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Abstract

We study the corrupted bandit problem, i.e. a stochastic multi-armed bandit problem
with k unknown reward distributions, which are heavy-tailed and corrupted by a history-
independent adversary or Nature. To be specific, the reward obtained by playing an arm
comes from corresponding heavy-tailed reward distribution with probability 1− ε ∈ (0.5, 1]
and an arbitrary corruption distribution of unbounded support with probability ε ∈ [0, 0.5).
First, we provide a problem-dependent lower bound on the regret of any corrupted bandit
algorithm. The lower bounds indicate that the corrupted bandit problem is harder than
the classical stochastic bandit problem with subGaussian or heavy-tail rewards. Following
that, we propose a novel UCB-type algorithm for corrupted bandits, namely HuberUCB,
that builds on Huber’s estimator for robust mean estimation. Leveraging a novel concen-
tration inequality of Huber’s estimator, we prove that HuberUCB achieves a near-optimal
regret upper bound. Since computing Huber’s estimator has quadratic complexity, we fur-
ther introduce a sequential version of Huber’s estimator that exhibits linear complexity. We
leverage this sequential estimator to design SeqHuberUCB that enjoys similar regret guar-
antees while reducing the computational burden. Finally, we experimentally illustrate the
efficiency of HuberUCB and SeqHuberUCB in solving corrupted bandits for different reward
distributions and different levels of corruptions.

1 Introduction

Multi-armed bandit problem is an archetypal setting to study sequential decision-making under incomplete
information (Lattimore & Szepesvári, 2018). In the classical setting of stochastic multi-armed bandits, the
decision maker or agent has access to k ∈ N unknown reward distributions or arms. At every step, the
agent plays an arm and obtains a reward. The goal of the agent is to maximize the expected total reward
accumulated by a given horizon T ∈ N.

In this paper, we are interested in a challenging extension of the classical multi-armed bandit problem, where
the reward at each step is corrupted by Nature, which is a stationary mechanism independent of the agent’s
decisions and observations. This setting is often referred as the Corrupted Bandits. Specifically, we extend
the existing studies of corrupted bandits (Lykouris et al., 2018; Bogunovic et al., 2020; Kapoor et al., 2019)
to the more general case, where the ‘true’ reward distribution might be heavy-tailed and the corruption can
be unbounded.

A Motivating Example: Treatments of Varroa Mites. Though this article focuses on the theoret-
ical aspects of this problem, we hereby illustrate a case study with roots in agriculture that motivates us.
A bee-keeper has to choose between a set of treatments to save her bees from varroa mites. Every year,
the bee-keeper must rotate between the treatments as the varroa mites develop resistance to a given treat-
ment (Rinkevich, 2020; Kamler et al., 2016). The goal of the bee-keeper is to choose a sequence of treatments
over the years that eliminate as many number of varroa mites as possible. The reward of a treatment is mea-
sured by the number of fallen varroa mites due to it. This reward function is heavy-tailed. As the number of
fallen varroa mites is counted manually by the bee-keeper, this process is prone to human error. The reward
of a treatment is further corrupted due to plethora of confounding variables, e.g. the weather, the way to
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administer the treatment, the state of the hive etc. (Semkiw et al., 2013), which are hard to model. The
corruption in particular has been witnessed empirically while plotting the number of fallen mites for a given
treatment (ref. Fig. 1 (Semkiw et al., 2013)). Interestingly, in this problem, corruptions in the measured
rewards are natural and non-adversarial but possibly unbounded. The heavy-tailed and corrupted nature of
the problem resists application of the non-robust bandit algorithms, such as UCB (Auer et al., 2002a), and
motivates us to introduce the setting of Bandits corrupted by Nature.

Bandits corrupted by Nature. Motivated by the aforementioned example, we model a corrupted reward
distribution as (1−ε)P+εH, where P is the distribution of inliers with a finite variance, H is the distributions
of outliers with probably unbounded support, and ε ∈ [0, 1/2) is the proportion of outliers. Thus, in the
corresponding stochastic bandit setting, an agent has access to k arms of corrupted reward distributions {(1−
ε)Pi+εHi}ki=1. Here, Pi’s are uncorrupted reward distributions with heavy-tails and bounded variances, and
Hi’s are corruption distributions with probably unbounded corruptions. The goal of the agent is to maximize
the expected total reward accumulated oblivious to the corruptions. This is equivalent to considering a setting
where at every step Nature flips a coin with success probability ε. The agent obtains a corrupted reward if
Nature obtains 1 and otherwise, an uncorrupted reward. We call this setting Bandits corrupted by Nature
as the corruption introduced in each step does not depend on the present or previous choices of arms and
observed rewards. Our setting encompasses both heavy-tailed rewards and unbounded corruptions. We
formally define the setting and corresponding regret definition in Section 3.

Bandits corrupted by Nature is different from the adversarial bandit setting (Auer et al., 2002b). The
adversarial bandit assumes existence of a non-stochastic adversary that can return at each step the worst-
case reward to the agent depending on its history of choices. Incorporating corruptions in this setting,
Lykouris et al. (2018); Bogunovic et al. (2020) consider settings where the rewards can be corrupted by a
history-dependent adversary but the total amount of corruption and also the corruptions at each step are
bounded. However, we encounter problems in ecology and agronomy, such as treatments against varroa
mites, where the corruptions are not adversarial, and are independent of the previous history of decisions.
Thus, in contrast to the adversarial corruption setting in literature, we consider a non-adversarial proportion
of corruptions (ε ∈ [0, 1/2)) at each step, which are stochastically generated from unbounded corruption
distributions

(
{Hi}ki=1

)
. To the best of our knowledge, only Kapoor et al. (2019) have studied similar

non-adversarial corruption setting with a history-independent proportion of corruption at each step. But
they assume that the probable corruptions at each step are bounded, and the uncorrupted rewards are sub-
Gaussian. Hence, we observe that there is a gap in the literature in studying unbounded stochastic corruption
for bandits with probably heavy-tailed rewards and this article aims to fill this gap. Specifically, we aim to deal
with unbounded corruption and heavy-tails simultaneously, which requires us to develop a novel sensitivity
analysis of the robust estimator in lieu of a worst-case (adversarial bandits) analysis.

Our Contributions. Specifically, in this paper, we aim to investigate three main questions:

1. Is the setting of bandits corrupted by Nature with unbounded corruptions and heavy tails funda-
mentally harder (in terms of the regret lower bound) than the classical sub-Gaussian and uncor-
rupted bandit setting?

2. Is it possible to design an efficient and robust algorithm that achieves an order-optimal performance
(logarithmic regret) in the corrupted by Nature setting?

3. Are robust bandit algorithms efficient in practice?

These questions have led us to the following contributions:

1. Hardness of bandits corrupted by Nature with unbounded corruptions and heavy tails. In order to under-
stand the fundamental hardness of the proposed setting, we use a suitable notion of regret, denoted by Rn,
(Equation (Corrupted regret), (Kapoor et al., 2019)) that extends the traditional pseudo-regret (Lattimore &
Szepesvári, 2018) to the corrupted setting. Then, in Section 4, we derive lower bounds on regret that reveal
increased difficulties of corrupted bandits with heavy tails in comparison with the classical non-corrupted
and light-tailed Bandits. (a) In the Heavy-tailed regime (3), we show that even when the suboptimality
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gap ∆i
1 is large, the regret increase with ∆i because of the difficulty to distinguish between two arms when

the rewards of Heavy-tailed. (b) Our lower bounds indicate that when ∆i is large, the logarithmic regret
is asymptotically achievable, but the hardness depends on the corruption proportion ε, variance of Pi, i.e.
σi, and the suboptimality gap ∆i. Specifically, if ∆i

σi
’s are small, i.e. we are in low distinguishability/high

variance regime, the hardness is dictated by σ2
i

∆2
i,ε

. Here, ∆i,ε , ∆i(1−ε)−2εσi is the ‘corrupted suboptimality
gap’ that replaces the traditional suboptimality gap ∆i in the lower bound of non-corrupted and light-tailed
bandits (Lai & Robbins, 1985). Since ∆i,ε ≤ ∆i, it is harder to distinguish the optimal and suboptimal arms
in the corrupted settings. They are the same when the corruption proportion ε = 0.

