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ABSTRACT

In this work, we tackle the problem of open-ended learning by introducing a
method that simultaneously evolves agents and increasingly challenging environ-
ments. Unlike previous open-ended approaches that optimize agents using a fixed
neural network topology, we hypothesize that generalization can be improved by
allowing agents’ controllers to become more complex as they encounter more dif-
ficult environments. Our method, Augmentative Topology EPOET (ATEP), ex-
tends the Enhanced Paired Open-Ended Trailblazer (EPOET) algorithm by allow-
ing agents to evolve their own neural network structures over time, adding com-
plexity and capacity as necessary. Empirical results demonstrate that ATEP results
in general agents capable of solving more environments than a fixed-topology
baseline. We also investigate mechanisms for transferring agents between envi-
ronments and find that a species-based approach further improves the performance
and generalization of agents.

1 INTRODUCTION

Machine learning has successfully been used to solve numerous problems, such as classifying im-
ages (Krizhevsky et al., 2012), writing news articles (Radford et al., 2019; Schick & Schütze, 2021)
or solving games like Atari (Mnih et al., 2015) or chess (Silver et al., 2018). While impressive,
these approaches still largely follow a traditional paradigm where a human specifies a task that is
subsequently solved by the agent. In most cases, this is the end of the agent’s learning—once it can
solve the required task, no further progression takes place.

Through the motivation by the fact that humans have always learnt and innovated in an open-ended
manner, Open-ended learning research field emerged (Stanley et al., 2017). For instance, humans
did not invent microwaves to heat food, but to study radars. Vacuum tubes and electricity was
invented for very different reason but we stumbled upon computers through them (Stanley, 2019).

In perspective of agent, Open-ended learning is a research field that rather than converge to a specific
goal, the aim is to obtain an increasingly growing set of diverse and interesting behaviors (Stanley
et al., 2017). One approach is to allow both the agents, as well as the environments, to change, evolve
and improve over time (Brant & Stanley, 2017; Wang et al., 2019). This has the potential to discover
a large collection of useful and reusable skills (Quessy & Richardson, 2021), as well as interesting
and novel environments (Gisslén et al., 2021). Open-ended learning is also a much more promising
way to obtain truly general agents than the traditional single task-oriented paradigm (Team et al.,
2021).

The concept of open-ended evolution has been a part of artificial life (ALife) research for decades
now, spawning numerous artificial worlds (Ray, 1991; Ofria & Wilke, 2004; Spector et al., 2007;
Yaeger & Sporns, 2006; Soros & Stanley, 2014). These worlds consist of agents with various goals,
such as survival, predation, or reproduction. Recently, open-ended algorithms have received re-
newed interest (Stanley, 2019), with Stanley et al. (2017) proposing the paradigm as a path towards
the goal of human-level artificial intelligence.

A major breakthrough in open-ended evolution was that of NeuroEvolution of Augmenting Topolo-
gies (NEAT) (Stanley & Miikkulainen, 2002), which was capable of efficiently solving complex re-
inforcement learning tasks. Its key idea was to allow the structure of the network to evolve alongside
the weights, starting with a simple network and adding complexity as the need arises. This inspired
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future research about open-endedly evolving networks indefinitely (Soros & Stanley, 2014). Specif-
ically, novelty search (Lehman et al., 2008), used the idea of novelty to drive evolution, instead of
traditional objective-based techniques. This in turn led to the emergence of quality diversity (QD)
algorithms (Lehman & Stanley, 2011; Mouret & Clune, 2015; Ecoffet et al., 2019; Nilsson & Cully,
2021), which are based on combining novelty with an objective sense of progress, where the goal is
to obtain a collection of diverse and high-performing individuals.

While QD has successfully been used in numerous domains, such as robotic locomotion (Cully
et al., 2015; Mouret & Clune, 2015; Tarapore et al., 2016), video game playing (Ecoffet et al.,
2019) and procedural content generation (Khalifa et al., 2018; Earle et al., 2022), it still is not
completely open-ended, where completely open-ended means to run indefinitely and create novel
artifacts. One reason for this is that the search space for phenotypical behavior characteristics (or
behavioral descriptors) remains fixed (Mouret & Clune, 2015). A second reason is that in many
cases, the environment remains fixed, which limits the open-endedness of the algorithm (Wang
et al., 2019). A way to circumvent this is to co-evolve problems and solutions, as is done by Minimal
Criterion Coevolution (MCC) (Brant & Stanley, 2017). This co-evolutionary pressure allowed more
complex mazes to develop, and better agents to solve them emerged, giving rise to an open-ended
process.

