algorithms, we also evaluate alternative approaches, such as actor-critc meth-
ods, that learn a policy explicitly. Soft actor-critic (SAC) (Haarnoja et al., 2018) is an off-policy

3



Published at the ICLR 2025 workshop on AI for Accelerated Materials Design

Figure 1: The CrystalGym environment. We select crystals from the Material Project (Jain et al.,
2013) database for which DFT calculations can be performed in reasonable time. An episode starts
by sampling a crystal structure from this selection. At each timestep, the agent selects an atom to
fill a specified position. The episode ends once all positions are filled with atoms, at which point
the crystal is evaluated on the DFT simulator. The parameters of the simulator are pre-set, such that
they converge in reasonable time for a wide range of compositions. The reward function is computed
based on a distance metric with a target value.

method that learns both a policy and a Q-function, optimizing for maximum entropy to encourage
exploration. Proximal policy optimization (PPO) (Schulman et al., 2017), on the other hand, is
an approximation of trust region policy optimization methods that constrain the size of the policy
update – the loss function is based on a clipped surrogate objective.

3 THE CRYSTALGYM ENVIRONMENT

Our aim is to promote the use of RL for material discovery. Since deep learning methods generate
samples in the same distribution as their training data (Levy et al., 2025; Zeni et al., 2025), RL of-
fers an alternative perspective, where it freely explores the chemical space in search for completely
new structures. For material science researchers, the ability to explore ouside of known distributions
accelerates the discovery process, as it allows for automatic exploration of the exponentially large
chemical space, while also directly optimizing for properties obtained from DFT calculations, in-
stead of machine learning proxy models that have proven to be unreliable and insufficiently accurate
(Ghugare et al., 2024; Lee et al., 2023; Bihani et al., 2024; Miret et al., 2023). For an RL researcher,
CrystalGym allows to focus on challenging aspects for scientific discovery processes, where the
transition function is synthetic (meaning that interacting with the environment is a virtually free
operation), but the reward function is time-consuming, and noisy or inaccurate. Moreover, much of
the required domain expertise is baked in the environment, allowing for RL researchers to focus on
algorithmic improvements for scientific discovery.

3.1 CRYSTAL GENERATION AS A MARKOV DECISION PROCESS

In CrystalGym, the agent should optimize the composition of a crystal structure for a desired prop-
erty value. Starting from an empty structure, the agent iterates over each position, and selects an
atom to place in that position. Once each position has been filled, the episode ends and the ensu-
ing crystal is evaluated with a DFT calculator. By training on a pool of different crystals, sampled
randomly at the start of each episode, CrystalGym aims to provide a generalizable RL agent, that
accurately fills atomic positions even on unseen crystals. However, as we will see in Section 5, this
is currently an unattainable goal, as the number of DFT executions required for such a policy to con-
verge requires weeks of consecutive training. As an intermediate step, the RL agent can specialize
on a single crystal, by always sampling it at each episode.

Concretely, we adopt the deterministic MDP formulation initially proposed by Govindarajan et al.
(2024). We represent crystals using graphs, with atoms as nodes and edges connecting neighboring
or bonded atoms. Consider a graph G(V,E), with nodes (atom positions) V = {v0, . . . , vN−1} and
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edges (connections to other atom positions)E. Each atom position vi has a label that is either empty
(a∅) or set to an atom-type ai, where i is the index of the i-th element of the periodic table. We
consider the state-space S the empty, partially or fully filled graphs G, with the initial state s0 the
empty crystal G0, where vi = a∅,∀i ∈ {0..N − 1}. The action-space A is defined as the atomic
elements ai of the periodic table. Finally, we transition from state st to st+1 by setting vt to the
selected atom at. The environment inherits the Gymnasium framework and can be easily imported
for testing RL algorithms.

Once all positions have been filled, DFT calculations are performed to evaluate properties of interest.
These evaluations are then used to compute the reward, which we detail in Section 3.2. The sequence
of steps and parameters that DFT calculation requires are preset for each of the properties of interest
(i.e., bulk modulus, density, and band gap). Hence, the user just needs to provide the choice of
property and the desired target value, without modifying the internal DFT workflow. The overall
MDP is illustrated in Figure 1.

3.2 CRYSTAL PROPERTIES AND REWARDS

We focus on individually optimizing the composition of one or more crystals for three different crys-
tal properties – band gap, bulk modulus, and density, each used for various industrial applications,
ranging from aerospace engineering to semiconductor design. The aforementioned applications re-
quire the different properties to have specific target values (as opposed to being maximized, as is
typically the case for RL reward functions). Thus, for each property, we design a reward function
based on the magnitude and range of the values the property can have, that encourages to be closer
to a target value, p̂. We also incorporate a penalty in the reward function if the DFT computation
fails due to technical or convergence issues. We use Quantum Espresso (Giannozzi et al., 2009), an
open-source software suite for DFT calculations.

