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ABSTRACT

Recent Semi-Supervised Object Detection methods are mainly based on self-
training, i.e., generating hard pseudo-labels by a teacher model on unlabeled data
as supervisory signals. Although they achieved certain success, the massive False
Negative samples and inferior localization precision lack consideration. Further-
more, the limited annotations in semi-supervised learning scale up the challenges:
large variance of object sizes and class imbalance (i.e., the extreme ratio between
background and object), hindering the performance of prior arts. We address
these challenges by introducing a novel approach, Scale-Invariant Teaching (SIT),
which is a simple yet effective end-to-end knowledge distillation framework ro-
bust to large object size variance and class imbalance. SIT has several appealing
benefits compared to previous works. (1) SIT imposes a consistency regulariza-
tion to reduce the prediction discrepancy between objects with different sizes. (2)
The soft pseudo-label alleviates the noise problem from the False Negative sam-
ples and inferior localization precision. (3) A re-weighting strategy can implicitly
screen the potential foreground regions from unlabeled data to reduce the effect of
class imbalance. Extensive experiments show that SIT consistently outperforms
the recent state-of-the-art methods and baseline on different datasets with signifi-
cant margins. For example, it surpasses the supervised counterpart by more than
10 mAP when using 5% and 10% labeled data on MS-COCO.

1 INTRODUCTION

Deep neural networks achieve strong results under the supervised learning framework driven by
large-scale datasets, such as ImageNet (about 1.28 million labeled images). However, different from
classification, object detection further involves locating the presence of objects with a bounding
box. Therefore, the annotation for object detection is much more expensive, leading to labeled
data remaining scarce related to classification. As an alternative, Semi-supervised Learning (SSL)
improves a model’s performance significantly by leveraging both the limited labeled data and the
massive unlabeled data.

Recently, Semi-Supervised Learning for classification has received much attention (Tarvainen &
Valpola, 2017; Berthelot et al., 2019; Xie et al., |2020; |Sohn et al., |2020a). However, Semi-
Supervised Object detection (SS-OD) is more challenging than Semi-Supervised Image Classifi-
cation. The reason is threefold. The scale of objects varies in a small range for classification,
whereas the scale variation is large across object instances in MS-COCO dataset (Lin et al., [2014).
As shown in Fig. @ the standard variance of the scale of instances in MS-COCO is 188.4, while that
of ImageNet is 56.7. Besides, the hard pseudo-label predicted by Self-training methods incurs noise
because of inaccurate bounding box regression and False Negative object instance. As illustrated in
Fig. [Ib] the recall drops to 0.1 and 0.3 separately when IoU is set to 0.5 and 0.9, which indicates
that most foreground instances are False Negative samples. The Precision at IoU = 0.9 is less than
0.2, showing that the location of bounding boxes is not accurate enough. Yet, the foreground and
background classes are high imbalanced in object detection. The ratio of the foreground sample to
that of the background sample is about 1 : 25, 000 under RetinaNet framework (Lin et al.,[2017b).

A detector is supposed to be scale-invariant to object instances, which means that the predictions
of an image in different sizes should be consistent. However, we observe a discrepancy in the
objectness scores, as indicated in Fig. The ratio of foreground anchor to background anchor



Under review as a conference paper at ICLR 2022

ImageNet AP@0.5 —— AR@0.5 [%7
. COCO . AP@0.9 AR@0.9 |6

_— os
- 04

02

Precision
Recall

Average Anchor Num

T— 0.0 0.0

I

0 200 400 600 800 1000 01 02 03 04 05 06 07 08 09 00 02 0.4 06 08 10
Instance Size Score Score Distance

(a) Instance Size Distribution (b) AP and AR w.r.t Score (¢) Score Distance Distribution

Figure 1: (a) For the COCO dataset, all the images are resized such that the short edge has 800 pixels while
the long edge has less than 1333 pixels. For the ImageNet dataset, all the images are resized to 224 x 224 to
calculate the statistics. (b) We predict pseudo-label on the rest of COCO training data with a converged Faster-
RCNN detector (with FPN and ResNet50 backbone), trained with 10% COCO data. The low average recall
and precision show that hard pseudo-label incur more noise with False Negative samples. (c) All the scores
are predicted by the RetinaNet detector with FPN and ResNet 50 backbone, which is trained with randomly
sampled 10% COCO data. The score distance is the absolute difference between the predictions of the image
in different sizes. The Y-axis is the average number of anchors per image.

increases as the score distance becomes large, which implies that the network detects an object
instance in the image while is blind to the instance in a different size, in the case of a significant
objectness score distance. This inconsistency is typically alleviated by the multi-scale inference
ensemble, which increases the computational cost and requires complicated operations to fuse the
bounding boxes.

