Published as a conference paper at ICLR 2025

MIXTURE OF ATTENTIONS
FOR SPECULATIVE DECODING

Matthieu Zimmer*, Milan Gritta* & Gerasimos Lampouras
Huawei Noah’s Ark Lab, firstname.lastnameRhuawei.com

Haitham Bou Ammar?
Huawei Noah’s Ark Lab, UCL Centre for Artificial Intelligence

Jun Wang!
UCL Centre for Artificial Intelligence

ABSTRACT

The growth in the number of parameters of Large Language Models (LLMs) has
led to a significant surge in computational requirements, making them challeng-
ing and costly to deploy. Speculative decoding (SD) leverages smaller models
to efficiently propose future tokens, which are then verified by the LLM in par-
allel. Small models that utilise activations from the LLM currently achieve the
fastest decoding speeds. However, we identify several limitations of SD models
including the lack of on-policyness during training and partial observability. To
address these shortcomings, we propose a more grounded architecture for small
models by introducing a Mixture of Attentions for SD. Our novel architecture can
be applied in two scenarios: a conventional single device deployment and a novel
client-server deployment where the small model is hosted on a consumer device
and the LLM on a server. In a single-device scenario, we demonstrate state-of-
the-art speedups improving EAGLE-2 by 9.5% and its acceptance length by 25%.
In a client-server setting, our experiments demonstrate: 1) state-of-the-art laten-
cies with minimal calls to the server for different network conditions, and 2) in
the event of a complete disconnection, our approach can maintain higher accuracy
compared to other SD methods and demonstrates advantages over API calls to
LLMs, which would otherwise be unable to continue the generation process.

1 INTRODUCTION

Auto-regressive inference with LLMs has become quite cost-prohibitive due to the increasing pa-
rameter count of recent transformer-based LLMs (Vaswani, [2017). Different types of (usually or-
thogonal) solutions have been proposed to address this challenge, e.g. Mixture of Experts (Jacobs
et al.l |1991), Flash Attention (Dao et al., [2022), Model Quantization and Distillation (Polino et al.
2018)), Linear/Sparse Self-Attention (Zhang et al., 2021), Tensor Parallelism (Shoeybi et al., [2019)
and others. In this work, we focus on a recent LLM acceleration technique called Speculative De-
coding, which leverages efficient models (smaller but less capable) to draft future tokens, which are
verified by the LLM (more capable but much less efficient) in parallel (Leviathan et al.l 2023).

The most recent state-of-the-art SD methods, like EAGLE (L1 et al.l [2024b) and MEDUSA (Cai
et al., [20244a)), leverage activations from the LLM. However, those methods have some architectural
limitations including partial observability and the lack of on-policyness. Partial observability occurs
when the small (draft) model lacks complete information about the state of the LLM, leading to
suboptimal predictions. The lack of on-policyness during training arises because the small model is
often trained under ideal conditions, assuming perfect inputs. This does not reflect the real-world
scenario where the small model generates some inputs. The longer we draft new tokens using only

“These authors contributed equally to this work
Corresponding authors: haitham.ammar @huawei.com, jun.wang@cs.ucl.ac.uk

Published as a conference paper at ICLR 2025

the small model, the bigger the distribution shift from the training setting. These limitations can
degrade the performance and reliability of speculative decoding.

To address these challenges, we propose a novel architecture for speculative decoding that enhances
the small model’s ability to accurately predict future tokens and aligns its training more closely with
the inference process. Our architecture introduces several key improvements, including Layer Self-
Attention (LSA) to mitigate partial observability, Cross-Attention (CA) to improve on-policyness
and training efficiency, and a flexible Target Layer Inference (TLI) mechanism to balance compu-
tational efficiency and prediction accuracy. We evaluate our approach in the standard single-device
setting where we demonstrate state-of-the-art speedups.

Furthermore, the SD paradigm is also ideal in the following scenario a) the model size is limited by
some external factor e.g. the computational capabilities of a client device, and b) we can assume
access to a larger model e.g. an LLM hosted on a server. Under this paradigm, the goal is to minimise
server-side inference as well as to maintain high accuracy in the event of a total disconnection.
This is an important consideration because it could pave a way for serving LLMs on edge devices,
enabling them to generate responses offline while leveraging the capabilities of the large model. To
this end, we extend our methodology to a client-server scenario. In this setting, we demonstrate
state-of-the-art latency and minimal server calls under various network conditions (4G, 5G). Our
method maintains a higher accuracy in the event of a disconnection, making it a preferred choice
over independent small models or API calls that would be unable to continue generation.

Contributions We introduce a Mixture of Attentions architecture for Speculative Decoding that
addresses current limitations such as partial observability as well as enabling efficient (more on-
policy) training while being auto-regressive. We reuse additional activations from the LLM in the
small model, enabling a trade-off between drafting speed and response quality. We conduct extensive
experiments to demonstrate the effectiveness of our approach. Compared to EAGLE-2, we show a
9.5% decoding speedup with a 25% higher acceptance rate in a single-device scenario and a 84%
speedup with a 53% higher acceptance rate in a client-server scenario. Finally, we propose a new
framework for LLM serving in speculative client-server settings and show its effectiveness.

2 BACKGROUND

We first present the background knowledge required for the remainder of the paper, i.e. the decoding
mechanisms of LLMs as well as the drafting + verification techniques that ensure correct generation.

2.1 LLM DECODING

Decoding refers to the process by which LLMs generate tokens in response to input queries. This
generation is typically done auto-regressively, where each new token y; is sampled from the LLM’s
distribution, conditioned on both the query and the preceding tokens y.;. We explore decoding from
the perspective of dynamic systems, providing a foundation for developing new decoding mecha-
nisms that combine large and small models (Kong et al.l 2024). The internal workings of LLMs
can be best understood from a dynamic system perspective, which evolves as tokens are generated.
Given a large model M 4r5c, We can describe the state transition model of vanilla decoding as:

h<ii1,0t11 = frage (R <y, token_embed(y;)), yip1 ~ Softmax(LM_head(0;41)), (D

where h<; represents the key and value tensors of every layer until the current time-step ¢, y; is
the most recent token and y;4; is the next token, which is sampled from a softmax distribution.
Furthermore, foken_embed is a lookup table, it assigns an embedding to a particular token of the
vocabulary V. LM _head is a projection from the embedding size to the vocabulary size |V|. Finally,
frarge(+) is the function aggregating all decoder layers of M. and o;1 is the activation of the
final decoder layer. With this, the state of the dynamic system is composed of (h<;, y;), the minimal
information needed to sample the next token from M srge.