Additionally, our analysis addresses an open problem in heavy-tailed bandits. Works on heavy-tailed bandits
(Bubeck et al., 2013; Agrawal et al., 2021) rely on the assumption that a bound on the (1+ε)-moment, i.e.
E[|X|1+ε], is known for some ε > 0. We do not assume such a restrictive bound as knowing a bound on
E[|X|1+ε] implies the knowledge of a bound on the sub-optimality gap ∆. Instead, we assume that the
centered moment, specifically the variance, is bounded by a known constant. Thus, we address the open
problem mentioned in (Agrawal et al., 2021) by relaxing the classical bounded (1+ε)-moment assumption
with the bounded centered moment one.

2. Robust and Efficient Algorithm Design. In Section 5, we propose a robust algorithm, called HuberUCB,
that leverages the Huber’s estimator for robust mean estimation. We derive a novel concentration inequality
on the deviation of empirical Huber’s estimate that allows us to design robust and tight confidence intervals
for HuberUCB. In Theorem 3, we show that HuberUCB achieves the logarithmic regret, and also the optimal
rate when the sub-optimality gap ∆ is not too large. We show that for HuberUCB, Rn can be decomposed
according to the respective values of ∆i and σi:

Rn ≤ O

 ∑
i:∆i>σi

log(n)σi


︸ ︷︷ ︸

Error due to Heavy-tail

+ O

 ∑
i:∆i≤σi

log(n)∆i
σ2
i

∆2
i,ε


︸ ︷︷ ︸

σ2/∆ error with corrupted suboptimality gaps

.

Thus, our upper bound allows us to segregate the errors due to heavy-tail, corruption, and corruption-
correction with heavy tails. The error incurred by HuberUCB can be directly compared to the lower bounds
obtained in Section 4 and interpreted in both the high distinguishibility regime and the low distinguishibility
regime as previously mentioned.

3. Empirically Efficient and Robust Performance. To the best of our knowledge, we present the first
robust mean estimator that can be computed in a linear time in a sequential setting (Section 6). Existing
robust mean estimators, such as Huber’s estimator, need to be recomputed at each iteration using all the
data, which implies a quadratic complexity. Our proposal recomputes Huber’s estimator only when the
iteration number is a power of 2 and computes a sequential approximation on the other iterations. We
use the Sequential Huber’s estimator to propose SeqHuberUCB. We theoretically show that SeqHuberUCB
achieves similar order of regret as HuberUCB, while being computationally efficient. In Section 7, we also
experimentally illustrate that HuberUCB and SeqHuberUCB achieve the claimed performances for corrupted
Gaussian and Pareto environments.

We further elaborate on the novelty of our results and position them in the existing literature in Section 2.
For brevity, we defer the detailed proofs and the parameter tuning to Appendix.

2 Related Work

Due to the generality of our setting, this work either extends or relates to the existing approaches in both
the heavy-tailed and corrupted bandits literature. While designing the algorithm, we further leverage the
literature of robust mean estimation. In this section, we connect to these three streams of literature. Table 1
summarises the previous works and posits our work in lieu.

1The suboptimality gap of an arm is the difference in mean rewards of an optimal arm and that arm.
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Algorithms Settings Corruption Type of outliers Heavy-tailed Adversarial/
Stochastic

Our work MAB Yes Unbounded Yes Stochastic
Bubeck et al. (2013);

Agrawal et al. (2021); Lee
et al. (2020)

MAB No x Yes Stochastic

Lykouris et al. (2018) MAB Yes Bounded No Stochastic
Bogunovic et al. (2020) GP Bandits Yes Bounded No Adversarial

Kapoor et al. (2019)
MAB &
Linear
Bandits

Yes Bounded No Stochastic

Medina & Yang (2016);
Shao et al. (2018)

Linear
Bandits No x Yes Stochastic

Bouneffouf (2021) Contextual
Bandits context only Unbounded No Stochastic

Agarwal et al. (2019) Control Yes Bounded x Adversarial
Hajiesmaili et al. (2020);

Auer et al. (2002b);
Pogodin & Lattimore

(2020)

MAB Yes Bounded x Adversarial

Table 1: Comparison of existing results on Corrupted and Heavy-tailed Bandits.

Heavy-tailed bandits. Bubeck et al. (2013) are one of the first to study robustness in multi-armed bandits by
studying the heavy-tailed rewards. They use robust mean estimator to propose the RobustUCB algorithms.
They show that under assumptions on the raw moments of the reward distributions, a logarithmic regret
is achievable. It sprouted research works leading to either tighter rates of convergence (Lee et al., 2020;
Agrawal et al., 2021), or algorithms for structured environments (Medina & Yang, 2016; Shao et al., 2018).
Our article uses Huber’s estimator which was already discussed in (Bubeck et al., 2013). However, the
chosen parameters in (Bubeck et al., 2013) were suited for heavy-tailed distributions, and thus, render their
proposed estimator non-robust to corruption. We address this gap in this work.

Corrupted bandits. The existing works on Corrupted Bandits (Lykouris et al., 2018; Bogunovic et al., 2020;
Kapoor et al., 2019) are restricted to bounded corruption. When dealing with bounded corruption, one can
use techniques similar to adversarial bandits Auer et al. (2002b) to deal with an adversary that can’t corrupt
an arm too much. The algorithms and proof techniques are fundamentally different in our article because the
stochastic (or non-adversarial) corruption by Nature allows us to learn about the inlier distribution on the
condition that corresponding estimators are robust. Thus, our bounds retain the problem-dependent regret,
while successfully handling probably unbounded corruptions with robust estimators.

Robust mean estimation. Our algorithm design leverages the rich literature of robust mean estimation,
specifically the influence function representation of Huber’s estimator. The problem of robust mean estima-
tion in a corrupted and heavy-tailed setting stems from the work of Huber (Huber, 1964; 2004). Recently,
in tandem with machine learning, there have been numerous advances both in the heavy-tailed (Devroye
et al., 2016; Catoni, 2012; Minsker, 2019), and in the corrupted settings (Lecué & Lerasle, 2020; Minsker
& Ndaoud, 2021; Prasad et al., 2019; 2020; Depersin & Lecué, 2019; Lerasle et al., 2019; Lecué & Lerasle,
2020). Our work, specifically the novel concentration inequality for Huber’s estimator, enriches this line of
work with a result of parallel interest. We introduce a sequential version of Huber’s estimator achieving
linear complexity.

3 Bandits corrupted by Nature: Problem formulation

In this section, we present the corrupted bandits setting that we study, together with the corresponding
notion of regret. Similarly to the classical bandit setup, the regret decomposition lemma allows us to focus
on the expected number of pulls of a suboptimal arm as the central quantity to control algorithmic standpoint.

