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Abstract001

Document parsing is essential for analyzing002
complex document structures and extracting003
fine-grained information, supporting numerous004
downstream applications. However, existing005
methods often require integrating multiple006
independent models to handle various parsing007
tasks, leading to high complexity and mainte-008
nance overhead. To address this, we propose009
DocFusion, a lightweight generative model010
with only 0.28B parameters. It unifies task011
representations and achieves collaborative train-012
ing through an improved objective function.013
Experiments reveal and leverage the mutually014
beneficial interaction among recognition tasks,015
and integrating recognition data significantly016
enhances detection performance. The final017
results demonstrate that DocFusion achieves018
state-of-the-art (SOTA) performance across019
four key tasks.020

1 Introduction021

Document parsing plays a crucial role in extracting022

structured data from complex documents, serving023

as a foundational technology for downstream appli-024

cations. It is particularly important in Retrieval-025

Augmented Generation (RAG) workflows (Ren026

et al., 2023; Zhang et al., 2022), where extracting027

organized and contextually rich information from028

documents can significantly enhance the perfor-029

mance of large language models (LLMs) (Jiang030

et al., 2023; Zhao et al., 2024a; Gao et al., 2024).031

However, information in real-world documents is032

often embedded in complex structures, such as033

hierarchical layouts, mathematical expressions, and034

tables, which makes automatic parsing substan-035

tially challenging.036

To address these issues, research on document037

parsing has primarily focused on four key tasks:038

document layout analysis (DLA), mathematical039

expression recognition (MER), table recognition040

(TR), and optical character recognition (OCR).041
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Figure 1: Pipeline systems integrate multiple modules
into a Framework. In contrast, DocFusion incorporates
multiple functionalities within a single model.

Existing methods can be categorized into two main 042

approaches: multi-module pipeline systems and 043

end-to-end page-level OCR models. As shown 044

in Figure 1, multi-module pipeline systems de- 045

compose document parsing tasks into independent 046

modules, allowing each module to adopt the most 047

suitable model. For example, DocLayout-YOLO 048

(Zhao et al., 2024c) has demonstrated excellent 049

performance in DLA, while UniMERNet (Wang 050

et al., 2024a) achieves SOTA results in MER. 051

Although this approach improves performance 052

for specific tasks, integrating multiple models 053

into a single system increases overall complexity. 054

Moreover, these systems fail to fully exploit task- 055

level collaboration, leading to inefficiencies in 056

parameter usage. In contrast, end-to-end page- 057

level OCR models, such as Nougat (Blecher 058

et al., 2023) and GOT (Wei et al., 2024), can 059

seamlessly integrate multiple recognition tasks. 060

While the outputs of these models demonstrate a 061

well-organized logical structure, the models lack 062

the ability of DLA to generate bounding boxes 063

(bboxes) for layout elements. As a result, they 064

cannot preserve the spatial relationships between 065

documents and their corresponding layouts. This 066

limitation is critical in RAG workflows, where 067

preserving spatial relationships is essential for 068
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achieving interpretability. The absence of DLA069