STAC (Sohn et al.,2020b) simply adopts the existing advanced semi-supervised image classification
method to solve Semi-Supervised Object Detection straightly, as illustrated in Fig.[2al UBT (Liu
et al., 2021) adopts Focal Loss (Lin et al.| 2017b) to fix the overfitting hard pseudo-label issue, as
shown in Fig. Whereas the performance of bot STAC and UBT is moderate in the high-data
scenario due to the False Negative object instance and inferior localization precision.

To overcome the challenges motioned above, we propose Scale-Invariant Teaching, a simple yet
effective end-to-end semi-supervised learning framework. Since the scale is an essential dimension
of the low-dimensional semantic manifolds, we design a scale-invariant consistency regularization
across feature maps in different levels as a solution to the large object size variance. Moreover, as
the noise from hard pseudo-label has detrimental effects on the recognition consistency, a slowly
progressing teacher is proposed to generate soft pseudo-labels for unlabeled data in an online man-
ner. The teacher is implemented as an exponential moving average (EMA) of the detector, which
doesn’t increase the learnable parameters. Weight averaging is shown to improve generalization
performance (Tarvainen & Valpolal 2017} |Athiwaratkun et all 2018)), yielding a stronger teacher
than the student model. Considering the class imbalance problem, we implement a re-weighting
strategy to focus on the inconsistency among feature maps in different levels and the discordance
between EMA teacher and student detector. As a result, our re-weighting approach avoids selecting
the potential foreground regions from the unlabeled data explicitly.

To evaluate the effect of SIT, we conduct extensive experiments on benchmarks for object detection,
MS-COCO (Lin et al., |2014) and Pascal VOC (Everingham et al., [2010). We demonstrate that our
method surpasses the baseline model and previous methods by large margins, even outperforming
the fully supervised counterpart with 35k MS-COCO labeled data.

Our contributions are listed as follows: (1) SIT imposes a scale-invariant consistency regularization
to reduce the prediction discrepancy between objects with different sizes. (2) The soft pseudo-label
alleviates the noise problem which arises from the False Negative samples and inaccurate bounding
box regression. (3) A re-weighting strategy can implicitly screen the potential foreground regions
from unlabeled data to reduce the effect of class imbalance.

2 RELATED WORKS

Self-Learning. Self-training methods first train a teacher model with the labeled dataset and then
generate pseudo-labels for the unlabeled dataset. Finally, the student model is optimized with both
the labeled data and pseudo-labeled data jointly. For classification tasks, Self-training methods (Tar-
vainen & Valpola, 2017; [Berthelot et al., 2019}, 2020; Sohn et al., 2020a) performs well. However,
Semi-Supervised Object detection is more challenging than Semi-Supervised Image Classification.
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Figure 2: The Image (w/o Aug) means that the input is only weakly augmented (random resize and flip). The
Image in (c) is strongly augmented, such as color jittering, gaussian blur. (a) In STAC (Sohn et al.| 2020b), a
model is trained with labeled data to predict hard pseudo-label for self-training during the first stage. (b) Unbi-
ased Teacher (Liu et al.,2021)) generates hard pseudo-label by the slowly progressing teacher, which is shown
to yield more accurate targets (Tarvainen & Valpolal|2017). (c) Our model improves the scale invariance, which
is critical for object detectors, by regularizing the consistency between different-sized images. Furthermore,
the inherent False Negative sample noise is alleviated by predicting soft pseudo-label. A re-weighting strategy
is adopted to solve the severe class imbalance problem.

Some works (Liu et al.,[2021;Zhou et al.,[2021) focused on SS-OD contribute to alleviating the noise
problem brought by pseudo-label. Those methods attach additional modules on the two-stage de-
tector to overcome the heavy overfitting on the foreground and background classification and refine
the hard pseudo-labels by ensemble methods. Nevertheless, methods based on hard pseudo-label
have an inherent defect that False Negative object instances, especially those whose scores are near
the threshold, influence the consistency of recognition. Humble Teacher (Tang et al., [2021)) adopts
soft pseudo-labels to avoid the recognition inconsistency but treat all the regions equally. Due to the
extreme imbalance of foreground and background, the magnitude of gradients from the two kinds
of regions is quite different. Therefore, the regions should be treated with different importance.
Different from the existing works, our method generates soft pseudo-labels for unlabeled data in
an online manner, and the re-weighting strategy automatically focuses on the potential foreground
regions from the unlabeled data.