Notations. We denote by P the set of probability distributions on the real line R and by P[q] , {P ∈ P :
EP [|X|q] < ∞} the set of distributions with at least q ≥ 1 finite moments. 1{A} is the indicator function
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for the event A being true. We denote the mean of a distribution Pi as µi , EPi [X]. For any D ⊂ P, we
denote D(ε) , {(1− ε)P + εH : P ∈ D, H ∈ P} the set of corrupted distributions from D.

Problem Formulation. In the setting of Bandits corrupted by Nature, a bandit algorithm faces an envi-
ronment with k ∈ N many reward distributions in the form {(1− ε)Pi+ εHi}ki=1. Here Pi, Hi are real-valued
distributions and ε is a mixture parameter assumed to be in [0, 1/2), that is Pi is given more weights
than Hi in the mixture of arm i. For this reason the {Pi}ki=1 are called the inlier distributions and the
{Hi}ki=1 the outlier distributions. We assume the inlier distributions have at least 2 finite moments that is
P1, . . . , Pk ∈ P[2], while no restriction is put on the outlier distributions, that is H1, . . . ,Hk ∈ P. For this
reason, we also refer to the outlier distributions as the corrupted distributions, and to the inlier distribu-
tions as the non-corrupted ones. ε is called the level of corruption. We write νε the law of the corrupted
environment, and we refer to that of the non-corrupted environment ν0 by ν.

The game proceed as follows: At each step t ∈ {0, . . . , n}, the agent policy π interacts with the corrupted
environment by choosing an arm At and obtaining a reward corrupted by Nature. To generate this reward,
Nature first draws a random variable Ct ∈ {0, 1} from a Bernoulli distribution with mean ε ∈ [0, 1/2).
If Ct = 1, it generates a corrupted reward Zt from distribution HAt corresponding to the chosen arm
At ∈ {1, . . . , k}. Otherwise, it generates a non-corrupted X ′t from distribution PAt . More formally, Nature
generates reward Xt = X ′t1{Ct = 0} + Zt1{Ct = 1} which the learner observes. The learner leverages
this observation to choose another arm at the next step in order to maximize the total cumulative reward
obtained after n steps. In Algorithm 1, we outline a pseudocode of this framework.

Algorithm 1 Bandits corrupted by Nature
Require: ε ∈ [0, 1/2) and q ≥ 2
1: Input: P1, . . . , Pk ∈ P[q] be the uncorrupted reward distributions and H1, . . . ,Hk ∈ P be the corrupted

reward distributions.
2: for t = 1, . . . , n do
3: Player plays an arm At ∈ {1, . . . , k}
4: Nature draws a Bernoulli Ct ∼ Ber(ε)
5: Generate a corrupted reward Zt ∼ HAt and an uncorrupted reward X ′t ∼ PAt
6: Player observe the reward Xt = X ′t1{Ct = 0}+ Zt1{Ct = 1}
7: end for

Remark 1 (Non-adversarial corruption.) In the setting of Bandits corrupted by Nature, we consider
that the reward received by the learner is corrupted when Ct = 1 and non-corrupted otherwise. Since the
law of Ct is a Bernoulli Ber(ε), the corruption is stochastic, and independent on other variables. This is in
contrast with adversarial setups, where corruption is typically chosen by an opponent and possibly depending
on other variables. Assuming a non-adversarial behavior of the Nature seem more justified than assuming an
adversarial setup in applications, such as agriculture where corruption is often due to external disturbances,
such as pests appearance or weather hazards, whose occurrence are typically non-adversarial. Now when
corruption happens, we do not put restriction on the level of corruption. For example, we can imagine a pest
outburst or hail, that may have huge impact on a crop but does not occur adversarially.

Remark 2 (Weak assumption on inliers) Let us highlight that we do not assume sub-Gaussian behav-
ior for the inlier distributions Pi. Instead, we consider only a weak moment assumption, i.e. the inlier
distributions Pi have a finite variance. Thus, our setting is capable of modelling both the heavy-tailed and
corrupted settings. We highlight this generality in the regret lower bounds and empirical performance analysis
in Section 4 and 7.

Corrupted regret. In this setting, we observe that a corrupted reward distribution ((1 − ε)Pi + εHi)
might not have finite mean, unlike the true Pi’s. Thus, the regret with respect to the corrupted reward
distributions might fail to quantify the goodness of the policy and its immunity to corruption while learning.

In this setup, the natural notion of expected regret is measured with respect to the mean of the non-corrupted
environment ν specified by {Pi}ki=1. We define the regret of learning algorithm playing strategy π after n
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steps of interaction with the environment νε as

Rn(π, νε) , nmax
i

EPi [X ′]− E

[
n∑
t=1

X ′t

]
. (Corrupted regret)

The expectation is crucially taken on X ′i ∼ Pi and X ′t ∼ PAt but not on Xi and Xt. The expectation on the
right also incorporates possible randomization from the learner. Thus, (Corrupted regret) quantifies the loss
in the rewards accumulated by policy π from the inliers while learning only from the corrupted rewards and
also not knowing the arm with the best true reward distribution. Thus, this definition of corrupted regret
quantifies the rate of learning of a bandit algorithm as regret does for non-corrupted bandits. A similar
notion of regret is considered in (Kapoor et al., 2019) that deals with bounded stochastic corruptions.

Due to the non-adversarial nature of the corruption, the regret can be decomposed, as in classical stochastic
bandits, to make appear the expected number of pulls of suboptimal arms Eνε [Ti(n)], which allow us to
focus the regret analysis on bounding these terms.

Lemma 1 (Decomposition of corrupted regret) In a corrupted environment νε, the regret writes

Rn(π, νε) =
k∑
i=1

∆iEνε [Ti(n)] ,

where Ti(n) ,
∑n
t=1 1{At = i} denotes the number of pulls of arm i until time n and the problem-dependent

quantity ∆i , max
j
µj − µi is called the suboptimality gap of arm i.

4 Lower bounds for uniformly good policies under heavy-tails and corruptions

In order to derive the lower bounds, it is classical to consider uniformly good policies on some family of envi-
ronments, Lai & Robbins (1985). We introduce below the corresponding notion for corrupted environments
with the set of laws D⊗k = D1 ⊗ · · · ⊗ Dk, where Di ⊂ P for each i ∈ {1, . . . , k}.

Definition 1 (Robust uniformly good policies) Let D⊗k(ε) = D1(ε) ⊗ · · · ⊗ Dk(ε) be a family of cor-
rupted bandit environments on R. For a corrupted environment νε ∈ D⊗k(ε) with corresponding uncorrupted
environment ν, let µi(ν) denote the mean reward of arm i in the uncorrupted setting and µ?(ν) , maxa µi(ν)
denote the maximum mean reward. A policy π is uniformly good on D⊗k(ε) if for any α ∈ (0, 1],

∀ν ∈ D⊗k(ε),∀i ∈ {1, . . . , k}, µi(ν) < µ?(ν)⇒ Eνε [Ti(n)] = o(nα).

Since the corrupted setup is a special case of stochastic bandits, a lower bound can be immediately recovered
with classical results, such as Lemma 2 below, that is a version of the change of measure argument (Burnetas
& Katehakis, 1997), and can be found in (Maillard, 2019, Lemma 3.4).

Lemma 2 (Lower bound for uniformly good policies) Let D⊗k = D1 ⊗ · · · ⊗ Dk, where Di ⊂ P for
each i ∈ {1, . . . , k} and let ν ∈ D⊗k. Then, any uniformly good policy on D⊗k must pull arms such that for
any Pi ∈ Di, i ∈ {1, . . . , k},

∀i ∈ {1, . . . , k}, µi ≤ µ?(ν) ⇒ lim inf
n→∞

Eν [Ti(n)]
log(n) ≥ 1

Ki(Pi, µ(P ∗)) .

where Ki(Pi, µ(P ∗)) = inf{DKL(Pi, ν) : νi ∈ Di, µ(νi) ≥ µ(P ∗)}.