Bulk Modulus The bulk modulus is an elastic property of a solid-state material that measures its
resistance to change in volume due to bulk compression. This property is useful in many applications
involving aerospace engineering and structural design. One of the popular units for the bulk modulus
is Gigapascals (GPa), and the magnitude can theoretically be a value between 0 and infinity. We
compute the bulk modulus by performing multiple DFT simulations after introducing small volume
changes to the original crystal. We then fit a Murnaghan equation of state (Murnaghan, 1944) with
the obtained energy values and corresponding volumes. Since we are mostly interested in values
between 100 GPa and 1000 GPa, we choose a scaled linear function based on the absolute distance
of the computed value pBM from the target, p̂BM .

r(sN ) =

{
−5 if DFT fails

max
(
− |pBM−p̂BM |

p̂BM
,−5

)
otherwise

(1)

Density We calculate the volumetric mass density of a crystalline material, which is the amount
of mass per unit volume (g/cm3). We use the density value obtained using a single-point DFT
calculation. As per the Materials Project Database, the density values range from 0 to 28 g/cm3.
Hence, we use an exponential distance function.

r(sN ) =

{
−1 if DFT fails
exp(− (pD−p̂D)2

p̂D
) otherwise

(2)

Band Gap Band gap refers to the energy gap between the valence and conduction bands in solids,
and the values of interest are usually in the semiconductor range, i.e., 0 eV to 5 eV, given its ap-
plications in electronics. Given a desired target value p̂BG and computed value pBG, we choose an
exponential reward formulation.

r(sN ) =

{
−1 if DFT fails
exp(−(pBG − p̂BG)

2) otherwise
(3)
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4 THE CRYSTALGYM BENCHMARK

In Section 3, we have presented how we can frame crystal composition as a sequential decision
process, and multiple properties of interest to optimize on. Ideally, an RL agent trained on certain
crystal structures and optimized for a specific target property should be able to effectively predict the
atomic identities for any relevant crystal structure, such that the resulting (filled) crystal’s property
value matches the target. This, however, is an extremely hard task, not only due to the diversity
of the potential crystal structures and chemical space, but also due to the potentially prohibitive
computation time required to execute the many DFT calculations encountered during training.

To make measurable progress on this problem, we pair our proposed CrystalGym environment
with an associated benchmark. We select 7 different cubic crystals from the Materials Project
database (Jain et al., 2013). These crystals have a different number of atoms (4-8), and belong
to 5 different space groups, which ensures the genericity of the learning algorithm. We envision
multiple degrees of increasing difficulty, spread across 3 different axes of the design problem. First,
agents need to be able to optimize crystals for both in-distribution and out-of-distribution property
values. For the 3 properties of interest (bulk modulus, density and band gap), we thus specify in-d.
targets and o.o.d. targets (we specify their concrete values in Appendix C.2). Second, agents should
not only learn the optimal composition for the crystal structure they have been trained on, but also
for novel, unseen crystals. Thus, we devise a single structure setting, aimed to assess the feasibility
of the desired target property, and a more complex mixed structure setting – where the policy is
trained on 5 crystals, and evaluated on the 2 remaining ones – to measure how generalizable policies
are. Third, agents should be able to freely select any atom from the periodic table, regardless of
how unlikely it is to result in an optimal crystal composition. However, in practice, this results in a
stark increase of failure rates of DFT calculations. To alleviate this and, consequently, speed up the
learning process, we select subsets of atoms that are less prone to failure. The small action-space
consists of 18 elements of the periodic table, primarily metals and some nonmetals of group 1 and
2, and no transition elements. The more flexible medium action-space contains 30 elements, and
is a superset of the small action-space with additionally certain metalloids and frequently occuring
transition elements, according to the Materials Project database. The full list of selected atoms is
available in Appendix C.1.

We believe that, by progressing on the mixed structure with o.o.d. targets and small action-space
setting, we will also make progress towards the overall goal: designing RL algorithms for mate-
rial discovery, that can reliably fill any crystal structure for a desired property value. This setting,
for which we share initial findings in Section 5.4, strikes a balance between the complexity of the
tackled problem and the feasibility of the training procedure in terms of walltime. Notwithstanding,
one could use simpler settings that focus on a specific difficulty axis while designing new RL algo-
rithms (e.g., single structure with in-d. targets and small action-space in an active learning scenario
designed to minimize the number of DFT calculations).

