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Abstract

Media Storms, dramatic outbursts of attention001
to a story, are central components of media dy-002
namics and the attention landscape. Despite003
their significance, there has been little system-004
atic and empirical research on this concept due005
to issues of measurement and operationaliza-006
tion. We introduce an iterative human-in-the-007
loop method to identify media storms in a large-008
scale corpus of news articles. The text is first009
transformed into signals of dispersion based010
on several textual characteristics. In each it-011
eration, we apply unsupervised anomaly de-012
tection to these signals; each anomaly is then013
validated by an expert to confirm the presence014
of a storm, and those results are then used to015
tune the anomaly detection in the next iteration.016
We demonstrate the applicability of this method017
in two scenarios: first, supplementing an ini-018
tial list of media storms within a specific time019
frame; and second, detecting media storms in020
new time periods. We make available a media021
storm dataset compiled using both scenarios.022
Both the method and dataset offer the basis023
for comprehensive empirical research into the024
concept of media storms, including character-025
izing them and predicting their outbursts and026
durations, in mainstream media or social media027
platforms.028

1 Introduction029

We can recognize a media storm when we see one -030

a dramatic increase in media attention to a specific031

issue or story for a short period of time (Boydstun032

et al., 2014). Such outbursts include acts of terror-033

ism, public scandals, or discussions of provocative034

political decisions. They usually begin with a spe-035

cific trigger event (e.g., Vasterman, 2005; Wien and036

Elmelund-Præstekær, 2009), and then surge to dis-037

proportionate levels of coverage - hype (e.g., van038

Atteveldt et al., 2018). Storms are central compo-039

nents of media dynamics, intensifying nearly all040

media-related effects (Boydstun et al., 2014; Wal-041

grave et al., 2017). In addition, being pivotal mo- 042

ments in the public agenda, storms can be critical 043

junctures for political actors (Gruszczynski, 2020; 044

Wolfsfeld and Sheafer, 2006). 045

However, we still lack a systematic and compre- 046

hensive understanding of such outbursts of media 047

attention. One reason is that it is not clear how 048

to operationalize this concept into a concrete mea- 049

surable object (Boydstun et al., 2014, 518-519). 050

Many questions abound: How long must a storm 051

last? How explosive must it be? Do all storms 052

reach the same volume of attention? Essentially, 053

previous researchers are left devising “arbitrary” 054

thresholds and guidelines for their individual stud- 055

ies (Boydstun et al., 2014, 519). In addition to 056

this amorphousness, an additional challenge is that 057

media storms are relatively sporadic phenomena. 058

Boydstun et al. (2014) approximate that they con- 059

sist about 11% of all media coverage, a finding 060

that was later corroborated by Nicholls and Bright 061

(2019). The difficulty in delineating media storms 062

and their relative rarity in target data impedes the 063

implementation of a supervised approach to auto- 064

matic storm detection. It is extremely difficult to 065

find and annotate a gold-labeled data-set to train 066

a model, or to even begin reading the raw articles 067

to identify media storms directly. This makes it 068

necessary to develop a different strategy to solve 069

this challenging task. 070

Traditionally, Communication researchers em- 071

ployed manual content analysis to label and mea- 072

sure issue attention over short periods (e.g., Boyd- 073

stun et al., 2014; Wolfsfeld and Sheafer, 2006). 074

Recent computational work has utilized topic mod- 075

eling (van Atteveldt et al., 2018; Nakshatri et al., 076

2023) and keyword analysis (Lukito et al., 2019) 077

for the task. However, the drawback of these ap- 078

proaches is their sensitivity to research design - the 079

keyword choice or delineation of topics. For exam- 080

ple, a researcher might choose a topic model with 081

topics that are too broad - hampering the ability 082
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to recognize deviances of specific outburst. Con-083

