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Abstract

Graph neural networks (GNNs) have shown remarkable performance on homophilic1

graph data while being far less impressive when handling non-homophilic graph2

data due to the inherent low-pass filtering property of GNNs. In general, since3

the real-world graphs are often a complex mixture of diverse subgraph patterns,4

learning a universal spectral filter on the graph from the global perspective as5

in most current works may still be difficult to adapt to the variation of local6

patterns. On the basis of the theoretical analysis of local patterns, we rethink7

the existing spectral filtering methods and propose the Node-oriented spectral8

Filtering for Graph Neural Network (namely NFGNN). By estimating the node-9

oriented spectral filter for each node, NFGNN is provided with the capability10

of precise local node positioning via the generalized translated operator, thus11

adaptive discriminating the variations of local homophily patterns. Furthermore,12

the utilization of re-parameterization brings a trade-off between global consistency13

and local sensibility for learning the node-oriented spectral filters. Meanwhile,14

we theoretically analyze the localization property of NFGNN, demonstrating that15

the signal after adaptive filtering is still positioned around the corresponding node.16

Extensive experimental results demonstrate that the proposed NFGNN achieves17

more favorable performance.18

1 Introduction19

As a powerful tool for analyzing graph data, GNNs are attracting considerable attention from both20

academia and industry. Meanwhile, GNNs have also demonstrated remarkable capabilities in a21

number of graph-related applications, including but not limited to recommendation system [14, 40],22

disease prediction [27, 17], drug discovery [36, 9], and action recognition [42, 33].23

In the field of graph machine learning, homophily has always remained a common assumption24

[25, 39], i.e., nodes within the same class tend to connect with each other. However, behind the great25

success of the previous efforts, such assumption as a critical limitation doesn’t hold true in many26

graph-related scenario, which inhibits severely the further extension of GNNs to more general graph27

data. As a mater of fact, it is hard to argue that homophily is an inherent characteristic of graph28

data [45] and there are also a considerable number of non-homophilic graphs in real-world, where the29

links usually exist between nodes from different classes. For example, in protein structural networks,30

connections between different types of amino acids are easier to form [8]; in addition, for an air31

traffic network, the establishment of the air routes is more for commercial reasons and has little to do32

with the activities of airports [29].33

As far as the existing GNNs are concerned, most of them usually adopt message passing architecture in34

the spatial domain to aggregate the node feature from neighbors over the given topology structure [38,35

10, 20]. Obviously, the practice that all neighbor nodes are considered to contribute positively to36
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(a) Cora (b) Citeseer (c) Cornell (d) Actor

Figure 1: The statistical histogram of hN1(v) and hN<2(v) of four real-world graphs, where Cora
and Citeseer are known as the graphs with strong homophily, Cornell and Actor are known as the
graphs with strong heterophily.

node aggregation without distinction does not apply to heterogeneous graphs. Besides, the commonly37

adopted message passing architectures have been proven to exhibit significant low-pass filtering38

properties [2, 41], which is quite contrary to the non-low-pass properties of non-homophilic graphs.39

In order to break the homophily limitation, several recent studies have made some exploratory efforts40

to solve the GNN modeling problem with non-homophily graphs, such as exploring some new41

aggregation schemes [45, 12, 44] and high-pass spectral filtering [4, 46]. However, these methods42

are still designed for specific heterophilic graph and lack of good scalability to homophilic graph.43

Actually, whether a graph is homophilic or heterophilic depends on the relatedness of the downstream44

task to the graph construction. It means that for a fixed topology structure, when combined with45

different downstream tasks, the identification of its graph property will be very different. Taking the46

dating network as an example, people are more likely to date someone who are opposite sex and47

about the same age. In this case, the graph is likely to be heterophilic if we use the gender of the node48

as the label, while it may be homophilic if we use the age group of the node as the label. Therefore,49

from the perspective of practical application, a simple yet effective GNN model that can be adaptively50

applied to graphs with mixed structural properties should be more preferred.51

Moreover, GNN also confronts with another follow-on challenge, i.e., the homophily property is52

in general not consistent across the whole graph. In a real-world graph, there are always diverse53

subgraph patterns among different regions [37]. As shown in Fig 1, a network seems like homophily54

may also contain a small amount of randomness or heterophily. Although the universality of GNNs55

has been taken into consideration in [6, 13] through adaptive spectral filter learning, the global filter56

modeling without focus on the variation of local structural pattern may still be suboptimal for the57

graph that is mixed up of more complex homophilic and heterophilic property. Besides, the relation58

