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Abstract

A large amount of recent research has the far-reaching goal of finding training meth-
ods for deep neural networks that can serve as alternatives to backpropagation (BP).
A prominent example is predictive coding (PC), which is a neuroscience-inspired
method that performs inference on hierarchical Gaussian generative models. These
methods, however, fail to keep up with modern neural networks, as they are unable
to replicate the dynamics of complex layers and activation functions. In this work,
we solve this problem by generalizing PC to arbitrary probability distributions,
enabling the training of architectures, such as transformers, that are hard to approx-
imate with only Gaussian assumptions. We perform three experimental analyses.
First, we study the gap between our method and the standard formulation of PC
on multiple toy examples. Second, we test the reconstruction quality on varia-
tional autoencoders, where our method reaches the same reconstruction quality
as BP. Third, we show that our method allows us to train transformer networks
and achieve a performance comparable with BP on conditional language models.
More broadly, this method allows neuroscience-inspired learning to be applied to
multiple domains, since the internal distributions can be flexibly adapted to the
data, tasks, and architectures used.

1 Introduction

The last decade has seen an explosion of machine learning research fueled by the collection of an
unprecedented amount of data and the development of models that can make use of it. Starting
with AlexNet [Krizhevsky et al., 2012], deep neural networks trained with backpropagation (BP)
[Rumelhart et al., 1986] have been established as the best-performing models in many fields [Silver
et al., 2016, He et al., 2016, Brown et al., 2020, Ramesh et al., 2021, Devlin et al., 2018]. Despite
reaching human-level performance in several tasks [Silver et al., 2016, Vinyals et al., 2017, 2019],
we are still far from artificial general intelligence. The trend has been to constantly increase the
number of parameters in such networks, from millions [Devlin et al., 2018] to hundreds of billions
[Brown et al., 2020]. The limitations and drawbacks given by the large size of modern architectures
have motivated research that looks for alternative methods to train them. The direction of research
that has inspired this work is that of neuroscience-inspired alternatives to BP, which promise to
overcome these drawbacks, due to both interesting properties of their credit assignment, such as
plasticity [Hebb, 1949], and their biological hardware [Kendall et al., 2020]. These methods have
two main advantages relative to standard deep learning models trained with BP. First, it is much more
feasible to train them on analog and neuromorphic chips [Kendall et al., 2020]. Second, the resulting
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computational models are extremely flexible in both network layout design and querying techniques
[Salvatori et al., 2022a, Millidge et al., 2021, Salvatori et al., 2021, Papadimitriou et al., 2020]. These
two properties could play a crucial role in overcoming the limitations of BP-based learning towards
artificial general intelligence.

Predictive coding (PC) is one of the most influential theories of information processing in the
brain, initially proposed to explain a large number of brain behaviours [Mumford, 1992, Friston and
Kiebel, 2009], and now also a topic of research in machine learning, thanks to the computational
model proposed by Rao and Ballard [1999]. This method has in fact been used in supervised and
unsupervised tasks [Ororbia and Kifer, 2020, Whittington and Bogacz, 2017, Han et al., 2018], with
an important theoretical result: the original formulation is able to approximate the weight update of
BP [Whittington and Bogacz, 2017, Millidge et al., 2020], and to exactly replicate it when introducing
small variations [Salvatori et al., 2022b, Song et al., 2020]. These results are important, as they draw
a strong connection with the aforementioned results obtained by BP in the last decade. PC, however,
also presents several interesting properties that make it different from BP: it has an energy-based
formulation that allows the design of powerful associative memory models [Salvatori et al., 2021]
and to train graphs of any topology [Salvatori et al., 2022a].

