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ABSTRACT

The growth in the number of parameters of Large Language Models (LLMs) has
led to a significant surge in computational requirements, making them challeng-
ing and costly to deploy. Speculative decoding (SD) leverages smaller models
to efficiently propose future tokens, which are then verified by the LLM in par-
allel. Small models that utilise activations from the LLM currently achieve the
fastest decoding speeds. However, we identify several limitations of SD models
including the lack of on-policyness during training and partial observability. To
address these shortcomings, we propose a more grounded architecture for small
models by introducing a Mixture of Attentions for SD. Our novel architecture can
be applied in two scenarios: a conventional single device deployment and a novel
client-server deployment where the small model is hosted on a consumer device
and the LLM on a server. In a single-device scenario, we demonstrate state-of-
the-art speedups improving EAGLE-2 by 9.5% and its acceptance length by 25%.
In a client-server setting, our experiments demonstrate: 1) state-of-the-art laten-
cies with minimal calls to the server for different network conditions, and 2) in
the event of a complete disconnection, our approach can maintain higher accuracy
compared to other SD methods and demonstrates advantages over API calls to
LLMs, which would otherwise be unable to continue the generation process.

1 INTRODUCTION

Auto-regressive inference with LLMs has become quite cost-prohibitive due to the increasing pa-
rameter count of recent transformer-based LLMs (Vaswani, 2017). Different types of (usually or-
thogonal) solutions have been proposed to address this challenge, e.g. Mixture of Experts (Jacobs
et al., 1991), Flash Attention (Dao et al., 2022), Model Quantization and Distillation (Polino et al.,
2018), Linear/Sparse Self-Attention (Zhang et al., 2021), Tensor Parallelism (Shoeybi et al., 2019)
and others. In this work, we focus on a recent LLM acceleration technique called Speculative De-
coding, which leverages efficient models (smaller but less capable) to draft future tokens, which are
verified by the LLM (more capable but much less efficient) in parallel (Leviathan et al., 2023).

The most recent state-of-the-art SD methods, like EAGLE (Li et al., 2024b) and MEDUSA (Cai
et al., 2024a), leverage activations from the LLM. However, those methods have some architectural
limitations including partial observability and the lack of on-policyness. Partial observability occurs
when the small (draft) model lacks complete information about the state of the LLM, leading to
suboptimal predictions. The lack of on-policyness during training arises because the small model is
often trained under ideal conditions, assuming perfect inputs. This does not reflect the real-world
scenario where the small model generates some inputs. The longer we draft new tokens using only
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the small model, the bigger the distribution shift from the training setting. These limitations can
degrade the performance and reliability of speculative decoding.

To address these challenges, we propose a novel architecture for speculative decoding that enhances
the small model’s ability to accurately predict future tokens and aligns its training more closely with
the inference process. Our architecture introduces several key improvements, including Layer Self-
Attention (LSA) to mitigate partial observability, Cross-Attention (CA) to improve on-policyness
and training efficiency, and a flexible Target Layer Inference (TLI) mechanism to balance compu-
tational efficiency and prediction accuracy. We evaluate our approach in the standard single-device
setting where we demonstrate state-of-the-art speedups.

Furthermore, the SD paradigm is also ideal in the following scenario a) the model size is limited by
some external factor e.g. the computational capabilities of a client device, and b) we can assume
access to a larger model e.g. an LLM hosted on a server. Under this paradigm, the goal is to minimise
server-side inference as well as to maintain high accuracy in the event of a total disconnection.
This is an important consideration because it could pave a way for serving LLMs on edge devices,
enabling them to generate responses offline while leveraging the capabilities of the large model. To
this end, we extend our methodology to a client-server scenario. In this setting, we demonstrate
state-of-the-art latency and minimal server calls under various network conditions (4G, 5G). Our
method maintains a higher accuracy in the event of a disconnection, making it a preferred choice
over independent small models or API calls that would be unable to continue generation.

Contributions We introduce a Mixture of Attentions architecture for Speculative Decoding that
addresses current limitations such as partial observability as well as enabling efficient (more on-
policy) training while being auto-regressive. We reuse additional activations from the LLM in the
small model, enabling a trade-off between drafting speed and response quality. We conduct extensive
experiments to demonstrate the effectiveness of our approach. Compared to EAGLE-2, we show a
9.5% decoding speedup with a 25% higher acceptance rate in a single-device scenario and a 84%
speedup with a 53% higher acceptance rate in a client-server scenario. Finally, we propose a new
framework for LLM serving in speculative client-server settings and show its effectiveness.

2 BACKGROUND

We first present the background knowledge required for the remainder of the paper, i.e. the decoding
mechanisms of LLMs as well as the drafting + verification techniques that ensure correct generation.

2.1 LLM DECODING

Decoding refers to the process by which LLMs generate tokens in response to input queries. This
generation is typically done auto-regressively, where each new token yt is sampled from the LLM’s
distribution, conditioned on both the query and the preceding tokens y<t. We explore decoding from
the perspective of dynamic systems, providing a foundation for developing new decoding mecha-
nisms that combine large and small models (Kong et al., 2024). The internal workings of LLMs
can be best understood from a dynamic system perspective, which evolves as tokens are generated.
Given a large modelMLarge, we can describe the state transition model of vanilla decoding as:

h≤t+1,ot+1 = fLarge(h≤t, token embed(yt)), yt+1 ∼ Softmax(LM head(ot+1)), (1)

where h≤t represents the key and value tensors of every layer until the current time-step t, yt is
the most recent token and yt+1 is the next token, which is sampled from a softmax distribution.
Furthermore, token embed is a lookup table, it assigns an embedding to a particular token of the
vocabulary V . LM head is a projection from the embedding size to the vocabulary size |V|. Finally,
fLarge(·) is the function aggregating all decoder layers of MLarge and ot+1 is the activation of the
final decoder layer. With this, the state of the dynamic system is composed of (h≤t, yt), the minimal
information needed to sample the next token fromMLarge.