However, MCC had some limits; for instance, it only allows new problems if they are solvable
by individuals in the current population. This leads to only slight increases in difficulty, and
complexity which only arises randomly. Taking this into account, Paired Open-ended Trailblazer
(POET) (Wang et al., 2019) builds upon MCC, but instead allows the existence of unsolvable en-
vironments, if it was likely that some individuals could quickly learn to solve these environments.
POET further innovates by transferring agents between different environments, to increase the like-
lihood of solving hard problems. While POET obtained state of the art results, its diversity slows
down as it evolves for longer. Enhanced POET (Wang et al., 2020) adds improved algorithmic com-
ponents to the base POET method, resulting in superior performance and less stagnation. Enhanced
POET, however, uses agents with fixed topology neural network controllers. While this approach
works well for simple environments, it has an eventual limit on the complexity of tasks it can solve:
at some point of complexity, the fixed topology agents may not have sufficient capacity to solve the
environments.

To address this issue, we propose Augmentative Topology Enhanced POET (ATEP), which uses
NEAT to evolve agents with variable, and potentially unbounded, network topologies. We argue
that fixed-topology agents will cease to solve environments after a certain level of complexity and
empirically show that ATEP outperforms Enhanced POET (EPOET) in a standard benchmark do-
main. Finally, we find that using NEAT results in improved exploration and better generalization
compared to Enhanced POET.

2 RELATED WORK

POET (Wang et al., 2019) and EPOET (Wang et al., 2020) are the founding algorithms of the field
of open-ended learning, building upon prior approaches such as MCC (Brant & Stanley, 2017).
This has led to an explosion of new use cases such as PINSKY (Dharna et al., 2020; 2022), which
uses POET on 2D Atari games. This approach extends POET to generate 2D Atari video game
levels alongside agents that solve these levels. Quessy & Richardson (2021) uses unsupervised skill
discovery (Campos et al., 2020; Eysenbach et al., 2019; Sharma et al., 2020) in the context of POET
to discover a large repertoire of useful skills. Meier & Mujika (2022) also investigate unsupervised
skill discovery through reward functions learned by neural networks. Other uses of POET include
the work by Zhou & Vanschoren (2022), who obtain diverse skills in a 3D locomotion task. POET
has also been shown to aid in evolving robot morphologies (Stensby et al., 2021) and avoiding
premature convergence which is often the result when using handcrafted curricula. Norstein et al.
(2022) use MAP-Elites (Mouret & Clune, 2015) to open-endedly create a structu red repertoire
of various terrains and virtual creatures. Hejna III et al. (2021) introduces TAME that evolves
morphologies without tasks, potentially creating a system of open-ended morphology evolution.

Adversarial approaches are commonly adopted when developing open-ended algorithms. Dennis
et al. (2020) propose PAIRED, a learning algorithm where an adversary would produce an envi-
ronment based on the difference between the performance of an antagonist and a protagonist agent.
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Domain randomization (Sadeghi & Levine, 2016), prioritized level replay (Jiang et al., 2021) and
Adversarially Compounding Complexity by Editing Levels (ACCEL) (Parker-Holder et al., 2022)
adopt a similar adversarial approach, where teacher agents produce environments and student agents
solve them.

Several domains and benchmarks have been proposed with the aim of encouraging research into
open-ended, general agents. Team et al. (2021) introduce the XLand environment, where a sin-
gle agent is trained on 700k 3D games, including single and multi-agent games, resulting in zero-
shot generalization on holdout test environments. Barthet et al. (2022) introduced an autoencoder
(Kingma & Welling, 2013) and CPPN-NEAT based open-ended evolutionary algorithm to evolve
Minecraft (Duncan, 2011; Cipollone et al., 2014) buildings. They showed how differences in the
training of the autoencoders can affect the evolution and generated structures. Fan et al. (2022) cre-
ate a Minecraft-based environment, MineDojo, which has numerous open-ended tasks. They also
introduced MineCLIP as an effective language-conditioned reward function that plays the role of
an automatic metric for generation tasks. Gan et al. (2021) introduce the Open-ended Physics En-
vironment (OPEn) to test learning representations, and tested many RL-based agents. Their results
indicate that agents that make use of unsupervised contrastive representation learning, and impact-
driven learning for exploration, achieve the best result.

