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Abstract

Document parsing is essential for analyzing
complex document structures and extracting
fine-grained information, supporting numerous
downstream applications. However, existing
methods often require integrating multiple
independent models to handle various parsing
tasks, leading to high complexity and mainte-
nance overhead. To address this, we propose
DocFusion, a lightweight generative model
with only 0.28B parameters. It unifies task
representations and achieves collaborative train-
ing through an improved objective function.
Experiments reveal and leverage the mutually
beneficial interaction among recognition tasks,
and integrating recognition data significantly
enhances detection performance. The final
results demonstrate that DocFusion achieves
state-of-the-art (SOTA) performance across
four key tasks.

1 Introduction

Document parsing plays a crucial role in extracting
structured data from complex documents, serving
as a foundational technology for downstream appli-
cations. It is particularly important in Retrieval-
Augmented Generation (RAG) workflows (Ren
et al., 2023; Zhang et al., 2022), where extracting
organized and contextually rich information from
documents can significantly enhance the perfor-
mance of large language models (LLMs) (Jiang
et al., 2023; Zhao et al., 2024a; Gao et al., 2024).
However, information in real-world documents is
often embedded in complex structures, such as
hierarchical layouts, mathematical expressions, and
tables, which makes automatic parsing substan-
tially challenging.

To address these issues, research on document
parsing has primarily focused on four key tasks:
document layout analysis (DLA), mathematical
expression recognition (MER), table recognition
(TR), and optical character recognition (OCR).
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Figure 1: Pipeline systems integrate multiple modules
into a Framework. In contrast, DocFusion incorporates
multiple functionalities within a single model.
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Existing methods can be categorized into two main
approaches: multi-module pipeline systems and
end-to-end page-level OCR models. As shown
in Figure 1, multi-module pipeline systems de-
compose document parsing tasks into independent
modules, allowing each module to adopt the most
suitable model. For example, DocLayout-YOLO
(Zhao et al., 2024¢) has demonstrated excellent
performance in DLA, while UniMERNet (Wang
et al., 2024a) achieves SOTA results in MER.
Although this approach improves performance
for specific tasks, integrating multiple models
into a single system increases overall complexity.
Moreover, these systems fail to fully exploit task-
level collaboration, leading to inefficiencies in
parameter usage. In contrast, end-to-end page-
level OCR models, such as Nougat (Blecher
et al., 2023) and GOT (Wei et al., 2024), can
seamlessly integrate multiple recognition tasks.
While the outputs of these models demonstrate a
well-organized logical structure, the models lack
the ability of DLA to generate bounding boxes
(bboxes) for layout elements. As a result, they
cannot preserve the spatial relationships between
documents and their corresponding layouts. This
limitation is critical in RAG workflows, where
preserving spatial relationships is essential for



achieving interpretability. The absence of DLA
also affects single-task applications such as MER
and TR, which depend on accurate layout analysis
for reliable results. These limitations highlight the
urgent need for an approach to reduce system com-
plexity and integrate multiple tasks. Therefore, we
aim to develop a model capable of simultaneously
handling DLA, MER, OCR, and TR tasks.

In this paper, we propose DocFusion, a unified
generative multi-task model designed to address
four key document parsing tasks. DocFusion
leverages multi-task collaboration to achieve com-
prehensive optimization in document parsing. To
handle complex layouts, we introduce Dual Atten-
tion (Ding et al., 2022), which combines spatial and
channel information interactions. This mechanism
enhances DocFusion’s ability to process complex
tasks with greater accuracy. To address the
challenge of loss convergence in detection tasks
(DLA) within a generative framework, we design
a specialized objective function. The challenge
arises from the conflict between the continuous
nature of coordinate data and the discrete nature of
token generation. Our objective function applies a
one-dimensional convolution to smooth the discrete
generation distribution. This approach significantly
accelerates loss convergence and enables efficient
joint training.

Experimental results demonstrate that DocFu-
sion achieves leading performance across all four
tasks. Additionally, the recognition tasks mutually
enhance each other’s performance, leading to
overall improvements compared to single-task
setups. Notably, OCR improves DLA by providing
enriched textual context, enabling more precise
layout analysis. Further experiments validate the
effectiveness of the improved objective function,
demonstrating its key role in enabling task collabo-
ration and performance gains.