Lemma 2 is used in the traditional bandit literature to obtain lower bound on the regret using the decom-
position of regret from Lemma 1. In our setting however, the lower bound is more complex as it involves
optimization on the non-convex set P[2] of distributions with a bounded variance. It also involves an op-
timization in both the first and second term of the KL because we consider the worst-case corruption in
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both the optimal arm P ∗ and non-optimal arm Pi. In this section, we do not solve these problems, but we
propose lower bounds derived from the study of a specific class of heavy-tailed distributions on one hand
(Lemma 3) and the study of a specific class of corrupted (but not heavy-tailed) distributions on the other
hand (Lemma 4).

Using the fact that Ki(Pi, µ(P ∗)) is an infimum that is smaller than the DKL for the choice ν = P ∗, Lemma 2
induces the following weaker lower-bound:

∀i ∈ {1, . . . , k}, µi ≤ µ?(ν) ⇒ lim inf
n→∞

Eν [Ti(n)]
log(n) ≥ 1

DKL(Pi, P ∗)
. (1)

Equation (1) shows that it is sufficient to have an upper bound on the DKL-divergence of the reward distri-
butions interacting with the policy to get a lower bound on the number of pulls of a sub-optimal arm.

In order to bound the DKL-divergence, we separately focus on two families of reward distributions, namely
Student’s distribution without corruption and corrupted Bernoulli distribution, that reflect the hardness due
to heavy-tails and corruptions, respectively.

Student’s distribution without corruption. To obtain a lower bound in the heavy-tailed case we
use Student distributions. Student distribution are well adapted because they exhibit a finite number of
finite moment which makes them heavy-tailed, and we can easily change the mean and variances of Student
distribution without changing its shape parameter d. We denote by Td the set of Student distributions with
d degrees of freedom,

Td =
{
P ∈ P, P has distribution defined for t ∈ R by p(t) =

Γ(d+1
2 )

Γ(d/2)
√
dπ

(
1 + t2

d

)− d+1
2
}
.

Lemma 3 (Control of KL-divergence for Heavy-tails) Let P1, P2 be two Student distributions with
d > 1 degrees of freedom with EP1 [X] = 0 and EP2 [X] = ∆. Then,

DKL(P1, P2) ≤


3d−1(d+1)2∆2

5
√
d

if ∆ ≤ 1 ,
(d+ 1) log (∆) + log

(
3d (d+1)2

5
√
d

)
if ∆ > 1 .

(2)

Corrupted Bernoulli distributions. Now, we study the cost of corruption using the corrupted Bernoulli
distributions. Let P0, P1 be two Bernoulli distributions on {0, 1} such that PP0(1)=PP1(0)>PP0(0) = PP1(1).
We corrupt both P0 and P1 with a proportion ε > 0 to get Q0 , (1− ε)P0 + εδc and Q1 , (1− ε)P1 + εδ0.
We obtain Lemma 4 that illustrates three bounds on DKL(Q0, Q1) as functions of the suboptimality gap
∆ , EP0 [X]− EP1 [X], variance σ2 , VarP0(X) = VarP1(X), and corruption proportion ε.

Lemma 4 (Control of KL-divergence for Corruptions) There exists P0, P1 two Bernoulli probability
distribution with ∆ = EP0 [X] − EP1 [X] and σ2 = VarP0(X) = VarP1(X) for which there exists Q0 and Q1
some ε-corruptions of P0 and P1 respectively, that have shifted suboptimality gap given by ∆ε = EQ0 [X] −
EQ1 [X] = ∆(1− ε)− 2εσ. Furthermore, they can be chosen so as to satisfy

• Uniform Bound. For any ∆, σ, we have

DKL(Q0, Q1) ≤ (1− 2ε) log
(

1 + 1− 2ε
ε

)
. (3)

• High Distinguishability/Low Variance Regime. If 2σ ε√
1−2ε < ∆ < 2σ, we get

DKL(Q0, Q1) ≤ ∆ε

2σ log
(

1 + ∆ε

2σ −∆ε

)
. (4)

• Low Distinguishability/High Variance Regime. If ∆ ≤ 2σ ε√
1−2ε , there exists ε′ ≤ ε and Q′0, Q′1

some ε′- versions of P0 and P1 such that DKL(Q′0, Q′1) = 0.
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Figure 1: Visualizing the KL and the corresponding bounds in Lemma 4 for σ = 1 and ε = 0.2 (x axis is in
log scale).

Consequences of Lemma 4. We illustrate the bounds of Lemma 4 in Figure 1. The three upper bounds
on the KL-divergence of corrupted Bernoullis provide us some insights regarding the impact of corruption.

1. Three Regimes of Corruption: We observe that depending on ∆/σ, we can categorize the corrupted
environment in three categories. For ∆/σ ∈ [2,+∞), we observe that the KL-divergence between corrupted
distributions Q0 and Q1 is upper bounded by a function of only corruption proportion ε and is independent
of the uncorrupted distributions. Whereas for ∆/σ ∈ (2ε/

√
1− 2ε, 2), the distinguishability of corrupted

distributions depend on the distinguishibility of uncorrupted distributions and also the corruption level. We
call this the High Distinguishability/Low Variance Regime. For ∆/σ ∈ [0, 2ε/

√
1− 2ε], we observe that the

KL-divergence can always go to zero. We refer to this setting as the Low Distinguishability/High Variance
Regime.

2. High Distinguishability/Low Variance Regime: In Lemma 4, we observe that the effective gap to distinguish
the optimal arm to the closest suboptimal arm that dictates hardness of a bandit instance has shifted from
the uncorrupted gap ∆ to a corrupted suboptimality gap: ∆ε , ∆(1− ε)− 2εσ.

3. Low Distinguishability/High Variance Regime: We notice also that there is a limit for ∆ below which the
corruption can make the two distributions Q0 and Q1 indistinguishable, this is a general phenomenon in the
setting of testing in corruption neighborhoods (Huber, 1965).

From KL Upper bounds to Regret Lower Bounds. Substituting the results of Lemma 3 and 4 in
Equation (1) yield the lower bounds on regret of any uniformly good policy in heavy-tailed and corrupted
settings, where reward distributions either belong to the class of corrupted student distributions or the class
of corrupted Bernoulli distributions, respectively. We denote

D⊗kT2
, T2 ⊗ · · · ⊗ T2,

where T2 is the set of Student distributions with more than 2 degrees of freedoms. We also define

D⊗kB(ε) , B(ε)⊗ · · · ⊗ B(ε),

where B(ε) = {(1− ε)P + εH; H ∼ Ber(p) and P ∼ Ber(p′), p, p′ ∈ [0, 1]} is the set of corrupted Bernoulli
distributions.

Theorem 1 (Lower bound for heavy-tailed and corrupted bandit) Let i be a suboptimal arm such
that EPi [X] ≤ maxa EPa [X] and denote ∆i , EPi [X]−maxa EPa [X] and ∆i,ε , ∆i(1− ε)− 2εσi.