2.2 SPECULATIVE DECODING

Some of the earliest work on speculative decoding was introduced by [Stern et al.| (2018)), later ex-
tended to non-greedy sampling (Leviathan et al., 2023). These methods are motivated by the pro-

Published as a conference paper at ICLR 2025

hibitive cost of auto-regressive generation with M. that could be alleviated by using a draft
model Mg, that can more efficiently generate tokens that do not require the full capability of
MLarge. These hypotheses, commonly referred to as drafts, can then be verified in parallel with
Miaree using rejection sampling (Leviathan et al.| 2023), i.e. discard all tokens after the first mis-
match. We follow the standard draft and verification cycle that iterates over the following two steps
until the “end-of-sequence” token or the maximum sequence length has been reached.

1. Mgsman generates new tokens 4441, - - - , Y44+ x Where K is the length of the draft sequence,
auto-regressively (Xia et al., |2023; |Li et al.| 2024b) or in parallel (Ankner et al.| [2024).
The number of tokens K is typically fixed, which was the standard approach until recently
when dynamic K was proposed (Nair et al.,|[2024; Mamou et al.,[2024; Huang et al.,|[2024)).

2. Verity K drafted tokens in a single forward pass with M. Verification uses ei-
ther greedy (exact) matching (Xia et al., 2023)), speculative sampling (Zhou et al., [2023;
Leviathan et al.l [2023)) or "approximate’ verification (Stern et al., | 2018)) which relaxes the
acceptance criteria but does not guarantee M 4rc’s output distribution. In all cases, after
the first rejection, all subsequent/future tokens are typically discarded.

When the drafting of y;41, -+, y++x 1s done auto-regressively, token by token, we refer to this
strategy as chain drafting. Several works (Cai et al., [2024b; |Li et al., [2024b) extended this method
to tree drafting for additional optimisation. In this case, multiple tokens ¥;,; can be proposed for
every future position ¢. Verification is performed with Tree Attention (Miao et al.l[2024) to efficiently
handle multiple branching paths proposed by tree drafting. Consequently, this leads to an increase
in acceptance lengths and reduces the number of calls to M 4 compared to chain drafting. For
small batch sizes, the LLM generation is memory-bound, this is where speculative decoding can
better leverage the spare compute especially with Tree Attention.

In this paper, we employ tree drafting from EAGLE-2 (Li et al.| [2024b)) to construct trees with a
variable structure. Starting from the root node, we expand the B most probable tokens from the
model Mgman (ye+1]-). Then, for a fixed depth D, we recursively perform the following steps:
for each existing branch, we compute the joint probability [, ., Msman(y:|y:—1,---) of their
B child tokens, leading to B? expansions as we have B branches, each with B children. From
the B? expansions, we select the top B branches based on their joint probabilities for the next
tree layer expansion. Upon reaching the maximum depth, we retain up to m tokens from the total
B + (D — 1)B? nodes, selecting those with the highest joint probability for verification.

2.3 ARCHITECTURE OF MgyaLL

Speculative decoding architectures broadly fall into two categories, independent and self-drafting.
Independent drafters are typically smaller versions of My from the same model family (Li et al.}
2024a; [Zhao et al., 2024} |[He et al.l 2023) while self-drafting methods leverage either a subset of
M arge and/or newly initialised parameters (Ankner et al., 2024} [Cai et al., [2024a).

Our contribution is built on EAGLE (Li et al.,|2024b)), a self-drafting architecture which has shown
the best results on the Spec-Bench (Xia et al., [2024)) leaderboard so far. The drafter reuses the
token_embed and LM _head parameters of M qrge @) It takes as input the ground-truth activations
of the last decoder layer of M 4, 01, - - - , 0; and the tokens of the sequence y1, - - - , ¥, to predict
the next activations 0y 1, which is passed to the LM _head to predict the next token distribution:
6141 = MESSLE (04, -+ | 04), token_embed(y,--- ,y1)), Gii1 ~ Softmax(LM_head(6y41))

The process is repeated by appending 6,11, 41 to the inputs to auto-regressively draft tokens ;2.

3 METHODOLOGY

3.1 MIXTURE OF ATTENTIONS

We begin by defining important properties of Mg,y followed by detailed architectural choices.

Published as a conference paper at ICLR 2025

3.1.1 PARTIAL OBSERVABILITY

In Markov Decision Processes (Kaelbling et al.| |[1998), partial observability is a common challenge
where the agent does not have enough information about the true underlying state to take optimal de-
cisions. This limitation can significantly degrade the agent’s performance. Several approaches have
been proposed to mitigate this, e.g., adding additional previous observations (Mnih et al.,[2015). In
drafting, it is important not to suffer from partial observability to draft future tokens more accurately.
We extend this notion in our context with the following:

Property 3.1 (Partial observability). Given a ground truth function F' : X — Z, a drafter function
f Y — Z and an observation function g : X —), such that for any x € X, f{g(x)) models F(x),
f suffers from partial observability if g is non-injective: I(x,x') € X2,z # 2/, g(x) = g(a').

We can observe that the EAGLE drafter suffers from partial observability when F' is frage, f is

MEASLE and 0y, ,0; = g(h<t, (y1, -+ ,y:)). In other words, 01, , 0, is only a partial ob-

servation of the true state (h<¢, ;) of the dynamic system (1), hindering the capacity of Msman to
predict the right tokens of M 4rge.

Layer Self-Attention Aiming to alleviate this, our new architecture takes as input the state of the
dynamic system (E]) However, h<, is a large tensor of shape (T, L, 2E},,) where T is the sequence
length, L the number of layers in M 4rgc, and Ey,, the embedding size of the key and values. There-
fore, we introduce Layer Self-Attention (LSA) followed by a mean aggregation operation to reduce
its dimension to (7, 2F},,) and extract the most relevant token information from every layer (Fig .
Self-attention is performed over the layer dimension and each token is treated independently in this
layer. During drafting, we have access to the past key values of all the layers, therefore, the attention
mask of LSA is bidirectional/full, see Figure[2] We only perform the LSA computations once at the
start of each drafting phase, see Appendix [A.3|for a detailed algorithm of the information flow.

he; from (T,L,2Bv) | Layer self- | (T,L,2Bw) —momee (T,2Bp)
Miarge Attention K,V
Cross- (T,E) L+1-N
Attention t+1
tokens Miarge self- Q
Y, Yt (T, V) embed_tokens (T, E) Attention (T, E)

Figure 1: A schematic overview of the mixture of attentions information flow. Layer Self-Attention
and mean aggregation are called only once per drafting cycle, i.e after each verification. New tokens
are drafted auto-regressively using Self-Attention, updating only the Cross-Attention layer query.