Our contributions are summarized as follows:

* We propose DocFusion, a unified generative
multi-task model that standardizes task for-
mulations and achieves SOTA performance
across four key document parsing tasks: DLA,
MER, TR, and OCR.

» Experimental results demonstrate that incor-
porating multi-task data significantly outper-
forms single-task setups, providing insights
into the benefits of multi-task learning.

* We propose an improved objective function

to directly address the conflict between the
continuous nature of coordinate data and the
discrete nature of token generation in detec-
tion tasks within the generative framework.

* We constructed a large-scale dataset contain-
ing 1.5M LaTeX-annotated math expressions
and 100K tables, standardized for consistency,
providing a valuable resource for advancing
document parsing research.

Tool Size Type DLA MER TR OCR
UniMER (2024a) 325M M v
DocLayout(2024c) 20M M v

StructTable (2024) 938M M v
ViTLP (2024) 253M M v v v
Nougat (2023) 350M M v v v
GOT (2024) 580M M v v v
open-parse (2024) S v v v
LlamaParse (2024) S v v v v
DeepDoc (2024) S v v v
MinerU (2024) S v v v v
DocFusion 280M M v v v v

Table 1: Capabilities of document parsing tools. Type:
M represents a model, while S denotes a system. DLA:
Document Layout Analysis. MER: Math Expression
Recognition. TR: Table Recognition. OCR: Optical
Character Recognition.

2 Related Work

Document Parsing Models. Document parsing
models have seen remarkable progress across
various tasks. DLA has evolved from vision-
based methods (Wick and Puppe, 2018; Bao et al.,
2021) to multimodal approaches integrating textual
features (Xu et al., 2022; Huang et al., 2022).
OCR has transitioned from template matching
(Smith, 2007) to deep learning-based solutions
(Busta et al., 2017; Chen et al., 2021; Mosbah
et al., 2024). MER progressed from symbol
segmentation (Miller and Viola, 1998) to CNN-
RNN hybrids (Le et al., 2019) and Transformer-
based models (Wang et al., 2024a). Similarly,
TR now employs methods like grid segmentation
and image-to-sequence techniques to reconstruct
structured data (Qasim et al., 2019; Huang et al.,
2023; Xia et al., 2024). Page-level end-to-end OCR
models like Nougat (Blecher et al., 2023) and GOT
(Wei et al., 2024) simplify workflows by integrating
multi recognition tasks.

Modular Pipeline Systems. The advancements
in task-specific models have driven the develop-
ment of modular pipeline systems, which process
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Figure 2: The model comprises three key components: a visual encoder, a text embedding layer and a Transformer
decoder. The image features extracted by the visual encoder and the instruction embeddings are combined and then
passed to the Transformer decoder, which produces the final output sequence.

complex document structures through specialized
modules. For instance, Open-Parse(Filimonov,
2024) performs well in incrementally parsing
complex layouts but lacks support for MER. Other
systems, such as DeepDoc(Yu, 2024) and Llama-
Parse(Liu, 2024), extend the scope of modular
pipelines to handle more diverse tasks. In particular,
MinerU(Zhao et al., 2024b) stands out by sup-
porting advanced features such as complex layout
parsing and Markdown conversion. However,
despite their flexibility, modular systems face
significant challenges in practical deployment. The
variability in environmental dependencies between
modules increases the complexity of maintenance.
Furthermore, tasks that could be efficiently handled
by a single module are often divided among
multiple modules, leading to unnecessary system
overhead. These limitations highlight the need for
more unified and efficient frameworks to address
the growing demands of document parsing.