PC can also be studied from an information theory perspective, as it is a hierarchical generative
model [Rao and Ballard, 1999]. This is a strength of the model, as it has allowed such models to
achieve a competitive performance to standard models trained with BP on several generative tasks.
These results, however, are all obtained on simple models: sequential architectures with element-wise
activations and quadratic energy functions. Deep learning, however, has progressed far from those in
recent years, and, therefore, it is necessary to evaluate the performance of PC on more up-to-date
and complex architectures to obtain a complete comparison of PC against BP. In this paper, we see
that the strict Gaussian assumption is limiting when dealing with more complex architectures such as
transformers, preventing PC from reaching the performance obtained by BP. Note that this limitation
is not unique to PC, but it is shared among all neuroscience-inspired methods: for example, to our
knowledge, none of these frameworks has been successfully used to train language models to date.

In this work, we address this problem by generalizing PC to arbitrary distributions. This allows us to
both use Gaussian distributions when allowed, and also to deal with intractable ones by approximating
them using a sampling scheme. The resulting framework is coherent with the PC theory, as it enables
the definition of layer-wise energy functions that represent prediction errors [Rao and Ballard, 1999,
Whittington and Bogacz, 2017]. In standard PC networks, the error is given by the difference between
the expected and actual input of a layer; here, it is defined as the KL-divergence between the expected
and actual distributions. We show that these formulations are equivalent when using Gaussian
distributions, meaning that our proposed framework is a generalization of standard PC. The results of
this paper are briefly summarized as follows:

* We generalize PC beyond the assumption of a Gaussian generative model. This lets us define
prediction errors as “distances” between arbitrary distributions at each hierarchical layer of
a PC network, and derive a novel free-energy objective to train such networks.

* We empirically show that standard PC is ineffective in training models with complex
structure and activation functions, as they cannot be approximated by a Gaussian generative
model. Our proposed method, instead, significantly outperforms it, reaching a competitive
performance with BP in training both variational autoencoders [Kingma and Welling, 2014]
and transformers [Vaswani et al., 2017]. This further bridges the gap in performance between
state-of-the-art deep learning methods and neuroscience-inspired learning.

The rest of this paper is structured as follows. In Section 2, we introduce the notation used throughout
the paper and describe the probabilistic interpretation of PC. In Section 3, we propose how to
generalize the definition of PC beyond Gaussian generative models. In Section 4, we evaluate the
performance of our proposed method in comparison to standard PC and BP. Finally, in Sections 5
and 6, we discuss related work and provide a conclusion, respectively.

2 Predictive Coding: A Probabilistic Interpretation

In this work, we focus on multi-layer networks organised in a sequence of L layers. These networks
define a model M, that learns the relationship between the input d and the target o by updating
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Figure 1: Difference between a network trained with BP (up) and PC (down). The nodes x; of each
layer store the extra parameters ¢;. By following the computational arrows backward, the error flows
globally from the last layer to the first when using BP. With PC, instead, each layer computes a local
error that gets propagated only to nearby nodes.

its weight parameters 6 = (64, ...,0y). Networks trained with BP have a forward pass, where an
output ¢ is computed from an input d, and a backward pass, where the error given by a loss function
L = loss(o, 6) is propagated back to the network. Every layer of the model has a set of value nodes
x7, which contain the value of the prediction y; (i.e., what is normally called activation of a layer),
computed accordingly to the value of the previous layer. In detail, we have y; = fi(z;—1,6;), where
fi 1s an activation function. In PC, the prediction ; is not stored directly inside the value nodes z;,
but rather in separate prediction nodes. The nodes x; hold, instead, the neural activation ¢; of layer [.
¢, is a parameter of the network that can be optimized by minimizing the so-called prediction error
between y; and itself. Therefore, a model trained via BP consists exclusively of the parameters 6,
while a PC network requires two sets of parameters, f and ¢, where ¢ = (¢, . . ., ¢r.) represents the
neural activities of different layers (Fig. 1). Table 1 summarises the differences between BP and PC.

Method | Value received from [ — 1 | Content of value nodes x; | Value fed to layer [ + 1
BP | | prediction from [ — 1 (p1) | u
PC | | neural activation of I (¢;) | ¢

Table 1: Clarification of the notation used, highlighting the differences between BP and PC.