3 NEUROEVOLUTION OF AUGMENTING TOPOLOGIES

We leverage NeuroEvolution of Augmenting Topologies (NEAT) to evolve the structure of an agent’s
controller. NEAT starts with a population of simple neural networks (NNs), where the input neu-
rons are directly connected to the output neurons without any hidden layers. Crossover is performed
between two parents and the resulting children are mutated by adding connections and nodes, or
perturbing weights. In this way, the NN will gradually be complexified. Crossover and mutations
are illustrated in Section E.2 of Appendix E. One of the major problem to overcome is the Per-
mutations or Competing Convention Problem Radcliffe (1993); Montana et al. (1989). Competing
conventions describes the case in which the crossover of networks that represent the same solution
but are encoded differently (e.g. a different ordering of neurons) can lead to a loss of information
and a significantly worse child. NEAT addresses this by introducing a method to keep track of the
historic origin of a gene by using the innovation number. Using this innovation number, identical
genes from two parents can be aligned, while genes that only occur in one (denoted excess or disjoint
genes depending on whether it occurs within or outside the range of the other parent’s innovation
numbers) can be inherited from the fitter parent. Finally, NEAT introduces speciation (Mahfoud,
1995), where individuals with similar topologies are grouped together, and share a fitness. This
protects innovation and ensures diversity. This speciation calculation is shown by Equation 1 in Ap-
pendix D. In this equation, c1, c2, and c3 are coefficients that indicate the importance of each factor
while N is the number of genes in the larger genome. E and D denote the number of excess and
disjoint genes respectively. W is the average weight difference of similar genes. δ, then, indicates
how close two genomes are; if δ is less than some threshold, then the two genomes belong to the
same species.

NEAT has demonstrated superior performance when compared to fixed topology approaches, and
has been used in numerous subsequent research works to great success (Stanley, 2007; Lehman
et al., 2008; Stanley et al., 2009; Schrum et al., 2020; Clei & Bellec, 2022).

4 ENHANCED POET

Since our method is heavily based on EPOET, we briefly describe this method, as well as the orig-
inal POET algorithm. POET focuses on evolving pairs of agents and environments in an attempt
to create specialist agents that solve particular environments. POET uses modified version of 2D
Bipedal Walker Hardcore environment from OpenAI Gym (Brockman et al., 2016) as a
benchmark. The first environment is a flat surface, and as evolution progresses, the environments
become harder with the addition of more obstacles. POET also transfers agents across environments,
which can prevent stagnation and leverage experience gained on one environment as a step towards
solving another. An Environment-Agent (EA) pair is eligible to reproduce when the agent crosses a
preset reward threshold on this environment. The next generation of environments is formed by mu-
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tating the current population and selecting only those environments that are neither too easy nor too
hard. Finally, environments are ranked by novelty, and only the most novel children pass through to
the next generation. More information about the hyperparameters of POET is listed in Appendix C.

EPOET improves upon POET by adding in two algorithmic improvements: (1) a general method of
evaluating the novelty of challenges and (2) an improved approach to deciding when agents should
transfer to new environments. In the original POET, the way to evaluate novelty was to compare
the environment characterization (EC) of different environments. This is obtained by using some
fixed, domain-specific static features, such as the roughness of the terrain. This inherently limits
the exploration of the algorithm, as it is restricted to explore within these preset confines. Enhanced
POET introduces an improved EC, Performance of All Transferred Agents EC (PATA-EC), which
is based on the performance of different agents in the environment. Secondly, the original transfer
mechanism in POET was generally inefficient, as it increased the required computation (as each
agent needed to be fine-tuned), and resulted in subpar transfers as it was too easy to qualify for
transfer. Enhanced POET makes this process more strict, only transferring very promising agents.

Enhanced POET also improves upon the environmental encoding used in the original algorithm,
which was fixed and thus had a limited number of unique and diverse environments it could repre-
sent. The solution to this problem is to use a more expressive encoding in the form of compositional
pattern producing networks (CPPNs) (Stanley, 2007). A CPPN is a specific neural network, which
can take in x, y coordinates and produce a specific pattern when evaluated across an entire region.
These CPPNs are evolved using the NEAT (Stanley & Miikkulainen, 2002) algorithm, which in-
creases the complexity of the environments as evolution progresses.

Lastly, the authors introduce Accumulated Number of Novel Environments Created and Solved (AN-
NECS), a metric for open-ended learning that, intuitively, describes the amount of new content that
is generated by the algorithm. ANNECS counts the number of environments that satisfy two con-
straints: (1) it must neither be too easy nor too hard and (2) it must be eventually solved by some
agents in the future. Thus, if the ANNECS metric increases as time goes on, it indicates that the
algorithm is continually producing novel and meaningful environments.

5 OPEN-ENDEDLY EVOLVING THE TOPOLOGY OF AGENTS

Many of the approaches introduced in prior work have been implemented using a fixed topology ap-
proach in conjunction with optimizers such as evolutionary strategies (ES) (Salimans et al., 2017),
V-MPO (Song et al., 2019) and Proximal Policy Optimization (Schulman et al., 2017), which moti-
vates us to explore NEAT and the benefits it brings to the open-ended learning framework. We will
describe the overall approach in Section 5.1.

