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Abstract

We introduce CobA, a dataset designed to eval-001
uate the compositional properties of neural002
models. The dataset consists of simple arith-003
metic expressions combining natural integers004
with addition and multiplication operators. For005
example, (5 + 4) × 2. We distinguish four006
aspects of compositionality: localism, substi-007
tutivity, productivity, and systematicity. We008
generate partitions of the dataset with specific009
in-domain and generalization sets, designed010
to evaluate the model’s ability for each com-011
positional aspect. By carefully selecting ex-012
pressions from the in-domain and generaliza-013
tion sets, we introduce controlled differences014
between the two sets. We show that models015
achieve competitive performance on a random016
partition, for which there is no controlled dif-017
ference. Yet, for partitions requiring composi-018
tional extrapolation, performances drastically019
decrease for most encoder architectures. We020
observe distinctions among architectures, in021
particular fixed-length context transformers, se-022
quential or tree-structured LSTM.023

1 Introduction024

Compositionality is thought to be a key feature of025

human language. Symbolic generative theories of026

language indeed imply the possibility to produce027

an infinite number of grammatical phrases and sen-028

tences using only finite means (Chomsky, 1957;029

Montague, 1970; Hauser et al., 2010). Humans030

derive phrase meaning by composing syntactic and031

semantic components using compositional rules032

(Partee et al., 1984; Cann, 1993; Dowty, 2007).033

On the other hand, language models are trained034

using self-supervised objectives with no direct lin-035

guistically oriented supervision. Nonetheless, re-036

cent large foundation models have shown striking037

abilities to process human language. They over-038

perform humans on many benchmarks (Devlin039

et al., 2019; Brown et al., 2020). They also exhibit040

strong consistency on agreements (subject-verb,041

noun-adverb, verb-verb) which are determined by 042

abstract structures and not just linear order of words 043

(Linzen et al., 2016; Gulordava et al., 2018; Marvin 044

and Linzen, 2018; Newman et al., 2021). Yet, many 045

studies point that their compositional abilities are 046

surprisingly limited and that they struggle to gen- 047

eralize to specific out-of-domain examples (Lake 048

and Baroni, 2018; Kim and Linzen, 2020; Hupkes 049

et al., 2020). 050

The ability of language models to process lan- 051

guage without inducing exhaustive symbolic com- 052

position rules is not yet fully understood. Baroni 053

(2019) suggests neural networks may process lan- 054

guage using partially or different rules than hu- 055

mans. They emphasize human language is not fully 056

characterized by algebraic rules. Language models 057

might rely on less systematic phenomena such as 058

semi-lexicalized constraints in syntax or irregular 059

inflections. Tenenbaum (2018) explores the possi- 060

bility that language models overcome their lack of 061

compositional abilities with an exposition to huge 062

amounts of data. 063

It is undoubtedly possible to train efficient lan- 064

guage models without prior or posterior composi- 065

tional properties. Yet, building more compositional 066

models is an active subject of research. In particular 067

using extensive pre-training, specific architectures 068

or inductive biases (Russin et al., 2019; Furrer et al., 069

2020; Ontañón et al., 2021). Such methods seek 070

to improve transformer models at learning compo- 071

sitional rules. The gain might be to increase the 072

model robustness toward out-of-domain examples, 073

that is examples with statistically different proper- 074

ties but generated with the same set of rules. 075

Evaluating model compositional properties is no- 076

toriously hard. First—as for every other language 077

evaluation benchmark—creating the data is a criti- 078

cal step. Labeling raw data is time-consuming and 079

it is difficult to control precisely the property of 080

the examples. On the other hand, generating ar- 081

tificial data may lead to poor lexical or structural 082
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diversity. Additionally, studies show that models083