also affects single-task applications such as MER070

and TR, which depend on accurate layout analysis071

for reliable results. These limitations highlight the072

urgent need for an approach to reduce system com-073

plexity and integrate multiple tasks. Therefore, we074

aim to develop a model capable of simultaneously075

handling DLA, MER, OCR, and TR tasks.076

In this paper, we propose DocFusion, a unified077

generative multi-task model designed to address078

four key document parsing tasks. DocFusion079

leverages multi-task collaboration to achieve com-080

prehensive optimization in document parsing. To081

handle complex layouts, we introduce Dual Atten-082

tion (Ding et al., 2022), which combines spatial and083

channel information interactions. This mechanism084

enhances DocFusion’s ability to process complex085

tasks with greater accuracy. To address the086

challenge of loss convergence in detection tasks087

(DLA) within a generative framework, we design088

a specialized objective function. The challenge089

arises from the conflict between the continuous090

nature of coordinate data and the discrete nature of091

token generation. Our objective function applies a092

one-dimensional convolution to smooth the discrete093

generation distribution. This approach significantly094

accelerates loss convergence and enables efficient095

joint training.096

Experimental results demonstrate that DocFu-097

sion achieves leading performance across all four098

tasks. Additionally, the recognition tasks mutually099

enhance each other’s performance, leading to100

overall improvements compared to single-task101

setups. Notably, OCR improves DLA by providing102

enriched textual context, enabling more precise103

layout analysis. Further experiments validate the104

effectiveness of the improved objective function,105

demonstrating its key role in enabling task collabo-106

ration and performance gains.107

Our contributions are summarized as follows:108

• We propose DocFusion, a unified generative109

multi-task model that standardizes task for-110

mulations and achieves SOTA performance111

across four key document parsing tasks: DLA,112

MER, TR, and OCR.113

• Experimental results demonstrate that incor-114

porating multi-task data significantly outper-115

forms single-task setups, providing insights116

into the benefits of multi-task learning.117

• We propose an improved objective function118

to directly address the conflict between the 119

continuous nature of coordinate data and the 120

discrete nature of token generation in detec- 121

tion tasks within the generative framework. 122

• We constructed a large-scale dataset contain- 123

ing 1.5M LaTeX-annotated math expressions 124

and 100K tables, standardized for consistency, 125

providing a valuable resource for advancing 126

document parsing research. 127

Tool Size Type DLA MER TR OCR
UniMER (2024a) 325M M ✓
DocLayout(2024c) 20M M ✓
StructTable (2024) 938M M ✓
ViTLP (2024) 253M M ✓ ✓ ✓
Nougat (2023) 350M M ✓ ✓ ✓
GOT (2024) 580M M ✓ ✓ ✓
open-parse (2024) - S ✓ ✓ ✓
LlamaParse (2024) - S ✓ ✓ ✓ ✓
DeepDoc (2024) - S ✓ ✓ ✓
MinerU (2024) - S ✓ ✓ ✓ ✓
DocFusion 289M M ✓ ✓ ✓ ✓

Table 1: Capabilities of document parsing tools. Type:
M represents a model, while S denotes a system. DLA:
Document Layout Analysis. MER: Math Expression
Recognition. TR: Table Recognition. OCR: Optical
Character Recognition.

2 Related Work 128

Document Parsing Models. Document parsing 129

models have seen remarkable progress across 130

various tasks. DLA has evolved from vision- 131

based methods (Wick and Puppe, 2018; Bao et al., 132

2021) to multimodal approaches integrating textual 133

features (Xu et al., 2022; Huang et al., 2022). 134

OCR has transitioned from template matching 135

(Smith, 2007) to deep learning-based solutions 136

(Bušta et al., 2017; Chen et al., 2021; Mosbah 137

et al., 2024). MER progressed from symbol 138

segmentation (Miller and Viola, 1998) to CNN- 139

RNN hybrids (Le et al., 2019) and Transformer- 140

based models (Wang et al., 2024a). Similarly, 141

TR now employs methods like grid segmentation 142

and image-to-sequence techniques to reconstruct 143

structured data (Qasim et al., 2019; Huang et al., 144

2023; Xia et al., 2024). Page-level end-to-end OCR 145

models like Nougat (Blecher et al., 2023) and GOT 146

(Wei et al., 2024) simplify workflows by integrating 147

multi recognition tasks. 148

Modular Pipeline Systems. The advancements 149

in task-specific models have driven the develop- 150

ment of modular pipeline systems, which process 151
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<DLA>

<MER>

<OCR>

<TR>

Header<loc_897><loc_
122><loc_89><loc_928>
Text<loc_77><loc_32>
<loc_189><loc_56>
<loc_77><loc_32>
<loc_189><loc_56> ......