2.1 PC as Variational Inference

PC as a learning algorithm can be mathematically interpreted as a variational inference problem.
It is in fact possible to consider learning as an intractable Bayesian inference process that can
be approximated with a tractable optimization problem [Friston, 2003, 2005, 2008]. Under this
assumption, the neural activities ¢; in a PC network represent probability distributions. In particular,
Friston based his theory of PC on Gaussian generative models. A detailed review is provided in
[Millidge et al., 2021]. Assume that we have a generative model o = g(x), where o is a data point
and z a set of latent variables, which is described by the joint probability p(o, ) = p(o|x)p(x). We
need to solve an inverse problem: given a data point o, we need to infer the causes x that generate
o through g. Similarly to many inverse problems, this one is intractable. In particular, we want to
compute the true posterior p(x|o). However, computing it by Bayes rule as p(z|o) = p(o,z)/p(0)
requires the normalizing factor p(o) = [ p(x, 0)dx, which is, for all but trivial problems, intractable.
Variational inference aims to approximate the intractable posterior with a family of distributions
¢4(x|0), where the parameters ¢ have to be learnt. This is generally done via gradient descent on the
KL divergence [Kullback and Leibler, 1951] between the approximated and true posterior. The goal
is to compute

95 = arg;nin DrL[gs(zl|o)|[p(z|0)] (1)
by minimizing an upper bound on the divergence, called the variational free energy F:

F = Drlgs(z(0)||p(o, 2)] = Dxrlgs(z[0)||p(o, 2)] + Inp(0) = Drrlge(x|o)|[p(z|o)].  (2)



The PC framework assumes a Gaussian form for the generative model p(o,z) = p(o|z)p(z) =
N(o; f(z,0), X2) N(z, p, 1), where 3o, X, and u are prior parameters that can optionally be
learnt. Using as variational posterior the Dirac-delta distribution* g4 (z|o) = d(z — ¢), we get that

F= IE:q TIO)[111Q¢(T| )] q¢( z|o )[lnp(o, :U)] = _E%(ml(’)[lnp(Ov m)] = —Inp(o, (b)v 3)

where the entropy of ¢ is 0. This scheme can be applied to deep neural networks, where x does
not represent a homogeneous latent space (e.g., a single layer), but is, instead, organised in a

hierarchical structure, defined by the multiple layers of a PC network with widths w1, ..., w; and
nodes xg, 21, . . . ,zr. Under this premise, the generative model is as follows:
L L
plaor) = plao) [ [, plarleior) = N(zos po, 2o) [, N (ass pu, S0), @

where y; = fi(x;—1,0;), and 2}, corresponds to the observation layer and is set to 25, = o during
training. The parameters X; are prior diagonal covariance matrices, which can be optionally learnt,
and g is an arbitrary prior that can be set to some given data d. This is equivalent to the training of a
supervised network with data point d and label o. The energy becomes:

L
F = Byuntaolnpon)) = 3, ~lpalm) = 5 (3, S Sild + ) 4k,
5)

where k is a constant, ¢, = (¢; — 1), and g4 (x0.1|d, 0) = Hleo 0(z; — ¢1) (implying that z; = ¢;).
In this equation, the total energy is given by the sum of the energies & of every layer, where
& = —Inp(¢|u;). By assuming identity covariance matrices (i.e., ¥; = I)", the energy becomes
the sum of quadratic errors, introduced by Rao and Ballard [1999]:

F= Zfzo £ = ZZL:O &2, )

In most cases, however, the generative model depends on a set of parameters 0: p(x, ..., x ;) that
need to be learned according to a specific dataset. This can be done via expectation maximization
(EM) [Dempster et al., 1977], where we first infer the best possible latent variables ¢ given a data
point o (E-step) and then use them to update the parameters § (M-step). In practice, both these phases
are achieved using gradient descent to minimize . In detail, given a labelled point (d, o), the input
layer prior is set to (g = d, while the output layer nodes are fixed to ¢;, = o for both the inference
phase (E-step) and weight update (M-step). During the inference phase, the weight parameters are
fixed, and the node values ¢ are continuously updated via gradient descent to minimize the energy
F. This process either runs until convergence or for a fixed number of steps 7". When the inference
phase ends, a weight update is performed as follows: the node values ¢ are fixed, and the weights are
updated once via gradient descent on the same energy function F.