might use lexical biases or shallow heuristics in084

the data to achieve the task (Linzen and Leonard,085

2018). Popular benchmarks require to generate the086

answer, which makes it difficult to disentangle the087

effect of the encoding and decoding parts. Indeed,088

some errors might be related to the decoding part.089

This makes it difficult to precisely assess model090

compositional properties.091

We introduce CobA, a Compositionality092

benchmark using Arithmetic. Arithmetic indeed093

defines a self-contained universe which can be de-094

scribed using a limited set of symbols and compo-095

sition rules. This makes it easy to build specific096

examples with isolated properties. Moreover, we097

formulate the benchmark as a classification task.098

The task can be solved using a simple encoder, with-099

out the need to decode the answer. Thus, our setup100

minimizes complex interactions between encoding101

and decoding.102

We organize our paper as follows: we first re-103

view the related work in Section 2. In Section 3,104

we detail the data generation process and the dis-105

tinct dataset partitions. In Section 4, we present106

our training and evaluation setup. We also present107

our main results on the CobA generalization set.108

Finally, in Section 5, we perform an in-depth109

study to better analyze how the choice of hyper-110

parameters might leverage specific performances111

and how the expression complexity impacts model112

performances.113

2 Related work114

Evaluating compositionality Specific datasets115

exist to assess compositionality of language mod-116

els: SCAN (Lake and Baroni, 2018), PCFG (Hup-117

kes et al., 2020), CFQ (Keysers et al., 2020) and118

COGS (Kim and Linzen, 2020). All use a text-to-119

text setup: models take raw text as input and should120

map it to a semantic form. For the SCAN dataset,121

raw sentences should be mapped to a sequence of122

instructions, CFQ maps sentences to Sparql queries,123

and COGS to semantic forms.124

Other setups exist: Dasgupta et al. (2018) mea-125

sure compositionality for sentence embeddings us-126

ing a natural language inference task. They con-127

struct pairs of examples that may be solved using128

compositional operations. Andreas (2019) propose129

a formalism to measure compositionality using sim-130

ilarity metrics through a communication game.131

The work of Bowman et al. (2015) is perhaps the132

closest to ours. They analyze model compositional 133

abilities by inferring logical relations between pairs 134

of sentences. Such sentences are artificially gener- 135

ated using an artificial language based on logical 136

statements. They compare the impact of structured 137

models to encode these sentences with explicit la- 138

tent recursive structures. In our work, we try here 139

to better characterize the effect of encoder architec- 140

tures, given the various compositional aspects. 141

Enhancing model compositional ability is ad- 142

dressed through multiple means. Some models 143

propose to integrate structural biases within the 144

architecture: in particular Tree-LSTM (Tai et al., 145

2015) or latter in transformers with structured atten- 146

tion (Russin et al., 2019). Some methods propose 147

also to adapt the pre-training or fine-tuning proce- 148

dure (Furrer et al., 2020). Finally, other methods 149

propose to complete models with modules dedi- 150

cated for compositional operations (Liu et al., 2020; 151

Ontañón et al., 2021). 152

Using arithmetic with neural networks Neural 153

networks may be properly trained to solve mathe- 154

matical expressions. A line of work outlines that 155

pre-trained language models or static word em- 156

beddings capture scales and notions of numeracy 157

(Wallace et al., 2019; Naik et al., 2019; Sundarara- 158

man et al., 2020; Zhang et al., 2020; Thawani et al., 159

2021). Beyond representing numbers, further work 160

also analyzes the ability of models to perform basic 161

mathematics reasoning (Saxton et al., 2019; Dua 162

et al., 2019; Geva et al., 2020) or solve mathemati- 163

cal expressions (Lample and Charton, 2020). 164

3 Dataset description 165

The key contribution in our work is to build a 166

dataset of arithmetic expressions to evaluate neu- 167

ral model compositional abilities. Indeed, numer- 168

ically evaluating formal expressions theoretically 169

requires capturing the formal rules of arithmetic. 170

CobA focuses on aspects of compositionality that 171

may also be declined for language (Hupkes et al., 172

2020). But contrary to previous work, we do not 173

mix raw text and numeracy. We derive many arith- 174

metic expressions, using limited formal explicit 175

rules and symbols. In this section, we detail the 176

generation of the dataset. 177

3.1 Generation procedure 178

Using an automatic procedure, we generate arith- 179

metic expressions. First, we generate a natural 180
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Partitions Random Systematicity Productivity Localism Substitutivity