5 BENCHMARK PERFORMANCE AND RESULTS

Having defined the CrystalGym benchmark, we now perform a set of experiments and ablations to
better understand its properties and characteristics. We focus on two important aspects. First, our
goal is to test the feasibilty of using RL for the crystal composition completion task (Section 5.2).
RL has been understudied for material generation, and DFT signals are known to be complex, so it
is important to validate that they can be used as a reward signal. Second, we aim to investigate the
evolution of the learning ability when the difficulty of the task is increased (Section 5.3). Following
a comprehensive analysis on these variations, we finally evaluate RL-based methods on the proposed
benchmark setting, providing the current state of RL for crystal generation (Section 5.4).

5.1 EXPERIMENTAL SETUP

For all our experiments, we compare the performance of some of the most popular value- and policy-
based RL algorithms, namely proximal policy optimization (PPO) (Schulman et al., 2017), soft
actor-critic (SAC) (Haarnoja et al., 2018), Rainbow (Hessel et al., 2018), and deep Q-networks
(DQN) (Mnih et al., 2015) agents.
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Figure 2: Learning curves for 4 of the 7 crystals structures, on the simplest variation of the Crystal-
Gym benchmark (single structure, in-distribution targets, small action-space).

Additionally, since our crystals are represented as graphs, it is convenient to adopt graph neural net-
works (GNN) for representation learning (Duval et al., 2023). We leverage MEGNet (Chen et al.,
2019), a state-of-the-art GNN architecture for materials. We follow Govindarajan et al. (2024) for
creating the graphs and crystal skeletons for the MEGNet architecture. Consequently, the environ-
ment can be easily customized to incorporate other graph- and non-graph-based policy networks.
For each agent, in each setting, we train 3 different seeds.

5.2 FEASIBILITY OF RL-BASED APPROACHES

To assert that RL-based methods can indeed generate high-quality crystals in terms of desired prop-
erties, we select the simplest variation of the different benchmark settings, where the agent trains
on the same crystal structure, optimizes for target values that are in-distribution, and uses the small
action-space of 18 elements. This allows us to compare the performance of different RL approaches
and identify the properties that are difficult to optimize. We also intend to determine if there ex-
ists at least one solution, i.e., composition for each of the seven structures (shown in Figure 4) that
correspond to a property value close to the desired target. The performance comparison of PPO,
Rainbow, DQN and SAC for each structure and all properties is shown in Figure 2 and Figure 6.

PPO In general, PPO quickly finds an optimal or suboptimal solution after a short period of explo-
ration and converges at that point. This is particularly helpful for mechanical properties like density
and bulk modulus that have a less complex reward landscape. However, for band gap, considering
the large failure rate and the tendency of DFT to produce near-zero values, PPO performs poorly –
while it learns to avoid failure states, it converges to a value corresponding to a zero band gap, and
does not improve thereafter. While PPO observes high-reward solutions during training, the inherent
complexity of the property does not direct the agent toward those useful states.

DQN & Rainbow The exploration in purely value-based methods like DQN and Rainbow follows
a ϵ−greedy scheme, unlike PPO. Therefore, the agent starts with a uniform random exploration
and gradually exploits the strength of the policy as it learns from more samples from the environ-
ment. The samples are temporarily stored in a replay memory during training, which helps the agent
process past information in batches and stabilizes learning. For all properties, the learning curve
indicates a steady improvement and convergence close to the optimal solution. As expected, band
gap, which is the hardest property to optimize, requires additional exploration, resulting in slower
learning, and high returns are reached only in some structures. DQN and Rainbow demonstrate
similar learning behavior and performance in all cases for bulk modulus and density. However, for
band gap, with certain crystals, one of the algorithms performs better in terms of reaching close to
optimality – in structure C1, DQN performs better, while Rainbow fails to escape the failure state.
The opposite true for structures C2 and C4. Hence, at least in this set of experiments, we do not
observe the additional benefit of Rainbow having Dueling and Double DQN and multi-step updates.
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Figure 3: Final performance of each algorithm on each property, for each experiment. After training,
each agent is evaluated on 5 trajectories. We report the average achieved property as well as the best
performing algorithms for each setting.

SAC In the case of SAC, we notice that none of the experiments for any structure or property
indicated a positive learning curve. The agent is unable to eventually escape the exploration phase.
Further investigation is required to determine the exact cause of the learning issue with SAC, despite
using the same hyperparameters as DQN and Rainbow for the value-based components, i.e., buffer
size and target network update frequency.

5.3 INCREASING THE DIFFICULTY OF INDIVIDUAL SETTINGS

We now analyse the impact of increasing the difficulty of each of the 3 axes of the design problem:
using out-of-distribution targets, a larger action-space, or optimizing on mixed crystal structures.
We summarize all results in Figure 3, while all learning curves are available in Appendix D. Notice
the high standard deviation for bulk modulus and band gap results, due to multiple DFT failures or
noisy results, as well as significant differences in crystal characteristics.