re-estimation based methods [24, 37, 16, 28] have shown some advance in addressing the issue of59

the mixing pattern to a certain extent. In these approaches, different measures of node similarity are60

defined to perform potential neighborhood discovery, whereas the design of similarity measure and61

the high complexity that comes with it makes them less concise and flexible.62

In this paper, we first analyze the local mixing patterns in the graph via the label consistency63

of the node neighborhoods. A theoretical justification is also given to analyze why the existing64

near-neighborhood aggregation mechanisms fail to work for the non-homophily graphs. Further,65

inspired by the generalized translated operator in graph signal processing (GSP), we propose a66

novel GNN (namely NFGNN) from the perspective of spectral filtering to achieve adaptive localized67

graph spectral filter learning. The key idea is to estimate the node-oriented filter for each node to68

solve the issue of varied local patterns in the graph. To be specific, we first apply the translated69

operator to center the spectral filter at each node, and then the K-order polynomial is used to70

approximate the optimal filter to be learned at each node. In addition, low-rank approximation71

based re-parameterization is used to decompose the filter weight matrix to node-agnostic and node-72

dependent matrices, improving the flexibility of the model. It also brings a trade-off between global73

and local perspectives. Meanwhile, we theoretically prove that the filtered signal is localized around74

the corresponding node, demonstrating that NFGNN achieves the adaptive localized filtering. Finally,75

an extensive group of experiments on various real-world datasets with different scales verifies that76

the proposed NFGNN achieves more favorable performance.77

2 Preliminaries78

Notations. An undirected graph is denoted as G = (V, E), where V = {vi}|V|
i=1 denotes the set of79

nodes with |V| = n, and E is the set of edges among nodes. The topology structure of graph G80
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could be described by the adjacency matrix A ∈ Rn×n with Ai,j = 1 if (i, j) ∈ E or 0 otherwise,81

and D is the diagonal degree matrix D with its i-th diagonal entry Dii =
∑

j Aij . Besides, we use82

L = I − D−1/2AD−1/2 to denote the symmetric normalized Laplacian matrix of G and I is the83

identity matrix.84

For each node v ∈ V , we denote its neighborhood by using N(v), and further, the i-hop neighbors85

Ni(v) and the neighbors within i-hops N<i(v) of node v by Ni(v) = {m : m ∈ V ∧ dG(v,m) = i}86

and N<i(v) = {m : m ∈ V ∧ dG(v,m) ≤ i}, respectively, where dG(i, j) is the shortest path87

distance between two nodes i and j on graph G. Besides, let x = [x1, · · · , xi, · · · , xn]
T ∈ Rn88

denote the n-dimensional signal defined on the given graph G, where xi denotes the signal response89

(feature) at the i-th node vi. Generally, when each node receives f channels of signals, we will have90

a feature matrix X = [X1, · · · ,Xi, · · · ,Xn]
T ∈ Rn×f with each column of it being a graph signal91

x and its i-th row Xi ∈ Rf representing f - dimensional feature vector associated with node vi
1.92

Furthermore, for the node classification task, each node v ∈ V has a class label yv ∈ Y = {1, · · · , C},93

where Y is the set of class labels with |Y| = C, and C is the number of classes. In addition, we use94

yv ∈ RC to denote the one-hot vector corresponding to yv .95

Graph Fourier Transform. According to graph signal processing theory, the graph Laplacian96

provides an effective way of spectral analysis on graphs. Given the Laplacian matrix L, it can be97

eigendecomposed into UΛUT , where U = [u1, · · · ,ul, · · · ,un] ∈ Rn×n is the graph Fourier basis98

formed by n orthonormal eigenvectors {ul}nl=1, and Λ = diag[λ1, · · · , λl, · · · , λn] ∈ Rn×n is the99

diagonal matrix of the ordered eigenvalues {λl}nl=1, λl ∈ [0, 2]. Notice that {λl}nl=1 is also identified100

as the frequencies of the graph. Thus, the graph Fourier transform of the signal x is defined as101

x̂ = UTx, and x̂(λl) indicates the response of x at the frequency λl. The inverse graph Fourier102

transform is defined as x = Ux̂ [34]. Thus, on the basis of the graph Fourier transform, the signal x103

filtered by ĝ can be given as follows:104

z =

n∑
l=1

ĝ(λl)ulu
T
l x = UĝUTx (1)

where ĝ = ĝ(Λ) = diag[ĝ(λ1), · · · , ĝ(λl), · · · , ĝ(λn)] is the spectral filter and we have g = Uĝ.105