Mean value 66.3 / 66.2 67.0 / 68.2 66.4 / 65.3 66.1 / 67.4 66.1 / 66.4
Min number of operators 0 / 0 2 / 2 0 / 4 2 / 2 2 / 2
Mean number of operators 2.8 / 2.8 2.6 / 2.5 2.8 / 6.5 2.8 / 2.7 2.8 / 2.7
Max number of operators 3 / 3 3 / 3 3 / 9 3 / 3 3 / 3

Expressions with odds and evens (%) 85.6 / 85.4 0.0 / 100.0 85.6 / 98.3 85.7 / 85.3 85.7 / 85.1
Swapped-expressions in-domain (%) 1.3 / 1.6 10.0 / 0.0 1.2 / 0.0 1.2 / 1.5 0.0 / 0.0
Sub-expressions in-domain (%) 2.2 / 2.3 4.2 / 1.3 2.1 / 0.7 0.0 / 00 1.0 / 1.1

Table 1: Dataset key statistics given each partition. For each statistic, we report the figures for the in-domain /
generalization set. We express the "Expressions with odds and evens", "Swapped-expressions in-domain" and
"Sub-expressions in-domain" as the proportion of expressions verifying the property for each set. The statistics that
are determinants for the aspect studied in a given partition appear in bold.

integer between 1 and 100, for example, 34. We181

then decompose it as the addition or multiplication182

of two other integers, for example, 2 × 17. We183

then recursively decompose each integer in the new184

expression as the product or sum of two integers or185

keep it unchanged, with a probability p1.186

As in Lample and Charton (2020), we use pre-187

fix notation (also known as normal Polish nota-188

tion). The arithmetic expression 2 × (14 + 3) is189

represented as the sequence ×2 + 14 3. This no-190

tation avoids the use of parenthesis and therefore191

leads to shorter expressions. We assign each sym-192

bol—natural integer or operator sign—to a given to-193

ken. For each expression, we make the distinction194

between two distinct left and right hand sides of195

an operator. For example, we make the distinction196

between the expression 14 + 3 and 3 + 14. Given197

this procedure, we generate over 2.5M unique ex-198

pressions with between 0 and 9 operators.199

3.2 Partitioning the dataset200

Our dataset aims at evaluating model compositional201

properties. We take inspiration from the procedure202

proposed in SCAN (Lake and Baroni, 2018; Loula203

et al., 2018). We carefully select expressions to cre-204

ate partitions (in-domain and generalization sets)205

from the dataset. We split them such that in-domain206

and generalization sets have different distributions.207

It is not possible to infer generalization examples208

without fully capturing the properties ruling this209

specific aspect in the in-domain set. We thus com-210

pare the ability of models to perform out-of-domain211

generalization. We make the distinction between212

model learning shallow heuristics such as local213

pattern matching and the one learning true compo-214

sitional operations.215

1We implement specific rules for numbers that are prime
and cannot be decomposed with multiplication. We set the
probability p to expand, by default, at 0.5.