5.3.1 HARDER TARGET VALUES

With harder target values, we notice the same behavioral trends in terms of the comparison of dif-
ferent algorithms. The plots for structure C1 is shown in Figure 7. While it is equally easy to reach
the harder target values in the case of bulk modulus and density in most cases, achieving a band bap
of close to 2 eV is shown to be much more difficult than 1.12 eV. In C1, only Rainbow has managed
to show a favorable learning curve, but does not reach close to optimality even after 2×105 training
steps. As mentioned in Section 3.2, DFT is known to systematically underestimate the band gap
energy, which makes it more likely to output lower band gap values (Lejaeghere et al., 2016). As
seen in the plots, it is extremely rare that the agent explores the higher band gap regions. Hence,
amidst the high failure rate of DFT calculations, i.e., negative reward, and frequent occurrence of
near-zero band gap states, the agent fails to learn in a sample efficient way from the very few high-
reward states it encounters. Therefore, choosing target values in the rarer regions in the property
distribution adds additional complexity to the learning algorithm.

5.3.2 LARGER ACTION SPACE

Following the previous analysis, we aim to see if increasing the action space by including more
frequently seen elements and transition metals like Iron (Fe) and Cobalt (Co) drive the agent towards
different and diverse solutions, where the focus is again on harder target values. However, this also
increases the complexity of the problem and makes exploration harder particularly due to the higher
chance of DFT failures – the presence of transition metals and heavier elements is likely to cause
convergence or charge-related issues in DFT calculations. As seen in the results (Figure 3, middle
plot and Figure 8), high returns are easily reached in the case of bulk modulus and density with PPO,
DQN, and Rainbow. Band gap computation experiences a significantly higher number of failures,
thereby making it harder for the reward to even cross 0.0 for all algorithms. Density optimization
again appears to be the easiest of the three tasks. In Figure 13, we show examples of policy-generated
crystals (structure C1) for hard targets when trained with both small and medium action spaces.
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5.3.3 TRAINING ON MIXED CRYSTAL STRUCTURES

In the next set of experiments, we increase the difficulty of the task, where the goal is to optimize
the properties of 5 crystal structures together. As shown in the results in Figure 9, we notice that the
algorithms do not reach close to the optimal solution as quickly as in the previous experiment, where
the same crystal structure was sampled in every episode. PPO’s exploration and learning strategy
seems to remain the same, but the returns indicate that it reaches a suboptimal policy for all properties
besides density. On the other hand, Rainbow and DQN converge to a higher return, indicating that
these value-based methods encourage more exploration and learn better even in this difficult task.
In the case of band gap, Rainbow and DQN appear to gradually reach high returns, indicating the
possibility of reaching optimality with further training despite the complexity of the property and
the task of optimizing multiple structures. Finally, similar to the results for the easier tasks in
Section 5.2, SAC again demonstrates the poorest learning performance with all three properties.

5.4 RESULTS ON THE FINAL BENCHMARK

After analysing the different components and settings of CrystalGym, we train all 4 RL algorithms
on our proposed CrystalGym benchmark, which uses the mixed structure, o.o.d targets, and small
action-space. First, we notice that, just like for the simpler settings, PPO, DQN and Rainbow can
generate crystals with desired density values. The density property serves thus more as a sanity
check, as it is relatively simple to achieve, and for which DFT computations are fast. However,
the algorithms perform poorly on bulk modulus and band gap. Only a few seeds, on a few crystals
result in non-zero DFT computations, with many of the DFT calculations resulting in failure. This
shows the complexity of optimizing crystals for accurate properties, and makes a stark contrast with
optimization through ML property predictors.

6 OVERALL ANALYSIS

We show that varying the RL algorithm, property of interest, and task complexity provides an in-
sightful set of analyses and multiple avenues for future directions. The nature of the calculation
differs depending on the property. While bulk modulus and density are mechanical properties and
are directly influenced by the atomic weights, the former requires multiple single-point calculations
for different volume perturbations. These single-point calculations focus on total energy estimation,
and can also provide the estimate of the mass density. Moreover, the distribution of these properties
suggests a good range of values and even a randomly sampled composition could result in a value
within this distribution. Band gap, which is an electronic property, follows a different set of meth-
ods in the single-point calculations that resolve the electronic structure of the crystal and estimate
the energies of the highest occupied and lowest unoccupied electronic states. For these types of
calculations, DFT is known to have significant underestimation issues and can result in inaccurate
estimates. As seen in the results, DFT is highly likely to output near-zero values. The unconven-
tional nature of this property makes it harder for RL algorithms to effectively reach a better solution.
While higher-order methods exist for more accurate estimation of the band gap values, they are far
more time-consuming than regular DFT computations.

