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Abstract

Our work studies the implications of transfer
learning on model behavior beyond accuracy:
how does the pre-training distribution affect the
downstream robustness of a fine-tuned model?
We analyze model effective robustness using
the framework proposed by Taori et al. (2020),
which demonstrates that in-distribution and out-
of-distribution performances are highly correlated
along a robustness linear trend. We explore vari-
ous interventions that significantly alter the pre-
training distribution, including label space, la-
bel semantics, and the pre-training dataset itself.
In most cases, changes during pre-training have
minimal impact on the original linear trend pro-
duced by pre-training models on the full Ima-
geNet dataset. We demonstrate these findings
on pre-training distributions constructed from Im-
ageNet and iNaturalist, with the fine-tuning task
being iWildCams-WILDS animal classification.

1. Introduction

There often exists a mismatch between data distribution in
the real world and the training set that machine learning
models are trained on. When this happens, the models can
perform in unexpected and undesirable ways (Rosenfeld
et al., 2018; Koh et al., 2021). As such, robustness under
distribution shift is a fundamental concern for producing
reliable ML systems. For example, a self-driving car should
be able to generalize to a wide variety of weather scenar-
ios to be considered safe, each of which could represent a
distribution shift from what it has seen during training.

However, there are many different ways for an input at test
time to be “out-of-distribution”. This raises a fundamental
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question of what a meaningful way to measure robustness
would be. In our work, we focus on natural distribution
shifts, named so because these shifts reflect real-world pro-
cesses. In particular, we evaluate model robustness on the
iWildCam-WILDS benchmark (Koh et al., 2021) which
uses geo-location of camera traps to form distinct test sets
with varying degrees of overlap with the training locations.
Following Miller et al. (2021), we measure robustness as
the difference in performance on the in-distribution (ID)
test set and the out-of-distribution (OOD) test set. This
allows us to take advantage of results from Miller et al.
(2021), which demonstrate that ID and OOD performances
are strongly correlated: plotting these 2 values for different
trained models in a scatter plot often yield a linear trend.
This trend has been shown to be consistent across many
architectures, training set sizes and optimization procedures,
which allows us make conclusions about the importance
of a pre-training distribution instead of a particular pre-
trained model. Consequently, we can use differences in the
slopes of the robustness trends to isolate important factors
for improving model invariance to distribution shifts.

In most cases, Miller et al. (2021) observes that models
with and without pre-training share the same robustness
trend. One notable exception is the iWildCams-WILDS
dataset, where there is a significant deviation in the linear
trend between pre-training on ImageNet and training from
scratch, see the cyan and blue lines in Figure 1. A natural
question arises from this observation, which motivates us to
study the connection between pre-training and downstream
robustness in this work: what is it about the pre-training
process that causes this striking shift in linear trend?

We tackle this question along three different ablation axes:
(i) Label diversity of the pre-training distribution, (ii) Label
semantics of the pre-training classes, and (iii) Similarity
between the pre-training and fine-tuning distributions. In-
spired by Huh et al. (2016), we perform these ablations
using the inherent structure within both ImageNet (Word-
Net) and iNaturalist (biological taxonomy) class labels. Our
main findings can be summarized as follows:

1. We find that while changes to the pre-training setup to
increase the alignment between pre-training and fine-tuning
distributions (e.g., using more semantically similar classes)
can improve OOD performance, they have minimal impact



on the robustness trends.

2. Similar to previous results that study influence of Ima-
geNet pre-trained features on accuracy (Huh et al., 2016),
we find that label diversity or label granularity doesn’t have
a strong impact on downstream robustness.

3. Finally, there is no robustness benefit from using noisier
pre-training data, or a pre-training task that is more in line
with the downstream task setting (e.g., wildlife classifica-
tion).

From our initial findings, we hypothesize that with regards
to fine-tuning, pre-training works on a “threshold basis”:
Once a certain threshold of pre-training data diversity is
reached, the robustness trend shifts to a completely different
regime compared to training models from scratch. How to
make this shift gradual and how to characterize the limit
of this shift are interesting open questions that we plan to
continue to investigate. Refer to Section 4 for discussion of
possible future directions.