Since the spectral filtering is equivalent to convolution in the spatial domain [26], Eq. 1 could also106

be defined as the spectral graph convolution z = x ∗G g, where ∗G denotes the graph convolution107

operator.108

3 Motivations109

3.1 Adaptability to Mixing Local Structural Patterns110

To measure the homophily of a graph, both edge homophily ratio [45] and node homophily ratio [28]111

are two widely used metrics. In addition, [23] proposed a more comprehensive homophily metric that112

mitigates homogeneity bias from class imbalance. It is less sensitive to the number of classes and size113

of each class than edge homophily ratio and node homophily ratio. Since we aim to analyze the local114

patterns of the graph via the label consistency of the node neighborhoods, the node homophily ratio115

is adopted in this work. It should be noticed that the edge homophily ratio and the node homophily116

ratio have similar qualitative behavior [21]. In particular, the node homophily ratio HG of the graph117

G is defined as the average of the homophilic 1-hop neighbor ratio of each node v in G and given by:118

HG =
1

|V|
∑
v∈V

hN1
(v) =

1

|V|
∑
v∈V

|{m ∈ N1(v) : ym = yv}|
|N1(v)|

(2)

where hN1(v) denotes the homophilic 1-hop neighbor ratio of node v centered at node v.119

In essence, HG provides an overall evaluation criterion for homophily of graph. Instead, we should120

also cast more insight into the variation of local structural pattern. Particularly, we first give vi-121

sualization of the statistical histogram of hN1(v) and hN<2(v). As shown in Fig 1, even in Cora122

1Unless otherwise stated, only x ∈ Rn is considered as the input of GNNs for convenience of presentation,
the following discussions of this work still apply to X ∈ Rn×f with f channels of signals (i.e., f -dimensional
features).

3



and Citeseer network, which are usually considered as homophilic graphs, there still exist a small123

number of completely 1-hop heterophilic subgraphs. Similarly, there are some subgraphs with a high124

homophily ratio in Cornell and Actor network. Obviously, these observations mean that, for a graph125

with complex topological structure, it is definitely a mixture of homophilic and heterophilic local126

subgraphs. Furthermore, for the two heterophily graphs, we can find that the statistical histogram127

of hN<2
(v) is much different from that of hN1

(v), demonstrating that the associated local subgraph128

patterns for each node varied generally with the change of neighborhood range.129

Based on the above analysis on the variation of local structural pattern, it motivates us to consider130

that it is conducting adaptive modeling for the graph nodes with different degree of homophily is a131

necessity, and further, we should improve the effectiveness of GNNs for the nodes with various local132

structural patterns.133

3.2 Aggregatability of Near-neighbors134

To facilitate the discussion of the aggregatability of near-neighbors, we first give two definitions135

about the neighborhood, i.e., heterophily-preferred and homophily-preferred:136

Definition 3.1. For a node v with label yv , N(v) is expected to be heterophily-preferred if P (ym =137

yv|yv) ≤ P (ym ̸= yv|yv), ∀m ∈ N(v). Conversely, N(v) is expected to be homophily-preferred.138

Intuitively, the near-neighbor aggregation is definitely effective when the near-neighbor subgraph139

is completely homophilic, while it may not capture adequate homophilic information when the140

neighborhood is expectedly heterophily-preferred. According to Definition 3.1, it can be inferred141

that the aggregation of expectedly homophily-preferred neighborhoods is also beneficial to the node142

representation. Classical GNNs [19, 38, 10] commonly suffer from the over-smoothing problem and143

are thus limited to shallow networks, which means that each node just aggregates the information144

about its neighbors within 2 or 3-hops. Thus, whether the near-neighborhood is homophily-preferred145

or heterophily-preferred will be of great importance for them. To empirically analyze the preference of146

near-neighborhood, we first propose a label entropy SNi
(v) to measure the neighbor label distribution147

of node v, which is defined as :148

SNi(v) = −
∑
y∈Y

(
|N (y)

i (v)|
|Ni(v)|

+ ε)log(
|N (y)

i (v)|
|Ni(v)|

+ ε) (3)

where N (y)
i (v) = {m : m ∈ Ni(v)∧ ym = y} and ε =1e-10 is a constant to avoid overflow. Clearly,149

the larger the label entropy SNi
(v) is, the more random the neighbor label distribution of v will150

be. As shown in Fig 2, most nodes in the homophily graphs have low SN1
(v) and most nodes in151

the heterophily graphs have high SN1
(v). Besides, for all four graphs, the statistical histogram of152

SN<2
(v) is shifted to the right overall compared to SN1

(v). These observations suggest that the153

neighbor label distribution of each node tends to be uniform as the neighborhood range increases.154

Combined with the definition 3.1, we can conclude that the near-neighbor based aggregation is not155

the optimal solution for heterophily graphs.156

(a) Cora (b) Citeseer (c) Cornell (d) Actor

Figure 2: The statistical histogram of SN1(v) and SN<2(v) of four real-world graphs.