3.1.2 LACK OF ON-POLICYNESS

Discrepancies between training and testing scenarios arise because, during training, transformer
models are typically conditioned on ground-truth sequences, assuming that all previous inputs are
correct. If this assumption seems unproblematic for the standard training of transformers, assuming
it for training Mg,y in speculative-decoding scenarios is much more delicate. It is known that some
of the previous inputs are generated directly from Mgy, therefore much less accurate. The more
tokens we predict with Mg, only, the more error accumulation we can expect. To alleviate this,
EAGLE adds uniform noise into its observations (01, - - - , 0) at training time, but this is not ideal.

In order to train Mg, optimally, we need to ensure that its training and inference conditions
are closely matched. Specifically, this means training Mgy as if some of the previous tokens
were generated by itself. Additionally, we should account for situations where the activations from
Marge are not available, i.e. during the drafting cycle. This approach is called on-policy training.
In on-policy training, the data used for training is generated by the same policy (or model) that is
currently being trained. For example, when we train a transformer using next-token prediction on
a static dataset, this is considered off-policy because the data doesn’t change based on the model’s
decisions. However, if we mix this static dataset with data generated by the model itself during
training, we move towards a more on-policy approach. Similarly, if the model won’t have access to
certain information, e.g. the activations of My, during generation, then always training Mgmai
with that information would also be considered off-policy.

Published as a conference paper at ICLR 2025

However, on-policy training is very costly because we would need to generate from the model during
training. To formalise this limitation, we introduce the concept of T-step boundedness:

Property 3.2 (T-step bounded). A drafter f is said to be T-step bounded if, in a single forward pass,
it can predict up to T future tokens without additional input from M gyge, i.e., f(y1,y2,..., Y1) =

(D41, U2y - - UesT)-

This property is important to efficiently train the drafter. For instance, the EAGLE drafter is 1-step
bounded. If one wanted to perform prediction at time ¢ + 2, two forward passes would be required
due to the auto-regressive layer that requires the previous 6,1 as input, which would be very costly
to train on-policy. By contrast, a drafter that is 7T-step bounded with 7" > 1 can predict multiple
future tokens within a single forward pass.

Cross-Attention In order to make our drafter partly 7-step bounded with 7" > 1, the main com-
ponent of our architecture is a Cross-Attention (CA) layer where the query comes from the tokens
and the key and values come from M, activations. More precisely, the key and values come
from the output of LSA. Having input queries for time ¢ + 1 to £ + K coming into the CA layer and
keys-values from My ae only up to time ¢ effectively means the CA layer is K-step bounded. This
allows us to train the CA layer more on-policy efficiently because it simulates what would happen
during generation: we only have access to the activations from M 4. up to time ¢ but still have to
make prediction for up to time ¢ + K. Note that it is still not fully on-policy yet as the input queries
for time ¢t 4+ 1 to t + K are not assumed to be generated from Mgy,y. During training, multiple
K are sampled to simulate different lengths of accepted drafts by changing the CA layer mask. For
instance, in Figure[2] we have K = 4 followed by K = 3. On the contrary, during generation, we do
not apply masking as we want to let Mgp,y; attend all the currently available activations of M are.

Self-Attention In order to motivate the introduction of a self-attention (SA) layer, we start by
observing that the cross-attention layer is input-independent (3.3) w.r.t. the input queries, i.e one
input query does not influence the results of another query.

Property 3.3 (Input-independence). A layer f is input-independent if for any choice of n inputs
T = (xla T ,Z‘n), we have f(w) = (f(flfo), e 7f($n))

Therefore, if the queries of the CA layer came directly from the embedded tokens 1, - - - , ¥, Msman
would not have been aware of previously drafted tokens. It would only know the previous token
treated by M. and the most recent .. But, in order to make accurate predictions, Mgman needs
to be aware of the previously drafted tokens. Hence, we introduce a causal self-attention layer on
the queries to mitigate this problem, shown in Figure [l|and summarised in Table

Table 1: Comparison of the properties of our new architecture.

Msman Autoregressive T-step bounded More on-policy Observability
Ours SA layer variable T" for CA layer CA & LSA layers LSA-enhanced
EAGLE-2 v 1 X partial
Medusa X fixed T’ X partial

3.2 TARGET LAYER INFERENCE

Previous work assumed that the final hidden layer before LM_head was the most appropriate tar-
get (activations) Mg, should predict. However, we challenge that assumption by hypothesising
that targeting a deeper M uc layer may be more advantageous in terms of draft quality. We thus
decompose the dynamic system (1)) layer-by-layer by introducing [as the (superscript) layer index:

O%+1 = tOken*embEd(yt)a hl§t+1a Oii% = fciecoder(hlgtv Oi—&—l)a
Yip1 ~ Softmax(LMJzead(othll)) l=1,...,L

where f!, 4 is the decoder layer of M, at layer I. The state of this new dynamic system
is composed of (o! 115 héi i1 h%) We observe that to perfectly predict otL:ll, it is sufficient to

Published as a conference paper at ICLR 2025

T
model layers prompt response
Layer Self-Attention Self-Attention Cross-Attention

calls Mparge calls Mparge

Figure 2: Layer Self-Attention: M . activations are transposed so that attention is computed
over the layer dimension in order to aggregate token activations across layers. Self-Attention: The
first 3 tokens represent the prompt, speculative decoding starts at token 4. Cross-Attention: Tokens
4 to 7 only attend to the prompt while tokens 8 to 10 attend to the first 7 tokens once My Was
called for the second time allowing Mg,y to use the activations from the newly verified tokens.

perfectly predict o, and reuse the fiz. .. Of M. and the already computed KV cache hZ, of

the layer L at time t. The same recursive reasoning can be made to predict otLJrl from otLJr_ll, etc.
We assume (and later show) that predicting o! 41 is always easier than predicting o " q for] < k due
to o} 41 undergoing fewer layer transformations. Hence, we introduce a new hyperparameter TLI to
refer to the target layer o1~ that the Mg, should predict. When TLI > 0, the TLI last layers
of Mparge (kept frozen during training) and their KV cache are used to output o"*!. Henceforth,
we use notation (TLI = [) where [is an integer, to denote the target layer for inference. We can now
provide the equation describing our MS", for a given TLI assuming ¢ was the last time we verified
with M ape:

~L+1—TLI O ~ N
OTII = MSIlIlll;lsll(hgh tOken'embed<y1ﬂ Y Y, 7yT>)7

~ N ~ R
h'lT+1’ Oij_-fll = fciecoder((hlgw hl>t,§T)) OlT-'f-l)) l="L- TLL) Lv

141 ~ Softmax(LM_head(6517)).