2.2 SPECULATIVE DECODING

Some of the earliest work on speculative decoding was introduced by Stern et al. (2018), later ex-
tended to non-greedy sampling (Leviathan et al., 2023). These methods are motivated by the pro-
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hibitive cost of auto-regressive generation with MLarge that could be alleviated by using a draft
model MSmall that can more efficiently generate tokens that do not require the full capability of
MLarge. These hypotheses, commonly referred to as drafts, can then be verified in parallel with
MLarge using rejection sampling (Leviathan et al., 2023), i.e. discard all tokens after the first mis-
match. We follow the standard draft and verification cycle that iterates over the following two steps
until the ”end-of-sequence” token or the maximum sequence length has been reached.

1. MSmall generates new tokens yt+1, · · · , yt+K where K is the length of the draft sequence,
auto-regressively (Xia et al., 2023; Li et al., 2024b) or in parallel (Ankner et al., 2024).
The number of tokens K is typically fixed, which was the standard approach until recently
when dynamic K was proposed (Nair et al., 2024; Mamou et al., 2024; Huang et al., 2024).

2. Verify K drafted tokens in a single forward pass with MLarge. Verification uses ei-
ther greedy (exact) matching (Xia et al., 2023), speculative sampling (Zhou et al., 2023;
Leviathan et al., 2023) or ’approximate’ verification (Stern et al., 2018) which relaxes the
acceptance criteria but does not guaranteeMLarge’s output distribution. In all cases, after
the first rejection, all subsequent/future tokens are typically discarded.

When the drafting of yt+1, · · · , yt+K is done auto-regressively, token by token, we refer to this
strategy as chain drafting. Several works (Cai et al., 2024b; Li et al., 2024b) extended this method
to tree drafting for additional optimisation. In this case, multiple tokens yt+i can be proposed for
every future position i. Verification is performed with Tree Attention (Miao et al., 2024) to efficiently
handle multiple branching paths proposed by tree drafting. Consequently, this leads to an increase
in acceptance lengths and reduces the number of calls to MLarge compared to chain drafting. For
small batch sizes, the LLM generation is memory-bound, this is where speculative decoding can
better leverage the spare compute especially with Tree Attention.

In this paper, we employ tree drafting from EAGLE-2 (Li et al., 2024b) to construct trees with a
variable structure. Starting from the root node, we expand the B most probable tokens from the
model MSmall (yt+1|·). Then, for a fixed depth D, we recursively perform the following steps:
for each existing branch, we compute the joint probability

∏
t∈D MSmall(yt|yt−1, · · · ) of their

B child tokens, leading to B2 expansions as we have B branches, each with B children. From
the B2 expansions, we select the top B branches based on their joint probabilities for the next
tree layer expansion. Upon reaching the maximum depth, we retain up to m tokens from the total
B + (D − 1)B2 nodes, selecting those with the highest joint probability for verification.

2.3 ARCHITECTURE OFMSMALL

Speculative decoding architectures broadly fall into two categories, independent and self-drafting.
Independent drafters are typically smaller versions ofMLarge from the same model family (Li et al.,
2024a; Zhao et al., 2024; He et al., 2023) while self-drafting methods leverage either a subset of
MLarge and/or newly initialised parameters (Ankner et al., 2024; Cai et al., 2024a).

Our contribution is built on EAGLE (Li et al., 2024b), a self-drafting architecture which has shown
the best results on the Spec-Bench (Xia et al., 2024) leaderboard so far. The drafter reuses the
token embed and LM head parameters ofMLarge (1). It takes as input the ground-truth activations
of the last decoder layer ofMLarge, o1, · · · ,ot and the tokens of the sequence y1, · · · , yt to predict
the next activations ôt+1, which is passed to the LM head to predict the next token distribution:

ôt+1 =MEAGLE
Small ((o1, · · · ,ot), token embed(y1, · · · , yt)), ŷt+1 ∼ Softmax(LM head(ôt+1))

The process is repeated by appending ôt+1, ŷt+1 to the inputs to auto-regressively draft tokens ŷt+2.

3 METHODOLOGY

3.1 MIXTURE OF ATTENTIONS

We begin by defining important properties ofMSmall followed by detailed architectural choices.
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3.1.1 PARTIAL OBSERVABILITY

In Markov Decision Processes (Kaelbling et al., 1998), partial observability is a common challenge
where the agent does not have enough information about the true underlying state to take optimal de-
cisions. This limitation can significantly degrade the agent’s performance. Several approaches have
been proposed to mitigate this, e.g., adding additional previous observations (Mnih et al., 2015). In
drafting, it is important not to suffer from partial observability to draft future tokens more accurately.
We extend this notion in our context with the following:
Property 3.1 (Partial observability). Given a ground truth function F : X → Z , a drafter function
f : Y → Z and an observation function g : X → Y , such that for any x ∈ X , f(g(x)) models F(x),
f suffers from partial observability if g is non-injective: ∃(x, x′) ∈ X 2, x ̸= x′, g(x) = g(x′).

We can observe that the EAGLE drafter suffers from partial observability when F is fLarge, f is
MEAGLE

Small and o1, · · · ,ot = g(h≤t, (y1, · · · , yt)). In other words, o1, · · · ,ot is only a partial ob-
servation of the true state (h≤t, yt) of the dynamic system (1), hindering the capacity ofMSmall to
predict the right tokens ofMLarge.

