
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

CLUSTERGEN: TOKEN GENERATION IN SUBLINEAR
TIME AND MEMORY WITH CLUSTERING KV CACHE

Amir Zandieh∗

Google Research
zandieh@google.com

Insu Han∗

KAIST
insu.han@kaist.ac.kr

Vahab Mirrokni
Google Research
mirrokni@google.com

Amin Karbasi
Yale University
amin.karbasi@yale.edu

ABSTRACT

Despite the significant success of large language models (LLMs), their extensive
memory requirements pose challenges for deploying them in long-context token
generation. The substantial memory footprint of LLM decoders arises from the
necessity to store all previous tokens in the attention module, a requirement im-
posed by key-value (KV) caching. In this work, our focus is on developing an
efficient compression technique for the KV cache. Empirical evidence indicates
a significant clustering tendency within key embeddings in the attention module.
Building on this key insight, we have devised a novel caching method with sublin-
ear complexity, employing online clustering on key tokens and online ℓ2 sampling
on values. The result is a provably accurate and efficient attention decoding al-
gorithm, termed CLUSTERGEN. Not only does this algorithm ensure a sublinear
memory footprint and sublinear time complexity, but we also establish a tight
error bound for our approach. Empirical evaluations on long-context question-
answering tasks demonstrate that CLUSTERGEN significantly outperforms exist-
ing and state-of-the-art KV cache compression methods in terms of performance
and efficiency.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023) play a crucial role
in various natural language processing applications, including dialog systems (Taori et al., 2023;
Chiang et al., 2023), coding assistance (Chen et al., 2021; Roziere et al., 2023), and image/video
generations from text (Radford et al., 2021; Ho et al., 2022). All of these models rely on the trans-
former architecture, with the attention mechanism serving as the key component.

To fully harness the capabilities of LLMs, they must demonstrate both efficiency and accuracy in
generating long sequences. In practical applications, deploying LLMs to generate tokens in an
autoregressive manner involves a sequential decoding process, where attention is dynamically ap-
plied to each newly generated token. This process effectively constructs the output sequence in a
streaming manner, one token at a time. Therefore, as the sequence grows, the model has to produce
contextually relevant and coherent content.

A common method for autoregressive attention decoding involves the use of key-value (KV)
caching, where key and value pairs from all preceding tokens are cached and reused to prevent
redundant computations. However, this approach faces memory constraints, particularly when han-
dling long sequences. In particular, the memory requirements and runtime for generating each new
token increase linearly with context size, posing a significant challenge for efficient processing of
extensive sequences. This linear scaling directly impedes practical applicability in real-world sce-
narios, such as chat systems, where large contexts are often encountered.

∗Equal Contribution

1

mailto:zandieh@google.com
mailto:insu.han@kaist.ac.kr
mailto:mirrokni@google.com
mailto:amin.karbasi@yale.edu

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

We propose a novel approach designed to significantly reduce the memory and runtime complexity
of token generation, moving from conventional linear growth to sublinear scale.

1.1 STREAMING ATTENTION PROBLEM

Suppose a sequence of a vector pairs (q1,k1,v1), (q2,k2,v2), . . . is streamed where qi,ki,vi ∈ Rd

are called by query, key and value, respectively. The objective of streaming attention problem is to
compute the following:

softmax(Kn · qn)⊤ · Vn =
exp(Kn · qn)⊤ · Vn∑

i∈[n] exp(⟨ki, qn⟩)
, (1)

where Kn := [k1, . . . ,kn]
⊤ and Vn := [v1, . . . ,vn]

⊤ ∈ Rn×d are matrices defined by stacking
the keys and values in their respective rows. The output in Eq. (1) is often used for predicting the
next (n + 1)-th token and it is applied to a transformer model and introduces a new stream pair
(qn+1,kn+1,vn+1) is generated. However, storing these values and keys requires O(nd) memory,
posing a significant space complexity challenge for long-context models with large n. In this work,
we propose a novel approach designed to significantly reduce the memory and runtime complexity
of token generation, moving from conventional linear growth to sublinear scale.

2 CLUSTERGEN: SUBLINEAR TIME AND MEMORY ALGORITHM

To compute the attention output in Eq. (1) we need to calculate two terms; (i) the matrix-vector
product between Vn and exp(Kn ·qn) and (ii) the partition function

∑
i∈[n] exp(⟨ki, qn⟩). We will

briefly give a high-level approach that approximates each.

Matrix Vector Product. To efficiently approximate the matrix-vector product exp(Kn ·qn)⊤ ·Vn,
we make use of the row norm sampling approach (Drineas & Kannan, 2001; Cohen et al., 2016).
Specifically, when multiplying two matrices A ∈ Rm×n and B ∈ Rn×p, we randomly sample an
i.i.d. index i ∈ [n] with probability proportional to the ℓ2-norm of the i-th row in B. Then, we
estimate A · B by the average of the product between i-th column in A and i-th row in B. With
this approximation, we need only O(ε−2d log n) samples to guarantee an ε multiplicative error in
spectral norm for exp(Kn ·qn)⊤ ·Vn. Luckily, it can be implemented in a streaming setting through
a variant of reservoir sampling (Vitter, 1985).

More precisely, we maintain and update a list of s key-value pairs denoted byM. Initially, M is
filled with null values. After processing the first token tuple (q1,k1,v1), this list is populated with
s copies of the first key and value (k1,v1). Then, we perform a variant of reservoir sampling upon
observing any new token in the stream. At any iteration n of the stream, M is ensured to contain
s i.i.d. samples chosen at random from (k1,v1), . . . , (kn,vn) with probabilities proportional to

∥ki∥22. In other words, for each j ∈ [s] and i ∈ [n] it holds that Pr [M(j) = (ki,vi)] =
∥vi∥2

2∑
l∈[n]∥vl∥2

2

.