8
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Student’s distributions. Suppose that the arms are pulled according to a policy that is uniformly good on
D⊗kT2

. Then,

lim inf
n→∞

Eνε [Ti(n)]
log(n) ≥ σ2

i

51∆2
i

∨ 1
4 log(∆i/σi) + 22 . (5)

Corrupted Bernoulli distributions: Suppose that the arms are pulled according to a policy that is uni-
formly good on D⊗kB(ε). Then, we have for 2σi ε√

1−2ε < ∆i < 2σi, then

lim inf
n→∞

Eνε [Ti(n)]
log(n) ≥ 2σi

∆i,ε log
(

1 + ∆i,ε

2σi−∆i,ε

) , (6)

and for ∆i > 2σi,

lim inf
n→∞

Eνε [Ti(n)]
log(n) ≥ 1

(1− 2ε) log
( 1−ε

ε

) . (7)

For brevity, the detailed proof is deferred to Appendix A.1.

Small gap versus large gap regimes. Due to the restriction in the family of distributions considered
in Theorem 1, the lower bounds are not tight and may not exhibit the correct rate of convergence for all
families of distributions. However, this theorem provide some insights about the difficulties that one may
encounter in corrupted and heavy-tail bandits problems, including the logarithmic dependence on n.

In Theorem 1, if ∆i is small, we see that in the heavy-tailed case (Student’s distribution), we recover a term
very similar to the lower bound when the arms are from a Gaussian distribution. Now in the case where ∆i

is large, the number of suboptimal pulls in the heavy-tail setting is Ω
(

1/ log
(

∆i

σi

))
. This is the price to

pay for heavy-tails.

If we are in the high distiguishability/low variance regime, i.e. ∆i,ε

2σi ∈ ( ε√
1−2ε , 1), we recover a logarithmic

lower bound which depends on a corrupted gap between means ∆i,ε = ∆i(1− ε)− 2εσi. Since the corrupted
gap is always smaller than the true gap ∆i, this indicates that a corrupted bandit (ε > 0) must incur higher
regret than a uncorrupted one (ε = 0). For ε = 0, this lower bound coincides with the lower bound for
Gaussians with uncorrupted gap of means ∆i and variance σ2

i . On the other hand, if ∆i,ε

2σi is larger than 1,
we observe that we can still achieve logarithmic regret but the hardness depends on only the corruption level
ε, specifically 1

(1−2ε) log( 1−ε
ε ) .

5 Robust bandit algorithm: Huber’s estimator and upper bound on the regret

In this section, we propose an UCB-type algorithm, namely HuberUCB, addressing the Bandits corrupted
by Nature setting (Algorithm 2). This algorithm uses primarily a robust mean estimator called Huber’s
estimator (Section 5.1) and corresponding confidence bound to develop HuberUCB (Section 5.2). We further
provide a theoretical analysis in Theorem 3 leading to upper bound on regret of HuberUCB. We observe that
the proposed upper bound matches the lower bound in Theorem 1 under some settings.

5.1 Robust mean estimation and Huber’s estimator

We begin with a presentation of the Huber’s estimator of mean (Huber, 1964).

As we aim to design a UCB-type algorithm, the main focus is to obtain an empirical estimate of the mean
rewards. Since the rewards are heavy-tailed and corrupted in this setting, we have to use a robust estimator
of mean. We choose to use Huber’s estimator (Huber, 1964), an M-estimator that is known for its robustness
properties and have been extensively studied (e.g. the concentration properties (Catoni, 2012)).

9
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Huber’s estimator is an M-estimator, which means that it can be derived as a minimizer of some loss function.
Given access to n i.i.d. random variables Xn

1 , {X1, . . . , Xn}, we define Huber’s estimator as

Hub(Xn
1 ) ∈ arg min

θ∈R

n∑
i=1

ρ(Xi − θ), (8)

where ρ is Huber’s loss function with parameter β > 0. ρ is a loss function that is quadratic near 0 and
linear near infinity, with β thresholding between the quadratic and linear behaviors.

In the rest of the paper, rather than using the aforementioned definition, we represent the Huber’s estimator
as a root of the following equation (Mathieu, 2021):

n∑
i=1

ψ (Xi −Hub(Xn
1 )) = 0. (9)

Here, ψ(x) , x1{|x| ≤ β}+β sign(x)1{|x| > β} is called the influence function. Though the representations
in Equation (8) and (9) are equivalent, we prefer to use representation Equation (9) as we prove the properties
of Huber’s estimator using those of ψ.

β plays the role of a scaling parameter. Depending on β, Huber’s estimator exhibits a trade-off between the
efficiency of the minimizer of the square loss, i.e. the empirical mean, and the robustness of the minimizer
of the absolute loss, i.e. the empirical median.

5.2 Concentration of Huber’s estimator in corrupted setting

Let use denote the true Huber mean for a distribution P as Hub(P ). This means that for a random variable
Y with law P , Hub(P ) satisfies E[ψ(Y −Hub(P ))] = 0.

We now state our first key result on the concentration of Huber’s estimator around Hub(P ) in a corrupted
and Heavy-tailed setting.

Theorem 2 (Concentration of Empirical Huber’s estimator) Suppose that X1, . . . , Xn are i.i.d with
law (1 − ε)P + εH for some P,H ∈ P and proportion of outliers ε ∈ (0, 1/2), and P has a finite variance
σ2. Then, with probability larger than 1− 5δ,

|Hub(Xn
1 )−Hub(P )| ≤

σ
√

2 ln(1/δ)
n + β ln(1/δ)

3n + 2βε
√

ln(1/δ)
n + 2βε(

p−
√

ln(1/δ)
2n − ε

)
+

.

Here, p = PP (|Y − EP [Y ]| ≤ β/2) with p > 5ε, β > 4σ, ε =
√

(1−2ε)
log( 1−ε

ε ) , and δ ≥ exp
(
−n 128(p−5ε)2

49(1+2ε
√

2)2

)
.

Theorem 2 gives us the concentration of Hub(Xn
1 ) around Hub(P ), i.e. the Huber functional of the inlier

distribution P . This theorem will allow us to construct a UCB-type algorithm to solve the Bandits corrupted
by Nature.

For convenience of notation, hereafter, we denote the rate of convergence of Hub(Xn
1 ) to Hub(P ) as

rn(δ) ,
σ
√

2 ln(1/δ)
n + β ln(1/δ)

3n + 2βε
√

ln(1/δ)
n + 2βε(

p−
√

ln(1/δ)
2n − ε

)
+

. (10)

Discussion. Now, we provide a brief discussion on the implications of Theorem 2.

1. Value of p: For most laws that exhibit concentration properties, the constant p is close to 1 as β ≥ 4σ.
One might also use Markov inequality to lower bound p, depending on the number of finite moments P has.

10
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Bounding p then becomes a trade-off on the value of β, where large values of β implies that p is close to 1.
But larger β also leads to a less robust estimator, since the error bound in Theorem 2 increases with β.

2. Tightness of constants: If there are no outliers (ε = 0), the optimal rate of convergence in such a setting
is at least of order σ

√
2 ln(1/δ)/n due to the central limit theorem. Theorem 2 shows that we are very close

to attaining this optimal constant in the leading 1/
√
n term. This result for Huber’s estimator echoes the

one presented in (Catoni, 2012).

3. Value of β: β is a parameter that achieve a trade-off between accuracy in the light-tailed uncorrupted
setting and robustness. For our result, β must be at least of the order of 4σ. We provide a detailed discussion
on the choice of β in Section 5.4.

4. Restriction on the values of δ: In Theorem 2, δ must be at least of order e−n. This restriction may seem
arbitrary but it is in fact unavoidable as shown in (Devroye et al., 2016, Theorem 4.3). This is a limitation
of robust mean estimation that enforces our algorithm to perform a forced exploration in the beginning.