3 DocFusion

We introduce the model architecture (3.1) and
explain how detection tasks are integrated into
the generative framework. Then, we discuss
the challenges (3.2) of detection tasks within
this framework. Next, we explain the improved
objective function (3.3)

3.1 Architecture

As shown in Figure 2, the architecture of Doc-
Fusion consists of three main components: a
vision encoder, a text embedding layer, and a
Transformer decoder. Since the task instructions
are limited and predefined, no Transformer encoder
is included; instead, task-specific prompts are
directly embedded, simplifying the architecture.
To unify the representation of object detection
and text recognition tasks, we adopt a coordinate
quantization representation (Xiao et al., 2023).
Specifically, images are quantized into a fixed
resolution (e.g., 1000x1000), and coordinates
are represented as discrete tokens (e.g., <loc_1>,
<loc_2>, ..., <loc_1000>). This approach enables
the use of a unified regression framework for
detection tasks, simplifying multi-task integration.
To address the challenges posed by densely
structured content, the vision encoder incorporates
a Dual Attention mechanism (Ding et al., 2022),
which captures interactions across channel and
spatial dimensions, enhancing feature extraction
for intricate document layouts. Additionally, the
traditional feed-forward network (FFN) is removed,
reducing both parameter count and computational
cost, further improving model efficiency. The
vision encoder processes input images I €
RI*Wx3 into visual features, flattened as token
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Figure 3: The Softmax distribution of logits for a target
token and its neighboring tokens after the loss has
stabilized.

embeddings V € RYvXDv These embeddings are
transformed for compatibility with task-specific
prompt embeddings Tprompt € RM*DP  The
combined input X = [V’; Tprompt| is then passed
to the Transformer decoder to generate predictions.
By integrating Dual Attention, coordinate quanti-
zation, and optimizing its architecture, DocFusion
efficiently handles complex document parsing tasks
with high precision and computational efficiency.

3.2 Challenges and Motivations

While representing object detection as text regres-
sion enables joint training of layout analysis and
page element recognition under a unified cross-
entropy-based framework, it inherently forces con-
tinuous coordinates into discrete token spaces. This
mismatch creates several challenges, especially in
fine-tuning small coordinate adjustments, where
the model struggles to produce accurate gradients,
reducing training stability. As shown in Figure 3,
small unavoidable deviations in coordinate labels
smooth out the softmax distribution, preventing
the target token’s probability from forming a
sharp peak. This makes it harder for the model
to escape local optima and limits its learning
capacity. Additionally, traditional cross-entropy
loss, which is designed for discrete classification
tasks, does not handle continuous changes well,
further increasing inaccuracies during training.

In multi-task settings, these issues become
even more challenging. The conflict between
discrete loss functions and continuous coordinate
optimization can skew gradients, causing one
task to dominate at the cost of others. This
imbalance reduces performance in other tasks and

harms the model’s ability to predict coordinates
accurately, limiting its overall effectiveness in
complex document parsing tasks. Solving these
problems is critical to improving both localization
accuracy and training stability across tasks.

3.3 Objective function

To address these challenges, we propose an
improved objective function that applies a one-
dimensional convolution over the probability dis-
tribution, refining the model’s sensitivity to small
coordinate changes while preserving the discrete
treatment of cross-entropy. This approach helps
alleviate the mismatch between discrete tokens and
continuous coordinates, improves gradient quality,
and prevents the coordinate prediction task from
dominating the optimization process. In doing
so, it enhances localization accuracy, supports
stable multi-task training, and achieves better
alignment with the desired properties identified in
the motivating considerations.

Let the model’s output logits be denoted as
Z c RBXLXV where B is the batch size, L is
the sequence length, and V' is the vocabulary size.
The target labels are denoted as T € NB*L, The
range of indices corresponding to coordinate tokens
is defined as [s, €], representing their positions in
the vocabulary.

The standard softmax probability distribution is
first computed as:

P = softmax(Z) (1)

A mask is then applied to zero out probabilities
outside the range [s,e], creating a modified
probability tensor P’:
ifk € s, €

0, otherwise

Pk

;jk = ’ @)

Next, a one-dimensional convolution kernel

K € RY¥1%k ig constructed based on a Gaussian

distribution, where k is the kernel size (an odd

integer greater than 1), and o is the standard
deviation. The kernel weights are computed as:

(i - 51y

K; = oxp | ————5— (3)

The kernel is then applied to P’ via one-
dimensional convolution along the vocabulary
dimension:

k—1
C = convld(P’, K, padding = T) 4)



This convolution preserves the size of the
input and output tensors.The convolution result
C is integrated back into the original probability
distribution P within the index range [s, e], while
retaining the original probabilities outside this

range:
v ) Cijks

ik =
Pk,

The final objective function is computed as:

ifk € [s, €

otherwise

&)

B L
1
L= N Z Z M;; log P;’]-Tij (6)
i=1 j=1

4 Dataset Construction and Refinement

In this section, we briefly describe the reconstruc-
tion of the DL A dataset and the collection of the
MER, TR, and OCR datasets, with more detailed
information provided in the appendix.