5.1 AUGMENTATIVE TOPOLOGY ENHANCED POET (ATEP)

In this section, we discuss the basic building blocks of our algorithm and the different variants we
experimented with. ATEP combines EPOET with NEAT to allow the agents’ network topologies to
evolve. This means that the algorithmic steps are very similar to EPOET, and the main differences
are (1) the optimizer used: we use NEAT to optimize the variable-topology agents whereas EPOET
used Evolution Strategies to optimize fixed-topology agents; and (2) the transfer mechanism, which
will be discussed later in this section. The detailed flow of ATEP is described in Figure 1.

We first use NEAT to evolve a population for each environment. The valid environments (those that
pass the minimal criterion) then reproduce to create a new generation of (slightly harder) environ-
ments. We then take the environment that is the most novel (as measured by the Euclidean distance
between the PATA-EC scores), and create a new environment-agent pair. The transfer eligibility of
these environments is then evaluated, and if there are valid transfers available, we can move agents
between environments. In EPOET, transfer is performed as follows: we compare the fitness of the
candidate agent to the fitness of the target agent, over the previous 5 generations. If the candidate’s
fitness is greater than all previous 5 fitness scores, we fine-tune it on the target environment and
again compare it against the best fitness from the previous 5 generations. If both of these checks
are passed we transfer the candidate and replace the target. For ATEP, we experiment with two
different transfer mechanisms, the first being inspired by the approach used by EPOET, denoted as
Fitness-Based Transfer ATEP (FBT-ATEP). In this case, we compare the best genome in the candi-

4



Under review as a conference paper at ICLR 2023

Figure 1: A flowchart demonstrating the flow of the ATEP framework, with blocks in green being
where ATEP differs from POET. For both EPOET and ATEP, each environment is associated with an
agent, represented by an ES population for EPOET and a NEAT population for ATEP. Mechanisms
used in NEAT are descrtibed in Section 3 while the hyperparameters are in Table 3 of Appendix C.
PATA-EC and ANNECS are described in Section 4 with other components used in EPOET. Sec-
tion 5.1 describes the transfer mechanisms and Appendix D illustrates pseudocodes for the transfer
mechanisms used in ATEP. The environment images used in the chart were created by ATEP.

date population to the best genome from the target population. We then perform the same checks as
EPOET, and if both are passed, we replace the entire target population with the candidate.

For the second transfer mechanism, we use the speciation inherent in NEAT to influence transfer.
Specifically, we check if the best genome in the candidate population is within a δ threshold (using
the speciation calculation in Equation 1) of any target environment’s best genome. If this is the
case, we transfer the candidate species and replace the target species with it. This approach, called
Species-Based Transfer ATEP (SBT-ATEP), skips the step of comparing fitness scores and has its
own advantages which we discuss in the next section. Finally, we also consider random transfer
(RT-ATEP) and no transfer (NT-ATEP) to investigate whether the transfer mechanisms have a large
impact on the results.

5.2 EXPERIMENTAL SETUP

Now we describe the experimental setup for ATEP, its variants, and our baselines. In ATEP, we
use NEAT as the algorithm to evolve the topology and weights.1 To reduce the computational load,
we change one aspect of the original EPOET paper, reducing the number of active environment-
agent pairs from 40 to 20. We make this change for both EPOET and ATEP, so the results are still
comparable.

We set up two baselines: the first, denoted as EPOET40x40, is EPOET with the original controller
consisting of two hidden layers with 40 nodes each. The second baseline, EPOET20x20, is a con-
troller with two layers of 20 nodes each. Having a baseline that has lesser nodes than the original
EPOET’s controller allows us to gather insights having lesser number of nodes, which we can then
compare with larger number of nodes, which is the original EPOET’s controller. This also allows us
to evaluate the effect of having a small fixed topology, a comparatively larger fixed topology, and a
variable topology. Furthermore, this allows us to confirm our hypothesis that fixed topology agents
will stagnate after a certain level of complexity. For further details on the controllers, please refer to
Appendix C.