Consistency Regularization. Consistency-based Semi-supervised learning uses unlabeled data to
stabilize the predictions under input or weight perturbations. For instance, two different translations
of the same image should result in similar predicted probabilities. This class of methods (Samuli
& Timo, |2017; [Tarvainen & Valpola, 2017; Miyato et al., 2018)) doesn’t generate pseudo-label but
constrains the discrepancy between the outputs, which is known to help smooth the manifold (Oliver,
et al., 2018). For SS-OD, CSD (Jeong et al., 2019) applies simple horizontal flip consistency reg-
ularization to train a detector to be robust to flip perturbations. The consistency loss fine-tunes the
location of the predicted boxes but ignores the object scale perturbations, which are more common
in datasets. In MS-COCO (Lin et al., 2014) detection dataset, the scale of the smallest and largest
10% of object instances is 0.024 and 0.472, respectively, which results in scale variations of almost
20 times. Our method regularizes the feature map in different sizes to solve the large scale variation.
Furthermore, the consistency regularization with EMA teacher (Tarvainen & Valpola, [2017) is self-
distillation (Furlanello et al.,[2018};/Zhang et al.l | 2018; Guo et al.,|2020) from the perspective of soft
targets, which benefit from high-quality prediction.

Pre-Training. In recent years, it has been a paradigm that pre-train backbone on a large-scale
dataset, such as ImageNet (Deng et al., 2009) or JFT (Sun et al., [2017), and fine-tune the model
on the target dataset, which contains less training data. Large-scale dataset pre-training speeds up
converge and helps improve generalization in the scenario of small data (He et al., 2019; [Zoph
et al.| | 2020), which is an extreme of semi-supervised learning. SimCLR (Chen et al., [2020) and
MOCO (He et al., 2020) have been shown to build universal representation, which helps achieve a
state-of-the-art result in the scenario of semi-supervised learning classification with 10% ImageNet
labeled data. In this paper, we fine-tune with ImageNet pre-trained backbone as default for faster
convergence and better results when we enter the low-data regime.

3 SCALE-INVARIANT TEACHING

Problem Definition. Semi-supervised learning is halfway between supervised and unsupervised
learning. More precisely, our model is trained with a labeled set D, = {z$,y7} f\;l and an unlabeled
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Figure 3: Overview of our method. For simplicity, the supervised branch is ignored, which shares the Student
Model with the unsupervised branch. The dashed line means the prediction of the Teacher Model is not op-
timized by the gradient. For Scale consistency Regularization, the loss constrains predictions from different
levels, linked by arrows of the same color (best viewed in color).

set D, = {xf}f&l, where z is image, N and N, are the number of labeled and unlabeled images.
For each supervised image 7, the annotation y; is composed of both the location and category of
the bounding boxes in image.

Overview. During training, Scale-Invariant Teaching consists of two branches, the supervised
branch and the unsupervised branch, as illustrated in Fig. 3] The supervised branch is trained by
following the normal procedure, like (Ren et al.l 2015} [Lin et al.| 2017b)). The unsupervised branch
is under a teacher-student framework, in which the teacher is implemented as an exponential moving
average of the student. SIT aims to predict consistently for the scale variants of input. In practice,
the student processes the strongly augmented unlabeled images and resized weakly augmented im-
ages. The weakly augmented images are fed into the teacher network to predict soft pseudo-label.
The Scale Consistency Loss constrains the outputs of different-sized images. Meanwhile, the soft
pseudo-label is set as the target of the strongly augmented images. As the teacher is updated from
the student weights, the constraint is viewed as a weight consistency regularization for aligning
the name of the unsupervised loss. The final loss is the weighted sum of the supervised loss and
unsupervised loss,

Ty
L= Ls + ni()\sLscale + )\wLweight)v (1)
where n,, n, are the batch size of unlabeled data and labeled data, L,cqie and Ly,eignt are Scale-
Invariant Consistency Regularization and Weight Consistency Regularization. For two-stage detec-
tors, the unsupervised losses are applied to both RPN head and ROI head.