DLA Dataset. DocLaynet (Pfitzmann et al.,
2022) was chosen for its comprehensive layout
annotations, but its formula annotations, where
content and numbering share the same bounding
box, introduce noise for MER tasks. To address
this, we re-extracted formulas from arXiv LaTeX
files, trained a lightweight model to re-annotate the
pages with manual verification.

MER Dataset. The UniMER-1M (Wang et al.,
2024a) has significantly advanced MER research
but contains many redundant spaces in LaTeX code.
Although some spaces are syntactically necessary,
most are unnecessary, increasing output length
and computational overhead. To address this, we
constructed a new dataset by extracting content
from LaTeX files, normalizing style variations and
verifying accuracy through re-rendering. Models
trained on our dataset produce LaTeX code that is
approximately 34.2% shorter for complex expres-
sions and 37.5% shorter for simple expressions on
the UniMER-1M test set, demonstrating improved
efficiency and performance.

TR Dataset. In the TR task of DocFusion, we
adopted LaTeX as the output format for two
main reasons: (1) to ensure consistency with
the MER task’s output format, enabling better
multi-task collaboration; and (2) because LaTeX
facilitates both the extraction of cell content and
the restoration of the original table layout. Existing
LaTeX-based TR datasets either lack sufficient
scale or fail to separate tables from captions,

conflicting with our DLA task. To overcome
these limitations, we constructed a high-quality TR
dataset with 100K samples by following a similar
approach to the MER dataset.

OCR Dataset. The dataset also sourced from
DocLaynet (Pfitzmann et al., 2022), provides
detailed layout and character annotations. We
extracted cropped images for each layout element
and paired them with corresponding character-level
text annotations.

S Experiments

5.1 Implementation Details

We conducted our experiments using the PyTorch
framework on eight NVIDIA H100 GPUs, with an
initial learning rate of 1e-5, a per-GPU batch size of
12, and employing a cosine learning rate scheduler
to progressively adjust the model parameters.

5.2 Evaluation Metrics

5.2.1 Evaluation for Recognition

We employ traditional metrics such as BLEU
(Papineni et al., 2001) and Edit Distance (Lev-
enshtein, 1966) to evaluate generated sequences.
Additionally, we introduce task-specific metrics
like CDM (Wang et al., 2024b) and CSR to better
assess the quality and usability of LaTeX-based
outputs.

BLEU: The BLEU score is used for evaluating
machine-generated text, measuring n-gram overlap
with reference texts while incorporating a brevity
penalty to ensure balanced outputs.

Edit distance: Also known as Levenshtein dis-
tance, measures the minimum number of opera-
tions insertions, deletions, or substitutions required
to transform one string into another.

CSR: This score refers to the percentage of
generated LaTeX outputs that can be successfully
compiled into PDF. It reflects the correctness of the
model’s predictions and practical usability.
ExpRate: The ExpRate (Li et al., 2022) measures
the proportion of samples where the predicted text
matches the reference text without any errors.
CDM: The CDM evaluates MER by comparing
image-rendered expression at the character level
with spatial localization, ensuring fairness and
accuracy over text-based metrics like BLEU.

5.2.2 Evaluation for Detection

Since the DLA task in DocFusion does not use
confidence scores, we did not use the widely



. OCR MER TR

Model size

BLEUT EditDis| CDM?T ExpRatet CSRT FI1 CSR?
Pix2tex (2022) - - 76.5 41.7 95.9 - -
Texify (2023) 312M - 88.6 71.7 97.8 - -
UniMERNEet (2024a) 325M - 99.0 89.5 99.7 - -
Qwen-VL-PLUS (2023) - 85.3 0.120 - - - - -
Qwen-VL-OCR (2023) - 94.9 0.055 - - - - -
StructEqTable (2024) 938M - - - - 90.6 89.3
GOT (2024) 580M 86.7 0.115 87.7 67.3 97.8 869 81.6
DocFusion 289M 99.1 0.007 98.7 94.2 99.8 92.1 925

Table 2: Comparison of DocFusion with other models on three recognition tasks. Note: Due to differences in
training styles across models, line break were consistently removed when calculating BLEU and Edit Distance.