6 RESULTS AND DISCUSSION

In this section, we discuss and analyze our results. We break the results into 3 different categories:
Open-Endedness, nodes complexity exploration and generalization ability. All results are gathered
based on 4 seeds due to the expensive computational load, with each algorithm requiring approxi-

1Hyperparameter settings for the various methods are listed in Appendix C.
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Figure 2: Accumulated Number of Novel Environments Created and Solved (ANNECS). The results
are gathered on 4 seed. Solid line represents mean and the error bars represent standard daviation
across the seeds. To save compute, we stop the NT- and RT-ATEP experiments early, as it is clear
that they perform poorly.

mately 50, 000 to 200, 000 CPU hours for a single run. EPOET20x20 required the least amount of
computation, while SBT-ATEP required the most. Each algorithm was run in parallel on a cluster
consisting of 264 Intel Xeon cores, with the runtime ranging between 10 and 30 days. Each algo-
rithm had a maximum of a 1012 function evaluations per run. One function evaluation means one
run of an episode that could be 2000 timesteps long.

The change from 20 to 40 active environment-agent (EA) pairs limits the agent to have minimum
number of optimization steps to 3000 from 6000, which was the case in the original EPOET research.
This number is calculated as we try to make an EA pair every 150 iterations and we have 20 active
EA pairs, thus it becomes possible that if an EA pair is created every 150 iterations and active EA
pair threshold is reached, we archive the oldest. Thus, giving less time for the agent to optimise.

6.1 OPEN-ENDEDNESS

As mentioned, Wang et al. (2020) introduce the ANNECS metric to capture the open-endedness of
an algorithm; we take it as our most important score to judge which algorithm performs better on
complex environments. Refer to Appendix F for more explanation on ANNECS.

Figure 2 shows the ANNECS score as a function of training time. We see that there is a significant
difference between EPOET20x20 and FBT- and SBT-ATEP, indicating that the small network results
in solving fewer environments. EPOET40x40 performs substantially better than EPOET20x20, and
is competitive with ATEP early on during training. The rate of increase in ANNECS, however, does
decrease after about 13k iterations, whereas ATEP increases at a consistent rate. This substanti-
ates our hypothesis that fixed topology agents will start stagnating at some level of environment
complexity, due to capacity issues. While we can improve the results by increasing the size of the
network, that will merely delay the onset of performance plateau.

FBT-ATEP outperforms EPOET40x40, although it also slows down slightly as time progresses. This
is due to replacing the entire target population with the transferred population, which may eliminate
all useful skills learned by the target population. SBT-ATEP, on the other hand, only replaces a
single species that is close to the candidate species, leaving the rest of the population intact. We
also find that SBT-ATEP has negligible performance plateaus during the run of our experiments
in solving environments and, even though it performed similarly to FBT-ATEP and EPOET40x40
early on during training, it starts to outperform these in the second half of the experiment. This,
as we will show later, is partly due to SBT-ATEP exploring more actions. We further note that the
variations using no transfer (NT-ATEP) or random transfer (RT-ATEP) perform poorly, indicating
that intelligent transfer mechanisms are necessary.

Although ATEP outperforms EPOET, it is more computationally expensive, as measured by the
number of function evaluations. One function evaluation means one individual being evaluated on
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an environment. SBT-ATEP has the most function evaluations since once a species transfers from
one population to another, it becomes highly probable that it can transfer in the opposite direction
because they may now be within the δthreshold range. This increases the population size, resulting
in more function evaluations. The tradeoff here is of function evaluations to performance, which is
justified as the performance confirms our hypothesis. Figure 3 displays the total number of function
evaluations.
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Figure 3: Cumulative sum of the
number of function evaluations,
with the Y-axis converted to a log-
scale. While ATEP requires signif-
icantly more function evaluations,
we find that its total wall-time is
only 3 times more than EPOET, as
the neural networks are generally
smaller and each evaluation does
not take as long.
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6.2 NODES COMPLEXITY EXPLORATION

We have now shown that SBT-ATEP outperforms all of the other tested methods based on the AN-
NECS score. We also find that it generally uses a smaller neural network with fewer nodes than
the other algorithms. Figure 4 shows the number of nodes and corresponding fitness value for each
algorithm. We can see that SBT-ATEP generally has a high fitness, but fewer nodes than the other
approaches. This is echoed in Figure 5c, where SBT-ATEP has the least number of nodes for most
of the experiment, although it gradually adds nodes and complexity. FBT-ATEP, on the other hand,
adds nodes very rapidly. This again indicates that the transfer mechanism in EPOET is critical. Refer
to Appendix E for evolved networks from SBT-ATEP to illustrate emerging network complexity.

Inspired by this, we further look into a simple Fitness to Nodes ratio (FNR) metric, shown in Fig-
ure 5a, and find that SBT-ATEP outperforms all other algorithms on this metric for the majority of
the run. This indicates that SBT-ATEP outperforms all other algorithms on a per-environment basis,
while using fewer nodes. This leads us to believe that a better-curated transfer mechanism, based on
SBT-ATEP, will sustain the FNR for longer runs.