3.3 Loss

Let Mgman be parameterised by €, we use a similar training loss as EAGLE, i.e. a forward-KL loss,
with a Smooth-L1 loss £ between the predicted activations of the Mg 67T~ and the target
one obtained from My yrge:

arg mein)\OKL[MLarge”MSmall(e)] +)\1[, (6L+1_TLI, OL+1_TLI) . (2)

To keep the training lightweight, we do not generate from My yee Or Mgy during training. This
loss is only defined over the response part of the prompt of a fixed training dataset.

4 EXPERIMENTS

In all experiments, we use LLama3-8B-Instruct (Dubey et a1.|, 2024) as My arge. We train all Mgpan
on the Ultrachat dataset without a system prompt and we do not assume that
we know the system prompt at test time as it was observed that the training dataset can have a
significant impact on the final performance 2024). Mgman is trained with the standard
Llama3-Instruct chat template. Ultrachat is composed of around 200k prompts with around 240M
tokens using the LLama3 tokenizer. We use multiple test datasets for generation including various
tasks such as reasoning, code generation, multi-turn conversation and summarisation. We notably
relied on the SpecBench benchmark (Xia et al.,[2024) and the following datasets: MT-Bench
et al., 2023), HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021), Alpaca
2023), CNN/Daily Mail (Nallapati et al., 2016) and Natural Questions (Kwiatkowski et al., 2019).
We describe additional hyperparameters and experimental settings in Appendix [A.]]

We compare our method to EAGLE-2 and an independent distilled Mg,y of similar size (denoted
“Independent”). In order to train the EAGLE model, we assume TLI = 0 in the distillation loss @)

Published as a conference paper at ICLR 2025

The independent Mgman leverages the token_embed and LM_head parameters of My ae With only
the decoder layers trained using an identical distillation loss and A\; = 0. We do not compare
to Medusa as EAGLE has consistently demonstrated superior speedups on various benchmarks (Xia
et al.| 2024). We also compare the performance of the official EAGLE-2 weights shared by Li et al.
(2024b). We refer to this as "EAGLE-2 off.”. Note that this model was trained on different data
and with a fixed system prompt. We take care to match the number of model parameters, i.e. ”Ours
(N=0)", "EAGLE-2", "EAGLE-2 off.”, ”Independent 1.3B” and "Glide” all have 1.3B parameters
(250M trainable and 1.05B frozen, for the LM head” and “’token embed” layers). We chose 250M
trainable parameters to be directly comparable to EAGLE-2 and their official checkpoint. For tree
decoding, we use a max breadth of 8, a depth of 6 and 62 max tokens to verify. We use floatl6
except for the attention softmax weights that are upscaled to float32.

We use standard metrics: foken-per-second and speedup ratios to measure walltime improvements as
well as hardware-independent metrics: average acceptance length T (the average number of Mgnan
tokens accepted by My are) and the number of calls to My age.

4.1 SINGLE DEVICE

We now present the main single-device experiments using the SpecBench Xia et al.| (2024) bench-
mark without a system-prompt to ensure a fair comparison between models.

Table 2: Speedup ratio and acceptance length 7 on SpecBench using prompts from MT-Bench,
HumanEval, GSMS8K, Alpaca, Sum and QA datasets. Each model is fine-tuned for 30 epochs and
uses EAGLE-2 tree decoding.

Total Trainable] MT-bench HumanEval = GSM8K Alpaca CNN/DM Natural Ques. Mean
Msman size size |Speedup 7 Speedup 7 Speedup 7 Speedup 7 Speedup T Speedup T |Speedup T
Ours (TLI=3) 1.8B 250M 1.74 4.65 202 541 174 4.65 181 480 189 5.04 159 423 1.79 479
Ours (TLI=1) 1.55B 250M 1.83 419 229 530 1.83 419 202 4.65 204 474 171 394 195 450
Ours (TLI=0) 1.3B 250M 1.80 3.86 228 498 1.80 3.86 2.03 436 210 455 172 3.73] 195 422

EAGLE-2 1.3B 250M 1.77 355 195 392 1.69 336 1.89 377 184 3.69 166 332 178 3.60
EAGLE-2 off. 1.3B 250M 1.75 352 206 4.15 180 3.60 170 337 1.60 3.19 138 275 1.71 3.43
Independent 1.7B 650M 1.50 3.63 191 4.64 126 301 157 381 156 378 1.72 394 158 3.80
Independent 1.3B 250M 123 350 150 436 095 270 133 379 128 359 1.10 3.13] 123 3.51
Glide 1.3B 250M 1.69 3.62 206 443 154 327 2 427 16 337 159 341 174 372

Looking at Table |2} we can see that our Mixture of Attentions for SD achieves SOTA speedups
when TLI = 1 and TLI = 0. Compared to EAGLE-2, we are on average 9.5% faster in terms of
tokens-per-second generated. We also increase the acceptance length by 25% when N = 1. More
single device experiments e.g. on the full HumanEval dataset are shown in Appendix [A.4]

4.2 CLIENT-SERVER

In this study, we investigate how self-drafting with our method performs in a client-server scenario.
To do so, we place Mgpa on a client device and host M .. 0n a server (see Appendix for an
illustration). The server is performing verification and sends the relevant M 4 activations to the
client, which in turn is proposing new tokens. The server has 3 times more floatl6 tflops than the
client. The devices are located in two different cities, separated by ~300 km. The ping between the
devices is around 9 ms and the bandwidth ~50 Mbits/sec. In order to simulate a realistic client-server
scenario, we are using 5G and 4G network profiles. In 4G, we assume a maximum of 20 Mbits/sec
with a normally distributed delay of 21 ms + 19 ms and a 0.1% chance of dropping packets. In 5G,
we assume a normally distributed delay of 10 ms + 10 ms with a 0.1% chance of dropping packets.
To do so, we rely on the Linux traffic control subsystem.