3 Generalization to Arbitrary Distributions

In this section, we go beyond the strict Gaussian assumption of PC. According to Eq. 5, we have
that £ = — lnp% ) = —InN(¢y; fildi—1,01),%;)). We can highlight the role of each ¢;, by
introducing the -P and - superscripts, which, respectively, indicate that a vector value is interpreted
as a distribution (i.e., a vector of sufficient statistics that uniquely identifies a probability distribution,
such as the mean w of a Gaussian distribution), or as a single sample. The .S, .P potation does not, in
any case, imply any transformation of the value itself. We get that

& =—IN(7; fillol 1,601, 50) = —Inp(87 611, 01, %) @)

Thus, neural activation ¢; is simultaneously interpreted both as qbf and ¢F. This subtle difference has
never been highlighted in standard works using hierarchical Gaussian models since ¢l corresponds
to the maximum likelihood estimation of the Gaussian distribution N (¢, ¥;), and thus o = PP .

*A Gaussian variational posterior under the Laplace approximation can also be used, resulting in the same
learning rules as the PC framework proposed here; see [Buckley et al., 2017].

"Throughout the paper, we assume diagonal covariance matrices for the Gaussian generative model in order
to simplify the mathematical derivations. However, our approach can be naturally extended to the case of general
covariance matrices [Bogacz, 2017].
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Figure 2: Different layer structure between PC'r (left) and PC'r, , (right). In PCz, the nodes of
each layer are simultaneously interpreted as both samples (when evaluating &;) and as distributions
(when computing 1;41). This inconsistency (highlighted by the dashed red arrow) is not present in
PCx,, , where they always represent probability distributions.

Assuming a Gaussian form for the generative model could, however, become a limiting factor when
considering complex architectures. For example, a layer employing a softmax activation cannot
be easily approximated through a multi-variate Gaussian, since the function introduces a strong
dependency between the nodes (i.e., their values have to sum to 1). As we will show in the next
sections, using softmax activation functions can hinder the ability of a network to learn using the
standard definition of PC, and hence a generalized formulation that goes beyond the standard Gaussian
assumption is needed.

To generalize and extend the canonical formulation of PC, we do the following: instead of directly
maximizing the likelihoods p; = p(d)f | MD), we assume that this process is happening repeatedly
between each pair of consecutive layers for a single optimization step. We consider the nodes
x; as storing the sufficient statistics qSlD of an arbitrary distribution XZ(QSZD), ¥ we draw N sample

points from it, sl(b) ~ X(¢P), i € {1,...,N}, and we minimize each individual likelihood

pl(i) = p(sgi) |1P). Furthermore, we remove the Gaussian assumption and consider uP = f;(¢ |,6;)

to be a parametrization of a generic distribution é?l(,ulp) By doing so, the node values ¢; are
interpreted exclusively as distribution parameters: both the energies & and the activations y” are
functions of ¢} . It follows that the variational free energy F is also a function of the expected values

given by the likelihoods p(sl(i) \uP), i € {1,..., N}, for each layer I. The energy of each layer is
then defined as:

&= —p(@7 1) = H(X(SD), Xi(uD)- ®)
A detailed derivation of the above equation is presented in the supplementary material. Knowing that
the cross-entropy between two distributions H(a, b) = D, [a||b] + H(a) and that H(a) > 0, the
total energy of the network can be optimized by minimizing

Fro=Y &= Dicl@PI RN <Y HAGP). BWP).  ©)

This follows, as the entropy of X;(¢) can be assumed as being a constant depending on the training
data. Figure 2 highlights the difference between the original and new PC formulation. This definition
of the variational free energy F g, does not rely on the Gaussian generative assumption, and (as
long as the KL divergence between A and X can be efficiently computed) there is no limit on the
kind of distribution that can be used. Throughout our experiments, we assumed that the distributions
A and 2?1 belong to the same family, but different families can be used in different layers. In the
supplementary material, we show how F, is equivalent to / when assuming a Gaussian generative
model. We also analyze the learning dynamics defined by applying the expectation-maximization
(EM) algorithm to Eq. (9).