Theoretically, we explore the preference of the 2-hop neighborhood N2(v) for multi-class node157

classification and have the following proposition:158

Proposition 3.1. For each node v in a graph G, let’s assume the class labels of its neighbors159

{ym : m ∈ N(v)} are conditionally independent when given yv, and P (ym = yv|yv) = α,160

P (ym = y|yv) = 1−α
|Y|−1 ,∀y ̸= yv. Then, the 2-hop neighborhood N2(v) of a node v will always be161

expectedly heterophily-preferred if α ≤ 2
|Y| .162
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For the proof of the above proposition 3.1, please refer to the supplemental materials.163

Different from the statement that 2-hop neighbor aggregation could help GNNs to learn more164

effective node representation [45, 1], proposition 3.1 shows that the aggregation of N2(v) is hard to165

be beneficial for GNNs when the neighborhood label distribution tends to be uniform. This finding is166

also consistent with our empirical analysis mentioned above.167

4 The Proposed NFGNN168

The observations in Sect. 3 points out that the real-world graph is often made up of a mixture of various169

local patterns, while the near-neighbor aggregation mechanism does not handle the heterophilic local170

patterns well. Various elaborately designed aggregation mechanisms in the spatial domain have been171

proposed to tackle these issues. Different from these methods based on spatial domain, spectral graph172

convolution aims to learn a specific spectral filter for a given graph structure and node labels, thus173

preserving the appropriate frequency components for the downsteam tasks. Therefore, spectral graph174

convolution also possesses a strong expressive power [2] and can work well for both heterophily and175

homophily graphs. However, existing spectral-based methods are still not flexible enough. They176

usually estimate a globally consistent filter from the perspective of the whole graph [20, 13, 7, 3],177

which may be inappropriate for some local patterns. In this section, we rethink the globally consistent178

spectral graph convolutions, and propose a localized spectral filter learning method to break the179

limitation.180

4.1 Polynomial Filter181

Based on Eq 1, early spectral GNNs [5, 15] directly eigendecompose the normalized Laplacian182

matrix L to obtain the Fourier basis U and treat the ĝ as the trainable parameters. However, the183

expensive eigenvalue decomposition restricts the availability of these methods greatly. To circumvent184

the eigendecomposition, K-order polynomial approximation is adopted to parameterize the spectral185

filter:186

ĝ(λl) ≈
K∑

k=0

γkλ
k
l (4)

where γk denotes the learnable fitting coefficient. By plugging Eq. 6 into Eq. 1, the spectral filtering187

can be rewritten as:188

UĝUTx ≈ U

(
K∑

k=0

γkΛ
k

)
UTx =

(
K∑

k=0

γkL
k

)
x (5)

Except for the reduced complexity, another advantage of the polynomial-parameterized filter is the189

localization property. When the filter ĝ centers at node vi, the value at node vj after filtering by ĝ is190

equal to
∑K

k=0 γk(L
k)i,j . Meanwhile, (Lk)i,j will be 0 if dG(i, j) > K [11]. The above facts show191

that the K-order polynomial spectral filter is exactly localized in N<K(i).192

Due to the high efficiency, various polynomial kernels are used for spectral filter parameterization,193

such as Chebyshev basis [7] and Bernstein basis [13]. Interestingly, many spatial aggregation194

methods can also be essentially attributed to polynomial-parameterized spectral convolution [20, 3].195

Nevertheless, such polynomial filters are still globally consistent, or node independent.2 In other196

words, the filter ĝ is applied for all nodes with the fixed fitting coefficients {γk}Kk=0 that are trained197

on the whole graph, and makes no specific discrimination for each node when performing filtering.198

Thus, even it is localized, the polynomial-parameterized spectral filters are still unable to effectively199

model the complex local structural patterns with a mixture of homophily and heterophily. Intuitively,200

compared to learning a globally shared filter ĝ(λl) as a trade-off solution for different local patterns201

across the whole graph, learning an appropriate node-specific filter ĝi(λl) for node i to fit the local202

pattern where it is located seems to be a better choice.203

ĝi(λl) ≈
K∑

k=0

γi,kλ
k
l (6)