versely, an overly complex or multidimensional084

topic model might cause a media storm to be dis-085

persed across several topics. This dispersion could086

dilute attention peaks, making significant media087

events less discernible. Meanwhile, focusing on088

keywords may obfuscate the actual story behind089

the tokens.090

A second approach adopted in recent computa-091

tional communication research has been to focus092

on news story chains. Such methods utilize cluster-093

ing to identify news events - articles describing the094

same event or story. In some cases, the documents095

are converted into a network, and community de-096

tection is used (Nicholls and Bright, 2019; Trilling097

and van Hoof, 2020). In others, the clustering is098

preformed on document embeddings (Litterer et al.,099

2023). These techniques ‘uncover’ the stories oc-100

curring in the corpus - groups of documents dis-101

cussing the same, specific event. However, while102

such a method is successful at identifying stories,103

it is limited in the ability to detect storms as it ex-104

cludes the temporal dimension. We are not simply105

looking for large stories, but also need to identify106

’hype’ - dramatic and anomalous levels of coverage107

of a story (van Atteveldt et al., 2018; Vasterman,108

2005). It is impossible to determine hype when109

only taking into account the structure of a single110

story at a single time-step without noting long-term111

trends and cycles as baselines.112

In this work, we seek to go back to the intu-113

itive definition of a storm - a dramatic increase in114

attention to an issue (above the norm) for a lim-115

ited time period. Essentially, all previous research116

agrees on the conception of storms being anomalies117

of news coverage. Thus, we set out to automati-118

cally identify instances using anomaly detection.119

Specifically, we create several signals representing120

the daily dispersion of texts across the time frame.121

These signals are the basis for a two-step proce-122

dure. First, we utilize an unsupervised anomaly123

detection model to detect media storm candidates -124

anomalous periods of news convergence. Second,125

we integrate a domain expert to determine which of126

the candidates should be labeled as media storms.127

We utilize multiple iterations of this human-in-the-128

loop procedure until convergence - uncovering the129

media storms for a period.130

This approach offers several advantages. First,131

methodologically speaking, it integrates the tem-132

poral features of topic- or keyword-based outlier133

detection described above, without relying on or134

being limited by idiosyncrasies of researcher de- 135

sign. Additionally, the utilization of unsupervised 136

anomaly detection allows us to overcome the huge 137

quantities of data, presenting experts with a small 138

set of candidates to focus on in determining the 139

existence of media storms. Furthermore, our ap- 140

proach attempts to bypass the inherent amorphous- 141

ness, offering a solution that is not built upon pre- 142

defined statistical thresholds or ‘arbitrary’ defini- 143

tions. The use of unsupervised anomaly detection 144

allows media dynamics to reveal themselves in the 145

data. Our expert input comes into play in validat- 146

ing these patterns, confirming they correspond to 147

the theoretical concept. Thus, we are able to un- 148

cover additional, more diverse media storms than 149

in previous studies. 150

We utilize a large-scale corpus of news articles 151

spanning 20 years of media coverage (1996-2016) 152

to demonstrate our method. We employ two dis- 153

tinct experimental setups, addressing a broad spec- 154

trum of potential research applications. The first 155

setup utilizes a seed list of media storms to un- 156

cover additional occurrences within the same time 157

frame. The second setup utilizes an analyzed and 158

labeled time frame to detect media storms in a new, 159

unlabelled target period. We conclude with a pre- 160

liminary analysis of our findings from both setups, 161

underscoring the efficacy of our method and its 162

potential for media storm research. 163

Finally, we contribute these findings as a me- 164

dia storms dataset for the years 1996-2016. We 165

believe that this dataset opens up a wide array of 166

exciting research avenues. While the concept of 167

media storms holds great significance to social ac- 168

tors, politicians and social scientists from various 169

fields, empirical exploration has been limited. As 170

the classification of storms within large-scale, news 171

coverage data improves, we can enhance our un- 172

derstanding of how these news hypes unfold from 173

a single story or event to a cascade of public in- 174

terest. In an era marked by heightened concern 175

over the media’s impact on the information land- 176

scape – highlighted by issues like polarization, the 177

spread of misinformation, and the prominence of 178

social media – such insights into these significant 179

elements should offer important contributions. 180

2 Data 181

2.1 News Articles 182

To track the media coverage, we assembled a cor- 183

pus of 1,187,607 news articles taken from three 184
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major news outlets – the New York Times, the Los185