Partition Function. For the approximation of the partition function
∑

i∈[n] exp(⟨ki, qn⟩), we
construct a data structure (DS) that organizes the keys in the stream into a small number of clusters.
Instead of keeping all keys in each cluster, we maintain only a random subset of t samples from each
cluster. Such sampled keys in clusters can be used to estimate the partition function for any query
vector. A key challenge is to guarantee runtime and memory in sublinear in length of the stream.
To this end, we assume that the keys can be covered by a sublinear number of bounded diameter
clusters which can be defined as below.
Definition 2.1 ((m, δ)-clusterability). For a positive integer m and a real-valued δ > 0, a dataset
of points x1,x2, . . .xn ∈ Rd is considered (m, δ)-clusterable if there exists a size-m partition
C1, C2, . . . Cm ⊆ {xi}ni=1 satisfying that Ci ∩ Cj = ∅ for every i ̸= j and

⋃m
j=1 Cj = {xi}ni=1 and

for every j ∈ [m] and every distinct pair y, z ∈ Cj , ∥y − z∥2 ≤ δ.

With the clusterability assumption, we can construct the DS for partition function as follows. First
initialize the data structure D by an empty set. As new tokens in the stream are processed, new
clusters get added to this set. Each cluster is characterized by a representative point, which is the

2

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

50 0 50
30

20

10

0

10

20

15-layer 3-head key

50 0 50

50

25

0

25

50

75
15-layer 3-head value

0

250

500

750

1000

1250

1500

1750

2000
timesteps

(a) OPT-6.7B

50 0 50
75

50

25

0

25

50

75
15-layer 3-head key

50 0 50

50

0

50

15-layer 3-head value

0

1000

2000

3000

4000

5000

timesteps

(b) MPT-7B

50 0 50

50

0

50

15-layer 3-head key

50 0 50
100

50

0

50

100
15-layer 3-head value

0

1000

2000

3000

4000

5000

timesteps

(c) Llama-3.1-8B

50 0 50

50

0

50

15-layer 3-head key

100 50 0 50
75

50

25

0

25

50

75
15-layer 3-head value

0

1000

2000

3000

4000

5000

timesteps

(d) Gemma-2-9B

Figure 1: A t-SNE plot of cached keys (first row) and values (second row) embeddings from 4 open-
source models; (a) OPT-6.7B, (b) MPT-7B, (c) Llama-3.1-8B and (d) Gemma-2-9B using TriviaQA
dataset. Key embeddings are more clusterable than value ones. The green dots represent the centers
from the greedy k-center algorithm (Dyer & Frieze, 1985) where k=16.

first key assigned to that cluster by our algorithm. Throughout stream processing, we compute the
distance between the new key token and each existing cluster. Here the distance to an existing
cluster is defined as the distance to the aforementioned representative of the cluster. If there is a
cluster whose distance is less than δ, then the token is assigned to the nearest cluster, and we update
our random samples of keys from this cluster using reservoir sampling. If the distance from all
existing clusters is more than δ, we introduce a new cluster in D, and the new key becomes the
representative of this new cluster. At any point in the stream, this algorithm identifies at most m
clusters if the keys so far are (m, δ)-clusterable. If m grows sublinearly in the stream length n, the
memory and update time of our algorithm will be sublinear as well.

End-to-end Guarantee. Putting altogheter we are able to analyze the end-to-end performance.
Our main result is as follows:

Theorem 2.2. For any δ, r, ε > 0 and any sequence of (q1,k1,v1), . . . , (qn,kn,vn) where
qi,ki,vi ∈ Rd for all i ∈ [n], assume that ∥qn∥2 ≤ r. If we choose t = Ω

(
ε−2 · e2δ·r · log n

)
and

s = Ω(ε−2 · d), then with probability at least 0.99 we can compute a vector zn ∈ Rd that satisfies

∥zn −Attn(qn,Kn,Vn)∥2 ≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op . (2)

Furthermore, if the keys k1,k2, . . .kn are (m, δ)-clusterable as per Theorem B.1, then both the total
memory of the algorithm and its runtime during the n-th iteration is bounded by O(d · (mt+ s)).

Theorem B.4 demonstrates that if the keys can be clustered into some sublinear number m =
n1−Ω(1) of clusters with diameters at most δ, and the queries have bounded ℓ2-norms of at
most r such that δr = o(log n), then both memory and runtime can be O

(
ε−2 ·mdno(1)

)
=

O
(
ε−2 · dn1−Ω(1)

)
. A full proof of the theorem can be found in the supplementary material.

3 ABLATION STUDY: CLUSTERABILITY ON KEY AND VALUE EMBEDDINGS

We demonstrate the clusterability of KV cache from long-range tokens. We collect key and value
embeddings from 4 popular open-source language models; OPT-6.7B, MPT-7B, Llama-3.1-8B and
Gemma-2-9B, where each adopts different positional encoding methods across absolute positional en-
coding (AbsPE), Attention with Linear Biases (ALiBi) (Press et al., 2021) and Rotational Positional
Encodding (RoPE) (Su et al., 2024). We use prompts from TriviaQA dataset in LongBench (Li et al.,
2023), and the length of input tokens is approximately 5,600 tokens, except for OPT-6.7B, which has
a maximum sequence length of 2048. We then visualize the cached embeddings (at randomly se-
lected layer/head) using t-SNE (Van der Maaten & Hinton, 2008), identifying cluster center points
through the greedy k-center algorithm (Dyer & Frieze, 1985). The results are shown in Fig. 1.

3

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

n = 5k n = 7k n = 9k

Algorithm Cache Size (GB) Accuracy Cache Size (GB) Accuracy Cache Size (GB) Accuracy

Exact 2.351 0.98 3.488 1.0 4.613 0.68
Sink (Xiao et al., 2023) 1.511 (35% ↓) 0.56 2.012 (42% ↓) 0.56 2.262 (50% ↓) 0.38
H2O (Zhang et al., 2023) 1.511 (35% ↓) 0.66 2.012 (42% ↓) 0.58 2.262 (50% ↓) 0.38
CLUSTERGEN (our) 1.512 (35% ↓) 0.86 2.012 (42% ↓) 0.66 2.262 (50% ↓) 0.44

Table 1: Results on accuracy of line retrieval from LongEval (Li et al., 2023) dataset with context
length ranging 5k to 9k. Under the sublinear cache budgets in terms of the sequence length, the
proposed approach based on greedy k-center outperforms other methods over all sequence lengths.