Layer Self-Attention Aiming to alleviate this, our new architecture takes as input the state of the
dynamic system (1). However, h≤t is a large tensor of shape (T, L, 2Ekv) where T is the sequence
length, L the number of layers inMLarge, and Ekv the embedding size of the key and values. There-
fore, we introduce Layer Self-Attention (LSA) followed by a mean aggregation operation to reduce
its dimension to (T, 2Ekv) and extract the most relevant token information from every layer (Fig 1).
Self-attention is performed over the layer dimension and each token is treated independently in this
layer. During drafting, we have access to the past key values of all the layers, therefore, the attention
mask of LSA is bidirectional/full, see Figure 2. We only perform the LSA computations once at the
start of each drafting phase, see Appendix A.3 for a detailed algorithm of the information flow.

embed_tokens
tokens

K,V
 from

Q

Cross-
Attention

Self-
Attention

Layer Self-
Attention

mean

Figure 1: A schematic overview of the mixture of attentions information flow. Layer Self-Attention
and mean aggregation are called only once per drafting cycle, i.e after each verification. New tokens
are drafted auto-regressively using Self-Attention, updating only the Cross-Attention layer query.

3.1.2 LACK OF ON-POLICYNESS

Discrepancies between training and testing scenarios arise because, during training, transformer
models are typically conditioned on ground-truth sequences, assuming that all previous inputs are
correct. If this assumption seems unproblematic for the standard training of transformers, assuming
it for trainingMSmall in speculative-decoding scenarios is much more delicate. It is known that some
of the previous inputs are generated directly fromMSmall, therefore much less accurate. The more
tokens we predict withMSmall only, the more error accumulation we can expect. To alleviate this,
EAGLE adds uniform noise into its observations (o1, · · · ,ot) at training time, but this is not ideal.

In order to train MSmall optimally, we need to ensure that its training and inference conditions
are closely matched. Specifically, this means training MSmall as if some of the previous tokens
were generated by itself. Additionally, we should account for situations where the activations from
MLarge are not available, i.e. during the drafting cycle. This approach is called on-policy training.
In on-policy training, the data used for training is generated by the same policy (or model) that is
currently being trained. For example, when we train a transformer using next-token prediction on
a static dataset, this is considered off-policy because the data doesn’t change based on the model’s
decisions. However, if we mix this static dataset with data generated by the model itself during
training, we move towards a more on-policy approach. Similarly, if the model won’t have access to
certain information, e.g. the activations ofMLarge during generation, then always trainingMSmall
with that information would also be considered off-policy.
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However, on-policy training is very costly because we would need to generate from the model during
training. To formalise this limitation, we introduce the concept of T-step boundedness:

Property 3.2 (T-step bounded). A drafter f is said to be T -step bounded if, in a single forward pass,
it can predict up to T future tokens without additional input fromMLarge, i.e., f(y1, y2, . . . , yt) →
(ŷt+1, ŷt+2, . . . , ŷt+T ).

This property is important to efficiently train the drafter. For instance, the EAGLE drafter is 1-step
bounded. If one wanted to perform prediction at time t + 2, two forward passes would be required
due to the auto-regressive layer that requires the previous ôt+1 as input, which would be very costly
to train on-policy. By contrast, a drafter that is T -step bounded with T > 1 can predict multiple
future tokens within a single forward pass.

Cross-Attention In order to make our drafter partly T -step bounded with T > 1, the main com-
ponent of our architecture is a Cross-Attention (CA) layer where the query comes from the tokens
and the key and values come from MLarge activations. More precisely, the key and values come
from the output of LSA. Having input queries for time t+ 1 to t+K coming into the CA layer and
keys-values fromMLarge only up to time t effectively means the CA layer is K-step bounded. This
allows us to train the CA layer more on-policy efficiently because it simulates what would happen
during generation: we only have access to the activations fromMLarge up to time t but still have to
make prediction for up to time t+K. Note that it is still not fully on-policy yet as the input queries
for time t + 1 to t + K are not assumed to be generated from MSmall. During training, multiple
K are sampled to simulate different lengths of accepted drafts by changing the CA layer mask. For
instance, in Figure 2, we have K = 4 followed by K = 3. On the contrary, during generation, we do
not apply masking as we want to letMSmall attend all the currently available activations ofMLarge.

Self-Attention In order to motivate the introduction of a self-attention (SA) layer, we start by
observing that the cross-attention layer is input-independent (3.3) w.r.t. the input queries, i.e one
input query does not influence the results of another query.

Property 3.3 (Input-independence). A layer f is input-independent if for any choice of n inputs
x = (x1, · · · , xn), we have f(x) = (f(x0), · · · , f(xn)).

Therefore, if the queries of the CA layer came directly from the embedded tokens y1, · · · , yt,MSmall
would not have been aware of previously drafted tokens. It would only know the previous token
treated byMLarge and the most recent yt. But, in order to make accurate predictions,MSmall needs
to be aware of the previously drafted tokens. Hence, we introduce a causal self-attention layer on
the queries to mitigate this problem, shown in Figure 1 and summarised in Table 1.

Table 1: Comparison of the properties of our new architecture.
MSmall Autoregressive T -step bounded More on-policy Observability

Ours SA layer variable T for CA layer CA & LSA layers LSA-enhanced
EAGLE-2 ✓ 1 ✗ partial
Medusa ✗ fixed T ✗ partial

3.2 TARGET LAYER INFERENCE

Previous work assumed that the final hidden layer before LM head was the most appropriate tar-
get (activations)MSmall should predict. However, we challenge that assumption by hypothesising
that targeting a deeperMLarge layer may be more advantageous in terms of draft quality. We thus
decompose the dynamic system (1) layer-by-layer by introducing l as the (superscript) layer index:

o1
t+1 = token embed(yt), hl

≤t+1,o
l+1
t+1 = f l

decoder(h
l
≤t,o

l
t+1),

yt+1 ∼ Softmax(LM head(oL+1
t+1 )) l = 1, . . . , L

where f l
decoder is the decoder layer of MLarge at layer l. The state of this new dynamic system

is composed of (ol
t+1,h

<l
≤t+1,h

l≥
≤t). We observe that to perfectly predict oL+1

t+1 , it is sufficient to
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Layer Self-Attention
prompt response