Model Size DocLayNet DocLayNet-Scientific FPST
Precisiont Recallf F11 Precisiont Recallf F11

DETR (2020) 41M 87.1 91.6 89.3 95.9 96.2 96.0 3.7

DocLayout-YOLO (2024c) 20M 86.7 91.1 88.9 94.4 95.5 95.0 85.2

DocFusion 289M 88.0 88.4 88.2 96.8 96.2 964 7.5

Table 3: The performance of the models on DLA, where DocLayNet-Scientific refers to the scientific document
subset of the Doclaynet. Note: DETR and DocLayout-YOLO are limited to object detection tasks only.

adopted Average Precision (AP) metric from the
object detection field. Instead, we focus on the
following metrics:

Precision: Precision measures the proportion of
correctly identified positive instances among all
predicted positives.

Recall: Recall measures the proportion of correctly
identified positive instances among all actual
positives.

F1-score: The Fl-score balances precision and
recall, serving as their harmonic mean. This metric
is particularly useful for evaluating the trade-off
between precision and recall in the DLA task.
FPS: FPS measures the number of frames pro-
cessed by the model per second, providing an
indication of the model’s inference speed and
efficiency.

5.3 Main Results

We use UnimerNet (Wang et al., 2024a) for
MER, StructEqTable (Xia et al., 2024) for TR,
DocLayout-YOLO (Zhao et al., 2024c¢) for DLA,
and Qwen-VL-OCR (Bai et al., 2023) for OCR as
baselines, as well as other widely used models for
comparison. These baselines were selected for their
strong performance and task relevance. The results
show that DocFusion demonstrates competitive
performance against other SOTA methods.

5.3.1 MER performance

We evaluated our model using the test subset of the
UniMER-1M (Wang et al., 2024a), with a focus on
the Simple Printed Expression (SPE) and Complex
Printed Expression (CPE) subsets, as DocFusion
is specifically designed for processing printed
documents. As shown in Table 2, DocFusion per-
forms exceptionally well across multiple evaluation
metrics, particularly in CSR and ExpRate. Notably,
its ExpRate exceeds that of the second-ranked
UniMERNet by 5.2%, demonstrating its superior
reliability in real-world document parsing. The
results presented here combine the performance of
both SPE and CPE, with detailed separate results
provided in the appendix.

5.3.2 TR performance

We constructed a benchmark dataset consisting
of 2,500 table images extracted from LaTeX
documents, including both simple and relatively
complex tables, all of which were manually
verified. To accommodate the model parameters
and maximum sequence length, the LaTeX ground
truth for the test set was limited to a maximum
of 1,024 tokens. Using LatexNodes2Text, we
extracted the content of each table cell to computed
F1 scores (The detailed extraction method is
presented in the appendix). As shown in Table 2,



. OCR
Train Dataset

MER TR DLA

BLEUt EditDis) CDM{ CSRygrt FIt+ CSRygt FIt

Task-Specific 98.8 0.010 98.5 99.8 91.2 92.7 87.8
OCR+DLA 98.5 0.010 - - - 88.9
OCR+MER+TR  99.1 0.008 98.9 99.9 92.3 94.6 -

Table 4: Ablation experiments on task collaboration, comparison of task performance when using Task-specific
training, where each task is trained independently, and other joint multi-task strategies.

DocFusion performs excellently on this benchmark,
with both F1 and CSR scores exceeding those of the
second-ranked model by 1.6%, demonstrating its
superior ability to handle both simple and complex
table structures.