3.1 SCALE-INVARIANT CONSISTENCY REGULARIZATION

Recognizing objects in different scales is a fundamental challenge in computer vision. Scale-
Invariant Consistency Regularization is proposed to optimize the detector to predict data points,
which are neighbors in scale dimension, smoothly and consistently. Mainstream detectors under
feature pyramid network framework outperform the counterpart with a single feature map, as the
multi-scale feature representations are semantically strong. Therefore, we take an example for a
single-stage detector to illustrate our method. Scale-Invariant Consistency Regularization can be
easily extended to the two-stage detectors and single feature map detectors.

As indicated in Fig. 3] Scale Consistency Loss regularizes feature maps from images in different
scales. To be more specific, the output class probability and bounding box regression of the f-th
feature level, r-th row, c-th column and d-th anchor box are denoted as P/>"¢4(X) and R¥™4(X).
Considering the memory and calculational cost, the resized image is downsampled to 2i original

size. Towards handling the large scale variation, the s is selected from {1,2, 3,4}, which also

matches the sizes of feature maps in FPN and the label assignment rules. The resized image X/
and the original image X are supposed to be predicted equivalently for the corresponding levels.
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Precisely, the Scale-Invariant Consistency Loss is defined as

Lf

scale

= KL(sg(P! (X)), P""(X") + K L(sg(P"(X")), P! (X)) + ||RY (X) = BT (X')[[a, (2)

where f’ equals f — s and sg is stop-gradient operator. For simplicity, the 7, ¢, d coordinate is
ignored in Eq.[2] For RPN and single-stage detector, all the anchor points are regularized for con-
sistency; even some of them may not be assigned labels according to the simple IOU threshold
matching strategy. In the second-stage detector framework, the proposals are first filtered by NMS
and Top-K selection (typically 1000 proposals left for Faster-RCNN FPN). Then the coordinates of
the proposals predicted on the resized image are scaled up by 2° times to match the original image,
and vice versa. The proposals from the image pair are simply concatenated as a new proposal set
for the refined bounding boxes and classification scores. All the proposal pairs are regularized by
Scale-Invariant Consistency Loss in a similar way as shown in Eq. 2] It is worth noting that, in
implementing a two-stage detector, the ROI-Pooling operator may extract features from the same
level for the proposal pair, which is slightly different from single-stage detectors. But this operation
shares the same core idea that the detector is supposed to be scale-invariant.

3.2 WEIGHT CONSISTENCY REGULARIZATION

Knowledge distillation improves generalization by replacing hard label supervision with soft label
predicted by a stronger teacher model. Based on the observation, the teacher model uses the EMA
weights of the student model, which is shown to produce a model with better generalization than
the student model (Polyak & Juditsky, |1992; Tarvainen & Valpola, [2017). To ensure the quality of
the soft pseudo-label, the input of the teacher model is weakly augmented. Furthermore, the model
is supposed to predict consistently for similar data points. The student model is input with the
strongly augmented image to propagate label to neighbor points in the semantic manifold space. For
simplicity, the strong augmentation is only composed of color transformation and Cutout (DeVries
& Taylor, 2017), which doesn’t torture the geometric information. The weight consistency loss is
formulated as

weight = K L(sg(P"(X, W4)), P(X", W) + ||sg(R' (X, W3)) — RY(X, W)l (3)
where i is the i-th anchor box, X and X’ is the weakly augmented image and the strongly augmented
image. P and R represent the classification score and bounding box regression same as in Eq.
The slowly progressing teacher model weights IV, are updated from the student model weights W
every iteration,

Wt :OéWt+(1 —Oé)WS. (4)

Similar to Scale-Invariant Consistency Regularization, Weight Consistency Regularization is applied
to each anchor point for RPN and one-stage detector. In the scenario of the two-stage detector, all
the proposals passed NMS and Top-K selection are simply concatenated as a new proposal set. All
the predictions of Rols are regularized as Eq.[3]