In this scenario, the token-per-second performance also depends on the size of the messages. To this
end, we analyse the length of the messages sent between the client and the server (see Table[7). There
is a clear distinction between self-drafting methods that need to send/receive activation tensors and
independent methods that only exchange text (e.g. token ids). Therefore, we shall analyse whether
the improvement in drafting quality can offset the increase in message lengths. On the client, we
encode each node in the draft tree using 3 bytes for the token id and 1 byte for its position in the
tree. The server answers with the accepted tokens encoded using 3 bytes each plus the associated

Published as a conference paper at ICLR 2025

activations, if required. For Llama3-8B-Instruct and N < 1, our architecture’s payload is less than
or equal to EAGLE message lengths. In order to further reduce message sizes, we quantise the F/
and FE,, tensors to 8 bits. For both EAGLE and Mixture of Attentions, the initial message sent by
the server (before the first token is drafted) is typically the biggest as it represents the activations of
the entire prompt. Therefore, we additionally gzip-compress this message after quantisation.

Table 3: Performance on HumanEval with EAGLE-2 tree decoding under 5G and 4G profiles.

Mesman Total size Trainable size Tokens per second T Acceptance length T Calls My g |
5G 4G
Ours (TLI=3) 1.8B 250M 25.0 14.6 4.99 20.8
Ours (TLI=1) 1.55B 250M 30.6 20.3 4.68 22.5
Ours (TLI=0) 1.3B 250M 34.1 25.1 4.30 24.1
EAGLE-2 1.3B 250M 24.3 13.6 2.81 36.4
EAGLE-2 off. 1.3B 250M 28.6 15.0 3.51 29.5
Independent 1.7B 650M 28.5 23.7 3.73 27.1
Independent 1.3B 250M 18.3 16.1 3.16 324

In Table 3] we can observe that "Ours (TLI=0)" achieves the fastest decoding speeds. Interestingly,
it is even faster than independent small models that do not exchange any activation tensors. As
expected, our Mixture of Attentions is not as fast as in the single device setting, but it can recover
the speed of vanilla decoding in a single device setup (33 tokens-per-second, see Appendix [A.4).

However, for this setting to be viable, just recovering the speed of vanilla decoding is not sufficient
as it does not provide an advantage over an API call to My 4. Therefore, we show that our model
can continue to generate the response by simulating a complete disconnection from the server.

Table 4: The success rate (pass@1, greedy decoding) on HumanEval in the event of an interrupted
connection between the client and the server. EAGLE-2 tree decoding is used.

A disconnection occurs after B new tokens.

Msman Total size Trainable size B =1 B=10 B=25 B=50 B=wx
Ours (TLI=3) 1.8B 250M 248 % 1118 % 18.01 % 31.67 % 459 %
Ours (TLI=1) 1.55B 250M 310% 10.55% 2111 % 3043 % 459 %
Ours (TLI=0) 1.3B 250M 248 % 9.31 % 192% 2981 % 459 %
EAGLE-2 1.3B 250M 0% 807% 16.77% 2732% 459 %
EAGLE-2 off. 1.3B 250M 1.24% 683% 18.01 % 2857 % 459 %
Independent 1.7B 650M 0% 6.83% 18.63% 2981 % 459%
Independent 1.3B 250M 0% 621 % 18.01% 2795% 459 %
Generation stops after B new tokens.
Without local model (lower bound) 0% 559% 16.77% 27.32% 459 %

In Table] we can see that indeed, if a disconnection occurs, unlike API calls to M e, We can
continue to generate the response right on the device, i.e. complete additional correct solutions to
competitive programming problems in HumanEval. Therefore, with an acceptable speed and the
possibility to generate useful responses after a disconnection, we prove the viability of our proposed
client-server setting, paving the way for a new framework for serving LLMs with small devices.

4.3 ABLATION STUDY

We now present important ablation results for different components of our Mixture of Attentions
architecture. Since multiple models were required to be fine-tuned for this study, we have limited
each run to 10 epochs. For this ablation, we introduce the ”Ours (TLI=/, -LSA)” variant that does not
rely on LSA and takes as input o1, - - - , 0; as the keys and values of the CA layer. We also include
two more EAGLE baselines, one with additional trainable parameters "EAGLE (more params)” and
another with additional decoder layers "EAGLE (more layers)” but an equal number of trainable

Published as a conference paper at ICLR 2025

parameters. This is to ensure that the benefit of our architecture does not come from simply adding
decoder layers or parameters. In this experiment, we use the HumanEval dataset with strict stopping
criteria, exiting decoding as soon as the model no longer generates source code.

Table 5: An ablation study of our proposed architecture, tested on HumanEval. Each model is
trained on ~2.4B tokens. Chain (not tree) drafting with maximum 4 tokens is used for this study.
The averages are computed over around 8500 drafting-verification cycles.

Msman Total size Trainable size Tokens per second Acceptance length (7)
Ours (TLI=3) 1.8B 250M 39 2.54
Ours (TLI=1) 1.55B 250M 39 2.25
Ours (TLI=0) 1.3B 250M 40 2.14
Ours (TLI=1, -LSA) 1.55B 250M 21 1.28
Ours (TLI=1, -LSA, o4, - - - 0; inputs) 1.55B 250M 36 2.04
Ours (TLI=0, -LSA, o4, - - - 0; inputs) 1.3B 250M 38 1.93
EAGLE 1.3B 250M 30 1.45
EAGLE (more params) 1.45B 400M 29 1.28
EAGLE (more layers) 1.3B 250M 27 1.01

Does the on-policyness (brought with the CA layer) and the 7-step bounded property have
a positive impact on the quality of the drafts? In Table [5} we compare EAGLE with “Ours
(TLI=0, -LSA)” for an answer to this question. We can see that these components provide a major
improvement of 26% in tokens-per-second as well as improved acceptance length of 33%.

How does partial observability influence the drafter acceptance rate? In Table[5] we can com-
pare "Ours (TLI=0, -LSA)” to ”Ours (TLI=0)" as well as ”Ours (TLI=1, -LSA)” to "Ours (TLI=1)”
and report that the tokens-per-second performance improves by 6% by introducing LSA, decreasing
partial observability. Its impact is less crucial than the on-policyness brought by the CA layer.