Algorithm Single-QA Multi-QA Summurization Fewshot Code

Exact 70.05 56.00 56.67 190.44 108.41
Sink (Xiao et al., 2023) 54.19 51.91 53.47 184.94 96.15
CLUSTERGEN (our) 55.96 48.52 47.24 181.57 96.18

Table 2: Results on generation tasks for long-range prompts from LongBench (Li et al., 2023)
datasets. The prompt length is at most 20k and the cache size budget is set to 2k, i.e., ℓ = k = 1,024.

Observe that the key embeddings (first rows in Fig. 1) exhibit a higher degree of clusterability
compared to value embeddings. Furthermore, we note that the cluster centers (indicated by green
dots) corresponding to the key embeddings are evenly distributed across the entire embedding space.
In particular, the key embeddings demonstrate significant dispersion across different time steps, and
their cluster centers are distributed over the entire embedding space. Similar results are observed
across various layers and heads and can be founded in supplementary material.

4 EXPERIMENTS

Line Retrieval. We first evaluate our proposed algorithm on long-context line retrieval task in
LongEval (Li et al., 2023) benchmark. The task involves long-context line retrieval from extensive
documents, each comprising multiple lines, complete with line numbers and topics. The objective is
to precisely retrieve a specified number of lines corresponding to a target topic. We vary the number
of lines, representing the number of targets, to 200, 300, and 400 and they correspond to sequence
lengths of n =5,000, 7,000, and 9,000, respectively. Each dataset contains 50 distinct questions,
and we systematically extract the number from the generated answers and compute accuracies. The
answers are generated employing the longchat-7B model1, which is a fine-tuned version of the
Llama-2-7B model with long-range context length.

We compare our method to two KV cache compression algorithms; H2O (Zhang et al., 2023) and
AttentionSink (Xiao et al., 2023). To leverage this insight, we integrate it with our clustering ap-
proach; retain the most recent ℓ embeddings, in addition to k centers selected from the remaining
tokens. We apply the greedy k-center clustering algorithm once to compress the entire KV caches.
To make comparisons fair, we set cache memory budgets of all algorithms identical (i.e., ℓ+ k) We
set the compression ratio (ℓ + k)/n to fixed number, e.g., 0.35 for n = 5k, and report the highest
accuracy among all combinations of (r, k) where r ∈ {2048, 3072} as long as r does not exceed the
compressed length.

The results are reported in Table 1. We observe that our clustering-based method consistently out-
performs other algorithms across all sequence lengths. For instance, we achieve an accuracy of 44%
while utilizing only half of the cached KV embeddings with a length of 9k tokens, whereas both
H2O and AttentionSink can achieve accuracies 10% lower. This finding suggests that maintain-
ing the embedding information holds greater significance in sustaining the performance of LLMs
compared to attention scores and positional information.

1https://huggingface.co/lmsys/longchat-7b-v1.5-32k

4

https://huggingface.co/lmsys/longchat-7b-v1.5-32k

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Text Generation on Long-range Inputs. We evaluate our method on various tasks from
LongBench (Li et al., 2023) datasets including summarization, single/multi-document question-
answering, few-shot learning, and code completion. Similar to the above we choose longchat-7B
model and apply AttentionSink and CLUSTERGEN to the token generation process. The generated
texts are evaluated using metrics from the original code Li et al. (2023). We set the maximum input
length to 20,000 for all datasets and truncate the middle prompts when it overflows (i.e., first and
last 10,000 tokens are appended). We fix hyperparameters ℓ, r to 1,024 for all datasets and both
cache methods. The results are summarized in Table 1. As a result, our algorithm shows better
performance scores on single-document QA and code completion tasks.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Neural Information Processing
Systems (NeurIPS), 2023.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. 2023. URL https://vicuna.lmsys.org.

Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal Approximate Matrix Product in
Terms of Stable Rank. In International Colloquium on Automata, Languages, and Programming
(ICALP), 2016.

Petros Drineas and Ravi Kannan. Fast Monte-Carlo algorithms for approximate matrix multiplica-
tion. In Foundations of Computer Science (FOCS), 2001.

Martin E Dyer and Alan M Frieze. A simple heuristic for the p-centre problem. Operations Research
Letters, 1985.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model Tells You
What to Discard: Adaptive KV Cache Compression for LLMs. arXiv preprint arXiv:2310.01801,
2023.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How Long Can Context Length of Open-Source LLMs truly
Promise? In NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the Persistence of Importance
Hypothesis for LLM KV Cache Compression at Test Time. Neural Information Processing Sys-
tems (NeurIPS), 2023a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning (ICML), 2023b.

5

https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2302.13214
https://arxiv.org/pdf/2107.03374.pdf?trk=public_post_comment-text
https://arxiv.org/pdf/2107.03374.pdf?trk=public_post_comment-text
https://vicuna.lmsys.org
https://arxiv.org/pdf/1507.02268.pdf
https://arxiv.org/pdf/1507.02268.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=959921
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=959921
https://www.math.cmu.edu/users/af1p/Texfiles/simpheur.pdf
https://arxiv.org/pdf/2310.01801.pdf
https://arxiv.org/pdf/2310.01801.pdf
https://arxiv.org/pdf/2210.02303.pdf
https://arxiv.org/pdf/2210.02303.pdf
https://arxiv.org/pdf/2311.01282.pdf
https://openreview.net/pdf?id=LywifFNXV5
https://openreview.net/pdf?id=LywifFNXV5
https://openreview.net/pdf?id=JZfg6wGi6g
https://openreview.net/pdf?id=JZfg6wGi6g
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics.
Springer, 1998.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Tamas Sarlos, Xingyou Song, David Woodruff, and Qiuyi Zhang. Hardness of low rank approxima-
tion of entrywise transformed matrix products. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning
(ICML), 2023.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research (JMLR), 2008.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 1985.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2O: Heavy-Hitter Oracle for Efficient Gen-
erative Inference of Large Language Models. Neural Information Processing Systems (NeurIPS),
2023.