*We use the notation X; (1) to emphasize the dependency of the distribution X, exclusively on the parame-

ters 1. For example, X; could be a Gaussian distribution, and 1 represents its mean and variance.



4 Experiments

We compare the results of different models trained with BP and PC on various tasks. The main goal
is to make PC competitive with BP for complex deep neural architectures. Only recently, PC has
begun to be applied to train neural networks for classification tasks [Whittington and Bogacz, 2017],
with similar performance but a greater versatility compared to BP [Salvatori et al., 2022a]. We show
that our extended probabilistic formulation can be applied to more complex architectures. We refer to
each specific version of PC by specifying its energy function.

MNIST classification
100 - -0.10 100- -3.0

— BP

95 - 95- PCr
g — PCr,,
g 90 - -0.05 90 -1.5
< Q5 - \\\::\\ 85 - —— Accuracy
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80 - -000 80- T -0.0
10 20 10 20

Figure 3: Classification performance of the three models on the MNIST and CIFAR10 datasets.
PCr,, noticeably outperforms PCr, reaching performances comparable with BP. This is true,
especially for M5, which reflects the most commonly used architecture among the three. The x-axis
represents the number of epochs.

4.1 Classification

As a proof-of-concept experiment, we have trained different models on classification tasks for both
the MNIST [Deng, 2012] and CIFAR10 [Krizhevsky et al.] datasets. We evaluated the final accuracy
of the model when training with BP compared to PC, as well as the training efficiency, measured as
improvements over epochs.

Setup: We defined three variations of a fully connected network with L = 3 hidden layers and
width w = 512:

* M uses tanh as activation function for the hidden and final layers. The mean squared error
(MSE) is the loss function used for BP and to compute the test loss of both PC and BP.

* M uses the softmax activation function for the final layer. Consequently, the loss function
used is cross-entropy (CE). This architecture corresponds to the one normally used in
classification tasks.

* Ms is a copy of Mo where the activation function of the second hidden layer is replaced
with softmax. CE is again the loss function used.

Note that the experiments performed with a softmax activation in a hidden layer are merely presented
with the goal of empirically validating the effectiveness of our theory, as networks of this kind have
never been used in practical tasks. Effectively, M represents the only widely used architecture. We
used a weight learning rate of 39 = 0.0001 for both PC and BP. For PC, we used 7' = 32 ¢-steps.
We assumed identity covariance matrices for the Gaussian distributions of the generative model.
Consequently, the energies F and F 1, differ only for the function used for a softmax-activated layer.
For Fk, that is

Etee = Dic[X(SD X (1])] = Zizll(@,i) '1n(%

where X} and )/(\'l are discrete distributions. Therefore, in the model M;, PCr,., and PCr are
algorithmically equivalent (see the supplementary material). More details about the hyperparameters
that we used are given in the supplementary material.

) (10)
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Figure 4: In PC'% (left), 3J; is stored as an optionally trainable parameter and does not depend on the
input d. If we were to allow it, and use X, to generate ;11 (red dashed arrows), we would violate
the PC locality assumption, as the error coming from the decoder would flow through ¥, back to the
encoder. Using PC'r,., (right), instead, it is possible to have such a dependency by modelling both

Zb and ib.
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Figure 5: Comparison of BP and PC in training a VAE on the MNIST dataset. The graph on the
left shows the test loss over the epochs. The solid and dotted lines represent two different models.
Overall PC and BP perform similarly.