Angeles Times and the Washington Post – between186

1996 and 2016. All full-length texts for this time187

period purchased and downloaded via a license188

agreement with LexisNexis. 1 These were filtered189

to include only articles from the News and Editorial190

sections. Corpus statistics are detailed in Table 1.191

2.2 Seed list of Media Storms192

To initialize our method, we build upon a seed list193

of media storms to begin calibrating the hyperpa-194

rameters of the unsupervised anomaly detection.195

We begin with a list of storms from Boydstun et al.196

(2014) that has been widely used in media storm197

research. The researchers labeled the New York198

Times front page for a 10-year period to manually199

identify media storms. However, their effort con-200

tained several self-acknowledged constraints: they201

focused solely on domestic issues, measured only202

one national newspaper, and chose arbitrary sta-203

tistical thresholds for operationalization. We wish204

to capture the essence of a media storm through205

a small set of mega-stories of national and global206

significance (expected to be present in the three207

outlets included in our corpus).208

Consequently, we started with the items on their209

list as media storm candidates, which we could210

use for our first experimental setup of the method211

(within the 10-year period overlapping with our212

corpus collection: 1996-2006). However, we ad-213

justed their list to better suit our use-case. First,214

since they analyzed only the New York Times, we215

included only national-level stories. For example,216

storms regarding local sports teams or municipal217

politics were removed. Second, we extended the218

list to include significant international stories, such219

as wars and foreign disasters, which also meet our220

conception ’media storms’. The end result is a mod-221

ified list of 48 media storms between the year 1996222

and 2006. We used this list to initialize the first223

calibration iteration of our unsupervised analysis224

of the full corpus in the first experimental setup (de-225

scribed in Section 3). We note that these are seed226

storm candidates used to begin the exploration of227

our data; we are aware that some of these events228

might not register as media storms after running our229

automated method, and that they do not represent230

all media storms occurring in the time period.231

1https://www.lexisnexis.com

3 Method 232

In this section, we present our method to detect 233

media storms in a large corpus. First, we describe 234

the representation of our texts into dispersion sig- 235

nals. Second, we detail the unsupervised anomaly 236

detection model employed to analyze the signals. 237

Finally, we outline the integration of the dispersion 238

signals, anomaly detection and human-in-the-loop 239

validation in a media storm detection method. 240

3.1 Representation 241

Our basic assumption is that during media storms, 242

the news coverage converges surrounding a sin- 243

gle story or event, decreasing its variance. Thus, 244

we utilize the following method to refine the raw 245

text into a one-dimensional signal representing the 246

daily media dispersion. For each day in the dura- 247

tion of our research period, the corresponding news 248

articles are converted into a multi-dimensional em- 249

bedding. We calculate a covariance matrix based 250

on this embedding, to capture the variance between 251

all the day’s articles over all of the embeddings’ 252

dimensions. However, since we are interested in 253

capturing the dynamic of the dispersion over time, 254

we calculate the commonly-used trace value (nor- 255

malized by the number of articles published that 256

day). This provides us with a single value for the 257

daily dispersion of the news articles. These are then 258

aggregated to compile one-dimensional dispersion 259

signals for the full duration of the research corpus. 260

In identifying media storms, we seek to include 261

multiple representations of the texts, capturing di- 262

verse discursive attributes. We do this due to the 263

complexity of media storms. In some cases, they 264

might correspond to a single event; in others, they 265

might evolve to encompass multiple stories and 266

news ’angles’. In some cases, such as in crises or 267

scandals, we might expect to find specific textual 268

styles expressing drama or surprise. However, in 269

cases such as groundbreaking court cases or an- 270

ticipated political events, the storm is signaled by 271

the sheer volume of coverage rather than any spe- 272

cific reporting approach. With this complexity in 273

mind, we incorporated four types of document em- 274

beddings to create four separate dispersion signals. 275

This offers a level of robustness – we seek coverage 276

anomalies not based on any single type of textual 277

dispersion. 278

3.1.1 Actors & Settings 279

Actors are integral components of news stories. Pre- 280

vious research on automated identification of news 281
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Media Outlet Articles Tokens Tokens/Article (Avg.)
New York Times 520,648 373,980,075 718.30
Washington Post 360,788 293,024,961 812.18
Los Angeles Times 306,171 240,119,545 784.27
Total 1,187,607 907,124,581 763.83