5. Restriction on the values of ε: In Theorem 2, ε can be at most p/5, which implies that it is smaller
than 1/5. This restriction is common in robustness literature. In particular, in Kapoor et al. (2019), ε is
supposed smaller than ∆/σ. In robustness literature, Lecué & Lerasle (2020) and Dalalyan & Thompson
(2019) assumed that ε ≤ 1/768 and 1/400 respectively. In contrast, our analysis can handle ε up to 0.2,
which is signifcantly higher than the existing restrictions.

Bias of Huber’s Estimate. If P is symmetric, we have Hub(P ) = E[X]. When P is non-symmetric, we
need to control the distance of the Huber’s estimate from the true mean, i.e. |Hub(P ) − E[X]|. We call it
the bias of Huber’s estimate. We need to bound this biad to get a concentration of the empirical Huber’s
estimate Hub(Xn

1 ) around the true mean E[X]. We control the bias using the following lemma, which is a
direct consequence of (Mathieu, 2021, Lemma 4).

Lemma 5 (Bias of Huber’s estimator) Let Y be a random variable with E[|Y |q] < ∞ for q ≥ 2 and
suppose that β2 ≥ 9Var(Y ). Then

|E[Y ]−Hub(P )| ≤ 2E[|Y − E[Y ]|q]
(q − 1)βq−1 .

Using Lemma 5 and Theorem 2, we can control the deviations of Hub(Xn
1 ) from E[X]. This allows us to

formulate an index-based algorithm (UCB-type algorithm) for corrupted Bandits. We present this algorithm
in Section 5.3.

5.3 HuberUCB: Algorithm and regret bound

In this section, we describe a robust, UCB-type algorithm called HuberUCB. We denote µi as the mean of
arm i and its variance as σ2

i . We assume that we know the variances of the reward distributions. We refer
to Section 5.4 for a discussion on the choice of the parameters when the reward distributions are unknown.

HuberUCB: The algorithm. In order to deploy the Huber’s estimator in the multi-armed bandits setting,
we need to estimate the mean of the rewards of each arm separately. We do that by defining a parameter βi
for each arm and estimating separately each µi using

Hubi,s = Hub (Xt, 1 ≤ t ≤ s such that At = i, ) .

Now, at each step t, we define a confidence bound for arm i with s number of pulls as

Bi(s, t) ,
{
rs(1/t2) + bi if s ≥ slim(t)
∞ if s < slim(t)

, (11)

where rs(1/t2) is defined by Equation (10), slim(t) = log(t) 98
128(p−5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
, ε =

√
(1−2ε)

log( 1−ε
ε ) ,

and bi is a bound on the bias |E[X] − Hub(Pi)|. bi is zero if Pi is symmetric and controlled by Lemma 5

11
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otherwise. For example, one can assign bi = 2σ2
i /βi by imposing q = 2, i.e. finite second moment, in

Lemma 5.

Now, we propose HuberUCB that selects an arm at at step t based on the index

IHuberUCB
i (t) = Hubi,Ti(t−1) +Bi(Ti(t− 1), t). (12)

The index of HuberUCB together with the confidence bound defined in Equation (11) dictates that if an arm
is less explored, i.e. Ti(t− 1) < slim(t), we choose that arm, and if multiple arms satisfy this, we break the
tie randomly. As t grows and for all the arms Ti(t− 1) ≥ slim(t) is satisfied, we choose the arms according
to the adaptive bonus. Thus, HuberUCB induces an initial forced exploration to obtain confident-enough
robust estimates followed by a time-adaptive selection of arms. We present a pseudocode of HuberUCB in
Algorithm 2.

Algorithm 2 HuberUCB

Require: ε ∈ [0, 1/2) and β > 0
1: for t = 1, . . . , n do
2: Compute index IHuberUCB

i (t) (Equation (12)) for i ∈ {1, . . . , k} using X1, . . . , Xt−1.
3: Choose arm at ∈ arg maxi Ii(t).
4: Observe a reward Xt.
5: end for

Regret Analysis. Now, we provide a regret upper bound for HuberUCB.

Theorem 3 (Upper Bound on number of pulls of suboptimal arms with HuberUCB) Suppose that
for all i, we have Pi ∈ P[2], i.e. a reward distribution with finite variance σ2

i . We assign β ≥ 4σi and p =
inf1≤i≤k PPi(|X−EPi [X]| ≤ βi/2) such that p > 5ε and ε < 1/5. We denote ∆̃i,ε = (∆i−2bi)(p−ε)−8βiε > 0
and

√
(1−2ε)

log( 1−ε
ε ) ≤ ε.

• If ∆̃i,ε > 12σ
2
i

βi

(√
2 + 2βiσi ε

)2
, then

E[Ti(n)] ≤ log(n) max
(

32βi
3∆̃i,ε

,
4

(p−5ε)2

(
1 + 2

√
2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(n)+1)

• If ∆̃i,ε ≤ 12σ
2
i

βi

(√
2 + 2βiσi ε

)2
, then

E[Ti(n)] ≤ log(n) max
(

50σ2
i

9∆̃2
i,ε

(√
2+2βi

σi
ε

)2
,

4
(p−5ε)2

(
1+2
√

2
(
ε ∨ 9

14
√

2

))2
)

+ 10(log(n)+1).

Using Theorem 3 and Lemma 1, a bound on the corrupted regret of HuberUCB follows immediately.

We now state a simplified version of Theorem 3 with worse but explicit constants for easier comprehension.
Let us fix β2

i = 16σ2
i and ε≤1/10 such that ε = 4/(5

√
ln(9)) ' 0.54, and p ≥ 1− 4σ2

i

β2
i
≥ 3

4 ≥ 5ε+ 1
4 . Now, if

we further assume that Pi symmetric leading to bi=0, it yields the following upper bounds.

Corollary 1 (Simplified version of Theorem 3) Suppose that for all i, Pi is a symmetric distribution
with finite variance σ2

i . Let also denote ∆̃i,ε , ∆i (p− ε)− 32σiε for ε < 1/10.

• If ∆̃i,ε > 6σi
(
1 + 4

√
2ε
)2, then
E[Ti(n)] ≤ 43 log(n) max

(
σi

∆̃i,ε

, 10
)

+ 10(log(n) + 1).

12
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• If ∆̃i,ε ≤ 6σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ 23 log(n) max
(
σ2
i

∆̃2
i,ε

(
1 + 32ε2) , 18

)
+ 10(log(n) + 1).

Remark that in this corollary, we replaced some occurrences of ε by its upper bound, which is also an upper
bound on ε. Thus, the presented result is loose up to constants but lend itself to easier comprehension.

Discussions on the Upper Bound. Here, we discuss how this proposed upper bound of HuberUCB
matches and mismatches with the lower bounds in Theorem 1.

1. Order-optimality of Upper Bound. HuberUCB achieves the logarithmic regret prescribed by the lower
bound (Theorem 1) plus some additive error due to the fact that this is a UCB-type algorithm. Thus,
HuberUCB is order optimal with respect to n.

2. Two Regimes of Upper Bound. When ∆i is small compared to σi, we obtain an upper bound E[Ti(n)] =
n→∞

O
(

log(n)
(

σ2
i

∆̃2
i,ε

ε2
))

from Corollary 1. ε2 is of the same order of magnitude as Equation (7) because we

take ε strictly smaller than 1/2. ε2 acts as an indicator of the corruption level. The term σ2
i

∆̃2
i,ε

indicates

the hardness due to the corrupted gaps ∆̃i,ε and echoes the hardness term σ2
i

∆2
i
that appears in regret upper

bound of UCB for uncorrupted bandits. The hardness term σ2
i

∆̃2
i,ε

also appears in the corrupted lower bound

(Equation (6)) as well as the heavy-tailed lower bound (Equation (5)) for ∆i � σi
2.