5.3.3 OCR performance

We separated 3,000 English image samples from
the originally constructed dataset as the test set.
As shown in Table 2, DocFusion demonstrates
outstanding performance in both BLEU and
EditDis, achieving more precise recognition of
layout elements. This performance improvement is
primarily attributed to DocFusion’s joint training
on layout analysis and text recognition tasks, which
enhances the model’s efficiency and effectiveness
in handling complex document structures. These
results further validate the effectiveness of the
proposed training strategy, especially for document
parsing tasks involving both text content and layout
element recognition.

5.3.4 DLA performance

DocFusion generates layout element labels and
coordinates by sequentially predicting tokens
without relying on confidence scores. Since the
commonly used Average Precision (AP) metric
in object detection depends on confidence scores,
it cannot be directly applied in this evaluation.
To ensure a fair comparison with confidence-
based models, we adopt an alternative evaluation
method. For these models, we compute Precision,
Recall, and F1-score at different thresholds and
select the maximum F1-score across all thresholds
as the final evaluation metric. As shown in
Table 3, DocFusion may not achieve outstanding
performance on the entire DocLaynet test set but
performs well in the domain of scientific document
detection. This could be attributed to its ability
to generate bounding boxes with clean edges. In
terms of processing speed, although DocFusion has

more parameters than DETR, another Transformer-
based model, it achieves faster processing due
to the use of Flash-Attention. Compared to
YOLO, DocFusion is slightly slower but does
not require threshold tuning to achieve optimal
performance, offering high performance without
additional adjustments.

5.4 Ablation Study

5.4.1 OCR-Driven Enhancement of DLA

This section explores the impact of OCR on DLA
performance. As shown in Table 4, the results in
the DLA column from the first and second rows
indicate that adding the OCR task improves DLA
performance, with an F1 increase of up to 1.3%.
This result demonstrates the effectiveness of using
textual information in joint training. Compared
to independent training that relies only on visual
features, OCR significantly enhances the model’s
robustness and generalization. For example, tables
and mathematical expressions are layout elements
with clear visual features, which the model can
often recognize effectively. In contrast, text or
titles have less distinctive visual features, making it
challenging to predict their labels based on visual
information alone. Textual cues play a crucial
role in these cases. These findings confirm that
OCR is essential for improving DLA performance.
By providing complementary textual information,
OCR strengthens the collaboration between visual
and semantic features, resulting in better overall
performance.

5.4.2 Collaboration of Recognition Tasks

In this section, we explore the collaboration among
the recognition tasks OCR, TR, and MER. As
shown in Table 4, the experimental results from the
first and third rows demonstrate that joint training
yields better performance compared to training
each task individually. Specifically, OCR achieves
a 0.3% improvement in BLEU score, MER sees



Objective OCR MER TR DLA
Function

BLEUt EditDis] CDMt CSRygrt FIT CSRrgpt  FIT
CE 97.3 0.009 97.8 96.5 90.2 89.1 87.9
CE* 99.1 0.007 98.7 99.8 92.1 92.5 88.2

Table 5: Ablation analysis of the improved objective function was conducted on the same dataset across four tasks:
OCR, MER, TR, and DLA. CE represents training with the standard cross-entropy loss, while CE* denotes training

with the improved objective function.
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Figure 4: Validation loss curves under identical
hyperparameter settings, where the only variation is
the choice of the objective function.

increases of 0.4% in CDM and 0.1% in CSR,
and TR benefits most significantly, with a 2.1%
improvement in F1 score for cell parsing and a
2.0% increase in CSR. This collaboration enables
the model to leverage shared information across
tasks, enhancing individual task performance and
improving overall document parsing capabilities.
These results demonstrate that multi-task col-
laboration effectively enhances performance by
leveraging shared information.