7 CONCLUSION

This research aims to take a step in the direction of accelerating the material discovery process, for
which performing atomic simulations is inevitable. We show that crystal design is an interesting and
useful set of problems dealing with reinforcement learning with expensive reward signals obtained
from expensive atomic simulations. Our new environment is modular and allows the addition of
different levels of complexities in the tasks, including the choice of the DFT calculator. From an
RL perspective, this environment and benchmark boosts research in the direction of learning with
expensive and noisy rewards (Wang et al., 2020), and could influence other domains in scientific
discovery and beyond. An important limitation of this analysis is not taking into account the diversity
of generated materials. Classical reinforcement learning aims to maximize the expected return and
converge to a single behavior. Further investigation of entropy-based RL methods and GFlowNets
(Bengio et al., 2021) on these environments is a promising future direction.
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Daniel Levy, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Qiang Zhu, Kin Long Kelvin Lee,
Mikhail Galkin, Santiago Miret, and Siamak Ravanbakhsh. Symmcd: Symmetry-preserving crys-
tal generation with diffusion models. arXiv preprint arXiv:2502.03638, 2025.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong
Li, Mengshen He, Zhengliang Liu, et al. Summary of chatgpt/gpt-4 research and perspective
towards the future of large language models. arXiv preprint arXiv:2304.01852, 2023.
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A APPENDIX

B ASSUMPTIONS

Feasibility of a solution In all the experiments for single structure optimzation, we assume that,
given a target property p̂, there is at least one composition for the structure that can be achieved with
the given action space, and results in a property value p, where |p− p̂| < δ. Here δ is assumed to be
practically small, and can vary depending on the structure chosen to be optimized.

Fidelity of reward function The current version of the CrystalGym environment uses Quantum
Espresso, a software suite for performing DFT calculations, and the signals obtained from DFT are
used to compute the rewards for the RL agent. There are several approaches to improve the accuracy
of DFT calculations or use higher-order methods for estimating challenging properties like band
gap. However, such approaches are expected to take orders of magnitude more time than the current
configuration of DFT we rely on for our experiments, that works for most practical cases. Hence,
during policy learning, we assume that the signals obtained from the chosen DFT configuration is
functionally the highest fidelity we can observe. Consequently, the reinforcement learning workflow
aims to directly optimize for the scalar values obtained from DFT calculations.

Crystal Validity In standard chemical discovery tasks, it is a common practice to report the per-
centage of valid candidates generated by the model. The criteria for validity for small molecule
discovery is usually molecules following appropriate valency rules. For crystals, the structural and
compositional validities are generally measured, where the former deals with the closeness of two
atomic sites in a crystal unit cell, and the latter checks if the total charge adds to zero. However, we
directly rely on the outputs of DFT, which is expected to fail to simulate or converge for theoretically
infeasible crystals, or estimate the energy value to be higher.

Structure Relaxation For practical reasons, we do not perform structure relaxation on policy-
generated crystals. Although DFT relaxation optimizes the crystal structure to minimize system
energy, which benefits downstream applications, it requires multiple single-point DFT calculations
per sample, significantly increasing computational complexity. Hence, the backbone structure and
lattice of each crystal candidate in the enironment is unchanged during training and evaluation.

C EXPERIMENTAL DETAILS

C.1 ACTION SPACE

The CrystalGym environment allows the possiblity of using different action spaces. The scope of
this benchmark is limited to action spaces corresponding to two sets of elements from the periodic
table. The smallest action space contains 18 elements, which are mostly Group-1 and Group-2
metals and some nonmetals, but no transition elements. This small action space simplifies DFT
calculations, resulting in lesser number of failures in simulations, but vastly reduces the exploration
space compared to the ideal action space (118 elements in the periodic table). The medium-sized
action space consists of some of the frequently ocurring transition metals, in addition to the elements
in the smaller action space. We also propose a larger action space that includes rarer transition
elements, which we aim to test in the future.

• Small: Li, Na, K, Rb, Be, Ca, Mg, Sr, H, C, N, O, P, S, Se, F, Cl, Br

• Medium: Li, Na, K, Rb, Be, Ca, Mg, Sr, H, C, N, O, P, S, Se, F, Cl, Br, B, Si, Ge, Fe, Cu,
Co, Ni, Mn, Al, Zn, Sn, Cr

• Large: Li, Na, K, Rb, Be, Ca, Mg, Sr, H, C, N, O, P, S, Se, F, Cl, Br, B, Si, Ge, Fe, Cu, Co,
Ni, Mn, Al, Zn, Sn, Cr, In, Sb, V, Mo, Ga, Ag, Ti, Ba, Y, Te, I, Pd, Rh, As, Pt, Cs, Au, Bi,
Zr, La

13



Published at the ICLR 2025 workshop on AI for Accelerated Materials Design

Figure 4: Every possible starting crystal structure considered for our experiments. Each structure
has been picked from existing crystals in the Material Project database and their corresponding
geometric properties are displayed below their representation. From left to right and top to bottom,
the crystals have been refered to as C1, C2, C3, C4, C5, C6 and C7 in the paper.