6

https://proceedings.mlr.press/v139/radford21a/radford21a.pdf
https://proceedings.mlr.press/v139/radford21a/radford21a.pdf
https://arxiv.org/pdf/2308.12950.pdf?fbclid=IwAR1lnwBO8AEH9CcL7HSpR4ZypJgzDTKtEnUPoyn81SBwvn3pcFcxUqAgZmE&trk=public_post_comment-text
https://arxiv.org/pdf/2303.06865.pdf
https://arxiv.org/pdf/2303.06865.pdf
https://arxiv.org/pdf/2104.09864.pdf
https://arxiv.org/pdf/2104.09864.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/pdf/2307.09288.pdf%C3%82%C2%A0
https://arxiv.org/pdf/2307.09288.pdf%C3%82%C2%A0
https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://dl.acm.org/doi/pdf/10.1145/3147.3165
https://arxiv.org/pdf/2309.17453.pdf
https://arxiv.org/pdf/2309.17453.pdf
https://arxiv.org/pdf/2306.14048.pdf
https://arxiv.org/pdf/2306.14048.pdf

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A RELATED WORK

Recent studies have underscored the need for efficient token generation, particularly with the rise of
long-range context datasets. Several recent works have developed efficient strategies for compress-
ing the KV cache. Zhang et al. (2023) proposed a greedy-type eviction algorithm that dynamically
keeps at most k ≪ n token embeddings based on the accumulated attention scores where they refer
to the Heavy Hitter Oracle (H2O). Liu et al. (2023a) empirically observed that tokens with initially
high attention scores tend to stay high during the future generation process. Motivated by this ob-
servation, the authors proposed a strategy that only keeps the most recent and pivotal tokens whose
attention scores are higher than a threshold. Ge et al. (2023) proposed an adaptive method of KV
cache compression which identifies the intrinsic structures of attention heads and uses them to deter-
mine the optimal compression policy. Xiao et al. (2023) observed that a simple eviction mechanism
that keeps only first few and last few tokens does not degrade much the decoding quality. They
additionally proposed a fine-tuning method to solve performance degradation from their method.
Liu et al. (2023b) developed an algorithm that reduces the generation latency by exploiting contex-
tual sparsity. In addition to algorithmic acceleration, there has also been a line of work optimizing
hardware resource configurations (Sheng et al., 2023; Hong et al., 2023). However, to the best of
our knowledge, none of these works have achieved an efficient method for KV cache with fully
sublinear-time memory space.

On the lower bound side, achieving subquadratic amortized runtime for producing output embed-
dings for n tokens in the worst-case instances is likely impossible without making assumptions about
the input tokens (Alman & Song, 2023; Sarlos et al., 2023). Therefore, to achieve fast runtime, it is
necessary to rely on certain assumptions about the input tokens.

B DETAILS OF SECTION 2

Note that our goal is to approximate the attention output in Eq. (1) with a space complexity that is
sublinear in context length n. To achieve this objective, we aim to design the following data structure
(DS) for efficiently approximating the streaming attention mechanism:

B.1 STREAMING ATTENTION DATA STRUCTURE

For every positive integer n and every stream of token triplets (q1,k1,v1), . . . , (qn,kn,vn) where
qi,ki,vi ∈ Rd, we aim to construct an efficient DS with the following properties:

• The required memory space is sublinear in n, i.e., o(n).
• Upon the arrival of a new triplet (qn+1,kn+1,vn+1) in the stream, the time complexity to update

is sublinear in n, i.e., o(n).
• Given such data structure, there exists an algorithm that outputs an estimator zn ∈ Rd in sublin-

ear time o(n) such that:∥∥zn − softmax(Kn · qn)⊤ · Vn

∥∥
2
≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op . (3)

In the rest of this section, our focus is on developing an algorithm to satisfy the above properties.
Note that the attention output in Eq. (1), using the definition of softmax, is equivalent to the following
expression:

Attn(qn,Kn,Vn) =
exp(Kn · qn)⊤ · Vn∑

i∈[n] exp(⟨ki, qn⟩)
.

Thus, to compute the attention output we need to calculate:

1. The matrix-vector product between Vn and exp(Kn · qn).
2. The partition function

∑
i∈[n] exp(⟨ki, qn⟩).

Thus, our DS needs to efficiently approximate each of these two operations. The matrix-vector prod-
uct exp(Kn · qn)⊤ ·Vn can be approximated efficiently using standard sampling-based techniques.
Specifically, we make use of the row norm sampling approach (Drineas & Kannan, 2001; Cohen

7

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

et al., 2016). When multiplying two matrices A ∈ Rm×n and B ∈ Rn×p, we randomly sample
an i.i.d. index i ∈ [n] with probability proportional to the ℓ2 norm of the i-th row in B. Then, we
estimate A · B by the average of the product between i-th column in A and i-th row in B. With
this approximation, we need only O(ε−2d log n) samples to guarantee an ε multiplicative error in
spectral norm for exp(Kn ·qn)⊤ ·Vn. Luckily, it can be implemented in a streaming setting through
a variant of reservoir sampling (Vitter, 1985).