H=H_{\mathrm{DHM}}+H_{E}+H_{\Gamma}\,.

\begin{tabular}{|c|r|r|r|r|r|} 
\hline \hline $t$ & \ \ $t^{\perp}$ & \ \ $U$ & \ \
$\Gamma$ \ \ & \ \ $T_{\rm IMT}({\rm VO}_2)$ \ \ &
\ \ $E_{\rm IMT}({\rm VO}_2)$ \ \ \\\hline $0.25$ & 

$0.3$ & $2.5$ & $10^{-3}$ & $2.9 \times 10^{-2}$ 
& $10^{-3}$ - 10^{-2}$ \\ \hline
\end{tabular}

We consider a correlated insulator driven out of equi-
librium by a DC electric field and coupled to a heat sink. 
The total Hamiltonian of the electronic many-body sys-
tem, its non-equilibrium drive, and its dissipative envi-
ronment reads

DocFusion
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Figure 2: The model comprises three key components: a visual encoder, a text embedding layer and a Transformer
decoder. The image features extracted by the visual encoder and the instruction embeddings are combined and then
passed to the Transformer decoder, which produces the final output sequence.

complex document structures through specialized152

modules. For instance, Open-Parse(Filimonov,153

2024) performs well in incrementally parsing154

complex layouts but lacks support for MER. Other155

systems, such as DeepDoc(Yu, 2024) and Llama-156

Parse(Liu, 2024), extend the scope of modular157

pipelines to handle more diverse tasks. In particular,158

MinerU(Zhao et al., 2024b) stands out by sup-159

porting advanced features such as complex layout160

parsing and Markdown conversion. However,161

despite their flexibility, modular systems face162

significant challenges in practical deployment. The163

variability in environmental dependencies between164

modules increases the complexity of maintenance.165

Furthermore, tasks that could be efficiently handled166

by a single module are often divided among167

multiple modules, leading to unnecessary system168

overhead. These limitations highlight the need for169

more unified and efficient frameworks to address170

the growing demands of document parsing.171

3 DocFusion172

We introduce the model architecture (3.1) and173

explain how detection tasks are integrated into174

the generative framework. Then, we discuss175

the challenges (3.2) of detection tasks within176

this framework. Next, we explain the improved177

objective function (3.3)178

3.1 Architecture 179

As shown in Figure 2, the architecture of Doc- 180

Fusion consists of three main components: a 181

vision encoder, a text embedding layer, and a 182

Transformer decoder. Since the task instructions 183

are limited and predefined, no Transformer encoder 184

is included; instead, task-specific prompts are 185

directly embedded, simplifying the architecture. 186

To unify the representation of object detection 187

and text recognition tasks, we adopt a coordinate 188

quantization representation (Xiao et al., 2023). 189

Specifically, images are quantized into a fixed 190

resolution (e.g., 1000×1000), and coordinates 191

are represented as discrete tokens (e.g., <loc_1>, 192

<loc_2>, ..., <loc_1000>). This approach enables 193

the use of a unified regression framework for 194

detection tasks, simplifying multi-task integration. 195

To address the challenges posed by densely 196

structured content, the vision encoder incorporates 197

a Dual Attention mechanism (Ding et al., 2022), 198

which captures interactions across channel and 199

spatial dimensions, enhancing feature extraction 200

for intricate document layouts. Additionally, the 201

traditional feed-forward network (FFN) is removed, 202

reducing both parameter count and computational 203

cost, further improving model efficiency. The 204

vision encoder processes input images I ∈ 205

RH×W×3 into visual features, flattened as token 206
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Figure 3: The Softmax distribution of logits for a target
token and its neighboring tokens after the loss has
stabilized.