C.2 ENVIRONMENT VARIATIONS

The CrystalGym environment allows testing RL algorithms on a variety of tasks with customizable
levels of difficulties. The list of variations supported in the current version of the environment is
shown in Table 1.

Table 1: List of all the variations of experimental components. Each experiment is designed to study
the impact of specific variations accross different configurations of experimental components.

Experiment Variations

RL Algorithm

PPO
SAC
DQN

Rainbow

Properties
Density

Bulk Modulus
Band Gap

Structures Single
Mixed

Mode Completion
Substitution

Policy Net MEGNet
CHGNet

Action Space 18
30

C.3 TARGET PROPERTIES

For our experiments, we use two sets of target values, one being in-distribution and other being
out-of-distribution. The values are listed in Table 3. For each of the three properties, distributions of
the values for all cubic crystals in the Materials Project database are shown in Figure 5.

Bulk Modulus The bulk modulus distribution shows that the mode falls between 100-150 GPa.
Our chosen easy target of 300 GPa is in the rarer regions in the distribution, but there is a reasonable
number of crystals that have a bulk modulus of close to this target. However, the target of 500 GPa
exists outside this distribution, indicating that it could be a hard value to reach through exploration.

Density The distribution of densities shows that both the chosen target values lie well within the
distribution. However, density is directly related to the total mass of the crystal, which is dependent
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Table 2: Experimental setup detail. Experiments 1-5 generate crystals from scratch while experiment
6 replaces atoms in fully completed crystals. Each experiment has a unique combination of action
space size, target value of the property and size of the pool of starting (empty) crystal structures.

Exp No. Mode Target Action Space
Completion

1 Single Easy Small
2 Single Hard Small
3 Single Hard Medium
4 Mixed Easy Small
5 Mixed Hard Small

Substitution (CHGNet)
6 Mixed Easy Small

Table 3: List of the different properties values for the easy and hard settings.

Bulk Modulus (GPa) Density (g/cm3) Band Gap (eV )
Easy 300.0 3.0 1.12
Hard 500.0 5.0 2

on the atomic weights. Hence, it is mostly the choice of the action space that determines how easily
the agent can reach higher density values. While in most cases the agents could reach 5 g/cm3

easily, our separate analysis of PPO’s performance with a target of 8g/cm3 highlighted failure of
the agent to reach densities close to optimality for all crystal structures (Figure 12).

Band Gap The plot of band gap frequency shows a highly skewed distribution, where majority of
the crystals have a band gap value close to zero. Both the easy (1.12 eV) and hard (2 eV) targets lie
in the rarer regions of the distribution. However, with the type of DFT calculations we perform with
Quantum Espresso, it can be noticed that it is extremely rare that the agent experiences states with
band gaps higher than 1.5 eV during training. This makes 2 eV much harder as a target than 1.12
eV.

Figure 5: Histograms of the distribution of Bulk Modulus, Density and Band Gap for crystals in the
Material Project database. The dashed red line represents the value chosen for the easy target and
the black for the hard one.

C.4 REWARD FUNCTIONS

The reward functions were chosen based on the type and range of the properties of interest. For
instance, bulk modulus can take a wide range of values, and since exponential distance would hugely
amplify small deviations, we chose to use the absolute distance function – the reward is therefore
the negative absolute distance. Since the reward is always negative for bulk modulus, we decided to
clip it to a minimum value of -5 to avoid large negative rewards. Table 4 shows further details of the
reward functions for each property including the bounds and computation times.
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Table 4: Properties of the reward functions used for each property. In addition to the mathematical
details of the normalization used we provide some important DFT-specific characteristics.

Bulk Modulus Density Band Gap
Reward Formulation Absolute distance Exponential distance Exponential distance

Max. Reward 0.0 1.0 1.0
Min. Reward (failure) -5.0 -1.0 -1.0

Range [-5,0] {−1} ∪ (0, 1] {−1} ∪ (0, 1]
Time (s) ≈ 130 ≈ 20 ≈ 20

Failure Rate (%) ≤ 0.1 ≤ 0.01 ≈ 20

C.5 DFT SETTINGS (QUANTUM ESPRESSO)

We performed DFT single-point SCF simulations using Quantum Espresso v7.1 (Giannozzi et al.,
2009), which is fully open-source. Solid-state pseudopotentials from SSSP version 1.3.0 (Prandini
et al., 2018) were used for the calculations. The settings used are listed below.