T

T

Self-Attention
callsMLarge callsMLarge

Cross-Attention

T

T

Figure 2: Layer Self-Attention: MLarge activations are transposed so that attention is computed
over the layer dimension in order to aggregate token activations across layers. Self-Attention: The
first 3 tokens represent the prompt, speculative decoding starts at token 4. Cross-Attention: Tokens
4 to 7 only attend to the prompt while tokens 8 to 10 attend to the first 7 tokens onceMLarge was
called for the second time allowingMSmall to use the activations from the newly verified tokens.

perfectly predict oL
t+1 and reuse the fL

decoder ofMLarge and the already computed KV cache hL
≤t of

the layer L at time t. The same recursive reasoning can be made to predict oL
t+1 from oL−1

t+1 , etc.
We assume (and later show) that predicting ol

t+1 is always easier than predicting ok
t+1 for l < k due

to ol
t+1 undergoing fewer layer transformations. Hence, we introduce a new hyperparameter TLI to

refer to the target layer oL+1−TLI that theMSmall should predict. When TLI > 0, the TLI last layers
ofMLarge (kept frozen during training) and their KV cache are used to output oL+1. Henceforth,
we use notation (TLI = l) where l is an integer, to denote the target layer for inference. We can now
provide the equation describing ourMOurs

Small for a given TLI assuming t was the last time we verified
withMLarge:

ôL+1−TLI
T+1 =MOurs

Small(h≤t, token embed(y1, · · · , yt, ŷt+1, · · · , ŷT )),

ĥl
T+1, ô

l+1
T+1 = f l

decoder((h
l
≤t, ĥ

l
>t,≤T ), ô

l
T+1), l = L− TLI, . . . , L,

ŷT+1 ∼ Softmax(LM head(ôL+1
T+1)).

3.3 LOSS

LetMSmall be parameterised by θ, we use a similar training loss as EAGLE, i.e. a forward-KL loss,
with a Smooth-L1 loss L between the predicted activations of theMSmall ô

L+1−TLI and the target
one obtained fromMLarge:

argmin
θ

λ0KL[MLarge||MSmall(θ)] + λ1L
(
ôL+1−TLI,oL+1−TLI) . (2)

To keep the training lightweight, we do not generate fromMLarge orMSmall during training. This
loss is only defined over the response part of the prompt of a fixed training dataset.

4 EXPERIMENTS

In all experiments, we use LLama3-8B-Instruct (Dubey et al., 2024) asMLarge. We train allMSmall
on the Ultrachat dataset (Ding et al., 2023) without a system prompt and we do not assume that
we know the system prompt at test time as it was observed that the training dataset can have a
significant impact on the final performance (Yi et al., 2024). MSmall is trained with the standard
Llama3-Instruct chat template. Ultrachat is composed of around 200k prompts with around 240M
tokens using the LLama3 tokenizer. We use multiple test datasets for generation including various
tasks such as reasoning, code generation, multi-turn conversation and summarisation. We notably
relied on the SpecBench benchmark (Xia et al., 2024) and the following datasets: MT-Bench (Zheng
et al., 2023), HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021), Alpaca (Taori et al.,
2023), CNN/Daily Mail (Nallapati et al., 2016) and Natural Questions (Kwiatkowski et al., 2019).
We describe additional hyperparameters and experimental settings in Appendix A.1.

We compare our method to EAGLE-2 and an independent distilledMSmall of similar size (denoted
”Independent”). In order to train the EAGLE model, we assume TLI = 0 in the distillation loss (2).
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The independentMSmall leverages the token embed and LM head parameters ofMLarge with only
the decoder layers trained using an identical distillation loss (2) and λ1 = 0. We do not compare
to Medusa as EAGLE has consistently demonstrated superior speedups on various benchmarks (Xia
et al., 2024). We also compare the performance of the official EAGLE-2 weights shared by Li et al.
(2024b). We refer to this as ”EAGLE-2 off.”. Note that this model was trained on different data
and with a fixed system prompt. We take care to match the number of model parameters, i.e. ”Ours
(N=0)”, ”EAGLE-2”, ”EAGLE-2 off.”, ”Independent 1.3B” and ”Glide” all have 1.3B parameters
(250M trainable and 1.05B frozen, for the ”LM head” and ”token embed” layers). We chose 250M
trainable parameters to be directly comparable to EAGLE-2 and their official checkpoint. For tree
decoding, we use a max breadth of 8, a depth of 6 and 62 max tokens to verify. We use float16
except for the attention softmax weights that are upscaled to float32.

We use standard metrics: token-per-second and speedup ratios to measure walltime improvements as
well as hardware-independent metrics: average acceptance length τ (the average number ofMSmall
tokens accepted byMLarge) and the number of calls toMLarge.

4.1 SINGLE DEVICE

We now present the main single-device experiments using the SpecBench Xia et al. (2024) bench-
mark without a system-prompt to ensure a fair comparison between models.

Table 2: Speedup ratio and acceptance length τ on SpecBench using prompts from MT-Bench,
HumanEval, GSM8K, Alpaca, Sum and QA datasets. Each model is fine-tuned for 30 epochs and
uses EAGLE-2 tree decoding.