Table 1: Corpus Statistics

events does so by focusing on entities, assuming282

that texts referring to the same people, places and283

times in the same period, refer to the same news284

event (Nicholls and Bright, 2019; Trilling and van285

Hoof, 2020). Therefore, we include these same286

features in our own approach in order to identify287

convergence in coverage around specific events.288

We used the spaCy open-source, natural language289

processing (NLP) named-entity recognition (NER)290

package (Honnibal and Montani, 2017) to extract291

the actors and settings of each article. For each292

document, we generated an embedding based on293

the frequency of each entity within an entity vocab-294

ulary computed over the full corpus.295

3.1.2 Topics296

In many cases, news coverage focuses more on a297

general issue than a specific story. For instance,298

strings of unrelated violent incidents could trigger299

a general spike in attention to crime without any300

of the individual events being newsworthy on their301

own. Thus, we sought to include storms being ex-302

pressed in categories as opposed to only distinct303

stories, aligning with previous studies identifying304

storms as dramatic increases in coverage to an issue305

(Boydstun et al., 2014; van Atteveldt et al., 2018).306

To generate embeddings for this feature, we utilized307

an unsupervised topic model – top2vec – which308

leverages joint document and word semantic em-309

bedding to find topic vectors in a corpus (Angelov,310

2020). Such topics focus on the issues expressed311

in the news articles. We trained a model containing312

100 topics, so each document was represented by313

a 100-dimensional vector. Each dimension’s value314

was the cosine distance of the document from the315

corresponding topic’s centroid.316

3.1.3 Narrative plot elements317

Plot refers to "the ways in which the events and318

characters’ actions in a story are arranged" (Kukko-319

nen, 2014), and thus provide more information on320

the structure and "tellability" (Shenhav, 2015) of321

stories at the heart of media storms. In order to in-322

clude plot elements, we used NEAT – a multi-label323

classifier that was trained on a specially compiled 324

dataset (Levi et al., 2022) to identify three plot- 325

driven, narrative elements – complication, resolu- 326

tion, and success. Each document was represented 327

by three dichotomous variables to include each of 328

the three narrative elements. 329

3.1.4 Large-Language Model (LLM) 330

Finally, we chose to include document embeddings 331

based on pre-trained, transformer-based LLMs. 332

Such models uncover latent features and patterns 333

found within texts, and have proven to be a stan- 334

dard for diverse NLP tasks. We used the all-mpnet- 335

base-v2 sentence-embedding model trained with 336

a modified pre-trained BERT network that uses 337

siamese and triplet network structures to derive se- 338

mantically meaningful sentence embeddings that 339

can be compared using cosine-similarity (Reimers 340

and Gurevych, 2019). 341

We note significant correlations between the four 342

signals (Table 2). However, the correlations indi- 343

cate that there is not a complete ‘overlap’. This 344

attests to each signal’s exclusive information. 345

LLM Entities Plot

Topics 0.89 0.92 0.69
LLM 0.86 0.88
Entities 0.70

Table 2: Correlations between Signals

3.2 Unsupervised Anomaly Detection 346

With these media dispersion signals, we can begin 347

the detection of anomalous convergence periods. 348

To this end, we chose to utilize Facebook Prophet 349

(Taylor and Letham, 2018). Prophet is an open- 350

source library that is conceived to be a reliable 351

"off-the-shelf" time-series forecasting model that 352

could be easily applicable in a variety of use cases. 353

Prophet fits an additive regression model to a time 354

series while including components for a linear or lo- 355

gistic growth curve, yearly and weekly seasonality 356

cycles, and user-designated holidays: 357
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y(t) = g(t) + s(t) + h(t) + εt (1)358