1. calculation

• scf for band gap and bulk modulus
• vc-relax for density

2. nstep: 1

3. nbnd:
⌈((∑N

i Zi

)
div 2

)
∗ 1.12

⌉
4. ecutwfc: 50

5. ecutrho: 400

6. occupations

• smearing for bulk modulus and density
• fixed for band gap

7. degauss: 0.001

8. nspin: 1

9. electron_maxstep: 300

10. mixing_mode: plain

11. mixing_beta: 0.7

12. diagonalization: david

13. kpoints: Chosen automatically from Kpoint density.

C.6 GNN DETAILS

In order to extract meaningful representations from crystal structures, we chose to use graph neural
networks conditionned on the target property in every algorithm. These representations are then fed
to projection layers to compute each algorithm’s relevant quantities. DQN and Rainbow use this
arcihtecture as their Q-networks and PPO and SAC use it for both their value and policy networks.
In each case, we only need to adapt the MLP’s output shape.

C.6.1 MEGNET

MEGNet (Chen et al., 2019) is a universal graph machine learning framework for molecules and
crystals that provides expressive graph representations through a message passing scheme specif-
ically tailored for crystals and molecules. We used MEGNet as the default GNN architecture in
our experiments. It takes as input a graph G̃(H̃, Ĩ, ỹ; p̂), where H̃, Ĩ, ỹ and p̂ are respectively the
embeded node features, the embeded edge features, the embeded graph-level features and the target
property the model is conditioned on. The categorical node features H are defined as the one-hot en-
coding of the atom type for each node of the graph, with an additional dimension indicating whether
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Figure 6: Training curves for crystals C5, C6 and C7 for Experiment 1, with a single starting
structure, a small action space and easy targets.

the node is filled with an atom or not. They are then passed through embeding layers to obtain H̃.
Edges connect neighbouring atoms based on the CrystalNN scheme (Pan et al., 2021) for determin-
ing their type and presence. We derive the edge features I as the set {tuv,(c1,c2,c3)} of gaussian
distances between atoms u in the reference unit cell and v in a unit cell shifted by c1l1+c2l2+c3l3.

tuv,(c1,c2,c3) = exp

[
−
duv,(c1,c2,c3)

2

ρ

]
(4)

duv,(c1,c2,c3) =

√
(xv + c1l1 + c2l2 + c3l3 − xu)

2 (5)

where xv,xv ∈ R3 are the 3D coordinates of atoms u and v respectively in the reference unit
cell. These edge features are then passed through MLP layers to obtain Ĩ. Finally, the graph-level

17



Published at the ICLR 2025 workshop on AI for Accelerated Materials Design

2.0

1.5

1.0

0.5

0.0

Re
tu

rn
 - 

C1

Bulk Modulus

0.00

0.25

0.50

0.75

1.00 Density

1.0

0.5

0.0

0.5

1.0 Band Gap

2.0

1.5

1.0

0.5

0.0

Re
tu

rn
 - 

C2

0.00

0.25

0.50

0.75

1.00

1.0

0.5

0.0

0.5

1.0

2.0

1.5

1.0

0.5

0.0

Re
tu

rn
 - 

C3

0.00

0.25

0.50

0.75

1.00

1.0

0.5

0.0

0.5

1.0

2.0

1.5

1.0

0.5

0.0

Re
tu

rn
 - 

C4

0.00

0.25

0.50

0.75

1.00

1.0

0.5

0.0

0.5

1.0

2.0

1.5

1.0

0.5

0.0

Re
tu

rn
 - 

C5

0.00

0.25

0.50

0.75

1.00

1.0

0.5

0.0

0.5

1.0

2.0

1.5

1.0

0.5

0.0

Re
tu

rn
 - 

C6

0.00

0.25

0.50

0.75

1.00

1.0

0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps ×104

2.0

1.5

1.0

0.5

0.0

Re
tu

rn
 - 

C7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps ×104

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×105

1.0

0.5

0.0

0.5

1.0

SAC Rainbow PPO DQN

Figure 7: Training curves for all crystals for Experiment 2, with a single starting structure, a small
action space and hard targets.

features are defined as y = [a, b, c, ϕ1, ϕ2, ϕ3, S, p̂, f̃ ] where a, b and c are the lengths of the edges
of the lattice (a = ∥l1∥, b = ∥l2∥ and c = ∥l3∥), ϕ1, ϕ2 and ϕ3 are the angles of the lattice, S is the
space-group number, p̂ is the target property the model is conditionned on and f̃ is the embeding of
the one-hot vector of the categorical feature f , called focus, which instructs the policy which node
is to be filled next. y is then passed through MLP layers to obtain ỹ.