For such practice, what needs to be figured out is how to learn ĝi and ensure it is still positioned204

around node i. To this end, we introduce the node-oriented filtering.205

2The analysis of existing GNNs from a spectral filtering perspective is provided in the supplemental materials.
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4.2 Translated Filter for Node-oriented Filtering206

Inspired by the generalized translation operator, we develop an adaptive localized spectral filtering207

on graph G using the polynomial-parameterized spectral convolution. It takes full into account the208

specific effect of the node where the filter is positioned.209

Definition 4.1. ( Generalized translation operator) [34] For any signal g ∈ Rn defined on a given210

graph G and any i ∈ {0, 1, · · · , n− 1}, we define a generalized translation operator Ti : Rn → Rn211

via generalized convolution with a Kronecker delta function δi centered at the i-th node vi:212

Ti(g) :=
√
N(g ∗ δi) =

√
N

n∑
l=1

ulu
T
l (i)ĝ(λl) (7)

where uT
l (i) denotes the i-th element of uT

l .213

Definition 4.1 shows that a signal could be centered at a specific node through a kernelized operator214

acting on ĝ [34]. Then, we can perform the spectral convolution of signal x with the filter signal g215

when g is centered at a specific node vi:216

x ∗G Ti(g) =
√
N

n∑
l=1

ulx̂(λl)u
T
l (i)ĝ(λl) (8)

Let ĝi(λl) =
√
NuT

l (i)ĝ(λl), Eq. 8 becomes:217

x ∗G Ti(g) =

n∑
l=1

ĝi(λl)ulu
T
l x = UĝiU

Tx (9)

Recall the inverse graph Fourier transform, it can be derived that xi = Ui:x̂, where Ui: indicates218

the i-th row of U. Hence, Ui: could also approximated from xi according to Ui: ≈ xiq, where219

q = pinv(x̂) ∈ Rn is the pseudoinverse of x̂. Then, note that ul(i) = uT
l (i), it can be derived that220

ĝi(λl) ≈ g̃i(λ) =
√
N(xiql)ĝ(λl), where ql denotes the l-th element of q. Therefore, ĝi can be221

approximated by a specific filter g̃i corresponding to node vi, which also considers the impact from222

the feature xi associated with node vi in estimating the filter weight.223

Without loss of generality, the K-order polynomial approximation can be used to directly parameterize224

g̃i. As a traditionally used approximate kernel in GSP [7], the Chebyshev polynomial Tk(·) are225

adopted to parameterize g̃i, that is, g̃i =
∑K

k=0 ηi,kTk(Λ̃), where Λ̃ = 2Λ/λmax − I. Meanwhile,226

for each node, we focus only on the convolution result of the filter positioned at that node, i.e.,227

zi = δi(Ug̃iU
Tx), here δi = [0, · · · , 1

i
, · · · , 0] ∈ Rn denotes a row vector with only the i-th228

element being 1 and the remains being zeros. Thus, the node-oriented localized filtering can be as:229

zi = δi(Ug̃iU
Tx) = δiU

(
K∑

k=0

ηi,kTk(Λ̃)

)
UTx = δi

K∑
k=0

ΨikTk(L̃)x (10)

where Ψ = [ηi,k]ik ∈ Rn×(K+1) is the trainable coefficient matrix, L̃ = UΛ̃UT . Meanwhile, similar230

to the above discussion on localized filter, we have the following Proposition4.1 to claim that the231

adaptively filtered signal z is also approximately positioned around the node i.232

Proposition 4.1. Given a signal x defined on a graph G and a filter Ti(g) that translated to a given233

center node vi in G, the filtered signal z = x ∗Ti(g) is approximately localized around the node i.234

To prove the proposition 4.1, let’s first introduce the following Lemma 4.1.235

Lemma 4.1 ( [35]). Let p̂K be the polynomial approximation with degree K to the spectrum of a graph236

signal φ, i.e., φ̂(λl) ≈ p̂K(λl) =
∑K

k=0 γkλ
k
l . If dG(i, n) > K, then Ti(φ)n ≈ Ti(pK)n = 0,237

where pK denotes the signal corresponding to p̂K .238

Proof. According to Definition 4.1 and the properties of convolution, we notice that z can be rewritten239

as:240

z = x ∗
√
N(g ∗ δi) =

√
N((x ∗ g) ∗ δi) = Ti(x ∗ g) (11)

Furthermore, let φ = x ∗ g and p̂K be the polynomial approximation with degree K to φ̂. From241