Where:359

• g(t) represents the trend component.360

• s(t) denotes the seasonal component.361

• h(t) stands for the holiday effect at time t.362

• εt is the error term.363

The model is fitted to the time series in ques-364

tion, flagging data points that significantly deviate365

from predicted values as anomalies. The devia-366

tion is determined by the interval width hyperpa-367

rameter – the width of the uncertainty levels as-368

cribed to the model. For example, a wider interval369

means only extreme values will be labeled anoma-370

lies. Two other hyperparameters - the changepoint371

prior scale and the changepoint range - are impor-372

tant for our application. The first sets the number373

of time-series changepoints to include in the model.374

The second specifies the proportion of the time se-375

ries used to fit these changepoints. When working376

with decades worth of data, such values can sig-377

nificantly influence the model’s predictions. For378

example, a lower changepoint range means that the379

model takes into consideration only the early por-380

tions of the time series, while a low changepoint381

prior leads to decreased sensitivity to fluctuations.382

We chose to focus on these three hyper parame-383

ters, fine-tuning them throughout our procedure to384

calibrate the unsupervised anomaly detection.385

3.3 Media Storm Detection386

We define a two-step procedure for identifying me-387

dia storms in our corpus.388

Step 1: Take as input an initial list of media389

storms and a target corpus of media coverage repre-390

sented as described in 3.1,2 to run the anomaly de-391

tection. Treating the initial input list as the “ground392

truth” for the current iteration, we evaluate the393

model’s precision and recall as follows:394

Precision =
D
A

(2)395

Recall =
D
S

(3)396

Where D is the number of media storms from397

the initial list labeled as anomalies by the model,398

A is the total number of anomalies detected by the399

2Smoothed by finding the 7-day rolling mean

model and S is the number of media storms in the 400

initial list. 401

We conduct a random search (Bergstra and Ben- 402

gio, 2012) of the hyperparameter space, running 403

multiple instances of the anomaly detection with 404

varying hyperparameter values. We evaluate each 405

instance by its precision and recall, seeking itera- 406

tions with the highest scores in both metrics. In 407

cases of ties, we prioritize recall. 3 For the optimal 408

instance, we examine the results of the anomaly de- 409

tection, noting the dates of all periods of consecu- 410

tive anomalies of at least two consecutive days. We 411

filter these to include only the time frames where 412

a majority out of the four dispersion signals were 413

flagged as anomalies. This criterion was added 414

due to the inherently ambiguous nature of media 415

storms; we want to focus on genuine media storms 416

and not merely statistical noise originating in the 417

anomaly detection model or borderline instances 418

that might be contentious among researchers. This 419

final, filtered list is our output: a collection of 420

anomalies – media storm candidates. 421

Step 2: Takes as an input the list of media storm 422

candidates. We apply expert validation to ascertain 423

which candidate corresponds to a genuine media 424

storm. For each anomaly cluster, the human expert 425

reviewed newspaper articles from the associated 426

dates, and cross-referenced the time frame with his- 427

torical events from the corresponding dates. Only 428

anomaly clusters found to correspond to a genuine 429

occurrence were provided descriptive labels by our 430

expert and added to the set of media storms. 431

3.4 Experimental Setups 432

We utilized this two-step procedure in two distinct 433

setups: In-Period and Out-Period implementations. 434

In-Period setup. In this setup, we focused on 435

a target period between 1996-2006, aiming to ex- 436

pand a seed list and detect all other storms in the 437

time frame. We started by applying the two-step 438

procedure described in 3.3 to the seed list of 48 439

storms described in 2.2 and the dispersion signals 440

for the target years described in 3.1. The output 441

list of validated storms from the first iteration was 442

saved, and then used to initialize a second itera- 443

tion of the procedure. The output of this iteration 444

became the seed of the subsequent iteration. We 445

continuously add the validated media storms to a 446

3We assume that our initial storm list is but a portion of
the real media storms in our target period. Therefore, we
prioritize maximizing our identification of these real storms,
before maximizing the sensitivity of the model.