Results: The results are plotted in Fig. 3. They show that neural networks trained with BP and
PCr,., perform similarly in both M; and M. The original formulation of PC, on the other hand,
performs much worse in all the considered experiments. The first column of plots shows that PC
and BP perform similarly when trained with fully Gaussian assumptions. In the experiment on Mo,
the standard definition of PC is performing well, even though it is significantly outperformed by
BP and PCr, , . When training on M3, however, the performances are poor. This again does not
happen when training using PC'r,., , which obtains performances comparable to those of BP. Overall,
this clearly indicates that PC'r is not suitable to train neural networks that do not rely uniquely on
Gaussian generative models. Instead, we experienced a solid improvement when using the Fx,
energy function. It is enough to reach the same accuracy-over-epochs ratio achieved by BP when
using M. Under more uncommon architectural choices, such as M3, the ratio is slightly worse in
favour of BP, but still decisively better than PC'r. The difference is particularly noticeable in the first
epochs. We believe that it may be due to a not ideal initialization of the weights for the PC network,
which is currently using the default initialization designed for BP networks [He et al., 2015]. Further
research in this direction could improve the training performance.

4.2 Variational Autoencoders

Variational autoencoders (VAEs) [Kingma and Welling, 2014] are models that rely on distributions
different from Gaussians with fixed covariance matrix. This follows, as the bottleneck layer b of a VAE
is required to model the distributions of both the mean and the variance of the latent posterior given a
sample d, p(up, Xp|d). However, both PCx and PC = are not suitable for that, as they require each
layer to represent exclusively the Gaussian mean u;. The optionally learnable parameters 3; do not
depend on the particular input sample d. Our proposed method, however, overcomes this limitation by
learning the full posterior distribution Ny (uy, 3). This is done by considering the bottleneck layer b
as storing the distribution parameters ¢ = (up, 3p). In this case, uP = (Uy, Sp) = fo(dL 1, 0p)-
We then employ the reparametrization trick [Kingma and Welling, 2014] by sampling some Gaussian
noise € ~ N(0, 1) to compute pp 11 = foy1(up + €Diag(2;/2), 0p41), which is fed to the next layer.
More details are shown in Figure 4.
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Figure 6: The analysis of the latent space does not highlight any significant differences between PC
and BP. UMAP was the algorithm used to obtain the 2D projection [Mclnnes et al., 2018]. Sampling
from the posterior (of the PC-trained model) does not show any anomalies as well.

Setup: We trained multiple VAEs on the MNIST dataset, comparing the PC and BP training
algorithms. Our architectures employed fully connected layers, with Hardtanh activation function
for the hidden layers and sigmoid for the output layer. The bottleneck layer has a total of w, =
32 (= 16 + 16) latent units. When training with PC, we assumed Gaussian distributions with identity
covariance matrix for all but the bottleneck layer, for which we model both the mean w; and the
diagonal covariance matrix ¥, as explained above. We used T" = 32, but for each data point we
sampled a single € at £ = 0. We use the same weight learning rate 8y = 0.0001 for both BP and PC.
Further details about hyperparameters and implementation details are described in the supplementary
material.

Results: We observed similar results on a wide range of hyperparameters. In Fig. 5, we report the
performance of both training methods on two different architectures. The final test loss is overall
similar, with neither method being decisively better than the other. The learning curves are also
comparable, despite PC being generally faster than BP in the first training epochs. By reconstructing
the maximum likelihood estimation of some data points, we can observe how all models produce very
similar images. We also performed an analysis of the latent space produced by the encoders and did
not detect any significant difference between the two training modes. Figure 6 reports the results. We
sampled the latent posterior distribution by encoding a data point d and decoding multiple data points
d’ obtained by sampling from Ny(ju, Xp). To perform a latent traversal, we encoded two different
data points, d; and d9, and reconstructed the maximum likelihood estimation of the vectors obtained
by interpolating the two latent embeddings.

4.3 Transformer Language Models

To show the performance of our method on more complex tasks, we have trained transformer
conditional language models based on the BERT architecture [Devlin et al., 2018]. The conditional
language model objective is enforced by modifying the self-attention mechanism with a triangular
mask so that no position can attend to any later position in the sequence.