2. Background

The main motivation for our paper comes from previous
work by Huh et al. (2016), which investigates various fac-
tors that affect the quality of ImageNet pre-trained features
for transfer learning on a range of downstream tasks. In
our work, we shift the focus from accuracy to robustness to
distribution shift, which has been a long-standing issue in
machine learning (Quifionero-Candela et al., 2008; Szegedy
et al., 2013; Biggio & Roli, 2018; Biggio et al., 2013). In
particular, we analyze the robustness of pre-trained features
to natural distribution shifts, i.e. where the test images
could be observed in the real world and are not intentionally
perturbed by synthetic corruptions, through the iWildCam-
WILDS benchmark (Koh et al., 2021). In addition, com-
pared to Huh et al. (2016), we experiment with a greater
variety of modern neural network architectures. Further
details on our experimental setup can be found in Section
3.1.

Ideally a natural shift between two test distributions should
not affect performance, for instance because the shift does
not affect the accuracy of humans labelers (Shankar et al.,
2020). If model performances on the two test sets are plotted
along the z- and y-axis of a scatter plot, then a more robust
model would lie closer to the diagonal y = z line. This
notion of robustness was captured by Taori et al. (2020)
under the term effective robustness, which measures the
difference between a model’s actual OOD performance and
what could be predicted from its ID performance (Figure 1).

Miller et al. (2021) adopted this effective robustness frame-
work and evaluated hundreds of models on various distribu-
tion shift settings. The authors observed that when the train-
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Figure 1. Effective robustness is defined as movement towards a
classifier which is robust to distribution shift (i.e., line y = x).
Using this metric, Miller et al. (2021) observes that on iWildCam-
WILDS dataset, models trained from scratch and models undergo
ImageNet pre-training exhibit different linear trends, with the
latter being more robust. We use these two trends as points of
reference for our subsequent experiments, in which we modify the
pre-training distribution and observe how our interventions alter
the linear trend.

ing data distribution is fixed, changes to model architecture,
training set size, training algorithm, and other model-related
factors do not change effective robustness in most cases. In
other words, any model trained on the same data distribution
should lie on the same linear trend that maps ID accuracy to
OOD accuracy. This linear trend, and how close it is to the
y = x line, is what we also use in our work to compare the
quality of the pre-trained features. More notably, Miller et al.
(2021) discovered that on iWildCam dataset, models trained
from scratch and models that have been pre-trained on Ima-
geNet lie on distinct linear trends, with the latter exhibiting
much more robustness. We replicate these reported trends
in Figure 1. Motivated by this observation, our work seeks
to better understand aspects of ImageNet pre-training that
contribute to this higher robustness on downstream tasks,
and how these aspects translate to other pre-training data
sources such as iNaturalist.

Previous work (Andreassen et al., 2021) has studied effec-
tive robustness over the course of fine-tuning and found that
pre-trained models exhibit high effective robustness in the
middle of fine-tuning, which eventually decreases as the
training proceeds. The paper experimented with ImageNet
as one of the pre-training data sources. In our investigation,
as a sanity check to remove number of training epochs as a
potential source of bias for the linear fit, we adopt the linear
trend of models pre-trained on ImageNet and fine-tuned on
iWildCam computed previously by Miller et al. (2021) as
the baseline. We then report the residuals from comparing
actual OOD performance at different epochs to what could
be predicted from the corresponding ID performance using
this baseline. Refer to Figure 2 for more details. We find
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Figure 2. We visualize the residuals of various architectures after
fitting a linear trend that predicts OOD accuracy from ID accuracy.
All models are pre-trained on the full ImageNet dataset and fine-
tuned on iWildCam for 12 epochs. We observe that overall the
residuals fluctuate around the y = 0 line and residual values for
most architectures fluctuate over the course of fine-tuning, except
for alexnet, with negative residuals throughout, and densenet121,
with positive residuals throughout.

that in the context of iWildCam fine-tuning, at each epoch,
the residuals from our architectures of choice concentrate
around the y = 0 line and exhibit no particular trend. This
in turn allows us to vary the number of fine-tuning epochs as
a hyperparamter and obtain models covering a wide range
of test performances for the scatter plots.