Total Trainable MT-bench HumanEval GSM8K Alpaca CNN/DM Natural Ques. Mean
MSmall size size Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Ours (TLI=3) 1.8B 250M 1.74 4.65 2.02 5.41 1.74 4.65 1.81 4.80 1.89 5.04 1.59 4.23 1.79 4.79
Ours (TLI=1) 1.55B 250M 1.83 4.19 2.29 5.30 1.83 4.19 2.02 4.65 2.04 4.74 1.71 3.94 1.95 4.50
Ours (TLI=0) 1.3B 250M 1.80 3.86 2.28 4.98 1.80 3.86 2.03 4.36 2.10 4.55 1.72 3.73 1.95 4.22

EAGLE-2 1.3B 250M 1.77 3.55 1.95 3.92 1.69 3.36 1.89 3.77 1.84 3.69 1.66 3.32 1.78 3.60
EAGLE-2 off. 1.3B 250M 1.75 3.52 2.06 4.15 1.80 3.60 1.70 3.37 1.60 3.19 1.38 2.75 1.71 3.43
Independent 1.7B 650M 1.50 3.63 1.91 4.64 1.26 3.01 1.57 3.81 1.56 3.78 1.72 3.94 1.58 3.80
Independent 1.3B 250M 1.23 3.50 1.50 4.36 0.95 2.70 1.33 3.79 1.28 3.59 1.10 3.13 1.23 3.51
Glide 1.3B 250M 1.69 3.62 2.06 4.43 1.54 3.27 2 4.27 1.6 3.37 1.59 3.41 1.74 3.72

Looking at Table 2, we can see that our Mixture of Attentions for SD achieves SOTA speedups
when TLI = 1 and TLI = 0. Compared to EAGLE-2, we are on average 9.5% faster in terms of
tokens-per-second generated. We also increase the acceptance length by 25% when N = 1. More
single device experiments e.g. on the full HumanEval dataset are shown in Appendix A.4.

4.2 CLIENT-SERVER

In this study, we investigate how self-drafting with our method performs in a client-server scenario.
To do so, we placeMSmall on a client device and hostMLarge on a server (see Appendix A.2 for an
illustration). The server is performing verification and sends the relevantMLarge activations to the
client, which in turn is proposing new tokens. The server has 3 times more float16 tflops than the
client. The devices are located in two different cities, separated by ∼300 km. The ping between the
devices is around 9 ms and the bandwidth∼50 Mbits/sec. In order to simulate a realistic client-server
scenario, we are using 5G and 4G network profiles. In 4G, we assume a maximum of 20 Mbits/sec
with a normally distributed delay of 21 ms ± 19 ms and a 0.1% chance of dropping packets. In 5G,
we assume a normally distributed delay of 10 ms ± 10 ms with a 0.1% chance of dropping packets.
To do so, we rely on the Linux traffic control subsystem.

In this scenario, the token-per-second performance also depends on the size of the messages. To this
end, we analyse the length of the messages sent between the client and the server (see Table 7). There
is a clear distinction between self-drafting methods that need to send/receive activation tensors and
independent methods that only exchange text (e.g. token ids). Therefore, we shall analyse whether
the improvement in drafting quality can offset the increase in message lengths. On the client, we
encode each node in the draft tree using 3 bytes for the token id and 1 byte for its position in the
tree. The server answers with the accepted tokens encoded using 3 bytes each plus the associated
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activations, if required. For Llama3-8B-Instruct and N ≤ 1, our architecture’s payload is less than
or equal to EAGLE message lengths. In order to further reduce message sizes, we quantise the E
and Ekv tensors to 8 bits. For both EAGLE and Mixture of Attentions, the initial message sent by
the server (before the first token is drafted) is typically the biggest as it represents the activations of
the entire prompt. Therefore, we additionally gzip-compress this message after quantisation.

Table 3: Performance on HumanEval with EAGLE-2 tree decoding under 5G and 4G profiles.
MSmall Total size Trainable size Tokens per second ↑ Acceptance length ↑ CallsMLarge ↓

5G 4G

Ours (TLI=3) 1.8B 250M 25.0 14.6 4.99 20.8
Ours (TLI=1) 1.55B 250M 30.6 20.3 4.68 22.5
Ours (TLI=0) 1.3B 250M 34.1 25.1 4.30 24.1

EAGLE-2 1.3B 250M 24.3 13.6 2.81 36.4
EAGLE-2 off. 1.3B 250M 28.6 15.0 3.51 29.5
Independent 1.7B 650M 28.5 23.7 3.73 27.1
Independent 1.3B 250M 18.3 16.1 3.16 32.4

In Table 3, we can observe that ”Ours (TLI=0)” achieves the fastest decoding speeds. Interestingly,
it is even faster than independent small models that do not exchange any activation tensors. As
expected, our Mixture of Attentions is not as fast as in the single device setting, but it can recover
the speed of vanilla decoding in a single device setup (33 tokens-per-second, see Appendix A.4).

However, for this setting to be viable, just recovering the speed of vanilla decoding is not sufficient
as it does not provide an advantage over an API call toMLarge. Therefore, we show that our model
can continue to generate the response by simulating a complete disconnection from the server.

Table 4: The success rate (pass@1, greedy decoding) on HumanEval in the event of an interrupted
connection between the client and the server. EAGLE-2 tree decoding is used.

A disconnection occurs after B new tokens.

MSmall Total size Trainable size B = 1 B = 10 B = 25 B = 50 B =∞
Ours (TLI=3) 1.8B 250M 2.48 % 11.18 % 18.01 % 31.67 % 45.9 %
Ours (TLI=1) 1.55B 250M 3.10 % 10.55 % 21.11 % 30.43 % 45.9 %
Ours (TLI=0) 1.3B 250M 2.48 % 9.31 % 19.2 % 29.81 % 45.9 %

EAGLE-2 1.3B 250M 0 % 8.07 % 16.77 % 27.32 % 45.9 %
EAGLE-2 off. 1.3B 250M 1.24 % 6.83 % 18.01 % 28.57 % 45.9 %
Independent 1.7B 650M 0 % 6.83 % 18.63 % 29.81 % 45.9 %
Independent 1.3B 250M 0 % 6.21 % 18.01 % 27.95 % 45.9 %

Generation stops after B new tokens.