Furthermore, in Figure 5b, we calculate an ANNECS to Nodes ratio (ANR) metric with the intent to
observe the role of nodes in the Open-Endedness of the agents, i.e. to have the ability to complexify
over time. We observe that SBT-ATEP performs significantly better than the other models. FBT-
ATEP has the lowest ANR, as it adds nodes much faster than the rate of increase in ANNECS.
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Figure 5: Analysis with respect to the number of nodes. Figure (a) shows FNR along iterations, (b)
shows ANR along iterations, (c) shows the addition of nodes along iterations

6.3 GENERALIZATION ABILITY

We next evaluate the generalization ability of our open-ended agents, as prior work (Team et al.,
2021) has shown that these agents have the potential to generalize to new unseen environments. To
concretely test this, we first take the 20 latest environments from each method. For each environ-
ment, we take the latest agent that could solve this environment from the method under considera-
tion. Each of these agents is now evaluated on the selected environments from the other methods
(60 in total). We perform 30 runs per environment-agent pair and calculate the mean and maximum
of the rewards. We split the results into three categories: environments with fitness scores above
300, between 200 and 300, and below 200. Scores below 200 indicate that the environment has not
been solved by the agent. Figure 6d shows the performance of each method when evaluated on the
60 other environments. We observe that SBT-ATEP outperforms all other models, with only 10% of
the environments remaining unsolved.

Secondly, we test the generalization capabilities of agents on all of the environments created by
their own algorithm. We exclude EPOET20x20 as it fails to solve 80 environments in the whole
run. We take into account 80 environments that were solved by the model itself and observe how
each agent performs on all of them. Figures 6a, 6b and 6c show the results. Here, early-stage agents
perform worse and late-stage agents are shown to have generalization abilities on previously unseen
landscapes. The transfer mechanism plays a key role in this generalization, as it exposes agents to
more environments. Despite not having seen all environments, late-stage agents generalize much
better. SBT-ATEP generalizes the best, with the lowest proportion of unsolved environments, in
contrast to the lower-performing EPOET40x40 and FBT-ATEP.

Finally, we briefly investigate potential reasons why SBT-ATEP outperforms FBT-ATEP. We find
that SBT-ATEP explores more actions, as it only transfers a single species instead of replacing the
target population as is done by FBT-ATEP. This allows the new species to complement the actions
that were already explored by the existing population. Appendix B shows the action distribution of
each action for SBT-ATEP, FBT-ATEP and EPOET40x40.

7 CONCLUSION AND FUTURE WORK

This work investigated the effect of having an Augmentative topology agent on an open-ended learn-
ing algorithm’s performance. We hypothesized that using a fixed topology would result in agents
that exhibit delays in solving an environment after a certain point in environment complexity. We
showed that this is indeed the case, and addressed this limitation by introducing ATEP, which allows
the network topology of the agents to change and add complexity as necessary. We demonstrated
that this approach outperforms existing methods in terms of the ANNECS score and generalization
ability, while using fewer nodes in the neural networks. Our approach, however, does require more
function evaluations than competing approaches. Thus, a promising future direction would be to use
NEAT with Novelty Search (Lehman et al., 2008) or Surprise Search which tends to converge faster
than simple NEAT (Gravina et al., 2016). QD algorithms may also be worthwhile to explore in the
context of open-ended learning as they have the ability to produce a population of high-performing
and diverse individuals (Bhatt et al., 2022). Exploring Neurogenesis (Maile et al., 2022; Draelos
et al., 2017), where neurons are added to a single neural network based on various external triggers,
could also be a promising direction. To reduce computational load, it would also be promising to
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Figure 6: Figures showing generalization capabilities. Figures (a), (b) and (c) show agents of 80
solved environments being tested on all 80 environments, for EPOET40x40, FBT-ATEP and SBT-
ATEP respectively. Note that EPOET20x20 does not take part in this test as it failed to produce 80
environments in the run. Figure (d) shows each algorithm being tested on the 20 latest environments
created by all other algorithms, i.e., each algorithm is evaluated on 60 environments. The Y-axis
shows the percentage of environments in each category. Each test is conducted for 30 runs and the
mean scores are taken.

look into developing single-population open-ended learning methods without losing the exploration
abilities of EPOET.

Furthermore, we have opened up possible future research into transfer mechanisms. We compared
simple approaches such as FBT and SBT, but more advanced approaches could yield further perfor-
mance improvements. For instance, we could combine both FBT and SBT in a weighted manner, or
transfer only a certain percentage of a species or population. Finally, this work provides a starting
point, like EPOET itself, into open-ended learning with augmentative topology agents. We there-
fore used the modified version of 2D BipedalWalker as our benchmark. Future work should compare
ATEP with standard EPOET on different and more complex environments. Ultimately, we hope that
this new approach furthers research into open-ended algorithms that do not slow down over time,
and can keep up with an ever-changing environment.