3.3 RE-WEIGHTING STRATEGY

One-stage object detection methods, like RetinaNet (Lin et al., 2017b)) and RPN (Ren et al., |2015)),
face an extremely class imbalance during training. Due to the overwhelming background samples,
most objectness scores are close to 0. Therefore, the KL divergence between target distribution and
source distribution in Eq. [2| and Eq. |3|is close to 0 for most anchor boxes. Simply averaging the
Consistency Loss leads to the easy samples contributing significantly to the gradient, as illustrated
in Fig. ] We aim to reduce the discrepancy between similar unlabeled inputs, especially for the
potential foreground instances predicted with high objectness scores. In other words, the hard ex-
amples should contribute to the gradient more than the easy examples. Inspired by the Gradient
Harmonizing Mechanism (Li et al., [2019), we re-weight the KL divergence by the sample numbers
in a gradient range to build a linear relationship between the gradient norm and the integral gradi-
ent contribution, as illustrated in Fig. ] Specifically, the gradient of the KL divergence between
probability vector p and target probability vector p’ is g = Z?:l |p; — p%|, where C is the length
of probability vector. Then a histogram is constructed by splitting the gradient range [0, 1] into M
bins equally. The number of samples in the j-th bin is denoted as I2;, and the index of the bin where
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Table 1: Results on Pascal VOC 2007 test set. For all the semi-supervised methods, Pascal VOC 2012 train
set is treated as unlabeled data. APs is reported. LR is the learning rate, and Iter means the total training
iterations. C indicates the Color transformation augmentation, G is the Geometric transformation augmentation,
and Mosaic is randomly performing horizontal mixing and vertical mixing two images. Mixup (Zhang et al.|
2017) and DropBlock (Ghiasi et al.| 2018)) are strong regularization operations.

Method Data LR Iter AP Augmentation
Supervised VOCO07 0.01 40k 743 -
STAC (Sohn et al.|[2020b) VOCO7+12 0.001 180k 7745 C,G

DGML (Wang et al., 2021) VOCO07+12 - - 78.60 -
UBT (Liu et al., [2021) VOCO07+12  0.01 180k 77.37 C
ISMT (Yang et al.,[2021) VOCO07+12 - - 77.23  C, DropBlock
IT (Zhou et al.,|2021) VOC07+12 0.01 180k 78.30  C, Mixup, Mosaic
Ours VOC07+12  0.01 40k 80.60 C
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Figure 4: The average sample is the average anchor number in a single image. The baseline method is simply
treating all samples equally. The samples with large gradients don’t contribute significantly because the sample
number is relatively small. Our re-weighting strategy focuses on the samples with large score discrepancies
and linearizes the relationship between gradient contribution and score distance.

gradient g is located is defined as idz(g). Finally, we have the loss function:
1 o~ KL(p), pi)

M Ridm(gi)

i=1

L (&)

As the main bottleneck is detecting objects from the background rather than regression, only the
classification loss is re-weighted by the above strategy in Scale-Invariant Consistency Loss and
Weight Consistency Loss. Our goal is to enlarge the contribution from the samples with signifi-
cant discrepancies. The other methods to solve the class imbalance problem may also improve the
performance.

4 EXPERIMENTS

Datasets. We mainly verify the validity of our method on the challenging objective detection dataset
MS-COCO (Lin et al.|[2014), which contains 80 object categories with about 118k images for train-
ing and 5k images for validation. For a fair comparison, we follow the experimental setup as the
previous work (Sohn et al.||2020b; [Liu et al., 2021} [Zhou et al., 2021} Tang et al.,[2021; |Wang et al.|
2021). In particular, there are three experimental settings: (1) PASCAL VOC: the VOCO07 (Ever-
ingham et al., |2010) zrainval set is used as the labeled dataset and the VOC12 trainval set is used
as the unlabeled dataset , as described in Sec@ The performance is evaluated on the VOCOQ7 test
set. VOCO7 trainval and VOCI12 trainval contains 5,011 and 11,540 images respectively, resulting
in a roughly 1:2 ratio of labeled data to unlabeled data. (2) COCO-standard: we randomly sample
5 and 10% of MS-COCO 2017 training data as the labeled dataset and treat the rest of the training
data as the unlabeled dataset. Besides, the whole training set is used as the labeled dataset, and the
additional 123k unlabeled images are used as the unlabeled dataset, which is denoted as 100% data
training setting. The model is tested on the MS-COCO 2017 validation set. (3) COCO-35k: we use
the 35k subset of MS-COCO 2014 validation set as the labeled dataset and the 80k training set as the
unlabeled dataset. The performance is reported on the MS-COCO 2014 minival set (5000 images).
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Table 2: Results on MS-COCO 2017 val set. For 5% and 10% protocols, the results are the mean over 5 data
folds. Stages are the training phases. For example, STAC has two stages: train a teacher model first to hard
pseudo-label and train a student model with both labeled and pseudo-labeled data. - means that the results or
training details are missing in the original paper. For 180k training schedule, the learning rate is set to 0.01 with
5% and 10% data protocol, to 0.02 with 100% data protocol.