Without local model (lower bound) 0 % 5.59 % 16.77 % 27.32 % 45.9 %

In Table 4, we can see that indeed, if a disconnection occurs, unlike API calls to MLarge, we can
continue to generate the response right on the device, i.e. complete additional correct solutions to
competitive programming problems in HumanEval. Therefore, with an acceptable speed and the
possibility to generate useful responses after a disconnection, we prove the viability of our proposed
client-server setting, paving the way for a new framework for serving LLMs with small devices.

4.3 ABLATION STUDY

We now present important ablation results for different components of our Mixture of Attentions
architecture. Since multiple models were required to be fine-tuned for this study, we have limited
each run to 10 epochs. For this ablation, we introduce the ”Ours (TLI=l, -LSA)” variant that does not
rely on LSA and takes as input o1, · · · ,ot as the keys and values of the CA layer. We also include
two more EAGLE baselines, one with additional trainable parameters ”EAGLE (more params)” and
another with additional decoder layers ”EAGLE (more layers)” but an equal number of trainable
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parameters. This is to ensure that the benefit of our architecture does not come from simply adding
decoder layers or parameters. In this experiment, we use the HumanEval dataset with strict stopping
criteria, exiting decoding as soon as the model no longer generates source code.

Table 5: An ablation study of our proposed architecture, tested on HumanEval. Each model is
trained on ∼2.4B tokens. Chain (not tree) drafting with maximum 4 tokens is used for this study.
The averages are computed over around 8500 drafting-verification cycles.
MSmall Total size Trainable size Tokens per second Acceptance length (τ)

Ours (TLI=3) 1.8B 250M 39 2.54
Ours (TLI=1) 1.55B 250M 39 2.25
Ours (TLI=0) 1.3B 250M 40 2.14
Ours (TLI=1, -LSA) 1.55B 250M 21 1.28
Ours (TLI=1, -LSA, o1, · · ·ot inputs) 1.55B 250M 36 2.04
Ours (TLI=0, -LSA, o1, · · ·ot inputs) 1.3B 250M 38 1.93
EAGLE 1.3B 250M 30 1.45
EAGLE (more params) 1.45B 400M 29 1.28
EAGLE (more layers) 1.3B 250M 27 1.01

Does the on-policyness (brought with the CA layer) and the T -step bounded property have
a positive impact on the quality of the drafts? In Table 5, we compare EAGLE with ”Ours
(TLI=0, -LSA)” for an answer to this question. We can see that these components provide a major
improvement of 26% in tokens-per-second as well as improved acceptance length of 33%.

How does partial observability influence the drafter acceptance rate? In Table 5, we can com-
pare ”Ours (TLI=0, -LSA)” to ”Ours (TLI=0)” as well as ”Ours (TLI=1, -LSA)” to ”Ours (TLI=1)”
and report that the tokens-per-second performance improves by 6% by introducing LSA, decreasing
partial observability. Its impact is less crucial than the on-policyness brought by the CA layer.

Does increasing TLI increase the acceptance rate? Finally, by looking at the variation of TLI in
Tables 2,3 and 5, increasing TLI also increases the acceptance length, as we hypothesised. However,
this does not always have a positive impact on the tokens-per-second rate as it also increases the
computational time of drafting. In the event of a complete disconnection in a client-server setting,
however, a higher TLI will improve the quality of responses, which is something to consider when
deploying Mixture of Attentions for SD on mobile devices.

5 RELATED WORK

Medusa (Cai et al., 2024a) is one of the earliest works leveraging the activations ofMLarge as inputs
toMSmall for the purpose of SD. Thanks to their work, speculative decoding can be applied to any
LLM by distilling anMSmall. It generates K future tokens in parallel by training K new LM heads
where each head predicts a token at position k ∈ K (Gloeckle et al., 2024). It was later extended by
Kim et al. (2025) by refining the block drafts using task-independent n-gram and neural language
models as lightweight rescorers. EAGLE (Li et al., 2024c) and Hydra (Ankner et al., 2024) are
auto-regressive extensions of Medusa. They observe that non-auto-regressive generation limits the
acceptance length as MSmall is not aware of previous tokens. We do not compare to Medusa or
Hydra as EAGLE is ranked higher on the SpecBench leaderboard.

Tandem Transformers (Nair et al., 2024) propose an effective integration ofMLarge andMSmall by
lettingMSmall attend to the down-projected hidden states ofMLarge. These rich contextualised rep-
resentations enableMSmall to draft hypotheses with a higher acceptance rate as the two models are
aligned on shared hidden states. We were not able to compare with them because of the lack of open-
source implementation, the use of closed-source LLMs and an undisclosed amount of data/compute
to reproduce the work. Moreover, tandem transformers appear to have a high communication over-
head between big and small models, making it unrealistic for a client/server setting.

Orthogonal to our work, researchers have recently proposed training-free SD methods. Lookahead
Decoding (Fu et al., 2024) generates new tokens with a single MLarge using Jacobi iterations, ex-
tended by CLLM Kou et al. (2024) and Ouroborous (Zhao et al., 2024). We evaluated the latter in
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our settings, however, it was shown to be less efficient than the EAGLE-2 tree decoding strategy, see
Appendix A.4. For additional related and orthogonal work in the extended SD landscape, we refer
the reader to Xia et al. (2024) for a detailed and highly informative speculative decoding survey.

Du et al. (2024) previously proposed to leverage the KV-cache of some layers of MLarge. They
do not theoretically justify why using the KV-cache instead of the output of each layer, nor how
to exactly choose which layer to include as input ofMSmall. However, with our dynamical system
point of view, we showed that the KV-cache of all the layers is part of the state. The introduction
of LSA allows to exploit it in its whole with a limited number of layers, whereas Du et al. (2024)
would need to have the same number of layers inMSmall andMLarge to fully capture it, resulting in
a slow drafting speed.