REPRODUCIBILITY AND ETHICAL STATEMENT

For reproducibility, we have provided a GitHub repo2 where users can follow instructions to repro-
duce the experiments. We have also provided detailed hyperparameter tuning in Appendix C and
pseudocodes in Appendix D for user reference. ATEP is an Open-Ended Learning algorithm that
has stochastic elements, similar to many other machine learning algorithms. It is critical for users to
perform standard evaluations as the user would do for other machine learning algorithms. A full run
of ATEP may be computationally expensive and will take approximately 50, 000 to 200, 000 CPU
hours.

2The GitHub repo will be provided after acceptance, but a zip file containing the source code will be sub-
mitted alongside this paper.
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A ABBREVIATIONS

Table 1: Abbreviations for commonly used terminologies.

Abbreviation Termonology

MCC Minimal Criterion Coevolution
POET Paired Open-Ended Trailblazer
EPOET Enhanced Paired Open-Ended Trailblazer
NEAT NeuroEvolution of Augmenting Topologies
ATEP Augmentative Topology Enhanced POET
NN Neural Network
FBT-ATEP Fitness-Based Transfer ATEP
SBT-ATEP Species-Based Transfer ATEP
RT-ATEP Random Transfer ATEP
NT-ATEP No Transfer ATEP
EPOET40x40 EPOET with NN of two hidden layers, 40 nodes each
EPOET20x20 EPOET with NN of two hidden layers, 20 nodes each
ANNECS All New and Novel Environments Created and Solved
PATA-EC Performance of All Transferred Agents - Environment Charactization
EA Environment-Agent
FNR Fitness to Nodes Ratio
ANR ANNECS to Nodes Ratio

B ACTION DISTRIBUTION FIGURES

In Figure 7 we have added figures for the action distributions of each algorithm.
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Figure 7: Action Distributions for (top row) SBT-ATEP, (middle row) FBT-ATEP and (bottom row)
EPOET40x40. Each column represents one specific dimension of the action array.

C HYPERPARAMETER SETTINGS

This appendix is for hyperparameter settings which were used for ATEP and the baselines. Table 2
shows hyperparameters for ES in EPOET. Table 3 shows settings for NEAT in ATEP and Table 4
shows parameter configurations for CPPNs. General hyperparameters for reproduction are given in
Table 5.

Table 2: ES hyperparameter settings

Hyperparameter Setting

ES Population 512
Weight update method Adam
Initial learning rate 0.01
Decay factor of learning rate 0.9999
Initial noise standard deviation 0.1
Lower bound of noise standard deviation 0.01
Decay factor of noise standard deviation 0.999
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Table 3: NEAT hyperparameter settings

Hyperparameter Setting

Population size 1000
Crossover probability 0.3
Weight mutation (small) probability 0.85
Weight mutation (large) probability 0.15
Weight mutation (small) range -0.1 - +0.1
Weight mutation (large) range -1 - +1
Connection mutation probability 0.85
Node mutation probablity 0.15
Maximum stagnation 60
c {1} 1.0
c {2} 1.0
c {3} 3.7
Delta threshold 3.0
Initial condition full
Activation function tanh
Number of inputs 24
Number of outputs 4

Table 4: CPPN hyperparameter settings

Hyperparamer Setting

Initial condition full
Activation default identity
Activation options identity sin sigmoid square tanh
Aggregation default sum
bias init stdev 0.1
bias init type gaussian
bias max value 10.0
bias min value -10.0
bias mutate power 0.1
bias mutate rate 0.75
num inputs 1
num outputs 1
response init mean 1.0
response init type gaussian
response max value 10.0
response min value -10.0
single structural mutation True
structural mutation surer default
weight init stdev 0.25
weight init type gaussian
weight max value 10.0
weight min value -10.0
weight mutate power 0.1
weight mutate rate 0.75
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Table 5: EPOET general hyperparameter settings for ATEP

Hyperparameter Setting

Reward threshold 200
Environment difficulty MC 25 - 340
Transfer check 25
Reproducibility check 150
Active environments 20

D TRANSFER MECHANISMS

This appendix shows pseudocodes of Species-based and Fitness-based transfer mechanisms. Algo-
rithms are shown in Algorithm 1 and 2, respectively. 2, in particular, is very similar to the transfer
algorithm described by Wang et al. (2020). find delta(.) in Algorithm 1 is calculated by the equa-
tion Equation 1.