embeddings V ∈ RNv×Dv . These embeddings are207

transformed for compatibility with task-specific208

prompt embeddings Tprompt ∈ RNt×D. The209

combined input X = [V′;Tprompt] is then passed210

to the Transformer decoder to generate predictions.211

By integrating Dual Attention, coordinate quanti-212

zation, and optimizing its architecture, DocFusion213

efficiently handles complex document parsing tasks214

with high precision and computational efficiency.215

3.2 Challenges and Motivations216

While representing object detection as text regres-217

sion enables joint training of layout analysis and218

page element recognition under a unified cross-219

entropy-based framework, it inherently forces con-220

tinuous coordinates into discrete token spaces. This221

mismatch creates several challenges, especially in222

fine-tuning small coordinate adjustments, where223

the model struggles to produce accurate gradients,224

reducing training stability. As shown in Figure 3,225

small unavoidable deviations in coordinate labels226

smooth out the softmax distribution, preventing227

the target token’s probability from forming a228

sharp peak. This makes it harder for the model229

to escape local optima and limits its learning230

capacity. Additionally, traditional cross-entropy231

loss, which is designed for discrete classification232

tasks, does not handle continuous changes well,233

further increasing inaccuracies during training.234

In multi-task settings, these issues become235

even more challenging. The conflict between236

discrete loss functions and continuous coordinate237

optimization can skew gradients, causing one238

task to dominate at the cost of others. This239

imbalance reduces performance in other tasks and240

harms the model’s ability to predict coordinates 241

accurately, limiting its overall effectiveness in 242

complex document parsing tasks. Solving these 243

problems is critical to improving both localization 244

accuracy and training stability across tasks. 245

3.3 Objective function 246

To address these challenges, we propose an 247

improved objective function that applies a one- 248

dimensional convolution over the probability dis- 249

tribution, refining the model’s sensitivity to small 250

coordinate changes while preserving the discrete 251

treatment of cross-entropy. This approach helps 252

alleviate the mismatch between discrete tokens and 253

continuous coordinates, improves gradient quality, 254

and prevents the coordinate prediction task from 255

dominating the optimization process. In doing 256

so, it enhances localization accuracy, supports 257

stable multi-task training, and achieves better 258

alignment with the desired properties identified in 259

the motivating considerations. 260

Let the model’s output logits be denoted as 261

Z ∈ RB×L×V , where B is the batch size, L is 262

the sequence length, and V is the vocabulary size. 263

The target labels are denoted as T ∈ NB×L. The 264

range of indices corresponding to coordinate tokens 265

is defined as [s, e], representing their positions in 266

the vocabulary. 267

The standard softmax probability distribution is 268

first computed as: 269

P = softmax(Z) (1) 270

A mask is then applied to zero out probabilities 271

outside the range [s, e], creating a modified 272

probability tensor P′: 273

P′
ijk =

{
Pijk, if k ∈ [s, e]

0, otherwise
(2) 274

Next, a one-dimensional convolution kernel 275

K ∈ R1×1×k is constructed based on a Gaussian 276

distribution, where k is the kernel size (an odd 277

integer greater than 1), and σ is the standard 278

deviation. The kernel weights are computed as: 279

Ki = exp

(
−
(i− k−1

2 )2

2σ2

)
(3) 280

The kernel is then applied to P′ via one- 281

dimensional convolution along the vocabulary 282

dimension: 283

C = conv1d(P′,K, padding =
k − 1

2
) (4) 284
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This convolution preserves the size of the285

input and output tensors.The convolution result286

C is integrated back into the original probability287

distribution P within the index range [s, e], while288

retaining the original probabilities outside this289

range:290

P′′
ijk =

{
Cijk, if k ∈ [s, e]