3. Experiment Results
3.1. Setup

We use ImageNet (Deng et al., 2009) and iNaturalist
(Van Horn et al., 2018) as the pre-training datasets, given
their hierarchical structures, complexity, and relevance to
the downstream task. The downstream task is wildlife clas-
sification with iWildCam-WILDS dataset (Koh et al., 2021):
input is a photo taken by a camera trap, and output is one
of 182 different animal species. There are 2 test sets for
evaluation: ID test data consists of images taken by the
same camera traps as the training set, but on different days
from the training and validation (ID) images, while OOD
test data contains images taken by a disjoint set of camera
traps from training and validation (ID) images. We report
the macro F1 scores of the trained networks, following (Koh
et al., 2021), since this metric emphasizes performance on
rare species, which is critical to the biodiversity monitoring
application that the dataset was designed for.

We then train a range of standard neural network architec-
tures including ResNet (He et al., 2016), ResNext (Xie
et al., 2017), DenseNet (Iandola et al., 2014), AlexNet
(Krizhevsky et al., 2012) and MobileNet V3 (Howard et al.,
2019) to obtain data for our linear trends. In our scatter
plots, besides varying the architectures, we also vary the
extent of training (i.e., epoch) to obtain points with different
F1 scores for plotting. Further training details can be found
in Appendix A.

Figure 3. (left) shows random example images from the in-
distribution validation set of iWildCam-WILDS (Koh et al., 2021)
and (right) shows random example images from the out-of-
distribution validation set. This split is done based on geolocation
of camera traps.

In the subsequent scatter plots, we focus on the linear trends
that result from our interventions with the pre-training dis-
tribution, and exclude explicit markers for the lines that we
obtain from previous work (Miller et al., 2021), which in-
clude models trained from scratch (blue line) on iWildCam
as well as models pre-trained on ImageNet (cyan line).

3.2. Effect of Number of Classes

We start by adapting the question raised in previous work
(Huh et al., 2016) to our investigation: how does varying
the number of pre-training classes affect downstream robust-
ness? We follow Huh et al. (2016) and construct supersets
of classes in ImageNet using the WordNet hierarchy. We
use the maximum of the shortest path distance from root of
WordNet to a label to compute the maximum depth of the
current label set. We contract label nodes along the shortest
path to construct superclasses. Specifically, we investigate
depths 5, 6, and 7, which result in class counts of 37, 85,
and 232 respectively, so as to provide good coverage across
a range of label granularity.

In previous work, Huh et al. (2016) shows that increases
in number of classes past a certain point have diminishing
return on downstream task accuracy. In our investigation,
we find that pre-training with the full 1000 classes provides
the most robustness, and when the label set size is reduced
by four times (i.e., taking classes at depth 7), model robust-
ness decreases slightly. From then on, reducing the label
set doesn’t deteriorate the linear trend further (i.e., taking
classes at depths 5 and 6), besides lowering the absolute
F1 scores obtained from using the same architectures and
training images. Further experiment with label contraction
is needed to test the limit of label diversity on downstream
robustness.

3.3. Animals versus Objects

We next investigate whether pre-training with classes whose
semantics are more aligned with the downstream data would
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Figure 4. Collapsing the label sets using the WordNet tree changes
the label diversity of the pre-training task (ImageNet). We observe
that the robustness on the downstream task decreases compared to
using the full 1000 classes. However, further constriction of the
label set (i.e., reduces the maximum depth of the WordNet tree
where labels are obtained from) has negligible effect on the linear
trend.

improve robustness.