The more challenging task is the sublinear-time approximation of the partition function∑
i∈[n] exp(⟨ki, qn⟩). We construct a DS for computing this under the assumption that the keys

in the token stream are organized into o(n) of clusters. To be more precise, we introduce the follow-
ing notion of clusterability:

Definition B.1 (Clusterability). For a positive integer m and a real-valued δ > 0, a dataset
of points x1,x2, . . .xn ∈ Rd is considered (m, δ)-clusterable if there exists a size-m partition
C1, C2, . . . Cm ⊆ {xi}ni=1 of the dataset satisfying the following conditions:

• Ci ∩ Cj = ∅ for every i ̸= j and
⋃m

j=1 Cj = {xi}ni=1.

• for every j ∈ [m] and every distinct pair y, z ∈ Cj , ∥y − z∥2 ≤ δ.

We demonstrate that under the assumption that the stream of keys k1,k2, . . .kn is (m, δ)-clusterable
as defined in Theorem B.1, with the number of clusters scaling sublinearly in stream length (m =
o(n)), it is possible to construct a DS with sublinear memory space. The procedure for this DS is
presented in Algorithm 1 which we refer to as CLUSTERGEN.

To verify this in the practical settings, we plot key embeddings from open-source LLMs in Fig. 1
and observe that they are indeed well clusterable on their embedding space. This motivates us to
utilize an efficient stream clustering algorithm on key embeddings. In the remainder of this section,
we provide a detailed explanation for the execution of the algorithm while simultaneously analyzing
it through a series of lemmas.

B.2 MATRIX PRODUCT DATA STRUCTURE

Here, we focus on the UPDATEMATRIXPRODUCT primitive and establish its correctness by intro-
ducing invariants that are maintained throughout the stream processing. This primitive maintains
and updates a list of s elements denoted byM in CLUSTERGEN (Algorithm 1). Initially, this list is
filled with null values. After processing the first token tuple (q1,k1,v1), this list is populated with
s copies of the first key and value (k1,v1). The procedure UPDATEMATRIXPRODUCT performs a
variant of reservoir sampling upon observing any new token in the stream. At any iteration n of the
stream,M is ensured to contain s i.i.d. samples chosen at random from (k1,v1), . . . , (kn,vn) with
probabilities proportional to ∥ki∥22. More precisely, the following invariants hold:

Lemma B.2 (Correctness of UPDATEMATRIXPRODUCT). For any positive integer s, at any itera-
tion n of the stream in Algorithm 1 the following properties are maintained:

1. µ =
∑

i∈[n] ∥vi∥22.

2. M is a list of s i.i.d. samples from {(k1,v1), . . . , (kn,vn)} where the probability distri-

bution for each element j ∈ [s] and i ∈ [n] is Pr [M(j) = (ki,vi)] =
∥vi∥2

2∑
l∈[n]∥vl∥2

2

.

Proof. The first property is trivial because µ is initialized at zero and is updated in line 6 of the
algorithm by adding the squared norms of vi’s. The proof of the second invariance is by induc-
tion. The base of induction holds for n = 1 because after processing the first token by procedure
UPDATEMATRIXPRODUCT we have Pr[M(j) = (k1,v1)] =

∥v1∥2
2

∥v1∥2
2

= 1 for j ∈ [s].

Now suppose that the inductive hypothesis holds for n and we prove it must also hold for n + 1.
For any j ∈ [s] in line 24 of Algorithm 1 with probability p =

∥vn+1∥2
2

µ+∥vn+1∥2
2

,M(j) gets updated to

8

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Algorithm 1 CLUSTERGEN: Sublinear Streaming Attention via Clustering

1: inputs: stream of token embeddings (qn,kn,vn), parameter δ > 0, positive integers s, t
2: Initialize µ← 0, D ← ∅,M←

[
null,

×s· · · · · ·
]

3: repeat
4: D ← UPDATESOFTMAXNORMALIZER(D, δ, t,kn)
5: M← UPDATEMATRIXPRODUCT(M, s, µ,kn,vn)

6: µ← µ+ ∥vn∥22
7: zn ← QUERYSTREAMATTN(D,M, s, t, µ, qn)
8: n← n+ 1
9: output zn

10: until Token stream ends

Procedure UPDATESOFTMAXNORMALIZER (D, δ, t,k)
11: Initialize D ← {(xi,Si, ni) : i ∈ [m]} and i∗ ← arg mini∈[m] ∥xi − k∥2
12: if ∥k − xi∗∥2 ≤ δ then
13: ni∗ ← ni∗ + 1
14: Suppose Si∗ is a list of t vectors in Rd

15: for j ∈ [t] do
16: Flip a coin and with probability p = 1

ni∗
, update the jth entry of Si∗ as Si∗(j)← k

17: end for
18: else
19: S ′ ←

[
k,

×t· · · · · ·
]

(contains t copies of k)
20: D = D ∪ {(k,S ′, 1)}
21: end if
22: return D
Procedure UPDATEMATRIXPRODUCT (M, s, µ,k,v)

23: SupposeM is a list of s tuples of vectors in Rd

24: for i ∈ [s] do
25: Flip a coin and with probability p =

∥v∥2
2

µ+∥v∥2
2

, update the ith entry ofM asM(i)← (k,v)

26: end for
27: returnM
Procedure QUERYSTREAMATTN (D,M, s, t, µ, q)

28: z ←
∑

(k,v)∈M
µ

s·∥v∥2
2

· exp(⟨q,k⟩) · v

29: τ ←
∑

(x,S,n′)∈D
n′

t ·
∑

k∈S exp(⟨q,k⟩)
30: return z/τ

(kn+1,vn+1). Since we showed that µ =
∑

i∈[n] ∥vi∥22 we have:

Pr[M(j) = (kn+1,vn+1)] =
∥vn+1∥22∑
l∈[n+1] ∥vl∥22

.

Moreover with probability 1− p = µ
µ+∥vn+1∥2

2

,M(j) keeps its previous value. Using the inductive
hypothesis we have that for every i ∈ [n]:

Pr[M(j) = (ki,vi)] =
∥vi∥22∑

l∈[n] ∥vl∥22
·

∑
l∈[n] ∥vl∥22∑

l∈[n+1] ∥vl∥22
=

∥vi∥22∑
l∈[n+1] ∥vl∥22

.