5



list of finalized media storms over all iterations. We447

continued the iterations until reaching convergence,448

defined by identifying new media storms amount-449

ing to less than 1% of our current list of finalized450

media storms. We note that it can be necessary to451

curate the finalized list of media storms to consol-452

idate duplicate storms. These were primarily due453

to small variations in the anomaly dates in each454

iteration that may still encapsulate a single media455

storm time frame.456

Out-Period. In this setup we utilize the two-step457

procedure in 3.3, but begin the first step with input458

seed storm lists for one period, to uncover an output459

of occurrences in a second, unlabeled time period.460

Specifically, we compile data from an analyzed461

period together with additional, unlabeled data. As462

per Step 1, we use the already-labeled storms to run463

the random search and find the optimal anomaly464

detection instance. Then, we implement Step 2465

on the media storm candidates for the new time466

period. In this way, we leverage information from467

a previous time frame to create a list of validated468

media storms for the unlabeled data.469

These two experimental setups correspond with470

two common research scenarios. The In-Period de-471

ployment demonstrates the ability of a researcher472

to leverage a handful of media storm instance that473

they may have identified qualitatively, to curate474

a comprehensive list encompassing a full target475

period. This challenge becomes especially pro-476

nounced when transitioning from qualitative, small-477

scale studies to more systematic, big-data-driven re-478

search. The Out-Period deployment demonstrates479

the ability of leveraging an analyzed time period480

to detect media storms in a new time frame. This481

offers promise both for expanding datasets and for482

predictive prospects.483

4 Results & Discussion484

Iteration 1 2 3 4
Storm candidates 116 141 132 133
Storms validated 94 95 94 93
Not validated 22 46 38 40
New storms 71 18 4 1

Table 3: In-Period iterations

Table 3 shows the results of the media storm de-485

tection in the In-Period experimental setup. There,486

we performed four rounds of our procedure until487

reaching convergence – adding a single new me-488

dia storm to our collection of 100 finalized storms.489

These results are noted in the table. For each round, 490

we count the number of storm candidates found, 491

the number of candidates validated as new media 492

storms, and the number of candidates found to not 493

correspond with storms, as described in 3.3. Addi- 494

tionally, since in this setup we run multiple rounds 495

on the same period, we note the completely newly- 496

discovered media storms – instances that were not 497

already detected in previous rounds. 498

Examining Table 3, we see that the anomaly 499

detection procedure is relatively consistent, con- 500

sidering the stability of the storm candidates pro- 501

duced, storms validated and those candidates not 502

validated over the four rounds. There are slight fluc- 503

tuations. Specifically, we see the relative volatility 504

between Rounds 1 and 2. However, by Round 3 the 505

model is quite stable, with small changes in Round 506

4. Additionally, we see here that the new instances 507

decrease, indicating convergence. 508

An analysis of correlations from the first round 509

of the In-Period Experiment in Table 5 reveals that 510

each signal contains exclusive information. No- 511

tably, the Plot signal shows the lowest correla- 512

tions, perhaps due to the NEAT model being more 513

discourse-grounded than vocabulary-based. 514

In our implementation of the Out-Period exper- 515

iment, we ran a single round of the two-step pro- 516

cedure (described in Section 3.3) for each year 517

between 2007 and 2016 in our data, utilizing the 518

media storms found in the previous nine years as 519

seeds for detection in the final year. For example, 520

we utilized the media storms identified in the the 521

In-Period experiment in the years 1997-2006 as our 522

input to find the media storms of 2007. Then, to 523

analyze the year 2008, we utilized the storms from 524

the years 1998-2007, and so forth. 525

Table 4 displays the results from our Out-Period 526

experiments. We see here the results of our media 527

storm detection procedure for each year – the num- 528

ber of media storm candidates identified followed 529

by the numbers validated and not validated. There 530

are slight fluctuations in the results of each round. 531

For example, in 2007 and 2008 we identified only 532

10 candidates, while reaching peaks of 20 candi- 533

dates in 2014 and 2016. Additionally, there is a 534

slight variance in the number of candidates verified 535

as media storms (second row) and the number of 536

candidates not corresponding to genuine storms. 537

The existence of slight fluctuations seems reason- 538

able; we would expect slight differences between 539

periods when working with long-period temporal 540

data. 541
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Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Storm candidates 10 10 15 15 16 15 19 20 15 20
Storms validated 6 9 12 11 12 14 14 16 13 13
Not validated 4 1 3 4 4 1 5 4 2 7

Table 4: Out-Period iterations

Entities LLM Plot

Topics 0.69 0.64 0.46
Entities 0.72 0.47
LLM 0.53

Table 5: Correlations of Anomalies between Signals

Year No. of Storms Avg. Duration Duration Std.