Method Data Percent LR Iter Stages
5% 10% 100%

SUP 18.47 23.86 38.40 0.02 180k -
STAC 24.385.91) 28.64:4.78) - 0.01 180k Two
UBT 27.84:937) 31.39¢7.53) - 0.01 180k  Single
IT 26.75+828) 30.40¢6.54) 40.20¢1.80  0.01 180k  Single
ISMT 26.377.90) 30.53¢6.67) 39.64 - - Single
DGML - - 40.30 - - Three
Ours 29.01¢10s9  34.02¢1016 41.5003100  0.01/0.02 180k  Single
SUP - - 40.20 0.02 270k -
STAC - - 39.21c0999  0.01 540k Two
UBT - - 41.30¢1100  0.01 360k Single
Ours - - 43.40¢3200  0.02 270k  Single

Table 3: Results on MS-COCO 2014 minival set. DD is Data Distillation (Radosavovic et al.,|2018)). Oracle
means treating all the 115k images as labeled data.

Method Baseline DD DGML Oracle Ours
AP 31.3 33.1 352 37.4 38.1

Implementation Details. Following STAC (Sohn et al., [2020b)), we use Faster-RCNN (Ren et al.,
2015)) with FPN (Lin et al 2017a) and ResNet-50 backbone as our default object detector. The
weights of the backbone are initialized by the corresponding ImageNet-Pretrained model, which is
a default setting in existing works (Sohn et al., |2020b; Jeong et al., [2019; [Liu et al., |2021}; |[Zhou
et al., [2021). The stem and first stage of the backbone are frozen, and all BatchNorm layers are in
eval mode. For data augmentation, the weak data augmentation only contains random resize from
(1333, 640) to (1333, 800) and random horizontal flip with a probability of 0.5. The strong data aug-
mentation is composed of random Color Jittering, Grayscale, Gaussian Blur, and Cutout (DeVries
& Taylor, |2017), without any geometric augmentation. More training and data augmentation details
are in the Appendix.

4.1 RESULTS

Pascal VOC. In Tab. [T} our method outperforms both previous multi-stage methods and single-
stage methods by a large margin. Our model achieves 80.6% AP with 6.3% gain from additional
VOC2012 data. In the meantime, our proposed method requires fewer training iterations, showing
that our approach is effective yet efficient. Besides, our augmentation is simply applying color
transformation without any geometric transformation or strong regularization, such as Mixup (Zhang
et al.,[2017), DropBlock (Ghiasi et al., 2018).

COCO-standard. Given the whole training set, our method even further improves the strong base-
line by 3.2 mAP. For a fair comparison, the learning rate and training iterations are listed in the
Tab. [2| Our method surpasses the previous methods under different settings of the ratio of labeled
data to unlabeled data, from roughly 1:1 to 1:20, on the class-imbalanced MS-COCO dataset. Note
that UBT uses Focal Loss to handle the class imbalance issue among ground truths, while we adopt
the original Faster-RCNN implementation, standard cross-entropy loss. Our method focuses on the
imbalance problem between foreground and background, which is more general in practice. Espe-
cially, Scale-Invariant Teaching achieves more than 10 mAP improvements against the supervised
baseline when using 5% and 10% labeled MS-COCO data. With 10% labeled data, the performance
of Scale-Invariant Teaching is comparable to the fully supervised baseline model. This phenomenon
demonstrates that the consistency-based semi-supervised learning method exploits the information
of unlabeled data efficiently.
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Table 4: The ablative results on MS-COCO 2017 val set. The models are trained with 10% labeled and 90%
unlabeled MS-COCO train 2017 split.

Method | Scale-Consistency Weight-Consistency Reweight | mAP
Hard Target  Soft Target

SUP 23.86
v 26.80

v v 30.10

Ours v 29.80
v v 31.40

v v v 29.50

v v v 34.00

COCO-35k. MS-COCO 2014 minival set is identical to MS-COCO 2017 val set. Tab. 3] shows that
our method even outperforms the Oracle result with only 35k labeled data, benefiting from the scale
consistency regularization, self-distillation, and strong augmentation.