On the other hand, if ∆i is larger than σi, we get that E[Ti(n)] = O

(
log(n)

(
σi

∆̃i,ε

∨ ε2 ∨ 1
))

. This upper

bound reflects the lower bound in Equation (7) that holds for ∆i > 2σi. This reinstates the fact that for
large enough suboptimality gaps, the regret of HuberUCB depends solely on the corruption level than the
suboptimality gap.

3. Deviation from the Lower Bound. The two regimes defined in the upper bound does not follow the
exact distinctions made in the lower bounds. We observe that in upper bound, the distinction between
regimes depend on a shifted suboptimality gap ∆̃i,ε , ∆i (p− ε)− 32σiε, while the lower bound depends on
the corrupted suboptimality gap ∆i,ε , ∆i (1− ε)− 2σiε. This difference in constants hinder the hardness
regimes and corresponding constants in upper and lower bounds to match for all ∆i, σi, and ε. This deviation
also comes from the fact that the lower bounds proposed in Theorem 1 consider effects of heavy-tails and
corruptions separately, while the upper bound of HuberUCB consider them in a coupled manner.

Additionally, we observe that regret of HuberUCB is suboptimal due to the constant additive error, which
appears due to the initial forced exploration of HuberUCB up to slim(t). Our concentration bounds and
corresponding regret analysis shows that this forced exploration phase is unavoidable in order to be able to
handle the case ∆i ≤ σi with HuberUCB. Removing this discrepancy between the lower and upper bounds
would constitute an interesting future work.

5.4 Computational Details

Here, we discuss the three hyperparameters that HuberUCB depends on and also its computational cost.

Choice of σ and ε. In Theorem 3, we assume to know the σ and ε. In practice, these are unknown and
we estimate σ2 with a robust estimator of the variance, such as the median absolute deviation. In contrast,
estimating ε is hard. We refer to Appendix C.1 for an ablation study on the choice of ε.

2We observe that the lower bound in Equation (5) depends on σ2
i

∆i,ε
2 for ∆i � σi, since the first order approximation of

log(1 + x) is x as x→ 0.

13
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Choice of β. Ideally, β should be larger than maxi{4σi}. We recommend using the estimator of σ to estimate
a good value of β. The choice of β reflects the difference between heavy-tailed bandits and corrupted bandits.
When the data are heavy-tailed but not corrupted, Catoni (2012) shows that β'σ

√
n is a good choice for

the scaling parameter. However, this choice is not robust to outliers and yields a linear regret in our setup
(see Section 7). When there is corruption, β must remains bounded even when the sample size goes to
infinity in order to retain robustness. In Appendix C.1, we present an ablation study on the choice of ε.

Computational Cost. Huber’s estimator has linear complexity due to the involved Iterated Re-weighting Least
Squares algorithm, which is not sequential. We have to do this at every iteration, which leads HuberUCB to
have a quadratic time complexity. This is the computational cost of using a robust mean estimator, i.e. the
Huber’s estimator.

6 SeqHuberUCB: A Faster Robust Bandit Algorithm

In this section, we present a sequential approximation of the Huber’s estimator, and we leverage it further
to create a robust bandit algorithm with linear-time complexity algorithm. Here, we describe the algorithm
(SeqHuberUCB) and its theoretical properties.

A sequential approximation of Huber’s estimator. The central idea is to compute the Huber’s
estimator using the full historical data only in logarithmic number of steps than at every step, and in between
two of these re-computations, update the estimator using only the samples observed at that step. This allows
us to propose a sequential approximation of Huber’s estimator, i.e. SeqHubt, with lower computational
complexity.

By fixing the update step P2(t) = 2
⌊

log(t)
log(2)

⌋
before a given step t > 0, we define the estimator SeqHubt by

SeqHub0 = 0 and

SeqHubt =

Ht if t = P2(t),

Ht +
∑t

i=P2(t)
ψ(Xi−Ht)∑t

i=1
ψ′(Xi−Ht)

otherwise.
(13)

Here, Ht , Hub(XP2(t)
1 ) and ψ is the influence function defined in Equation (9). SeqHubt can be conceptu-

alized as a first order Taylor approximation of Hub(Xt
1) around Hub(XP2(t)

1 ).

One might argue that SeqHubt is not fully sequential rather a phased estimator as we still recompute the
Huber’s estimator following a geometric schedule. Thus, we still need to keep all the data in memory, leading
to linear space complexity as the non-sequential Huber’s estimator. But it features the good property of
having a linear time complexity when computed using the prescribed geometric schedule. This implies that
the SeqHuberUCB algorithm leveraging the sequential Huber’s estimator achieves a linear time complexity.

Concentration Properties of SeqHub. Now, in order to propose SeqHuberUCB we first aim to derive the
rate of convergence of SeqHubt towards tge true Huber’s mean Hub(P ).

Theorem 4 If the assumptions of Theorem 2 hold true, with probability larger than 1− 14δ, we have

|SeqHubt −Hub(P )| ≤ rt(δ) +

 1

p−
√

log(1/δ)
2t − ε

− 1

 rP2(t)(δ) (14)

for any t > 0, and δ ≥ exp
(
−P2(t) 128(p−5ε)2

49(1+2ε
√

2)2

)
. Here, rt(δ) is defined as in Equation (10).

We observe that the confidence bound of SeqHubt includes the confidence bound of Hubt, i.e. rt(δ),
and an additive term proportional to rP2(t)(δ). Since rP2(t)(δ) ≥ rt(δ) for t ≥ P2(t), we can show that

|SeqHubt −Hub(P )| ≤
(
p−

√
log(1/δ)

2t − ε
)−1

rP2(t)(δ). Thus, we obtain larger confidence bounds for

SeqHub than that of Hub, and they differ approximately by a multiplicative constant (p− ε)−1 as t→∞.
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SeqHuberUCB: The algorithm. Now, we plug-in the sequential Huber’s estimator, SeqHub, and the cor-
responding confidence bound (Equation (14)), instead of the Huber’s estimator and the corresponding con-
fidence bound in the HuberUCB algorithm. This allows us to construct the SeqHuberUCB algorithm that we
present hereafter.

Specifically, we define the index of SeqHuberUCB as

ISeqHuberUCB
i (t) = SeqHubi,Ti(t−1) +BSeqHuberUCB

i (Ti(t− 1), t). (15)

where
SeqHubi,s = SeqHub (Xt, 1 ≤ t ≤ s such that At = i, ) ,

and a confidence bound for arm i with s number of pulls is

BSeqHuberUCB
i (s, t) ,

rs(1/t2) +
(

1
p−
√

log(1/δ)
2s −ε

− 1
)
rP2(s)(1/t2) + bi if P2(s) ≥ slim(t)

∞ if P2(s) < slim(t).

Here, slim(t), ε and bi are same as defined for HuberUCB.

Similar to Corollary 1, we now present a simplified regret upper bound for SeqHuberUCB. Retaining the setting
of Corollary 1, we assume that β2

i =16σ2
i , ε≤1/10 implying ε = 4/(5

√
ln(9)) ' 0.54, p ≥ 1−4σ2

i

β2
i
≥ 3

4 ≥ 5ε+1
4 ,

and Pi symmetric so that bi=0. Further simplifying the constants yields the following regret upper bound
for SeqHuberUCB.