1996 9 8.33 5.96
1997 9 6.56 1.59
1998 14 9.14 4.59
1999 9 7.78 3.80
2000 11 9.73 7.40
2001 4 9.00 6.73
2002 10 12.60 7.82
2003 10 19.00 22.77
2004 11 13.00 10.14
2005 9 8.33 5.32
2006 5 7.80 3.35

Table 6: Storms Duration Data from 1996 to 2006

Year No. of Storms Avg. Duration Duration Std.

2007 7 10.57 4.04
2008 9 9.22 4.94
2009 12 8.50 5.28
2010 11 7.73 5.66
2011 12 8.33 4.66
2012 14 8.64 5.33
2013 14 8.79 4.25
2014 16 8.56 6.36
2015 13 10.54 5.50
2016 12 9.42 4.64

Table 7: Storms Duration Data from 2007 to 2016

Figure 1: Hurricane Katrina – dispersion signals: a
visualization of the signals throughout the coverage of
the hurricane. The lines correspond to LLM (purple),
plot elements (red), topics (blue), and entities (green).
The x-axis marks the dates and the y-axis marks the
daily dispersion level (the trace).

The end result of these experiments were 101 542

storms for the first period (1996-2006 - the first 543

setup), and 120 storms for the second period (2007- 544

2016 - the second setup) for a total of 221 media 545

storms found in our corpus. These lists included 546

many significant events, such as Hurricane Katrina 547

(2015), the Sandy Hook school shooting and ensu- 548

ing gun control debate (2012), and the Snowden 549

NSA revelations (2013). For example, in Figure 1, 550

we see a graph visualizing the dispersion signals 551

spanning the outbreak of Hurricane Katrina. The 552

storm struck New Orleans on August 29th, lead- 553

ing to a humanitarian crisis. This led to a drastic 554

convergence of coverage, expressed by a sharp de- 555

crease in the daily trace values. 556

In addition to these spectacular and unantici- 557

pated events, many of the storms detected corre- 558

spond to routine, planned events such as elections 559

or sporting events. However, there were also in- 560

triguing cases such as a 2010 spike in discussion on 561

issues of airline security and privacy. That storm 562

does not correspond to any specific event, merely 563

arising, we hypothesize, due to the proximity to 564

the Thanksgiving holiday transit peak. This is an 565

interesting example of a media storm – public dis- 566

cussion of important issues – that arises not from 567

any specific event directly linked to the issue (We 568

stress that this is merely a hypothesis that invites 569

focused examination). 570

In Tables 6 and 7, we see descriptive statistics for 571

the two time periods. Overall, we see fluctuations 572

over time in the number of storms occurring each 573

year, and the durations (in days) of the media storm 574

periods. The year 2003 included 190 days of media 575

storms, the highest in our data. This is due mostly 576

to the U.S. war in Iraq – including the invasion and 577

ensuing coverage of the war’s evolution (80 and 30 578

days, respectively). 579

However, what is particularly interesting about 580

these statistics is the relative consistency of the re- 581

sults between the two setups. Upon examination 582

of the results in Tables 6 and 7, we see that there 583

are no strongly discernible differences between the 584

media storms found in each of the setups. During 585

the years 1996 to 2006, the annual average number 586

7



Figure 2: Media storms durations – "In-Period"

Figure 3: Media storms durations – "Out-Period"