To do so, we experiment with separately pre-training models
on ImageNet classes that are subsets of the “object” and “an-
imal” WordNet synsets. This yields 2 broad categories that
are roughly similar in sample size, each having around 600K
images. In Figure 5, we find that reducing the semantics cov-
erage of the pre-trained labels causes models to have lower
robustness compared to training on the full 1000 ImageNet
classes. Furthermore, using “animal” classes yields slightly
better OOD performance as well as robustness trend, which
is not surprising given that the fine-tuned data distribution,
iWildCam, comprises images of animals in the wild. How-
ever, it’s worth noting that the linear trends of these 2 very
different categories of pre-training data still closely follow
each other, and are much better than the linear relationship
provided by models without any pre-training (blue line).

We hypothesize that this is because some images from “ob-
ject” classes also contain animals (due to co-occurrences
that are not accounted for by ImageNet labels), and that
training on a diverse set of classes in general helps the
model pick up on useful robustness-inducing variances that
in turn lead to similar downstream robustness. Future work
could explore Visual Genome dataset (Krishna et al., 2017),
which comes with dense annotations of all objects in an
image, thus allowing a clearer separation between training
inputs with only “objects” and those with only “animals”.

3.4. Pre-training with iNaturalist

Moving beyond aligning the semantics of target classes
in the pre-training and downstream tasks, we ask whether
increased similarity betwween the two data distributions
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Figure 5. Varying the broad category of classes included in the pre-
training data yields similar robustness, with those pre-trained only
on “animal” classes still having slightly better OOD performance.
Models pre-trained only on “object” classes are still much more
robust than models that do not undergo any pre-training.

themselves would help with robustness. This leads us to
experimenting with iNaturalist (Van Horn et al., 2018).

Compared to ImageNet, iNaturalist exhibits vastly different
characteristics (e.g., long-tailed, less clean data, different
categories of objects, more domain-specific). Its data collec-
tion procedure is also much more similar to iWildCam’s. We
expect that pre-training on the diverse species represented in
iNaturalist will provide a boost on robustness for the animal-
in-the-wild classification setting in iWildCam, compared to
training on general object classes found in ImageNet.

However, in Figure 9, we find that iNaturalist (red line)
behaves similarly to ImageNet (cyan line) as a pre-training
data source. We hypothesize that when a certain level of
“diversity” is reached with the training images and labels, as
in the case of ImageNet, there is negligible robustness gain
to be made even if we increase the alignment between the
pre-training and the fine-tuning domains.

When we reduce the class label space of iNaturalist to its
phylum, model robustness deteriorates slightly (green line),
which is in line with our previous observation from the
ImageNet experiments (Section 3.2). This again illustrates
that label diversity is important to a certain extent in the
pre-training phase.

4. Conclusion

In our work, we have demonstrated that many important fac-
tors during pre-training — label diversity, label semantics,
and the pre-training dataset itself — do not significantly
alter downstream robustness to natural distributional shifts.
This in turn leads to the open question of: what does? There
are other aspects of the pre-training distribution that we look
forward to exploring next:
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Figure 6. Pre-training on a noisy, long-tailed distribution of natural
images (iNaturalist) doesn’t change the robustness on downstream
task, compared to pre-training on a clean dataset like ImageNet.
Similar to Section 3.2, we observe that reducing label diversity
by grouping related classes in iNaturalist together makes the fine-
tuned models slightly less robust.

e Sample diversity: given the same set of class labels,
would sampling data from more fine-grained subgroups
(e.g., different dog breeds) help with robustness? We
are aware that “image diversity” is itself difficult to
define, and other diversity heuristics such as FID score
(Heusel et al., 2017) could be used to provide a more
complete picture.

» Dataset size: How quickly do robustness improvements
saturate with more samples per class? A related ques-
tion is how much pre-training data would be needed to
alter the linear trend from that of training from scratch.

Our findings so far lead us to posit a “threshold hypothe-
sis”: Once a certain threshold of pre-training “diversity” is
reached, the robustness trend shifts suddenly and discretely
to new behavior, compared to training from scratch. Validat-
ing this threshold hypothesis would require more large-scale
experimentation.