Does increasing TLI increase the acceptance rate? Finally, by looking at the variation of TLI in
Tables 2]3]and 5] increasing TLI also increases the acceptance length, as we hypothesised. However,
this does not always have a positive impact on the tokens-per-second rate as it also increases the
computational time of drafting. In the event of a complete disconnection in a client-server setting,
however, a higher TLI will improve the quality of responses, which is something to consider when
deploying Mixture of Attentions for SD on mobile devices.

5 RELATED WORK

Medusa (Cai et al.,[20244)) is one of the earliest works leveraging the activations of M ur. as inputs
to Msman for the purpose of SD. Thanks to their work, speculative decoding can be applied to any
LLM by distilling an Mgpay. It generates K future tokens in parallel by training K new LM _heads
where each head predicts a token at position k& € K (Gloeckle et al.,[2024). It was later extended by
Kim et al|(2025) by refining the block drafts using task-independent n-gram and neural language
models as lightweight rescorers. EAGLE (Li et al. 2024c)) and Hydra (Ankner et al.| [2024) are
auto-regressive extensions of Medusa. They observe that non-auto-regressive generation limits the
acceptance length as Mgp,y is not aware of previous tokens. We do not compare to Medusa or
Hydra as EAGLE is ranked higher on the SpecBench leaderboard.

Tandem Transformers (Nair et al., 2024)) propose an effective integration of My arec and Mgpai by
letting Mgman attend to the down-projected hidden states of M 4e. These rich contextualised rep-
resentations enable Mg,y to draft hypotheses with a higher acceptance rate as the two models are
aligned on shared hidden states. We were not able to compare with them because of the lack of open-
source implementation, the use of closed-source LLMs and an undisclosed amount of data/compute
to reproduce the work. Moreover, tandem transformers appear to have a high communication over-
head between big and small models, making it unrealistic for a client/server setting.

Orthogonal to our work, researchers have recently proposed training-free SD methods. Lookahead
Decoding (Fu et all, [2024) generates new tokens with a single M .. using Jacobi iterations, ex-
tended by CLLM [Kou et al.| (2024) and Ouroborous (Zhao et al.l |2024)). We evaluated the latter in

Published as a conference paper at ICLR 2025

our settings, however, it was shown to be less efficient than the EAGLE-2 tree decoding strategy, see
Appendix For additional related and orthogonal work in the extended SD landscape, we refer
the reader to|Xia et al.[(2024)) for a detailed and highly informative speculative decoding survey.

Du et al|(2024) previously proposed to leverage the KV-cache of some layers of Myaye. They
do not theoretically justify why using the KV-cache instead of the output of each layer, nor how
to exactly choose which layer to include as input of Mgy However, with our dynamical system
point of view, we showed that the KV-cache of all the layers is part of the state. The introduction
of LSA allows to exploit it in its whole with a limited number of layers, whereas |Du et al.| (2024)
would need to have the same number of layers in Mg and M to fully capture it, resulting in
a slow drafting speed.

Although we focused on improving the current SOTA method (EAGLE-2), our observations (partial
observability, on-policyness and target inference layer) are true for many self-drafting methods, for
instance, it could also be applied to Medusa (Cai et al., 2024al), MLP Speculator (Wertheimer et al.
2024)) or Gloeckle et al.|(2024); Kim et al.| (2025).

Regarding non-self-drafting SD, it should be studied on a case-by-case basis. For instance, target
inference layer could potentially be applied to independent small models. Many student-teacher dis-
tillation frameworks (Gu et al., 2024} Zhou et al.,2023)), already leverage the on-policyness property
by generating directly from the student but are mostly are 1-step bounded (therefore expensive to
train). For SD methods based on lookahead decoding, it would generally not apply. One exception
is Ouroboros (Zhao et al.,2024)) that leverages a small model with lookahead decoding. Their small
model could also benefit from our solutions.

6 CONCLUSION

We have introduced a Mixture of Attentions architecture for Speculative Decoding to effectively
address several limitations of existing state-of-the-art methods. In order to enhance drafting accu-
racy of Mgman, we proposed a mixture of attention layers: Layer Self-Attention to mitigate partial
observability and Self-Attention followed by Cross-Attention to train more on-policy. We have
then introduced Target Layer Inference, a novel method that lets Mg, reuse the last N layers of
Marge, €nabling a trade off between the drafting speed and accuracy. Experimental results show
that we achieve state-of-the-art decoding speedups in the standard single-device setup, improving
over EAGLE-2 by 9.5% and extending acceptance lengths by up to 25%. We have also introduced
a client-server paradigm and demonstrated that our self-drafting speculative decoding method is a
viable alternative to API calls to M. Under this paradigm, the client can continue to generate
responses with the highest accuracy and speed after a complete disconnection from the network. As
a future direction, it would be interesting to investigate whether NV could be predicted by Mgpay to
automatically balance speed and accuracy depending on the current network conditions.

10

Published as a conference paper at ICLR 2025

REFERENCES

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple Ilm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024a.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024b.
URL https://arxiv.orqg/abs/2401.10774.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-

efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations, 2023.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Ligiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
decoding. arXiv preprint arXiv:2402.02082, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,

11

https://arxiv.org/abs/2401.10774

Published as a conference paper at ICLR 2025

Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzman, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shugiang Zhang, Shuqgiang

12

Published as a conference paper at ICLR 2025

Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of 1lm infer-
ence using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Yuxian Gu, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Miniplm: Knowledge distilla-
tion for pre-training language models. arXiv preprint arXiv:2410.17215, 2024.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
adaptive candidate lengths. arXiv preprint arXiv:2405.19715, 2024.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99-134, 1998. ISSN
0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)00023-X. URL https://www.
sciencedirect.com/science/article/pi1/S000437029800023X.

Taehyeon Kim, Ananda Theertha Suresh, Kishore Papineni, Michael D Riley, Sanjiv Kumar, and
Adrian Benton. Accelerating blockwise parallel language models with draft refinement. Advances
in Neural Information Processing Systems, 37:34294-34321, 2025.

Lingkai Kong, Haorui Wang, Wenhao Mu, Yuanqi Du, Yuchen Zhuang, Yifei Zhou, Yue Song,
Rongzhi Zhang, Kai Wang, and Chao Zhang. Aligning large language models with representation
editing: A control perspective, 2024. URL https://arxiv.org/abs/2406.05954

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models. arXiv preprint arXiv:2403.00835, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453-466, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Wen-tau Yih, and Xi Victoria
Lin. Nearest neighbor speculative decoding for 1lm generation and attribution. arXiv preprint
arXiv:2405.19325, 2024a.