Lemma 4.1, Ti(φ)n ≈ Ti(pK)n = 0 will hold if dG(i, n) > K. Then, we have zn = Ti(φ)n ≈ 0242

if dG(i, n) > K.243

This completes the proof.244
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Algorithm 1 Node-oriented Spectral Filtering for GNNs
Input: X ∈ Rn×f , L̃ ∈ Rn×n, K
Output: Z
Learnable Parameters: W, Γ, Θ.
1: X(0) ←MLPΘ(X), X(1) ← L̃X. /* Feature Transformation */
2: for k = 1 to K + 1 do

X(k) ← 2L̃X(k−1) −X(k−2) if k > 1
for i = 1 to n do

ηi,k ← Hi:Γ:k /*H = σ(X(k)W)*/
Zi ← ηi,kX

(k)
i + Zi

end for
end for

4.3 The Implementation of NFGNN245

According to the proposed adaptive localized filtering in Eq 10, we will further formalize the246

architecture of the proposed NFGNN. As pointed out in [41, 20], the entanglement of feature247

transformation and filtering may be harmful to the performance and robustness of the GNN model.248

Hence, we adopt the similar way by first applying a MLP to perform the non-linear transformation249

for the raw feature matrix X. Then, the spectral filtering operation can be implemented by a recursive250

way due to the stable recurrence relation of Tk(·):251

Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃) (12)

Accordingly, given the input X , we will have X(k) = Tk(L̃)X.252

Notice that, the scale of the trainable coefficient matrix Ψ is positive proportional to the number n of253

nodes. With the increase of n, this will inevitably involve learning a large number of parameters. At254

the same time, the model also needs to learn K parameters for a single node, which is intractable to255

be optimized. In addition, learning such a large number of parameters can also lead to overfitting,256

especially in the case of small number of labels. To achieve parameter lightweight for Ψ, we257

use a separable low-rank approximation to re-parameterize it. Specifically, Ψ is assumed to be258

decomposed into two trainable parameter matrices Ψ = HΓ with ηi,k = Hi:Γ:k, where H ∈ Rn×d259

and Γ ∈ Rd×(K+1) are the node-dependent matrix and node-agnostic matrix, respectively.260

As Γ is seen as node-agnostic, it can be directly trained as general parameters, which is very similar261

to the learning of the polynomial coefficients in [7]. But for H, since we treat it as node dependent, a262

simple yet effective nonlinear transformation (MLP) is applied, i.e., H = σ(XW), where W ∈ Rf×d263

and σ(·) are the learnable weight matrix and activation function, respectively. It is worthy of note264

that, through low-rank approximation based re-parameterization, the parameter complexity of Ψ is265

reduced from O(n× (K + 1)) to O((K + 1)× d+ f × d), and we can flexibly adjust the model266

capacity by changing d. Particularly, we set d = 1 in this work, and thus the node-agnostic matrix267

Γ ∈ R1×(K+1) is closely related to {γk}Kk=0 in Eq. 6. We summarize the proposed node-oriented268

filtering in Algorithm1. 3269

5 Experimental Results and Analysis270

5.1 Experimental Settings271

Datasets. To provide a comprehensive evaluation of our method, several graphs from various272

domains with different homophily ratios are used, including 5 homophilic graphs: citation graphs273

Cora, CiteSeer, PubMed [31], and co-purchase graphs Computers and Photo [32]; 5 heterophilic274

graphs: Wikipedia graphs Chameleon and Squirrel [30], the Actor cooccurrence graph, and webpage275

graphs Texas and Cornell from WebKB [28]. The statistics of these datasets are summarized in276

supplemental materials.277

Baselines. Several baselines have been selected for comparison, including 6 methods that can be278

seen as spectral filtering based, GCN [19], SGC [41], ChebNet [7], APPNP [20], GPRGNN [6],279

3The source code for the implementation of NFGNN can be seen in supplemental materials.

7



Table 1: Results on real-world graphs: Mean accuracy (%) ± 95% confidence interval. Boldface
letters mark the best result, while underlined letters denote the second best result.