Setup: We use the 1B Word Benchmark dataset [Chelba et al., 2013], from which we randomly
sample 200,000 training and 10,000 dev instances. We choose to restrict the model’s input length
to 32 input tokens from a vocabulary of 8001 tokens generated by the BPE-based SentencePiece
tokenizer [Kudo and Richardson, 2018]. We use one transformer block with one head and a hidden
size of 128 throughout the model. For the PC networks, we assume Gaussian distributions with
identity covariance matrix for all but the layers that employ a softmax activation function (i.e., the
attention layers [Vaswani et al., 2017]). In the latter case, we assume a categorical distribution for the
generative model. Consequently, the energy function for those layers is the one defined in Eq. (10).
More implementation details and the hyperparameters are given in the supplementary material.

Results: For each model, we compare the three training methods BP, PC'r, and PCr,., . We found
it beneficial to run multiple weight updates for a single training iteration when using PCr, , , but
not for PC'z, where it led to instability. We run a hyperparameter search for each training method,
select the best models, compare their training curves, and their test performance, and show qualitative
examples of model predictions. Figure 7 shows that PC'r, , significantly outperforms PCr in
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Figure 7: Left: Comparison of language models trained with BP and PC, as shown by dev perplexity.
Right: Test perplexity achieved by the various training methods for transformer language models.
Average (£0 ) of 10 seeds.

terms of test perplexity, while having a more stable training curve. We believe that this is because
of the softmax in both the attention mechanism and the output layer of the transformer model. The
performance of PCx, , is close to that of BP and both training curves look stable. In practical
terms, the language models trained by BP and PCr, , do not differ significantly on the test set.
In some cases, the predictions given by PCr,, are closer to the ground truth, e.g., for “Yet the
bank and its executives are still ready to support specific Democratic [candidates]”, PC'r,., predicts
“leaders” and “candidates” as top-2 choices. All models show failure in commonsense reasoning,
e.g., for “I've been dreaming about this since I was a [child]” they fail to assign “child” with > 1%
probability, which shows the limitations of small language models. More examples are given in the
supplementary material.

5 Memory Consumption and Computational Complexity

Memory consumption: PC, in contrast to BP, stores y and ¢ as different variables, which results in
some memory overhead. On the contrary, the number of weights and training parameters used does
not change between BP and PC. Therefore, if M pp is the memory consumption of training a model
using BP, we have that, in general, Mpc < 2 - Mpp. Actual values depend on the architecture and
hyperparameters chosen.

Computational complexity: the complexity of a single forward pass in terms of the number of
operations is comparable between PC and BP. The same can be said for the backward pass. However,
in accordance with the EM algorithm, it is necessary to perform multiple updates on the neurons
x before updating the network weights 0. This results in a multiplicative factor that can impact
performance compared to BP. Nonetheless, from our experiments, we noticed that even a value as
low as T' = 4 or T' = 2, where T is the number of updates of the neurons before performing an
update of the parameters, is sufficient given the right hyperparameters. In fact, the experiments on the
transformer reached the best perplexity with exactly T' = 5. Furthermore, we can take advantage
of the features of PC. One of its major strengths is that each layer computation (both in the forward
and backward pass) is local and, therefore, can be executed in parallel, removing one of the main
bottlenecks of BP when training deep networks (i.e., the computations induced by each layer have to
be executed sequentially). Thus, we expect PC to scale well on large architectures and to bring huge
improvements on neuromorphic hardware. Finally, it has already been demonstrated that the speed of
energy-based networks can be greatly increased by implementing the relaxation on analog hardware
[Foroushani et al., 2020, Hertz et al., 1997], potentially resulting in energy-based networks being
faster than BP. Thus, one scientific indication of this work is that the “analog-hardware-friendly”
PC can have a reasonable performance on transformers, which opens the door to designing fast
hardware-implemented transformers.