13

https://arxiv.org/abs/2407.21783
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://arxiv.org/abs/2406.05954

Published as a conference paper at ICLR 2025

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty, 2024c. URL https://arxiv.org/abs/2401.15077.

Jonathan Mamou, Oren Pereg, Daniel Korat, Moshe Berchansky, Nadav Timor, Moshe Wasserblat,
and Roy Schwartz. Accelerating speculative decoding using dynamic speculation length. arXiv
preprint arXiv:2405.04304, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932-949, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Pranav Ajit Nair, Yashas Samaga, Toby Boyd, Sanjiv Kumar, Prateek Jain, Praneeth Netrapalli, et al.
Tandem transformers for inference efficient llms. arXiv preprint arXiv:2402.08644, 2024.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quanti-
zation. arXiv preprint arXiv:1802.05668, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu—lab/stanford_alpacal 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Davis Wertheimer, Joshua Rosenkranz, Thomas Parnell, Sahil Suneja, Pavithra Ranganathan, Raghu
Ganti, and Mudhakar Srivatsa. Accelerating production 1lms with combined token/embedding
speculators. arXiv preprint arXiv:2404.19124, 2024.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decod-
ing: Exploiting speculative execution for accelerating seq2seq generation. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 3909-3925, 2023.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

Euiin Yi, Taehyeon Kim, Hongseok Jeung, Du-Seong Chang, and Se-Young Yun. Towards
fast multilingual 1lm inference: Speculative decoding and specialized drafters. arXiv preprint
arXiv:2406.16758, 2024.

Biao Zhang, Ivan Titov, and Rico Sennrich. Sparse attention with linear units. arXiv preprint
arXiv:2104.07012, 2021.

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun. Ouroboros:
Speculative decoding with large model enhanced drafting. arXiv preprint arXiv:2402.13720,
2024.

14

https://arxiv.org/abs/2401.15077
https://github.com/tatsu-lab/stanford_alpaca

Published as a conference paper at ICLR 2025

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-Frangois Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

15

Published as a conference paper at ICLR 2025

A APPENDIX

The source code is publicly available at https://github.com/huawei-noah/HEBO/
tree/mixture-of-attentions/|

A.1 HYPERPARAMETERS

Table 6: List of our hyperparameters.

Distillation
Learning rate for gradient descent 3-107°
Total numbers of transformer updates 186000
Minibatch size 32
Mixed-precision training yes, float16
Weight of reserve KL loss (A\p) 0.1
Weight of L1 smooth loss (A1) 1.0
L2 gradient clipping 1.0
T'-step bounded mask for the CA layer Uniform between 5 to 15
Architecture
Number of layers L of Mg 32
Embedding dimension E of M ggc 4096
Embedding dimension of keys and values Ej, of Mparge 1024
Dropout rate 0.0
Embedding dimension of Layer Self-Attention 2048
Embedding dimension of Self-Attention 4096
Embedding dimension of Cross-Attention 4096
Size of the MLP projection after Layer Self-Attention 6144
Size of the MLP projection after Self-Attention 512
Size of the MLP projection after Cross-Attention 7168
Embedding dimension of keys and values of Layer Self-Attention 1024
Embedding dimension of keys and values of Self-Attention 512
Embedding dimension of keys and values of Cross-Attention 1024
A.2 CLIENT SERVER DEPLOYMENT
activations
(T,2Ery) (T, V) verified tokens K,V
Server
MLarge Q| cross-
(T, L, 2Ey,) Layer Self- embed_tokens Attention
Attention (T, E) 0tL++11

Mparge h<t self- (T, E)
(T, L, 2Eyy) Attention (T,E)[LM_Head] Client

drafted tokens

Figure 3: A client-server setting for our mixture of attentions architecture with N = 0.

16

https://github.com/huawei-noah/HEBO/tree/mixture-of-attentions/
https://github.com/huawei-noah/HEBO/tree/mixture-of-attentions/

Published as a conference paper at ICLR 2025

Table 7: The size of the message (before quantisation) in bytes. M = number of nodes in the draft
tree, A = number of accepted tokens, ' = hidden size, Fy, = hidden size of key and query vectors.

Msman Sent by Client Sent by Server
Ours aM 3A+2AE;,(TLI+ 1)
EAGLE aM 3A+ AE
Independent 4M 3A

A.3 ALGORITHM

Algorithm 1 Generation algorithm for MS"S, assuming chain decoding

Require: Input sequence y = (y1,¥2,- .., yt), draft length K, target layer inference TLI
1: Obtain h<; activations and ;4 with a forward pass in M. given input y

20y < (Y yet1)

3: kv < LSA_layer_with_mean (h<;)

4: while stopping criteria is not meet on y do
5. fori=1to K do

6: g < SA_layer(token_embed(y))

7: oLH1=N « CA layer(q, kv)

8: if N > 0 then

9: for|=L— NtoLdo)
10: [h’l’ 6l+1] — fcllecoder((hlgtv h’l>t,§t+i)7 6l)
11: end for

12: end if

13: i ~ Softmax (LM _head(6**1))

14: y < (y,9)

15: end for

16: Identify K’ verified tokens out of the K latest tokens of y, obtain associated h’ and obtain '

with a forward pass in My e With inputs yjy|_x... || and h<;
17: kv’ < LSA_layer_with_mean (h’)
18: kv + (kv,kv')
19: Update h by appending the new h’ components
20: Discard previous h
21: Yy < Yi,.. |y|-K+x (keep only the verified tokens)
22: t < |y
230y (y,9)
24: end while
25: return y

A.4 ADDITIONAL EXPERIMENTS

Accuracy of the generated text We ran several experiments to assess the quality of the generated

responses using greedy decoding. We focused on 3 datasets from SpecBench (HumanEval, GSM8K
and CNN/DM) that do not require access to proprietary models/APIs for evaluation (Ilm-as-a-judge).

17

Published as a conference paper at ICLR 2025

Table 8: Quality of the generated text.