Pijk, otherwise
(5)291

The final objective function is computed as:292

L = − 1

N

B∑
i=1

L∑
j=1

Mij logP
′′
ijTij

(6)293

4 Dataset Construction and Refinement294

In this section, we briefly describe the reconstruc-295

tion of the DLA dataset and the collection of the296

MER, TR, and OCR datasets, with more detailed297

information provided in the appendix.298

DLA Dataset. DocLaynet (Pfitzmann et al.,299

2022) was chosen for its comprehensive layout300

annotations, but its formula annotations, where301

content and numbering share the same bounding302

box, introduce noise for MER tasks. To address303

this, we re-extracted formulas from arXiv LaTeX304

files, trained a lightweight model to re-annotate the305

pages with manual verification.306

MER Dataset. The UniMER-1M (Wang et al.,307

2024a) has significantly advanced MER research308

but contains many redundant spaces in LaTeX code.309

Although some spaces are syntactically necessary,310

most are unnecessary, increasing output length311

and computational overhead. To address this, we312

constructed a new dataset by extracting content313

from LaTeX files, normalizing style variations and314

verifying accuracy through re-rendering. Models315

trained on our dataset produce LaTeX code that is316

approximately 34.2% shorter for complex expres-317

sions and 37.5% shorter for simple expressions on318

the UniMER-1M test set, demonstrating improved319

efficiency and performance.320

TR Dataset. In the TR task of DocFusion, we321

adopted LaTeX as the output format for two322

main reasons: (1) to ensure consistency with323

the MER task’s output format, enabling better324

multi-task collaboration; and (2) because LaTeX325

facilitates both the extraction of cell content and326

the restoration of the original table layout. Existing327

LaTeX-based TR datasets either lack sufficient328

scale or fail to separate tables from captions,329

conflicting with our DLA task. To overcome 330

these limitations, we constructed a high-quality TR 331

dataset with 100K samples by following a similar 332

approach to the MER dataset. 333

OCR Dataset. The dataset also sourced from 334

DocLaynet (Pfitzmann et al., 2022), provides 335

detailed layout and character annotations. We 336

extracted cropped images for each layout element 337

and paired them with corresponding character-level 338

text annotations. 339

5 Experiments 340

5.1 Implementation Details 341

We conducted our experiments using the PyTorch 342

framework on eight NVIDIA H100 GPUs, with an 343

initial learning rate of 1e-5, a per-GPU batch size of 344

12, and employing a cosine learning rate scheduler 345

to progressively adjust the model parameters. 346

5.2 Evaluation Metrics 347

5.2.1 Evaluation for Recognition 348

We employ traditional metrics such as BLEU 349

(Papineni et al., 2001) and Edit Distance (Lev- 350

enshtein, 1966) to evaluate generated sequences. 351

Additionally, we introduce task-specific metrics 352

like CDM (Wang et al., 2024b) and CSR to better 353

assess the quality and usability of LaTeX-based 354

outputs. 355

BLEU: The BLEU score is used for evaluating 356

machine-generated text, measuring n-gram overlap 357

with reference texts while incorporating a brevity 358

penalty to ensure balanced outputs. 359

Edit distance: Also known as Levenshtein dis- 360

tance, measures the minimum number of opera- 361

tions insertions, deletions, or substitutions required 362

to transform one string into another. 363

CSR: This score refers to the percentage of 364

generated LaTeX outputs that can be successfully 365

compiled into PDF. It reflects the correctness of the 366

model’s predictions and practical usability. 367

ExpRate: The ExpRate (Li et al., 2022) measures 368

the proportion of samples where the predicted text 369

matches the reference text without any errors. 370

CDM: The CDM evaluates MER by comparing 371

image-rendered expression at the character level 372

with spatial localization, ensuring fairness and 373

accuracy over text-based metrics like BLEU. 374

5.2.2 Evaluation for Detection 375

Since the DLA task in DocFusion does not use 376

confidence scores, we did not use the widely 377

5



Model size OCR MER TR

BLEU↑ EditDis↓ CDM↑ ExpRate↑ CSR↑ F1↑ CSR↑
Pix2tex (2022) - - - 76.5 41.7 95.9 - -
Texify (2023) 312M - - 88.6 71.7 97.8 - -
UniMERNet (2024a) 325M - - 99.0 89.5 99.7 - -
Qwen-VL-PLUS (2023) - 85.3 0.120 - - - - -
Qwen-VL-OCR (2023) - 94.9 0.055 - - - - -
StructEqTable (2024) 938M - - - - - 90.6 89.3
GOT (2024) 580M 86.7 0.115 87.7 67.3 97.8 86.9 81.6
DocFusion 289M 99.1 0.007 98.7 94.2 99.8 92.1 92.5

Table 2: Comparison of DocFusion with other models on three recognition tasks. Note: Due to differences in
training styles across models, line break were consistently removed when calculating BLEU and Edit Distance.