5.4.3 Results of improved objective function

In this section, we compared the original cross-
entropy and the improved objective function in
recognition and detection tasks. As shown in
Table 5, the results demonstrate that the improved
objective function led to significant performance
gains across both task categories. In recognition
tasks, the BLEU score in the OCR task saw an
improvement of 1.8%. Additionally, the CDM
metric in the MER task increased by 0.9%, while
the F1 score in the TR task rose by 2.1%. Notably,
for the CSR metric, which assesses LaTeX com-
pilation success, the MER and TR tasks achieved

gains of 3.3% and 3.8%, respectively, highlighting
enhanced usability and correctness of the LaTeX
outputs. For the detection task, the F1 score of the
DLA task increased by 0.34%. This improvement
can be attributed to the improved objective function,
which alleviates the issue of coordinate token
errors dominating the gradient. By addressing
this imbalance, the objective function not only
enhances the performance of recognition tasks
but also improves the accuracy of predicting
layout element categories in the detection task
itself. These results collectively show that the
improved objective function effectively addresses
key challenges in loss minimization, ensuring that
tasks such as DLA can operate within a generative
framework. It avoids gradient dominance issues
while achieving better task balance in a multi-task
learning setup, demonstrating its robustness and
versatility.

6 Conclusion

In this work, we introduced DocFusion, the first
approach to integrate the four modules of a
document parsing pipeline into a unified model
by designing a objective function tailored to
handle diverse data types across tasks. Our
method achieved SOTA performance on multiple
benchmarks. To enable downstream applications,
we re-annotated the widely used DocLayNet
dataset and constructed a large-scale formula-to-
LaTeX dataset, applying a unified standardization
process. Through detailed analysis, we observed
that DocFusion, as a lightweight model with
fewer parameters, effectively integrates multiple
tasks into a single framework, demonstrating both
efficiency and versatility in handling complex
document parsing challenges. In the future, we
aim to extend DocFusion to larger models and
further improve dataset standardization to enhance
its performance and applicability across broader
tasks and domains.



Limitations

In this section, we discuss the limitations of the
proposed model, DocFusion. While the model has
demonstrated strong performance across multiple
document layout analysis subtasks on specific
datasets, its design is constrained by a parameter
size of 289M and a maximum output length of 1024
tokens. These constraints may impact its ability to
handle highly complex layouts or extremely long
sequences, requiring further optimization for spe-
cific use cases. Additionally, DocFusion’s reliance
on PDF screenshots in the LaTeX recognition
task limits its generalization to handwritten or
other non-standard formats. For the detection task,
although the model achieves competitive accuracy,
its processing speed poses challenges for real-
time or high-throughput applications, indicating
a need for further improvements in computational
efficiency to meet broader application demands.
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A Appendix
A.1 DLA Dataset Reconstruction

Figure 5: The corresponding numbers were removed
from the annotated data for mathematical expression
detection.

In DocLaynet and other similar datasets, the
annotation of mathematical formulas has certain
limitations, as show in figure 5, the content of math
expression and numbering are typically annotated
within the same bounding box. This annotation
approach introduces noise in subsequent Mathe-
matical Expression Recognition (MER) tasks. To
address this issue, we extracted formulas from
arXiv LaTeX source files using regular expressions
and assigned unique colors and bounding boxes
to each element. Then, we employed a fuzzy
matching algorithm to ensure annotation accuracy
and eliminate overlaps. Finally, we trained a
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lightweight detection model and, combined with
manual verification, re-annotated pages contain-
ing formulas. These improvements significantly
enhance the dataset’s applicability to subsequent
MER tasks.

A.2 MER and TR data standardization

Issue Original Standardized
Bracket \{ \lbrace
Subsup ar1_.2 a_2*1
Prime a’ a*{\prime}
Fraction \over \frac

Space \tabular{l c} \tabular{lc}

Table 6: Examples of LaTeX standardization for various
symbols and expressions.

We chose to standardize the output format as
LaTeX for two recognition tasks involving non-
plain-text elements. For MER, converting to
LaTeX was essential as it provides a precise
representation of mathematical formulas. For
TR, in addition to ensuring format consistency,
converting to LaTeX also allows for the restoration
of the original content through compilation, and
enables the extraction of cell elements using
tools such as LatexNodes2Text, thus enhancing
processing flexibility. We used regular expressions
to extract relevant content from the LaTeX source
files of research papers. However, due to variations
in author writing styles, the same formula or
table may appear in multiple forms, increasing
the complexity of training. As show in table
6 , we analyzed these different representations,
standardized them to eliminate ambiguities and
ensured consistency. To verify the accuracy of the
standardized LaTeX code, we re-rendered it into
images, creating a high-quality dataset that aligns
with the actual input-output content.
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