δ =
c1E

N
+

c2D

N
+ c3 ·W (1)

Algorithm 1: Species-Based Transfer
Input : Candidate population’s best individual Ic. A function find delta(.) that calculates

delta score and δthreshold.
Let M = All environments - {Candidate environment}
foreach m ∈ M do

Im = best individual of environment m
δct = find delta(Ic, Im) using Equation 1
if δct ≤ δthreshold then

delete target species
Transfer candidate species to target population

else
Transfer is not possible

end
end

Algorithm 2: Fitness-Based Transfer
Input : Candidate population’s best individual I , a function Score(.) that calculates the

maximum of the target agent’s 5 most recent fitness scores.
Let M = All environments - {Candidate environment}
foreach m in M do

Compute direct transfer ID;
if ID > Score(m) then

Compute fine-tuning transfer IP ;
if IP > Score(m) then

Add m to T candidates
else

Transfer not possible
end

else
Transfer not possible

end
end
Delete whole population of T candidates
Transfer whole candidate population to T candidates
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E EVOLVED NETWORKS

E.1 TOY EXAMPLE

The toy example is presented to illustrate mutation and crossover operators in NEAT.

(a) (b) (c)

(d) (e) (f)

Figure 8: A toy example of the mutation of an individual in NEAT. (a) shows a simple network, (b)
mutates by adding a connection from node 3 to node 2 and (c) mutates by adding node 5 between
node 3 and node 2. (d), (e) and (f) shows a toy example of the crossover between two individuals
of NEAT. (d) and (e) shows two individuals. (f) is the result of the crossover between (d) and (e),
which results in adding a new connection from node 2 to node 4 in individual (e). These illustrations
are motivated by NEATs’ original paper (Stanley & Miikkulainen, 2002).

E.2 AUGMENTED NEURAL NETWORKS

For illustration purposes we took a later stage agents’ neural network (NN) which eventually became
the best performing individual for the solved environment. Yellow nodes represent inputs, aqua
represents hidden nodes while white maps to outputs. Figure 9a shows the start of the NN without
any evolution applied. Figure 9b is the state after 2000 iterations. It shows to have a few nodes in
hidden layer one and a couple of nodes in hidden layer two. Complexity has not yet been emerged as
it can be observed. Figure 10a is the NN after 4000 iterations. We can observe emerging complexity.
Some residual connections can be seen, for example node 5, an input node connects to hidden node
30, but also connects to an output node 26. Figure 10b is the evolved network that became the
best individual in the population, after 6000 iterations of when it was created. Here complexity
is observed in many levels. Firstly, an input node 2 connects to input node 0, where as node 46
appears to be having a forward pass to the input 2 and 0. Secondly, we observe an interesting small
block of 6 nodes conventionally fully connected, input 22 and 23 connected to 40 and 42 which
further connects to 41 and 43, that connects to the outputs. Overall depth of the network seems to
be variable.
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(a) (b)

Figure 9: From left to right: NNs at iteration 0 and 2000 of when it was created.
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(a) (b)

Figure 10: From left to right: NNs at iteration 4000 and 6000 of when it was created.
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F KEY CONCEPTS FROM EPOET

F.1 PATA-EC

Performance of All Transferred Agents-Environment Characterization (PATA-EC) is introduced by
EPOET as a domain-general environment characterization score. PATA-EC is a score that describes
the environment behaviour through all active and archived agents behaviour on the environment.
Four steps to calculate PATA-EC are: (1) Evaluate: Each created environment evaluates all agents
and stores their raw scores in a vector. (2) Clip: The cores are clipped between a lower and upper
bound. By doing so, we clip the possibilities of having an agent that is a failure (too low score) or
the environment is to easy for the agent (too high score). (3) Rank-normalize: We the sort the raw
scores by their rankings, and normalize the scores in between the range of [-0.5,0.5]. This allows us
to use direct euclidean distance on the PATA-EC scores. Eventually PATA-EC score helps in creating
most novel environments and is not domain-specific thus could be used in any environment.

F.2 ANNECS

All New and Novel Environments Created and Solved is a measure of progress in an open-ended
system. The intuition behid it is to see if the system is generating environments that are novel but also
eventually gets solved by the agents, thus measuring useful environments. The environments that
are useful gets solved by an agent thus progressing itself in an open-ended system. To be counted in
ANNECS score, an environment created at a particular iteration must: (1) pass the minimal criteria
(i.e. not too easy or too hard) measured against all active and archived agents generated over the
entire run so far, (2) eventually solved by the system, which means the algorithm will not receive
credit for producing unsolvable environments. As ANNECS metrics constantly goes up indicates
the algorithm is making meaniungful environments.
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