Model Size DocLayNet DocLayNet-Scientific
FPS↑

Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑
DETR (2020) 41M 87.1 91.6 89.3 95.9 96.2 96.0 3.7
DocLayout-YOLO (2024c) 20M 86.7 91.1 88.9 94.4 95.5 95.0 85.2
DocFusion 289M 88.0 88.4 88.2 96.8 96.2 96.4 7.5

Table 3: The performance of the models on DLA, where DocLayNet-Scientific refers to the scientific document
subset of the Doclaynet. Note: DETR and DocLayout-YOLO are limited to object detection tasks only.

adopted Average Precision (AP) metric from the378

object detection field. Instead, we focus on the379

following metrics:380

Precision: Precision measures the proportion of381

correctly identified positive instances among all382

predicted positives.383

Recall: Recall measures the proportion of correctly384

identified positive instances among all actual385

positives.386

F1-score: The F1-score balances precision and387

recall, serving as their harmonic mean. This metric388

is particularly useful for evaluating the trade-off389

between precision and recall in the DLA task.390

FPS: FPS measures the number of frames pro-391

cessed by the model per second, providing an392

indication of the model’s inference speed and393

efficiency.394

5.3 Main Results395

We use UnimerNet (Wang et al., 2024a) for396

MER, StructEqTable (Xia et al., 2024) for TR,397

DocLayout-YOLO (Zhao et al., 2024c) for DLA,398

and Qwen-VL-OCR (Bai et al., 2023) for OCR as399

baselines, as well as other widely used models for400

comparison. These baselines were selected for their401

strong performance and task relevance. The results402

show that DocFusion demonstrates competitive403

performance against other SOTA methods.404

5.3.1 MER performance 405

We evaluated our model using the test subset of the 406

UniMER-1M (Wang et al., 2024a), with a focus on 407

the Simple Printed Expression (SPE) and Complex 408

Printed Expression (CPE) subsets, as DocFusion 409

is specifically designed for processing printed 410

documents. As shown in Table 2, DocFusion per- 411

forms exceptionally well across multiple evaluation 412

metrics, particularly in CSR and ExpRate. Notably, 413

its ExpRate exceeds that of the second-ranked 414

UniMERNet by 5.2%, demonstrating its superior 415

reliability in real-world document parsing. The 416

results presented here combine the performance of 417

both SPE and CPE, with detailed separate results 418

provided in the appendix. 419

5.3.2 TR performance 420

We constructed a benchmark dataset consisting 421

of 2,500 table images extracted from LaTeX 422

documents, including both simple and relatively 423

complex tables, all of which were manually 424

verified. To accommodate the model parameters 425

and maximum sequence length, the LaTeX ground 426

truth for the test set was limited to a maximum 427

of 1,024 tokens. Using LatexNodes2Text, we 428

extracted the content of each table cell to computed 429

F1 scores (The detailed extraction method is 430

presented in the appendix). As shown in Table 2, 431
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Train Dataset
OCR MER TR DLA

BLEU↑ EditDis↓ CDM↑ CSRMER↑ F1↑ CSRTR↑ F1↑

Task-Specific 98.8 0.010 98.5 99.8 91.2 92.7 87.8

OCR+DLA 98.5 0.010 - - - - 88.9

OCR+MER+TR 99.1 0.008 98.9 99.9 92.3 94.6 -

Table 4: Ablation experiments on task collaboration, comparison of task performance when using Task-specific
training, where each task is trained independently, and other joint multi-task strategies.