Although we focused on improving the current SOTA method (EAGLE-2), our observations (partial
observability, on-policyness and target inference layer) are true for many self-drafting methods, for
instance, it could also be applied to Medusa (Cai et al., 2024a), MLP Speculator (Wertheimer et al.,
2024) or Gloeckle et al. (2024); Kim et al. (2025).

Regarding non-self-drafting SD, it should be studied on a case-by-case basis. For instance, target
inference layer could potentially be applied to independent small models. Many student-teacher dis-
tillation frameworks (Gu et al., 2024; Zhou et al., 2023), already leverage the on-policyness property
by generating directly from the student but are mostly are 1-step bounded (therefore expensive to
train). For SD methods based on lookahead decoding, it would generally not apply. One exception
is Ouroboros (Zhao et al., 2024) that leverages a small model with lookahead decoding. Their small
model could also benefit from our solutions.

6 CONCLUSION

We have introduced a Mixture of Attentions architecture for Speculative Decoding to effectively
address several limitations of existing state-of-the-art methods. In order to enhance drafting accu-
racy ofMSmall, we proposed a mixture of attention layers: Layer Self-Attention to mitigate partial
observability and Self-Attention followed by Cross-Attention to train more on-policy. We have
then introduced Target Layer Inference, a novel method that letsMSmall reuse the last N layers of
MLarge, enabling a trade off between the drafting speed and accuracy. Experimental results show
that we achieve state-of-the-art decoding speedups in the standard single-device setup, improving
over EAGLE-2 by 9.5% and extending acceptance lengths by up to 25%. We have also introduced
a client-server paradigm and demonstrated that our self-drafting speculative decoding method is a
viable alternative to API calls toMLarge. Under this paradigm, the client can continue to generate
responses with the highest accuracy and speed after a complete disconnection from the network. As
a future direction, it would be interesting to investigate whether N could be predicted byMSmall to
automatically balance speed and accuracy depending on the current network conditions.
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A APPENDIX

The source code is publicly available at https://github.com/huawei-noah/HEBO/
tree/mixture-of-attentions/.

A.1 HYPERPARAMETERS

Table 6: List of our hyperparameters.

Distillation

Learning rate for gradient descent 3 · 10−5

Total numbers of transformer updates 186000
Minibatch size 32
Mixed-precision training yes, float16
Weight of reserve KL loss (λ0) 0.1
Weight of L1 smooth loss (λ1) 1.0
L2 gradient clipping 1.0
T -step bounded mask for the CA layer Uniform between 5 to 15

Architecture
Number of layers L ofMLarge 32
Embedding dimension E ofMLarge 4096
Embedding dimension of keys and values Ekv ofMLarge 1024
Dropout rate 0.0
Embedding dimension of Layer Self-Attention 2048
Embedding dimension of Self-Attention 4096
Embedding dimension of Cross-Attention 4096
Size of the MLP projection after Layer Self-Attention 6144
Size of the MLP projection after Self-Attention 512
Size of the MLP projection after Cross-Attention 7168
Embedding dimension of keys and values of Layer Self-Attention 1024
Embedding dimension of keys and values of Self-Attention 512
Embedding dimension of keys and values of Cross-Attention 1024

A.2 CLIENT SERVER DEPLOYMENT

activations

Server

Layer Self-
Attention

mean

embed_tokens

Self-
Attention

Cross-
Attention

drafted tokens

Client

K,V

Q

verified tokens

LM_Head

Figure 3: A client-server setting for our mixture of attentions architecture with N = 0.
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Table 7: The size of the message (before quantisation) in bytes. M = number of nodes in the draft
tree, A = number of accepted tokens, E = hidden size, Ekv = hidden size of key and query vectors.

MSmall Sent by Client Sent by Server

Ours 4M 3A+ 2AEkv(TLI + 1)
EAGLE 4M 3A+AE
Independent 4M 3A

A.3 ALGORITHM

Algorithm 1 Generation algorithm forMOurs
Small assuming chain decoding

Require: Input sequence y = (y1, y2, . . . , yt), draft length K, target layer inference TLI
1: Obtain h≤t activations and yt+1 with a forward pass inMLarge given input y
2: y ← (y, yt+1)
3: kv ← LSA layer with mean (h≤t)
4: while stopping criteria is not meet on y do
5: for i = 1 to K do
6: q ← SA layer(token embed(y))
7: ôL+1−N ← CA layer(q,kv)
8: if N > 0 then
9: for l = L−N to L do

10: [ĥl, ôl+1]← f l
decoder((h

l
≤t, ĥ

l
>t,≤t+i), ô

l)
11: end for
12: end if
13: ŷ ∼ Softmax(LM head(ôL+1))
14: y ← (y, ŷ)
15: end for
16: Identify K ′ verified tokens out of the K latest tokens of y, obtain associated h′ and obtain y′

with a forward pass inMLarge with inputs y|y|−K,··· ,|y| and h≤t

17: kv′ ← LSA layer with mean (h′)
18: kv ← (kv,kv′)
19: Update h by appending the new h′ components
20: Discard previous ĥ
21: y ← y1,··· ,|y|−K+K′ (keep only the verified tokens)
22: t← |y|
23: y ← (y, y′)
24: end while
25: return y

A.4 ADDITIONAL EXPERIMENTS

Accuracy of the generated text We ran several experiments to assess the quality of the generated
responses using greedy decoding. We focused on 3 datasets from SpecBench (HumanEval, GSM8K
and CNN/DM) that do not require access to proprietary models/APIs for evaluation (llm-as-a-judge).