6 Related Work

In the last years, an active research direction that lies at the intersection of machine learning and
cognitive science focuses on finding training algorithms for deep neural networks that have a degree
of biological plausibility while obtaining good results on machine learning benchmarks. The most



popular ones are PC [Rao and Ballard, 1999, Whittington and Bogacz, 2017], equilibrium propagation
[Scellier and Bengio, 2017, Scellier et al., 2018, Scellier and Bengio, 2019], and target propagation
[Lee et al., 2015, Meulemans et al., 2020, Ernoult et al., 2022]. These methods share multiple
similarities, both theoretically and in terms of performance. The first two methods, PC and equilibrium
propagation, are able to approximate the weight update of BP when provided with a label that is
close in distance to the neural activities of the last layer [Whittington and Bogacz, 2017, Scellier
and Bengio, 2019]. Target propagation fails to have this property, but instead has been shown to
approximate Gauss-Newton optimization [Meulemans et al., 2020]. However, PC possesses many
unique properties that these methods lack. PC networks can in fact be used to produce efficient
associative memory models [Salvatori et al., 2021], have an update mechanism that produces better
learning properties than BP under specific conditions [Song et al., 2022], and allow training on
graphs of any topology [Salvatori et al., 2022a]. Furthermore, they have achieved good results in
classification [Han et al., 2018], generation [Ororbia and Kifer, 2020], and reinforcement learning
Ororbia and Mali [2022a,b]. For a recent survey on these aspects, see [Millidge et al., 2022]. To
conclude, we are not aware of any neuroscience-inspired learning method before this work that is
able to generalize to complex tasks such as language modeling.

Progress in this direction is promising, as one of the main limitations of modern architectures is
that they are extremely computationally expensive to be trained, with large-scale models sometimes
requiring hundreds of GPUs for several weeks [Brown et al., 2020]. On the other hand, significant
breakthroughs on neuromorphic and analog hardware have recently been achieved [Strukov et al.,
2008, Sebastian et al., 2020], which can exploit the aforementioned properties of neuroscience-
inspired learning methods, as shown in [Kendall et al., 2020], where the authors simulated the training
of a multilayer network on an analog chip in an end-to-end fashion.

There has been a lot of research done towards bridging the gap in performance between state-of-the-art
deep learning methods and neuroscience-inspired learning. Both fields can benefit from each other
by drawing inspiration from each other’s techniques. In neuroscience, understanding how the brain
learns to associate different areas (e.g., visual and motor cortices) to successfully drive behaviour is
of fundamental importance [Petreanu et al., 2012, Manita et al., 2015, Makino and Komiyama, 2015,
Poort et al., 2015, Pakan et al., 2016, Zmarz and Keller, 2016, Attinger et al., 2017]. However, how
to correctly modify synapses to achieve this has puzzled neuroscientists for decades. This is often
referred to as the synaptic credit assignment problem [Rumelhart et al., 1986, Sutton and Barto, 1998,
Roelfsema and van Ooyen, 2005, Bengio, 2014, Lee et al., 2015, Roelfsema and Holtmaat, 2018], for
which the BP algorithm provides an elegant solution.

7 Conclusion

The main motivation behind this work was to make PC competitive with BP for complex deep neural
architectures. The tasks in this work are among the most popular and important in the field: image
generation and language modelling. In the first case, we trained a variational autoencoder. This model
is fully Gaussian, but the bottleneck requires explicitly computable variances. While variations of
PC with trainable variances are already defined in the literature [Millidge et al., 2021], they do not
allow dependencies between the variance and the input. Rather, they act as a regulariser within the
network. Consequently, they have not been used as a sampling scheme in a specific layer of a PC
network. In the second case, we trained a transformer model, intractable before by PC networks,
due to the presence of attention (and hence softmax), and showed results comparable to those of BP.
Future work includes applying this method to other complex deep learning architectures, with the
far-reaching goal of scaling PC to large-scale machine learning tasks and hence further closing the
gap with BP-based learning.
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