DocFusion performs excellently on this benchmark,432

with both F1 and CSR scores exceeding those of the433

second-ranked model by 1.6%, demonstrating its434

superior ability to handle both simple and complex435

table structures.436

5.3.3 OCR performance437

We separated 3,000 English image samples from438

the originally constructed dataset as the test set.439

As shown in Table 2, DocFusion demonstrates440

outstanding performance in both BLEU and441

EditDis, achieving more precise recognition of442

layout elements. This performance improvement is443

primarily attributed to DocFusion’s joint training444

on layout analysis and text recognition tasks, which445

enhances the model’s efficiency and effectiveness446

in handling complex document structures. These447

results further validate the effectiveness of the448

proposed training strategy, especially for document449

parsing tasks involving both text content and layout450

element recognition.451

5.3.4 DLA performance452

DocFusion generates layout element labels and453

coordinates by sequentially predicting tokens454

without relying on confidence scores. Since the455

commonly used Average Precision (AP) metric456

in object detection depends on confidence scores,457

it cannot be directly applied in this evaluation.458

To ensure a fair comparison with confidence-459

based models, we adopt an alternative evaluation460

method. For these models, we compute Precision,461

Recall, and F1-score at different thresholds and462

select the maximum F1-score across all thresholds463

as the final evaluation metric. As shown in464

Table 3, DocFusion may not achieve outstanding465

performance on the entire DocLaynet test set but466

performs well in the domain of scientific document467

detection. This could be attributed to its ability468

to generate bounding boxes with clean edges. In469

terms of processing speed, although DocFusion has470

more parameters than DETR, another Transformer- 471

based model, it achieves faster processing due 472

to the use of Flash-Attention. Compared to 473

YOLO, DocFusion is slightly slower but does 474

not require threshold tuning to achieve optimal 475

performance, offering high performance without 476

additional adjustments. 477

5.4 Ablation Study 478

5.4.1 OCR-Driven Enhancement of DLA 479

This section explores the impact of OCR on DLA 480

performance. As shown in Table 4, the results in 481

the DLA column from the first and second rows 482

indicate that adding the OCR task improves DLA 483

performance, with an F1 increase of up to 1.3%. 484

This result demonstrates the effectiveness of using 485

textual information in joint training. Compared 486

to independent training that relies only on visual 487

features, OCR significantly enhances the model’s 488

robustness and generalization. For example, tables 489

and mathematical expressions are layout elements 490

with clear visual features, which the model can 491

often recognize effectively. In contrast, text or 492

titles have less distinctive visual features, making it 493

challenging to predict their labels based on visual 494

information alone. Textual cues play a crucial 495

role in these cases. These findings confirm that 496

OCR is essential for improving DLA performance. 497

By providing complementary textual information, 498

OCR strengthens the collaboration between visual 499

and semantic features, resulting in better overall 500

performance. 501

5.4.2 Collaboration of Recognition Tasks 502

In this section, we explore the collaboration among 503

the recognition tasks OCR, TR, and MER. As 504

shown in Table 4, the experimental results from the 505

first and third rows demonstrate that joint training 506

yields better performance compared to training 507

each task individually. Specifically, OCR achieves 508

a 0.3% improvement in BLEU score, MER sees 509
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Objective
Function

OCR MER TR DLA

BLEU↑ EditDis↓ CDM↑ CSRMER↑ F1↑ CSRTR↑ F1↑

CE 97.3 0.009 97.8 96.5 90.2 89.1 87.9

CE∗ 99.1 0.007 98.7 99.8 92.1 92.5 88.2

Table 5: Ablation analysis of the improved objective function was conducted on the same dataset across four tasks:
OCR, MER, TR, and DLA. CE represents training with the standard cross-entropy loss, while CE∗ denotes training
with the improved objective function.

Figure 4: Validation loss curves under identical
hyperparameter settings, where the only variation is
the choice of the objective function.