Cora Citeseer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

NFGNN 77.69±0.91 67.74±0.52 85.07±0.13 84.18±0.40 92.16±0.82 72.52±0.59 40.62±0.38 58.90±0.35 94.03±0.82 91.90±0.91
BernNet 76.37±0.36 65.83±0.61 82.57±0.17 79.57±0.28 91.60±0.35 68.73±0.57 40.01±0.42 50.75±0.67 92.30±1.23 91.96±1.07

GPRGNN 79.51±0.36 67.63±0.38 85.07±0.09 82.90±0.37 91.93±0.26 67.48±0.40 39.30±0.27 49.93±0.53 92.92±0.61 91.36±0.70
APPNP 79.41±0.38 68.59±0.30 85.02±0.09 81.99±0.26 91.11±0.26 51.91±0.56 38.86±0.24 34.77±0.34 91.18±0.70 91.80±0.63
ChebNet 71.39±0.51 65.67±0.38 83.83±0.12 82.41±0.28 90.09±0.28 59.96±0.51 38.02±0.23 40.67±0.31 86.08±0.96 85.33±1.04

SGC 70.81±0.67 58.98±0.47 82.09±0.11 76.27±0.36 83.80±0.46 63.02±0.43 29.39±0.20 43.14±0.28 55.18±1.17 47.80±1.50
GCN 75.21±0.38 67.30±0.35 84.27±0.01 82.52±0.32 90.54±0.21 60.96±0.78 30.59±0.23 45.66±0.39 75.16±0.96 66.72±1.37

LINKX 62.40±1.37 55.94±0.96 84.33±0.02 73.64±0.57 79.84±1.21 69.97±0.44 39.22±0.72 58.31±0.47 90.33±0.41 87.36±1.00
BMGCN 74.07±0.25 64.34±0.92 84.71±0.34 NA NA 69.69±1.21 NA 53.16±0.74 93.00±0.57 NA
FAGCN 78.10±0.21 66.77±0.18 84.09±0.02 82.11±1.55 90.39±1.34 61.59±1.98 39.08±0.65 44.41±0.62 89.61±1.52 88.52±1.33

GeomGCN 20.37±1.13 20.30±0.90 58.20±1.23 NA NA 61.06±0.49 31.81±0.24 38.28±0.27 58.56±1.77 55.59±1.59
GAT 76.70±0.42 67.20±0.46 83.28±0.12 81.95±0.38 90.09±0.27 63.9±0.46 35.98±0.23 42.72±0.33 78.87±0.86 76.00±1.01
MLP 50.34±0.48 52.88±0.51 80.57±0.12 70.48±0.28 78.69±0.30 46.72±0.46 38.58±0.25 31.28±0.27 92.26±0.71 91.36±0.70
LINK 42.94±2.02 25.52±1.98 54.78±0.96 70.05±1.31 78.84±1.45 71.09±1.16 26.25±1.43 59.77±1.27 89.61±1.52 44.91±2.19

(a) Cora (b) Citeseer (c) Cornell (d) Actor

Figure 3: Mean classification accuracy of nodes range by homophily ratio hN1(v) on four datasets.

BernNet [13], and 3 spatial aggregation based methods, GAT [38], Geom-GCN [28], BMGCN [10],280

and 3 non-GNN baselines, MLP, LINK [43], and LINKX [22]. For GPRGNN, BernNet, and BMGCN,281

we directly use the open-source codes released by the original paper. For the others, we use the282

models that are provided by [6].283

Experimental Setup. For the node classification task, we follow the random split ratio in [6] to split284

the dataset into training/validation/test sets. Specifically, The sparse splitting ratio (2.5%/2.5%95/%)285

is used for homophilic graphs, and the dense splitting ratio (60%/20%/20%) is used for heterophilic286

graphs. We run each experiment 50 times with random initialization, and random data splits. Finally,287

we report the average results with a 95% confidence interval. We set the degree of the polynomial288

K = 10 for all datasets. The Adam [18] is employed as the optimizer for the NFGNN training. For289

GPRGNN, BernNet, and BMGCN, we use the best combination of hyperparameters provided in the290

original paper to report the results for each dataset.4291

5.2 Performance Comparison292

The average results of running 50 times on the node classification task are reported in Table 1, where293

accuracy is used as the evaluation metric with a 95% confidence interval. NFGNN outperforms all294

the baselines on 6 datasets and achieves comparable results on the other 4 datasets. In particular, on295

Chameleon and Squirrel graphs, NFGNN outperforms the SOTA method BMGCN by a large margin,296

i.e., 2.83% and 5.03%, demonstrating the superiority of our method.297

Meanwhile, it can be observed several interesting phenomena in Table 1. i) GCN and GAT are even298

inferior to MLP on some heterophilic graphs, which shows that positive near-neighbor aggregation is299

indeed out of power in some cases. Besides, the performance of MLP also shows that the utilization300

of node features is also very important for GNNs. ii) The filter-learning based methods generally301

have good a performance on both the homophilic and heterophilic graphs, indicating that adaptive302

filter learning has better transferability than filter pre-designing.303

5.3 Node-level Analysis304

A motivation of the proposed NFGNN is to solve the mixed local patterns discussed in Sect. 3.305

Therefore, we divide the test nodes into 5 different intervals according to the homophilic 1-hop306

neighbor ratio hN1
(v) and report the mean accuracy of each interval. The results of GCN, NFGNN307

4More detailed experimental settings are discussed in the supplementary material.
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Table 2: Accuracy (%) improvement of the node-oriented filtering (NF).