Vanilla decoding HumanEval (pass@1) GSMS8K (accuracy) CNN/DM (Rouge-L f-score)
Llama3-8B-Instruct 62.5% 80% 0.3071
Speculative Decoding HumanEval (pass@1) GSMS8K (accuracy) CNN/DM (Rouge-L f-score)
Ours (TLI=3) 62.5% 80% 0.3053
Ours (TLI=1) 62.5% 81.25% 0.3068
Ours (TLI=0) 62.5% 80% 0.3070
EAGLE-2 62.5% 81.25% 0.3062
EAGLE-2 off 62.5% 80% 0.3056
Independent 1.7B 62.5% 80% 0.3067
Independent 1.3B 62.5% 80% 0.3064

We report the results in Table[8] The pass@1 on HumanEval is the same across all methods. The
accuracy on GSMS8K actually improves w.r.t the base model on one question for Ours (TLI=1) and
EAGLE-2. Finally, the ROUGE scores are also extremely similar, leading us to conclude that any
differences to the base model are negligible and almost certainly appear due to using float16.

Qwen2.53B We trained 3 additional small models on the Ultrachat dataset to accelerate Qwen2.5
3B. EAGLE recommends to use one decoder layer of the big LLLM to define the size of the small LM,
which leads to a trainable size of 80M parameters. We kept the shared “embed_tokens/LM_head”
layer frozen.

Table 9: Speedup ratio and acceptance length 7 on SpecBench using prompts from MT-Bench,
HumanEval, GSMS8K, Alpaca, Sum and QA datasets with Qwen2.5-3B Instruct.

Total Trainable] MT-bench HumanEval =~ GSMSK Alpaca CNN/DM Natural Ques. Mean
Msman size size |Speedup 7 Speedup 7T Speedup T Speedup 7 Speedup 7 Speedup T |Speedup T
Ours (TLI=0) 0.4B 80M 1.71 372 218 476 1.60 346 188 4 178 389 1.68 3.59| 1.80 3.9
EAGLE-2 04B 80M 159 32 1.84 370 153 3.06 181 354 160 323 162 3.17| 1.66 3.31
Independent 0.4B 80M 1.59 337 204 438 144 3.03 170 3.52 154 327 150 3.12] 1.63 344

Higher batch size with vLLM We implemented our approach in VLLM (Kwon et al.| [2023)
without tree decoding to support higher batch sizes and continuous batching.

Online inference in vLLM for Llama3-8B-Instruct
(without Tree Attention, HumanEval 80 prompts)

=
=)

=
BN}

|y
=2l

=
0]

=8=MOA (TLI=0)

=
w

=@=EAGLE-2

Latency Speedup
.
S

= =
= [}

-

05 1 4 8 16 32
Request per second (with Poisson law for arrival time)

Figure 4: vVLLM inference with continuous batching.

HumanEval in single device To perform this experiment, we reuse the same full HumanEval
dataset with a strict stopping criteria as done in the ablation study in the single device setting.

18

Published as a conference paper at ICLR 2025

Table 10: Test on Human Eval, each model is trained for 30 epochs.

Mman Decoding Total size Trainable size Tokens per second Acceptance length (7)
Ours (TLI=3) EAGLE-2 1.8B 250M 54 5.02

Ours (TLI=1) EAGLE-2 1.55B 250M 58 4.70

Ours (TLI=0) EAGLE-2 1.3B 250M 57 4.30
EAGLE EAGLE-2 1.3B 250M 43 2.82

EAGLE off. EAGLE-2 1.3B 250M 52 3.50
Independent EAGLE-2 1.7B 650M 46 3.72
Independent EAGLE-2 1.3B 250M 34 3.17
Independent Ouroboros 1.7B 650M 39 2.37
Baseline Vanilla - - 33 1

From Table[T0] we can observe we are 26% faster than EAGLE/EAGLE-2. We are also faster than
independent small models and Ouroboros (Zhao et al., 2024).

A.5 COMPLEXITY ANALYSIS
Let us analyze the standard decoder-only transformers doing vanilla decoding:

* in the first prefill stage, it grows in O(LK E(E + K)) given we have L self-attention layers
with K input tokens and an embedding size of E/

* for the K’ new decoded tokens, it grows in (’)(Zf{/ L(E?>+ E(K +1i))) = O(LE(EK' +
KK'+ K'?)).

If we assume E and L are fixed, it grows in O((K + K')?) overall. For speculative decoding, the
first prefill stage is the same. Assuming S tokens are verified at a time, the verification would grow

K

inO(3.,% L(SE*+SE(K+i))) = O(LE(EK'+ KK'+ K'?)), leading to the same complexity
as vanilla decoding. It dominates the complexity of self-drafting, but we can still analyse it. For
EAGLE, decoding a new token grows in O(E? + EK) as it is a single self-attention layer. For
our Mixture of Attentions architecture, the Self-Attention and Cross-Attention layers also grow in
O(E? + EK). The Layer-Self Attention is only called once after every verification stage, so not
at every decoding step, it grows in O(ALE? + AEy,L?) if A is the number of accepted tokens
in the previous phase. In our experiments, if we look at the first term, ALE? is smaller than
number_of_decoded_tokens X E? as Ey, is 4 times smaller than F, L is 32, A is in average 4.5
and number_of _decoded_tokens is 48. Similarly for the second term, AE}, L? is usually smaller
than number_of _decoded_tokens x EK as soon as the request contains more than 24 tokens.
Therefore, the time complexity is the same as EAGLE overall.

A.6 PRIVACY APPLICATION

Another advantage of the client-server setup is that we can selectively ensure privacy for the client
by only sending the non-sensitive part of the prompt to the server. Essentially, the client can split
their input into a consecutive “safe” text and a “’private” text. The server processes only the “safe”
text, which could be general context or non-sensitive information. The client keeps the “private”
text, such as confidential data or sensitive instructions, and handles this part locally with Mgp,-

For instance, the client might send the server some Python code along with a general description.
However, any sensitive information, such as the login and password to inject into the code, remains
on the client side and is not transmitted to the server. It is only passed to Mgmay. This approach
leverages the activations of M e to increase the accuracy of Mgpay for parts of the task while
ensuring that sensitive information is never exposed outside the client’s environment.

19

	Introduction
	Background
	LLM Decoding
	Speculative Decoding
	Architecture of MSmall

	Methodology
	Mixture of Attentions
	Partial Observability
	Lack of on-policyness

	Target Layer Inference
	Loss

	Experiments
	Single Device
	Client-Server
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Hyperparameters
	Client Server Deployment
	Algorithm
	Additional Experiments
	Complexity Analysis
	Privacy application