This completes the proof of Theorem B.2.

B.3 SOFTMAX NORMALIZER (PARTITION FUNCTION) DS

Here we delve into a detailed discussion of the UPDATESOFTMAXNORMALIZER primitive. This
primitive constructs and maintains a DS denoted by D, enabling accurate approximation of the

9

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

partition function in the softmax denominator for any query. A crucial requirement for the efficiency
of this primitive is that the key tokens must be (m, δ)-clusterable, as per Theorem B.1. Our algorithm
locates and stores a subsampled representation of each cluster in D in a small memory. Particularly,
to achieve sublinear memory complexity, instead of keeping all keys in each cluster which would
require O(n) memory space, we maintain only a random subset of t samples from each cluster.

Initially, D is an empty set. As new tokens in the stream are processed, new clusters get added to
this set. Each cluster is characterized by a representative point, which is the first key assigned to
that cluster by our algorithm. Throughout stream processing, we compute the distance between the
new key token and each existing cluster. Here the distance to an existing cluster is defined as the
distance to the aforementioned representative of the cluster. If there is a cluster whose distance is
less than δ, then the token is assigned to the nearest cluster, and we update our random samples of
keys from this cluster using reservoir sampling. If the distance from all existing clusters is more
than δ, we introduce a new cluster in D, and the new key becomes the representative of this new
cluster. At any point in the stream, this algorithm identifies at most m clusters if the keys so far are
(m, δ)-clusterable. If m grows sublinearly in the stream length n, the memory and update time of
our algorithm will be sublinear as well. Formally, we prove that the following invariant holds:

Lemma B.3 (Correctness of UPDATESOFTMAXNORMALIZER). For any δ > 0, any positive integer
t, at any iteration n of the stream in Algorithm 1 the following properties are maintained. D is a set
of m items of the form D = {(xi,Si, ni) : i ∈ [m]}, where there exists a partition of keys into m
disjoint subsets C1, C2, . . . Cm ⊆ {ki}ni=1 satisfying

⋃m
j=1 Cj = {ki}ni=1 and Ci ∩ Cj = ∅ for every

i ̸= j, such that for every i ∈ [m]:

1. xi ∈ Ci,

2. ni = |Ci|,

3. ∥xi − k′∥2 ≤ δ for every k′ ∈ Ci,

4. ∥xi − xj∥2 > δ for every i ̸= j,

5. Si is a set of t i.i.d. uniform samples from the set Ci.

Proof. The proof is by induction on the stream length n. The base of induction trivially holds
for n = 0, where D is an empty set. To prove the inductive step suppose that the induc-
tive hypothesis holds for some n. Specifically, suppose that D is a set of m items of the
form D = {(xi,Si, ni) : i ∈ [m]} and there exists a partition of keys into m disjoint subsets
C1, C2, . . . Cm ⊆ {ki}ni=1 as per in the lemma statement, such that for every i ∈ [m]: (1) xi ∈ Ci, (2)
ni = |Ci|, (3) ∥xi − k′∥2 ≤ δ for every k′ ∈ Ci, (4) ∥xi − xj∥2 > δ for every i ̸= j, and (5) Si is
a set of t i.i.d. uniform samples from the set Ci. Given this assumption, we prove that the inductive
step also holds for after processing the (n+ 1)-th key in the stream kn+1.

In the next iteration, specifically in line 12 of UPDATESOFTMAXNORMALIZER, the algorithm finds
the index i∗ ∈ [m] such that ∥xi∗ − kn+1∥2 is minimized. Two cases arise:

Case 1: ∥xi∗ − kn+1∥2 ≤ δ. In this case, the algorithm increments ni∗ ← ni∗ + 1 in line 14.
Consider the new partitioning of the keys defined as C′i = Ci for i ̸= i∗ and C′i∗ = Ci∗ ∪ {kn+1}.
It follows from the inductive hypothesis that for every i ∈ [m]: (1) xi ∈ C′i, (2) ni = |C′i|, (3)
∥xi − k′∥2 ≤ δ for every k′ ∈ C′i, and (4) ∥xi − xj∥2 > δ for every i ̸= j hold after the n + 1-th
iteration. Furthermore, since the algorithm does not alter the lists Si for i ̸= i∗, we have that (5) Si
is a set of t i.i.d. uniform samples from the set C′i for any i ̸= i∗. On the other hand, the algorithm in
line 17 performs reservoir sampling on the set Si∗ with new element kn+1 which implies that Si∗ is
a set of t i.i.d. uniform samples from the set C′i∗ . This completes the inductive step in the first case.

Case 2: ∥xi∗ − kn+1∥2 > δ. In this case, the algorithm adds a new element to D, thus, the
updated set is D′ = {(xi,Si, ni) : i ∈ [m + 1]} with xm+1 = kn+1 and nm+1 = 1. If we
consider the new partitioning of keys to be C1, C2, . . . Cm, Cm+1, where Cm+1 = {kn+1}, we can
use the inductive hypothesis to deduce that for any i ∈ [m + 1]: (1) xi ∈ Ci, (2) ni = |Ci|, (3)
∥xi − k′∥2 ≤ δ for every k′ ∈ Ci, and (4) ∥xi − xj∥2 > δ for every i ̸= j hold after the n + 1-th
iteration of the stream. Furthermore, Sm+1 is defined to be a list of t copies of kn+1, thus, (5) Si is

10

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

a set of t i.i.d. uniform samples from the set Ci for any i ∈ [m + 1]. This completes the inductive
step in this case and also concludes the proof of Theorem B.3.

B.4 STREAMING ATTENTION: MAIN THEOREM

Now we are ready to analyze the end-to-end performance of CLUSTERGEN and prove the main
theorem. We show that, given the data structures created throughout the stream and analyzed in
Theorem B.2 and Theorem B.3, the primitive QUERYSTREAMATTN can efficiently output an accu-
rate approximation to the streaming attention, satisfying Eq. (1).