17



Published as a conference paper at ICLR 2025

Table 8: Quality of the generated text.
Vanilla decoding HumanEval (pass@1) GSM8K (accuracy) CNN/DM (Rouge-L f-score)
Llama3-8B-Instruct 62.5% 80% 0.3071
Speculative Decoding HumanEval (pass@1) GSM8K (accuracy) CNN/DM (Rouge-L f-score)
Ours (TLI=3) 62.5% 80% 0.3053
Ours (TLI=1) 62.5% 81.25% 0.3068
Ours (TLI=0) 62.5% 80% 0.3070
EAGLE-2 62.5% 81.25% 0.3062
EAGLE-2 off 62.5% 80% 0.3056
Independent 1.7B 62.5% 80% 0.3067
Independent 1.3B 62.5% 80% 0.3064

We report the results in Table 8. The pass@1 on HumanEval is the same across all methods. The
accuracy on GSM8K actually improves w.r.t the base model on one question for Ours (TLI=1) and
EAGLE-2. Finally, the ROUGE scores are also extremely similar, leading us to conclude that any
differences to the base model are negligible and almost certainly appear due to using float16.

Qwen2.5 3B We trained 3 additional small models on the Ultrachat dataset to accelerate Qwen2.5
3B. EAGLE recommends to use one decoder layer of the big LLM to define the size of the small LM,
which leads to a trainable size of 80M parameters. We kept the shared ”embed tokens/LM head”
layer frozen.

Table 9: Speedup ratio and acceptance length τ on SpecBench using prompts from MT-Bench,
HumanEval, GSM8K, Alpaca, Sum and QA datasets with Qwen2.5-3B Instruct.

Total Trainable MT-bench HumanEval GSM8K Alpaca CNN/DM Natural Ques. Mean
MSmall size size Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Ours (TLI=0) 0.4B 80M 1.71 3.72 2.18 4.76 1.60 3.46 1.88 4 1.78 3.89 1.68 3.59 1.80 3.9
EAGLE-2 0.4B 80M 1.59 3.2 1.84 3.70 1.53 3.06 1.81 3.54 1.60 3.23 1.62 3.17 1.66 3.31
Independent 0.4B 80M 1.59 3.37 2.04 4.38 1.44 3.03 1.70 3.52 1.54 3.27 1.50 3.12 1.63 3.44

Higher batch size with vLLM We implemented our approach in vLLM (Kwon et al., 2023)
without tree decoding to support higher batch sizes and continuous batching.

Figure 4: vLLM inference with continuous batching.

HumanEval in single device To perform this experiment, we reuse the same full HumanEval
dataset with a strict stopping criteria as done in the ablation study in the single device setting.

18



Published as a conference paper at ICLR 2025

Table 10: Test on Human Eval, each model is trained for 30 epochs.
MSmall Decoding Total size Trainable size Tokens per second Acceptance length (τ)

Ours (TLI=3) EAGLE-2 1.8B 250M 54 5.02
Ours (TLI=1) EAGLE-2 1.55B 250M 58 4.70
Ours (TLI=0) EAGLE-2 1.3B 250M 57 4.30
EAGLE EAGLE-2 1.3B 250M 43 2.82
EAGLE off. EAGLE-2 1.3B 250M 52 3.50
Independent EAGLE-2 1.7B 650M 46 3.72
Independent EAGLE-2 1.3B 250M 34 3.17
Independent Ouroboros 1.7B 650M 39 2.37
Baseline Vanilla - - 33 1

From Table 10, we can observe we are 26% faster than EAGLE/EAGLE-2. We are also faster than
independent small models and Ouroboros (Zhao et al., 2024).

A.5 COMPLEXITY ANALYSIS

Let us analyze the standard decoder-only transformers doing vanilla decoding:

• in the first prefill stage, it grows inO(LKE(E+K)) given we have L self-attention layers
with K input tokens and an embedding size of E

• for the K’ new decoded tokens, it grows inO(
∑K′

i L(E2 +E(K + i))) = O(LE(EK ′ +
KK ′ +K ′2)).

If we assume E and L are fixed, it grows in O((K +K ′)2) overall. For speculative decoding, the
first prefill stage is the same. Assuming S tokens are verified at a time, the verification would grow

inO(
∑K′

S
i L(SE2+SE(K+ i))) = O(LE(EK ′+KK ′+K ′2)), leading to the same complexity

as vanilla decoding. It dominates the complexity of self-drafting, but we can still analyse it. For
EAGLE, decoding a new token grows in O(E2 + EK) as it is a single self-attention layer. For
our Mixture of Attentions architecture, the Self-Attention and Cross-Attention layers also grow in
O(E2 + EK). The Layer-Self Attention is only called once after every verification stage, so not
at every decoding step, it grows in O(ALE2

kv + AEkvL
2) if A is the number of accepted tokens

in the previous phase. In our experiments, if we look at the first term, ALE2
kv is smaller than

number of decoded tokens × E2 as Ekv is 4 times smaller than E, L is 32, A is in average 4.5
and number of decoded tokens is 48. Similarly for the second term, AEkvL

2 is usually smaller
than number of decoded tokens × EK as soon as the request contains more than 24 tokens.
Therefore, the time complexity is the same as EAGLE overall.

A.6 PRIVACY APPLICATION

Another advantage of the client-server setup is that we can selectively ensure privacy for the client
by only sending the non-sensitive part of the prompt to the server. Essentially, the client can split
their input into a consecutive ”safe” text and a ”private” text. The server processes only the ”safe”
text, which could be general context or non-sensitive information. The client keeps the ”private”
text, such as confidential data or sensitive instructions, and handles this part locally withMSmall.

For instance, the client might send the server some Python code along with a general description.
However, any sensitive information, such as the login and password to inject into the code, remains
on the client side and is not transmitted to the server. It is only passed to MSmall. This approach
leverages the activations of MLarge to increase the accuracy of MSmall for parts of the task while
ensuring that sensitive information is never exposed outside the client’s environment.
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