Basis Cora Citeseer Pubmed Chameleon Actor Texas

Monomial
w/o NF 78.15 66.60 82.28 61.79 38.88 91.80
w/ NF 79.16 68.42 84.79 63.36 39.53 91.47

Improv. (1.01) (1.82) (2.51) (1.57) (0.66) (-0.33)

Bernstein
w/o NF 76.32 65.61 82.10 67.82 39.31 92.29
w/ NF 78.41 66.22 83.09 69.93 40.77 93.37

Improv. (2.09) (0.61) (0.99) (2.11) (1.46) (1.08)

Chebyshev
w/o NF 76.07 65.11 84.02 68.48 39.11 92.47
w/ NF 77.69 67.74 85.07 72.52 40.62 94.03

Improv. (0.62) (2.63) (1.05) (4.04) (1.51) (1.56)

with only γ (marked as NFGNN w/o NF) and NFGNN are shown in Fig 3. It should be noticed that the308

NFGNN w/o NF is equivalent to learning a globally consistent filter using the Chebyshev polynomial.309

It can be seen from Fig. 3(c) and (d) that NFGNN has a promising and similar performance on all310

five intervals, which shows that NFGNN can effectively capture the various local patterns under the311

condition as long as the amount of trainable data is sufficient. Besides, both NFGNN and NFGNN w/o312

NF perform better than GCN on the semi-supervised node classification task, as shown in Fig. 3(a)313

and (b). It suggests that adaptive learning filters are no less expressive than pre-designed filters, even314

in the semi-supervised case.315

5.4 Effectiveness of the Node-oriented Filtering316

To evaluate the effectiveness of the proposed node-oriented filtering more comprehensively, we first317

compare the performance of NFGNN and NFGNN w/o NF. Further, since the node-oriented filtering318

is independent of the polynomial basis, the Chebyshev basis is replaced by the Monomial basis and319

Bernstein basis, respectively, and we check the improvement bring by the node-oriented filtering320

mechanism for them. For the Bernstein basis, we refer to the implementation form given in [13].321

The results on six graphs are summarized in 5.4. Firstly, it can be seen that the globally consistent322

filters learned using three different bases have leading performance on different datasets, respectively,323

illustrating the effectiveness of using a polynomial approximation to learn filters. Furthermore,324

except for the Monomial basis on Texas graph, the node-oriented filtering mechanism has different325

enhancements for each basis. The improvements not only validate the effectiveness of the proposed326

node-oriented filtering, but also demonstrate that the polynomial filter and the node-oriented filtering327

can each other to some extent.328

6 Conclusion and Discussion329

In this paper, we first analyze in depth the local patterns in graph data and the aggregatability of330

Near-neighbors. Motivated by these observations, we rethink the spectral-based GNNs and propose331

NFGNN for node-oriented spectral filtering via the generalized translated operator. Compared332

to previous methods that learn a global filter, NFGNN performs spectral filtering through filters333

translated on specific nodes to address the issue of local patterns. Through recursive form and re-334

parameterization trick, the oriented-filtering is implemented in a simple way. The experimental results335

on several real-world graph datasets verify that our NFGNN achieves more remarkable performance336

over currently available alternatives.337

Studying spectral-based GNNs in accordance with the idea of graph signal processing theory is one338

of the origins of GNNs. With different starting points, the spatial-designed GNNs aim to design the339

neighborhood aggregation mechanism based on the topological characteristics of the graph, focusing340

more on the local relationship between nodes and their neighbors. In contrast, spectral-based GNNs341

are dedicated to the design of the filtering of the graph signal in the spectral domain, analyzing the342

graph more from a global perspective. The proposed NFGNN in this paper provides a new form of343

trade-off between global and local perspectives in the spectral domain. Particularly, NFGNN can be344

seen as a extension of the existing methods for estimating global filters. For spectral-based GNNs,345

the scalability of spectral convolution and inductive learning setting are still key issues to be solved at346

present, and it is still one of the directions of graph neural networks that can be expected because of347

the great transferability it exhibits.348
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