Another interesting future direction is to determine what
characteristic of iWildCams-WILDS leads to the differ-
ence in linear trend between pre-training and training from
scratch. Many other datasets (e.g., fMoW-WILDS, see (Koh
et al., 2021)) do not exhibit this behavior after fine-tuning,
S0 it is important to uncover other distribution shifts where
this is the case. We propose that finding a unifying property
among such datasets would allow for better interpretation of
our current results, and perhaps allow for interesting bench-
marks with which to test the quality of pre-training features.
As a first step in this direction, we are currently looking
at distribution shift settings constructed from the Domain-
Net benchmark. For each of the domain provided, we train
ResNet architectures from scratch, in addition to fine-tuning
those that have been pre-trained on ImageNet, on only data

from that domain, and evaluate the models on all the re-
maining domains. We start to observe that pre-training and
training from scratch only produce different linear trends
for certain pairs of domains and not the others.

Finally, pre-training on web-crawled datasets has been gain-
ing popularity recently as a way to produce large-scale mod-
els with remarkable performance in zero-shot settings such
as CLIP (Radford et al., 2021). The dataset size reported is
often multiple orders of magnitude bigger than ImageNet.
With this scale in mind, a pertinent question to ask is how
“diversity” of the pre-training distribution would be defined
and measured differently given the open vocabulary that
comes with these web-crawled datasets. Even though we
only focus on supervised pre-training in this work, the un-
supervised and self-supervised settings are also important
avenues for future research.
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A. Training Details

For the standard deep neural network architectures used in our investigation, their implementation comes from PyTorch’s
torchvision.models package. We use standard hyperparameters found in the WILDS and PyTorch’s official GitHub
repositories (for training models with iWildCam-WILDS and ImageNet respectively), which match the hyperparameters
provided in (He et al., 2016) and (Koh et al., 2021). ImageNet pre-training happens for 90 epochs in total, and then all
models are fine-tuned on iWildCam for 12 epochs.

B. Dataset Details

iNaturalist (Van Horn et al., 2018) We use the version of iNaturalist from the 2017 challenge, with 579,194 training
images across 5,089 diverse natural organism categories. The train set is notably not class balanced, exhibiting a long-tailed
distribution (see Figure 7). The validation set contains 95,986 images and is also not class balanced, with between 4 and 44
images per category. See Figure 9 for examples.

iWildCams-WILDS (Biggio & Roli, 2018) The iWildCam dataset consists of images of 182 animal species, which are
captured through the use of camera traps. We use the version of iWildCams version 2.0 released in 2021 as a correction to
the iWildCams 2020 competition dataset to prevent test set leakage. To construct a natural distribution shift, we follow the
split proposed by Koh et al. (2021), which results in 2 test sets for evaluation: ID test data consists of images taken by the
same camera traps as the training set, but on different days from the training and validation (ID) images, while OOD test
data contains images taken by a disjoint set of camera traps from training and validation (ID) images. The train set consists
of 129,809 images. The distribution of animal categories over these images is long-tailed. The ID validation set consists of
7,314 images and the OOD validation set consists of 22,275 images, also not class balanced. Example train set images can
be seen in Figure 10.

ImageNet (Russakovsky et al., 2015) We use ImageNet-1k from the ILSVRC 2012 challenge. It contains 1,000 diverse
categories of animals and objects, with ~1.2 million training images. The train set is roughly class balanced with ~1.2
thousand images per category. The validation set contains 50,000 images and is exactly class balanced, with 50 images per
class. Example train set images can be seen in Figure 8.
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Figure 7. Histogram of class size distribution for the iNaturalist dataset.



Figure 8. Random examples from the ImageNet ILSVRC 2012 challenge train set (Russakovsky et al., 2015; Deng et al., 2009)



Figure 9. Random examples from the iNaturalist 2017 challenge train set (Van Horn et al., 2018).



Figure 10. Random examples from the iWildCam-WILDS train set (Koh et al., 2021)