Lemma 6 (Simplified Upper Bound on Regret of SeqHuberUCB) Suppose that for all i, Pi is a dis-
tribution with finite variance σ2

i . Let us also denote ∆̃i,ε = ∆i (p− ε)− 32σiε,

• If ∆̃i,ε > 18σi
(
1 + 4

√
2ε
)2, then
E[Ti(n)] ≤ 128 log(n) max

(
σi

∆̃i,ε

, 2
)

+ 28(log(n) + 1).

• If ∆̃i,ε ≤ 18σi
(
1 + 4

√
2ε
)2, then

E[Ti(n)] ≤ 80 log(n) max
(
σ2
i

∆̃2
i,ε

(
1 + 32ε2) , 3)+ 28(log(n) + 1).

Comparison between Regrets of HuberUCB and SeqHuberUCB. Lemma 6 yields similar regret bounds
for SeqHuberUCB as the ones obtained for HuberUCB in Corollary 1. We observe that the regrets of these two
algorithms only differ in n-independent constants. Specifically, regret of SeqHuberUCB can be approximately
3−4 times higher than that of HuberUCB. For simplicity of exposition, we present approximate constants in our
results. A more careful analysis might yield more fine-tuned constants. Theorem 4 and experimental results
(Figure 2) indicate that it is possible to have very close performances with SeqHuberUCB and HuberUCB.

7 Experimental Evaluation

In this section, we assess the experimental efficiency of HuberUCB and SeqHuberUCB by plotting the empirical
regret. Contrary to the uncorrupted case, we cannot really estimate the corrupted regret in (Corrupted
regret) only using the observed rewards. Instead, we use the true uncorrupted gaps that we know because
we are in a simulated environment, and we estimate the corrupted regret Rn using

∑k
i=1 ∆iTi

∧
(n), where

Ti
∧

(n) = 1
M

∑M
m=1(Ti(n))m is a Monte-Carlo estimation of Eνε [Ti(n)] over M experiments. We use rlberry

library (Domingues et al., 2021) and Python3 for the experiments. We run the experiments on an 8 core
Intel(R) Core(TM) i7-8665U CPU@1.90GHz. For each algorithm, we perform each experiment 100 times to
get a Monte-Carlo estimate of regret.
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Figure 2: Cumulative regret plot of the algorithms on a corrupted Bernoulli (above), Student’s (middle)
and Pareto (below) reward distributions with various corruption levels ε. Lower corrupted regret indicates
better performance for an algorithm.

Comparison with Bandit Algorithms for Heavy-tailed and Adversarial Settings. To the best of
our knowledge, there is no existing bandit algorithm for handling unbounded stochastic corruption prior
to this work. Hence, we focus on comparing ourselves to the closest settings, i.e. bandits in heavy-tailed
setting and adversarial bandit algorithms. We empirically and competitively study five different algorithms:
HuberUCB, SeqHuberUCB, two RobustUCB algorithms with Catoni-Huber estimator and Median of Means
(MOM) (Bubeck et al., 2013), and and adversarial bandit algorithm: Exp3.

HuberUCB is closely related to the RobustUCB with Catoni Huber estimator, which also uses Huber’s esti-
mator but with another set of parameters and confidence intervals. The RobustUCB algorithms are tuned
for uncorrupted heavy-tails. Hence, they incur linear regret in a corrupted setting. This is reflected in the
experiments. We also improve upon (Bubeck et al., 2013) as we can handle arm-dependent variances. Exp3
is an algorithm designed for bounded Adversarial corruption, and thus, fails as the corruption is too severe.

Corrupted Bernoulli setting: In Figure 2 (above), we study a 3-armed bandits with corrupted Bernoulli
distributions with means 0.1, 0.97, 0.99. The corruption applied to this bandit problem are Bernoulli dis-
tributions with means 0.999, 0.999, 0.001, respectively. For HuberUCB and SeqHuberUCB, we choose to use
βi = 0.1σi, which seems to work better despite the theory presented before. We plot the mean plus/minus
the standard error of the result in Figure 2. We do that for the three corruption proportions ε equal to
0%, 3% and 5%. We notice that there is a short linear regret phase at the beginning due to the forced
exploration performed by the algorithms. Followed by that, HuberUCB and SeqHuberUCB incur logarithmic
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regret. On the other hand, Exp3, Catoni Huber Agent and MOM Agent incur logarithmic regret only in the
uncorrupted setting. When the data are corrupted, i.e. ε > 0, their regret grow linearly.

Corrupted Student setting: In Figure 2 (middle), we study a 3-armed bandits with corrupted Student’s
distributions with 3 degrees of freedom (finite second moment) and with means 0.1, 0.95, 1. The corruption
applied to this bandit problem are Gaussians with variance 1, and means 100, 100,−1000 respectively. For
HuberUCB and SeqHuberUCB, we choose to use βi = σi. The results echo the observations for the Bernoulli
case except that the corruption is more drastic and affect the performance even more.

Corrupted Pareto setting: In Figure 2 (bottom), we illustrate the results for a 3-armed bandits with
corrupted Pareto distributions having shape parameters 3, 3, 2.1 (i.e. they have finite second moments),
and scale parameters 0.1, 0.2, 0.3 respectively. Thus, the corresponding means are 0.15, 0.3 and 0.57 and
the standard deviations are 0.09, 0.17, 1.25, respectively. The corruption applied to this bandit problem are
Gaussians with variance 1, and centered at 100, 100,−1000 respectively. For HuberUCB and SeqHuberUCB,
we choose to use β = 1.5σi and we also bound the bias bi by σ2

i /βi. The results echo the observations for
the Student’s distributions.

Thus, we conclude that HuberUCB incur the lowest regret among the competing algorithms in the Bandits
Corrupted by Nature setting, specially for higher corruption levels ε. Also, performances of SeqHuberUCB
and HuberUCB are very close except for the Pareto distributions with high corruption level.

8 Conclusion
In this paper, we study the setting of Bandits corrupted by Nature that encompasses both the heavy-tailed
rewards with bounded variance and unbounded corruptions in rewards. In this setting, we prove lower
bounds on the regret that shows the heavy-tail bandits and corrupted bandits are strictly harder than
the usual sub-Gaussian bandits. Specifically, in this setting, the hardness depends on the suboptimality
gap/variance regimes. If the suboptimality gap is small, the hardness is dictated by σ2

i /∆
2
i,ε. Here, ∆i,ε is the

corrupted sub-optimality gap, which is smaller than the uncorrupted gap ∆ and thus, harder to distinguish.
To complement the lower bounds, we design a robust algorithm HuberUCB that uses Huber’s estimator for
robust mean estimation and a novel concentration bound on this estimator to create tight confidence intervals.
HuberUCB achieves logarithmic regret that matches the lower bound for low suboptimality gap/high variance
regime. We also present a sequential Huber estimator that could be of independent interest and we use it
to state a linear-time robust bandit algorithm, SeqHuberUCB, that presents the same efficiency as HuberUCB.
Unlike existing literature, we do not need any assumption on a known bound on corruption and a known
bound on the (1 + ε)-uncentered moment, which was posed as an open problem in (Agrawal et al., 2021).

Since our upper and lower bounds disagree in the high gap/low variance regime, it will be interesting to in-
vestigate this regime further. From multi-armed bandits, we know that the tightest lower and upper bounds
depend on the KL-divergence between optimal and suboptimal reward distributions. Thus, it would be im-
perative to study KL-divergence with corrupted distributions to better understand the Bandits corrupted by
Nature problem. Also, following the reinforcement learning literature, it will be natural to extend HuberUCB
to contextual and linear bandit settings with corruptions and heavy-tails. This will facilitate its applicability
to practical problems, such as choosing treatments against pests.
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