4.2 ABLATION STUDY

Scale Consistency Regularization constrains the discrepancy between the predictions of images
of different sizes. By comparing the second row with baseline, we find that Scale-Consistency
improves about 3 mAP without our re-weighting strategy, naively averaging the loss across the
anchor boxes and Rols. Although suffering from the foreground-background imbalance problem,
Scale Consistency Regularization is promising. Fig.|lc|shows that the discordance between different
sizes is alleviated.

Weight Consistency Regularization with Soft Target surpasses the hard pseudo-label counterpart
over 4.5 mAP, which demonstrates that the quality of hard pseudo-label is inferior. Weight Consis-
tency Regularization gains about 6 mAP against the baseline individually. The soft target method
benefits from fewer False Negative samples and the structural information via knowledge distilla-
tion. Furthermore, our approach based on soft target is threshold-free, which is simpler and easier
to transfer to other datasets.

Re-weighting Strategy focuses on the anchor or Rol pairs with large discrepancy and transforms
the relationship between gradient contribution and score distance to linearity. The results of Scale-
Consistency Regularization and Weight Consistency Regularization with Soft Target are increased
by 3.3 mAP and 1.6 mAP separately. For Faster-RCNN, our re-weighting strategy still takes effect
even though the Rols are predicted after NMS and Top-K selection operation, increasing the ratio of
foreground to background sample.

4.3 DISCUSSION

Relationship with Multi-Scale Testing. The Tab. [5] shows that the baseline models benefit from
multi-scale testing by a simple ensemble with NMS (Threshold=0.5). The model trained with 10%
labeled data is increased by 2.0 mAP, and the fully supervised model gets 1.5 mAP improvement.
However, this improvement comes from the discrepancy between the predictions of images in dif-
ferent sizes. Moreover, the ensemble method also consumes 2.5x more inference time than the
single-scale testing method. Our method benefits less from multi-scale inference as a consequence
of the proposed scale-invariant consistency regularization, which means the detector has strong scale
invariance. Our scale-invariant consistency regularization significantly improves the single-scale
testing performance, which has more practical value.

Downsampling Rate in Scale-Invariant Consistency Regularization. As shown in Tab. [f] the
model achieves the best result when the downsampling rate is set to 2. The performance is inferior
as the downsampling rate scales up, which means that regularizing the scale invariance with too
small images is less effective. The anchor-based detector is to refine the prior bounding boxes,
which constrains the valid detection scale range (from 22.6 to 724.1, theoretically). Fig. [5] shows
that the fraction of valid instances is highest when the downsampling rate is set to 2. All the models
are trained with 10% COCO training data, using RetinaNet with FPN and ResNet-50 backbone.
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Table 5: Multi-Scale Testing on MS-COCO 2017 val set. The ensemble results show the gain from multi-scale
testing, which means the model detects instances in one size while is blind to them in the other size. The
small gain indicates that the detector consistently predicts images in different sizes, which means robust scale
invariance.

Model Image Size Ensemble
(1333,480) (1333,800) (1400, 1200)
SUP 10% 22.9 24.1 22.5 26.1¢20
SUP 100% 33.7 374 36.8 38.9¢15)
Ours 10% 31.5 342 33.0 34.8+06)
Table 6: Results Table 7: Results on COCO val set. Figure 5: The CDF of instance size dis-
on COCO val set. Start and End mean the initial EMA tribution on the whole MS-COCO train
Rate is the down- update rate and the target rate. Co- dataset.
sampling rate in sine policy is cosine annealing sched- Y -
Sec, ule. Our Step policy only decays once =2 /
Rate mAP at the first milestone iteration. i :g
1 23.0 06 r=16
2 26.1 Start End Policy mAP e
4 252 0.996 0.9 Cosine 33.0
8 23.1 0.99 0.9 Step 34.1 o2 Valid Renge
16 21.1 095 095 None 32.0 00 —

2! 22 25 27 2°
Instance Size

EMA Rate in Weight Consistency Regularization. In Eq. 4] the weight of the teacher is the
updated in an exponential moving average manner, which can be viewed as the average weight of
the models in the past 1 steps approximately. As the learning rate policy is step, which decays
the learning rate by 0.1 at each milestone iteration, the performance of EMA teacher is inferior to
the student model after switching the learning rate, which leads to the degradation of the student
model. We observe the same appearance in UBT (Liu et al., 2021)), which sets the o to 0.9996 and
adopts step learning rate policy. To alleviate the degradation, we propose to decay the EMA update
rate at the same milestone iteration as the learning rate. The results in Tab. [/| shows that our step
decay method and cosine decay method both surpass the baseline model.