The MEGNet architecture consists of taking as input the graph G̃(0) = G̃ of embeded node, edge and
graph-level features and applying K MEGNet layers to it, followed by a readout layer designed to
obtain graph-level representations. The Q-values (or values or logits) are obtained by feeding these
representations to a MLP layer.

G̃(k+1) = MEGNet
(
G̃(k)

)
∀ 0 ≤ k ≤ K − 1 (6)

ψ
(
G̃(K)

)
= Readout

(
G̃(K)

)
(7)

Qθ (s = G; p̂) = MLP
(
ψ
(
G̃(K)

))
(8)

C.7 CHGNET

CHGNet (Deng et al., 2023) is a state of the art graph neural network for modeling a universal
potential surface. It is a pretrained model designed to provide rich representations for molecules and
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Figure 8: Training curves for all crystals for Experiment 3 with single starting structures, a medium
action space and hard targets.
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Figure 9: Training curves for Experiment 4, with mixed starting structures, a small action space and
easy targets.

crystals. It preserves translation, rotation and permutation invariance of its inputs and has a more
complicated process to generate its inputs from the graph of the crystal, namely it considers the
graph of atoms and their different bonds as edges, as well as the graph of bonds and their relative
angles as edges. Its inputs features include a Fourier representation of the angle information in
addition to the regular edge (bonds) and node (atoms) features. The CHGNet layer is applied K
times just like for MEGNet, but its message passing function is more complex, allowing for deeper
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Figure 10: Training curves for Experiment 5, with mixed starting structures, a small action space
and hard targets.
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Figure 11: Training curves for Experiment 6. This experiment compares the differences between
the completion and substitution approaches on crystal C1 with PPO. The experimental configuration
has mixed starting structures, a small action space and easy targets.

interactions between the node, edge and angle informations. We replaced the energy prediction layer
by an uninitialized MLP to output Q-values, state values or logits depending on the algorithm used.
We froze the weights of the CHGNet as the network is pretrained and provides good representations
and only trained the MLP layer we added.

D ADDITIONAL RESULTS

D.0.1 SUBSTITUTION

In all the previous experiments, we focused on completing the backbone of a crystal structure, where
the initial state does not have any atoms filled, and the intermediate states are partially filled crystals.
In this experiment, we intend to determine if using a large pre-trained physics-based graph neural
network (GNN) trained on crystalline materials could serve as an effective initial policy. However,
with completion, the intermediate states are invalid crystals, and cannot be directly used with these
GNNs. We instead focus on substitution, where the agent substitutes an atom in a given atomic
site at each step. In such a case, the initial state would be a potentially valid crystal with randomly
placed atoms in all the atomic sites. The intermediate states can also be rendered into a valid crystal,
making it easier to pass them as inputs to state-of-the-art pre-trained GNNs. These networks are
then subsequently fine-tuned with the RL objective. As the scope of this analysis is limited to the
policy network architecture, we only investigate the performance of PPO for optimizing each of the
properties with a pre-trained CHGNet backbone model as the initial policy. The results indicate
no favorable performance with the larger and pre-trained policy. This further, suggests that the
complexity of the problem is primarily tied to the nature of the reward signals.
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Figure 12: Training curves of PPO for crystals C1, C2, C3, C4, C5, C6, C7. This experiment studies
the ability of the agent to generate crystal with a very hard target density of 8g/cm3, a single
starting structure and a small action space.

Figure 13: Visualisation of the best performing crystal generated for all algorithms and hard targets
accross multiple seeds. All algorithms manage to generate good candidates for hard density and bulk
modulus targets. * The composition SrLiH3 matches an existing experimentally observed crystal
in the Materials Project (mp-24419).

21

https://next-gen.materialsproject.org/materials/mp-24419?chemsys=Sr-Li-H

	Introduction
	Background
	Related Work
	Crystalline Materials
	Reinforcement learning

	The CrystalGym environment
	Crystal generation as a Markov decision process
	Crystal Properties and Rewards

	The CrystalGym benchmark
	Benchmark performance and results
	Experimental setup
	Feasibility of RL-based approaches
	Increasing the difficulty of individual settings
	Harder Target Values
	Larger Action Space
	Training on mixed crystal structures

	Results on the final benchmark

	Overall Analysis
	Conclusion
	Appendix
	Assumptions
	Experimental Details
	Action Space
	Environment Variations
	Target Properties
	Reward Functions
	DFT settings (Quantum Espresso)
	GNN details
	MEGNet

	CHGNet

	Additional Results
	Substitution