increases of 0.4% in CDM and 0.1% in CSR,510

and TR benefits most significantly, with a 2.1%511

improvement in F1 score for cell parsing and a512

2.0% increase in CSR. This collaboration enables513

the model to leverage shared information across514

tasks, enhancing individual task performance and515

improving overall document parsing capabilities.516

These results demonstrate that multi-task col-517

laboration effectively enhances performance by518

leveraging shared information.519

5.4.3 Results of improved objective function520

In this section, we compared the original cross-521

entropy and the improved objective function in522

recognition and detection tasks. As shown in523

Table 5, the results demonstrate that the improved524

objective function led to significant performance525

gains across both task categories. In recognition526

tasks, the BLEU score in the OCR task saw an527

improvement of 1.8%. Additionally, the CDM528

metric in the MER task increased by 0.9%, while529

the F1 score in the TR task rose by 2.1%. Notably,530

for the CSR metric, which assesses LaTeX com-531

pilation success, the MER and TR tasks achieved532

gains of 3.3% and 3.8%, respectively, highlighting 533

enhanced usability and correctness of the LaTeX 534

outputs. For the detection task, the F1 score of the 535

DLA task increased by 0.34%. This improvement 536

can be attributed to the improved objective function, 537

which alleviates the issue of coordinate token 538

errors dominating the gradient. By addressing 539

this imbalance, the objective function not only 540

enhances the performance of recognition tasks 541

but also improves the accuracy of predicting 542

layout element categories in the detection task 543

itself. These results collectively show that the 544

improved objective function effectively addresses 545

key challenges in loss minimization, ensuring that 546

tasks such as DLA can operate within a generative 547

framework. It avoids gradient dominance issues 548

while achieving better task balance in a multi-task 549

learning setup, demonstrating its robustness and 550

versatility. 551

6 Conclusion 552

In this work, we introduced DocFusion, the first 553

approach to integrate the four modules of a 554

document parsing pipeline into a unified model 555

by designing a objective function tailored to 556

handle diverse data types across tasks. Our 557

method achieved SOTA performance on multiple 558

benchmarks. To enable downstream applications, 559

we re-annotated the widely used DocLayNet 560

dataset and constructed a large-scale formula-to- 561

LaTeX dataset, applying a unified standardization 562

process. Through detailed analysis, we observed 563

that DocFusion, as a lightweight model with 564

fewer parameters, effectively integrates multiple 565

tasks into a single framework, demonstrating both 566

efficiency and versatility in handling complex 567

document parsing challenges. In the future, we 568

aim to extend DocFusion to larger models and 569

further improve dataset standardization to enhance 570

its performance and applicability across broader 571

tasks and domains. 572
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Limitations573

In this section, we discuss the limitations of the574

proposed model, DocFusion. While the model has575

demonstrated strong performance across multiple576

document layout analysis subtasks on specific577

datasets, its design is constrained by a parameter578

size of 289M and a maximum output length of 1024579

tokens. These constraints may impact its ability to580

handle highly complex layouts or extremely long581

sequences, requiring further optimization for spe-582

cific use cases. Additionally, DocFusion’s reliance583

on PDF screenshots in the LaTeX recognition584

task limits its generalization to handwritten or585

other non-standard formats. For the detection task,586

although the model achieves competitive accuracy,587

its processing speed poses challenges for real-588

time or high-throughput applications, indicating589

a need for further improvements in computational590

efficiency to meet broader application demands.591
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A Appendix 753

A.1 DLA Dataset Reconstruction 754

Figure 5: The corresponding numbers were removed
from the annotated data for mathematical expression
detection.

In DocLaynet and other similar datasets, the 755

annotation of mathematical formulas has certain 756

limitations, as show in figure 5, the content of math 757

expression and numbering are typically annotated 758

within the same bounding box. This annotation 759

approach introduces noise in subsequent Mathe- 760

matical Expression Recognition (MER) tasks. To 761

address this issue, we extracted formulas from 762

arXiv LaTeX source files using regular expressions 763

and assigned unique colors and bounding boxes 764

to each element. Then, we employed a fuzzy 765

matching algorithm to ensure annotation accuracy 766

and eliminate overlaps. Finally, we trained a 767
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lightweight detection model and, combined with768

manual verification, re-annotated pages contain-769

ing formulas. These improvements significantly770

enhance the dataset’s applicability to subsequent771

MER tasks.772

A.2 MER and TR data standardization773

Issue Original Standardized
Bracket \{ \lbrace
Subsup a^1_2 a_2^1
Prime a′ a^{\prime}
Fraction \over \frac
Space \tabular{l c} \tabular{lc}

Table 6: Examples of LaTeX standardization for various
symbols and expressions.

We chose to standardize the output format as774

LaTeX for two recognition tasks involving non-775

plain-text elements. For MER, converting to776

LaTeX was essential as it provides a precise777

representation of mathematical formulas. For778

TR, in addition to ensuring format consistency,779

converting to LaTeX also allows for the restoration780

of the original content through compilation, and781

enables the extraction of cell elements using782

tools such as LatexNodes2Text, thus enhancing783

processing flexibility. We used regular expressions784

to extract relevant content from the LaTeX source785

files of research papers. However, due to variations786

in author writing styles, the same formula or787

table may appear in multiple forms, increasing788

the complexity of training. As show in table789

6 , we analyzed these different representations,790

standardized them to eliminate ambiguities and791

ensured consistency. To verify the accuracy of the792

standardized LaTeX code, we re-rendered it into793

images, creating a high-quality dataset that aligns794

with the actual input-output content.795
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