5 CONCLUSION

In this work, we introduce a novel semi-supervised object detection framework based on the con-
sistency regularization method. Our scale-invariant consistency regularization smooths the scale
manifold and significantly improves the performance on single-scale testing. Further, the weight
consistency regularization benefits from the structural information via knowledge distillation and
alleviates the negative effects of False Negative samples. The re-weighting strategy focuses on
the sample pairs with large discrepancy of prediction and linearizes the relationship gradient con-
tribution and score distance. Experiments on COCO and Pascal VOC show that Scale-Invariant
Teaching significantly improves the performance with different ratios of labeled data to unlabeled
data. Our framework is a holistic approach compatible with other semi-supervised methods, such
as Mixmatch and Noisy student self-distillation. In addition, our Scale-Invariant Teaching frame-
work could be further extended to anchor-based, anchor-free single-stage detectors and other dense
prediction tasks, like instance segmentation, joint human parsing, and post estimation.

REPRODUCIBILITY

As shown in the main text and the appendix, all the training details are provided to reproduce the
reported results. In addition, the proposed method is simple yet efficient to implement with MMDe-
tection framework (Chen et al.,2019). Our code will be released.
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A APPENDIX

A.1 IMPLEMENTATION AND TRANING DETAILS.

Our implementation is based on MMDetection framework (Chen et al.| 2019). The default detector
is set as Faster-RCNN (Ren et al.l [2015) with FPN (Lin et al., 2017a) and ResNet-50 (He et al.,
2016)) for a fair comparison with prior works (Sohn et al., [2020b; |Yang et al.l 2021; Zhou et al.,
2021;|Liu et al.l 2021} [Wang et al., [2021)).

Training Details. The weights of the backbone are first initialized by the corresponding ImageNet-
Pretrained model, which is a default setting in existing works (Sohn et al.,2020bj Jeong et al., 2019;
Liu et al., 2021 [Zhou et al., |2021)). All the models are trained with learning rate starting at 0.01 and
the learning rate drops by 0.1 at the 120k and 160k iteration for 180k training schedule as default.
We set the weight decay to 0.0001, batch size to 16, and the momentum is 0.9 for SGD optimizer.
Like (Liu et al} [2021)), we separate Sk/10k/12k/90k iterations from the whole process as the burn-
in phase for 5%/10%/35k/100% data protocols. For verifying the effectiveness of our method, we
simply set the \; and \,, in Eq.[T]as 0.5 and 1 separately. The EMA update rate starts with 0.99 and
steps to 0.9 at the 120k iteration, aligned with learning rate decay policy.

Table 8: Details of data augmentations.

Strong Augmentation

Process Probability Parameters Details
Brightness factor is chosen uniformly from [0.6, 1.4],
Color Jittering 0.8 brightness, contrast, saturation = 0.4, 0.4, 0.4  Contrast factor is chosen uniformly from [0.6, 1.4],
Saturation factor is chosen uniformly from [0.6, 1.4]
Grayscale 0.2 None None
GaussianBlur 0.5 o ~ U(0.1,2.0) Gaussian filter kernel size is 23
Cutout 1 0.7 scale=(0.05, 0.2), ratio=(0.3, 3.3) Randomly selects a rectangle region in an image
Cutout 2 0.5 scale=(0.02, 0.2), ratio=(0.1, 6) Randomly selects a rectangle region in an image
Cutout 3 0.3 scale=(0.02, 0.2), ratio=(0.05, 8) Randomly selects a rectangle region in an image

Data Augmentation. As shown in Tab. 8] the weak data augmentation only contains random resize
from (1333, 640) to (1333, 800) and random horizontal flip with a probability of 0.5. The strong
data augmentation is composed of random Color Jittering, Grayscale, Gaussian Blur, and Cutout
(DeVries & Taylor, 2017)), without any geometric augmentation.
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