Our analysis unfolds in two steps. First, we establish that the data structures created by UPDATE-
SOFTMAXNORMALIZER and UPDATEMATRIXPRODUCT can be stored in small memory and up-
dated very quickly if the sequence of keys is clusterable into a sublinear number of clusters. Then we
show that the QUERYSTREAMATTN can use these data structures to produce an accurate attention
output for any given query. Our main result is as follows:

Theorem B.4 (Efficiency and Correctness of Algorithm 1). For any δ, r, ε > 0, any positive integers
n, d, and any sequence of tokens (q1,k1,v1), (q2,k2,v2), . . . (qn,kn,vn) where qi,ki,vi ∈ Rd,
suppose that the followings hold

• t = Ω
(
ε−2 · e2δ·r log n

)
,

• s = Ω(ε−2 · d),

• ∥qn∥2 ≤ r.

Then, CLUSTERGEN (Algorithm 1) at n-th step of the stream processing outputs a vector zn ∈ Rd

that satisfies Eq. (1) with probability at least 0.99. Furthermore, if the keys k1,k2, . . .kn are (m, δ)-
clusterable as per Theorem B.1, then both the total memory of the algorithm and its runtime during
the n-th iteration is bounded by O(d · (mt+ s)).

Proof. We start the correctness proof by observing that all preconditions of Theorem B.3 are sat-
isfied, allowing us to invoke this lemma. Let the partition of keys into disjoint subsets be denoted
by C1, C2, . . . Cm′ ⊆ {ki}ni=1 satisfying

⋃m′

j=1 Cj = {ki}ni=1 and Ci ∩ Cj = ∅ for every i ̸= j

as per Theorem B.3 for some positive integer m′. Rewriting the partition function in the attention
denominator gives: ∑

j∈[n]

exp(⟨kj , qn⟩) =
∑

i∈[m′]

∑
k′∈Ci

exp(⟨k′, qn⟩).

Now by property (3) in Theorem B.3 and triangle inequality, for every i ∈ [m′] and every k′,k′′ ∈ Ci
we have:

∥k′ − k′′∥2 ≤ ∥k
′ − xi∥2 + ∥k

′′ − xi∥2 ≤ 2δ.

Therefore, using the precondition of the theorem on ∥qn∥2 ≤ r we have

exp(⟨k′, qn⟩)/ exp(⟨k′′, qn⟩) ≤ e2δ·r.

Using the above inequality and the assumption in the theorem statement regarding t =
Ω
(
ε−2 · e2δ·r log n

)
combined with the properties (2) and (5) proved in Theorem B.3, we can invoke

Chernoff-Hoeffding inequality (see e.g., McDiarmid (1998)) along with union bound to conclude
that the following holds simultaneously for all i ∈ [m′] with probability at least 1− 1

poly(n) :

ni

t
·
∑
k′∈Si

exp(⟨qn,k′⟩) ∈ (1± ε/3) ·
∑
k′∈Ci

exp(⟨k′, qn⟩)

Since the terms above are positive, by summing up the given inequality for all i ∈ [m′], we find that
the quantity τ computed in line 27 of Algorithm 1 satisfies the following:

Pr

τ ∈ (1± ε/3)
∑
j∈[n]

exp(⟨kj , qn⟩)

 ≥ 0.995 (4)

11

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Next, we invoke Theorem B.2 to derive an error bound on the approximate matrix-vector product
between the softmax vector and the matrix of values Vn. By leveraging well-established techniques
in approximate matrix products, such as the standard result from Drineas & Kannan (2001), and
using the conclusion of Theorem B.2 regardingM as a list of s = Ω(ε−2 · d) i.i.d. sample from

the probability distribution Pr[M(j) = (ki,vi)] =
∥vi∥2

2∑
l∈[n]∥vl∥2

2

for i ∈ [n] for i ∈ [n] and j ∈ [s],

we have that vector z computed in line 26 of Algorithm 1 satisfies the following inequality with a
probability of at least 0.995:∥∥z − exp(Kn · qn)⊤ · Vn

∥∥
2
≤ ε

3
∥exp(Kn · qn)∥2 ∥Vn∥op

Now by combining inequalities in Eq. (4) and Eq. (5) using union bound and triangle inequality
we find that the output of Algorithm 1 computed in line 28 as z/τ satisfies the following with
probability at least 0.99∥∥z/τ − softmax(Kn · qn)⊤ · Vn

∥∥
2
≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op.

This completes the correctness proof of Theorem B.4.

Memory and Runtime. First, note that the memory requirement for storing the listM in Algo-
rithm 1 is O(sd) because it contains s pairs of d-dimensional vectors. Next, to bound the memory
requirement for storing D we need to bound the size of this set which we denoted by m′. According
to properties (1) and (4) in Theorem B.3, for every i ∈ [m′] there exist xi ∈ {k1,k2, . . .kn} such
that ∥xi − xj∥2 > δ for i ̸= j. Given the assumption in the theorem statement that keys are (m, δ)-
clusterable, by the definition of clusterability in Theorem B.1 along with the pigeonhole principle,
we must have m′ ≤ m. Therefore storing D will require O(m′td) = O(mtd) because it is a set of
m′ elements, and each element of this set is a list of t vectors in dimension d.

Three major operations dominate the runtime of the n-th iteration. Firstly, executing UPDATESOFT-
MAXNORMALIZER requires computing m′ distances in line 12 that takes O(md) time. Addition-
ally, the for loop in line 16 takes O(td) time. Secondly, UPDATEMATRIXPRODUCT has a runtime
bounded by O(sd). Thirdly, running QUERYSTREAMATTN involves O(sd) operations in line 26
and O(m′td) = O(mtd) operations in line 27. As a result, the total runtime of Algorithm 1 in n-th
iteration is O(mtd+ sd).