of storms was 9.18. This contrasts with the pe-587

riod from 2007 to 2016, which recorded an average588

of 12 storms annually. This difference was statis-589

tically significant, t(18) = −2.422, p = 0.026.590

However, it would appear such differences might591

be due to real-world trends over time. Specif-592

ically, we see that the first years of the second593

period (2007 and 2008) reveal fewer storms than594

some of the first setup’s years. Meanwhile, an595

examination of the storm durations (as seen in Fig-596

ures 2 and 3) does not reveal statistical differences597

(t(146.15) = 1.343, p = 0.181). Such results seek598

to support the utility of both setups, suggesting that599

both are detecting the same phenomena.600

Finally, in order to understand the importance601

of the domain expertise, we can examine the val-602

idation statistics between the two setups: The603

four rounds of the the first setup found 522 me-604

dia storm candidates - anomaly clusters flagged by605

the Prophet model. Of these, 28% were not found606

to correspond to a true media storm by our hu-607

man expert. The yearly rounds of storm detection608

in the second setup yielded a total of 155 media609

storm candidates, of which 22% were deemed by610

the expert to not be storms. These numbers seem611

to justify the role of human validation.612

5 Conclusion and Future Work613

In this paper, we offer several contributions. First,614

we present a human-in-the-loop method to detect615

media storms in a large corpus of news texts. We616

describe a two-step iterative procedure, combining617

unsupervised anomaly detection and expert valida-618

tion, to identify these rare events within a larger 619

dataset. Significantly, whereas previous studies 620

build upon ‘arbitrary’ statistical thresholds, we uti- 621

lize an unsupervised anomaly detection algorithm 622

to allow the media dynamics to reveal themselves 623

in the data. Our expert input comes into play in val- 624

idating these patterns, confirming they correspond 625

to the theoretical concept. Consequently, we are 626

able to uncover additional, more nuanced media 627

storms than in previous studies. By incorporating 628

expert validation, we can determine the granularity 629

of the storms which we seek to identify; depending 630

on the research application, we can decide what 631

intensity of media storms we are interested in de- 632

tecting. 633

Second, our method offers a procedure that can 634

be applied in various research scenarios, over di- 635

verse and large corpora, while leveraging expert 636

knowledge for validation. Within the realm of 637

this paper, we included three English-language 638

newspapers for a specific time-frame. However, 639

the method could plausibly be applied on any 640

news corpora in any language, provided the nec- 641

essary techniques could be utilized (e.g., entity- 642

detection, sentence transformers, etc.). Addition- 643

ally, researchers might be able to use this approach 644

on non-mainstream media sources as well, includ- 645

ing identifying periods of textual convergence in 646

social media platforms and digital news. 647

Third, through the two experimental setups, we 648

collected a comprehensive list of media storms. 649

This time frame we chose to focus on is of particu- 650

lar significance for media scholars. Between 1996 651

and 2016, the media landscape underwent dramatic 652

transformations, with the rise of 24-hour news cy- 653

cles, the interactivity of social media and the frag- 654

mentation of the attention landscape (Chadwick, 655

2017; Edy and Meirick, 2018). These validated 656

storms provide opportunities to examine intriguing 657

theoretical questions, including how the volatility 658

of the media landscape has evolved, changes in the 659

events triggering storms, and perhaps developing 660

predictive capabilities regarding storm outbursts 661

and durations. Thus we use the results of this study 662

to provide a dataset consisting of media storms 663

with their start and end dates. This will be made 664

publicly available to researchers together with the 665

dispersion signals extracted from the corpus. 666
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6 Limitations667

We note two main limitations of this project. First,668

the procedure described here assumes that our me-669

dia storms are all mutually exclusive. We locate670

time frames of anomalous coverage and associate671

each period with a single, discrete media storm.672

In reality, a single time frame might contain more673

than one major news story, or the anomaly might674

actually be identified as one story declines and the675

other begins. Such findings correspond to issues676

that arose during the expert validation stage: some677

anomalous clusters contained a few potential storm678

stories. Only upon close examination of the time679

series’ peaks and the articles that were published680

in correspondence with them, could we decide on681

a single story for the storm. Additionally, some682

of the periods actually did include two separate683

media storm stories, one following the other. In684

this project, we limited ourselves to choosing a sin-685

gle media storm per each period. In future work,686

however, we could integrate a clustering method687

to further distinguish and track stories within the688

media storms.689

A second limitation is that our method does not690

include systematic steps to prevent the existence691

of false negatives - media storms undetected by692

the anomaly detection. Since we do not have a693

gold-standard to initiate our storm detection, there694

remains a possibility that our procedure may have695

failed to detect instances within our corpus. In696

general, our approach relies on high-quality seeds697

to initiate the search for additional media storms.698

We assume that these instances fully represent the699

phenomenon, and that, therefore, all media storms700

should be similar enough in characteristic to them.701

In this way, multiple iterations of anomaly detec-702

tion should uncover all true media storms. How-703

ever, we note that this is not a complete solution704

to the issue of false negatives. In future work, we705

would examine potential solutions, such as ran-706

domly sampling the non-storm time periods to ex-707

amine for storms, or perhaps generating additional708

textual signals which might reveal more storm in-709

stances.710
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