Theorem B.4 demonstrates that if the keys can be clustered into some sublinear number m =
n1−Ω(1) of clusters with diameters at most δ, and the queries have bounded ℓ2 norms of at most
r such that the product of the cluster diameter and maximum ℓ2 norm of queries is bounded by
δr = o(log n), then Algorithm 1 operates with sublinear O

(
ε−2 ·mdno(1)

)
= O

(
ε−2 · dn1−Ω(1)

)
memory and runtime. We summarize this in the following corollary:
Corollary B.5. Suppose the preconditions of Theorem B.4 hold. If the diameter of key token clusters
δ and the maximum ℓ2 norm of queries r satisfy δr = o(log n), then the total memory and runtime
of Theorem B.4 are bounded by O

(
ε−2 · dmno(1)

)
. Moreover, if the number of key token clusters m

grows as a sublinear function of n, i.e., as m = n1−Ω(1), then the memory and runtime are bounded
by O

(
ε−2 · dn1−Ω(1)

)
.

The above results require that the key embeddings are well clusterable in their space, and the cluster
centers should cover all keys with a small radius. In the next section, we empirically explore distribu-
tions on key and value embeddings and verify that the keys are indeed distributed in their embedding
space. This supports that our assumption of clusterability on keys is reasonable in practical settings.

C ADDITIONAL EXPERIMENTS

C.1 BOUNDED NORM ON QUERY EMBEDDINGS

We additionally investigate assumption on the upper bound of query embeddings in Theorem B.4,
i.e., ∥qn∥2 ≤ r for some constant r > 0. Essentially, query embeddings are obtained by multi-
plying weights by the input embeddings, and they are typically passed through the Layer Normal-
ization (Ba, 2016). Therefore, entries of query embeddings are expected to be small assuming the
weight matrices have small eigenvalues, and the norms of query embeddings in our case after Layer
Normalization are expected to be small constants.

12

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

60 40 20 0 20 40 60

40

20

0

20

40

0-layer 19-head key

40 20 0 20 40 60

40

20

0

20

40

60

7-layer 27-head key

75 50 25 0 25 50 75

40

30

20

10

0

10

20

30
15-layer 11-head key

100 75 50 25 0 25 50 75

30

20

10

0

10

20

30

40
23-layer 13-head key

60 40 20 0 20 40 60

40

20

0

20

40

60

31-layer 27-head key

60 40 20 0 20 40 60

40

20

0

20

40

0-layer 19-head value

80 60 40 20 0 20 40 60

40

20

0

20

40

7-layer 27-head value

60 40 20 0 20 40 60
60

40

20

0

20

40

60
15-layer 11-head value

60 40 20 0 20 40
60

40

20

0

20

40

23-layer 13-head value

60 40 20 0 20 40 60

40

20

0

20

40

60

31-layer 27-head value

0

250

500

750

1000

1250

1500

1750

2000
timesteps

facebook/opt-6.7b

75 50 25 0 25 50 75

60

40

20

0

20

40

60

80

0-layer 19-head key

75 50 25 0 25 50 75 100
80

60

40

20

0

20

40

60

7-layer 27-head key

75 50 25 0 25 50 75

60

40

20

0

20

40

60
15-layer 11-head key

100 75 50 25 0 25 50 75 100

60

40

20

0

20

40

60

23-layer 13-head key

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

80
31-layer 27-head key

100 50 0 50 100

100

50

0

50

100

0-layer 19-head value

75 50 25 0 25 50 75

60

40

20

0

20

40

60

80
7-layer 27-head value

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80
15-layer 11-head value

75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

23-layer 13-head value

100 75 50 25 0 25 50 75 100

40

20

0

20

40

60

31-layer 27-head value

0

1000

2000

3000

4000

5000

timesteps
mosaicml/mpt-7b

100 75 50 25 0 25 50 75 100

60

40

20

0

20

40

60

80
0-layer 7-head key

100 50 0 50 100

100

75

50

25

0

25

50

75

100
7-layer 0-head key

75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

15-layer 0-head key

75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

80
23-layer 5-head key

100 75 50 25 0 25 50 75
100

75

50

25

0

25

50

75

31-layer 6-head key

100 75 50 25 0 25 50 75 100

100

50

0

50

100

0-layer 7-head value

75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

7-layer 0-head value

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

15-layer 0-head value

75 50 25 0 25 50 75

75

50

25

0

25

50

75

23-layer 5-head value

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

31-layer 6-head value

0

1000

2000

3000

4000

5000

timesteps
meta-llama/Meta-Llama-3.1-8B

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

0-layer 3-head key

100 50 0 50 100
80

60

40

20

0

20

40

60

7-layer 7-head key

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80
15-layer 2-head key

75 50 25 0 25 50 75

75

50

25

0

25

50

75

23-layer 4-head key

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

31-layer 6-head key

100 50 0 50 100

100

50

0

50

100

150
0-layer 3-head value

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80
7-layer 7-head value

80 60 40 20 0 20 40 60 80
100

75

50

25

0

25

50

75

100
15-layer 2-head value

75 50 25 0 25 50 75

75

50

25

0

25

50

75

23-layer 4-head value

75 50 25 0 25 50 75

75

50

25

0

25

50

75

31-layer 6-head value

0

1000

2000

3000

4000

5000

timesteps
google/gemma-2-9b

C.2 CLUSTERABILITY

We additionally provide t-SNE plots of key (first rows) and value (second rows) with more diverse
layers and heads, and similar results discussed in ?? are observed; a higher degree of clusterability
on the key embeddings compared to value ones.

13

	Introduction
	Streaming Attention Problem

	ClusterGen: Sublinear Time and Memory Algorithm
	Ablation Study: Clusterability on Key and Value Embeddings
	Experiments
	Related Work
	Details of alg-sec
	Streaming Attention Data Structure
	Matrix Product Data Structure
	Softmax Normalizer (Partition Function) DS
	Streaming Attention: Main Theorem

	Additional Experiments
	Bounded Norm on Query Embeddings
	Clusterability