We build partitions given the work from Hupkes 216

et al. (2020), which distinguishes sub-properties 217

within compositionality. Localism, Substitutivity, 218

Productivity and Systematicity2. Each of the par- 219

titions detailed below has a key statistic distribution 220

and is designed to evaluate a model’s performance 221

along a given aspect. Each partition contains an 222

in-domain set of 24,000 expressions and a general- 223

ization set of 12,000 expressions. We present other 224

key statistics for the partitions in Table 1. 225

Random is a regular training procedure. We split 226

the dataset randomly without any specific control 227

during the selection of the expressions. While in- 228

domain and generalization examples are all distinct 229

they share the same distributions and have similar 230

underlying characteristics. 231

Systematicity evaluates the recombination of 232

known parts to form new sequences. We build 233

the partition using the distinction between odd and 234

even natural integers. The training set contains ex- 235

pressions with only either odd or even numbers. 236

For examples 2 × 4 + 8. or 3 + 5 + 7. The test 237

set contains expressions with both even and odd 238

numbers such as 3 + 2× 5 + 4. 239

Productivity evaluates the extrapolation to 240

longer sequences. We train the model on expres- 241

sion with up to 3 operators. We then evaluate the 242

model on longer expressions with up to 9 operators. 243

Substitutivity evaluates the robustness towards 244

the introduction of synonyms. In our work, we 245

interpret this definition as the robustness towards 246

paraphrases and evaluate the ability of models to 247

perceive an operator’s commutative property. We 248

2Hupkes et al. (2020) also enumerate the over-
generalisation aspect which evaluate the accommodation to
exceptions. However, we find it complex to adapt this property
for our specific dataset and therefore discard it in this work.
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organize our dataset as a collection of "swapped249

expressions". Swapped expressions are tuples of250

expressions with the same value and that only differ251

by swapping the left and right hand sides of each252

operator. We illustrate this swapping organization253

in Figure 1. During training, we only expose the254

model to a single expression per tuple. Therefore255

the model cannot learn the commutative property256

from shallow pattern matching. During the evalua-257

tion, we evaluate the model’s commutative ability258

by comparing couples of predicted values for ex-259

pressions from the same tuple.260

Localism evaluates the recursive evaluation of261

smaller constituents before larger constituents. We262

also organize our dataset as a collection of "sub-263

expressions". Sub expressions are tuples of expres-264

sions with the same value that only differ by the265

level of decomposition of the expressions as illus-266

trated in Figure 1. We use the same training and267

evaluation protocol as for Substitutivity.268

4 Experiments269

We train the model using a classification objective.270

Given an arithmetic expression, the model predicts271

its value among the 100 possible integers. This272

setup avoids the use of a complex decoder module ;273

a simple probe is sufficient. The architecture is274

decomposed as follows: first, an encoder maps275

the arithmetic expression to an embedding vector.276

Then, a two-layer perceptron followed by a softmax277

outputs a probability distribution. We train the278

model by minimizing a cross-entropy loss.279

4.1 Encoder architectures280

We list below the encoders architectures we use.281

Bow The expression’s embedding vector is the282

sum of its embeddings from each symbol. This283

representation accounts for neither the order nor284

the structure of the expression.285

Sequential LSTM We use unidirectional or bidi-286

rectional LSTM (Hochreiter and Schmidhuber,287

1997). We use the last token hidden state as embed-288

ding for the expression.289

Tree LTSM We represent each arithmetic expres-290

sion as a binary tree where each node is either a291

natural number or an operator sign. We encode the292

3For the clarity of the illustration, we use the infix form
for the expressions

Figure 1: Generation of expressions tuples for probing
substitutivity and localism3. For localism, we can de-
duce expressions from the expression seed by evaluating
sub-components. For substitutivity, we can deduce ex-
pressions from each other by swapping left and right
hand sides of operators.

tree using a N-ary tree LSTM (Tai et al., 2015) and 293

use the root node as expression embedding. 294

Transformers We derive two simple encoders 295

from the architectures of BERT (Devlin et al., 2019) 296

and ALBERT (Lan et al., 2020). We use the [CLS] 297

token hidden state from the last layer as expression 298

embedding. We initialize our models randomly and 299

train them from scratch. Their architectures are 300

light compared with standard transformer scales: 301

we use a hidden size of 128, 6 hidden layers, and 8 302

attention heads. This represents 1.2M parameters 303

for BERT and 300k for ALBERT since parameters 304

are tied across layers. As observed in Csordás et al. 305

(2021) and Ontañón et al. (2021), transformers’ po- 306

sitional encoding are particularly important for this 307

task. We use the method from Wallace et al. (2019) 308

and add some random padding at the beginning of 309

the input so that the encoder does not solve the task 310

by overfitting the absolute position of the symbols. 311

4.2 Training configuration 312

We design all encoders comparable, with roughly 313

the same number of parameters (1.2M), as detailed 314

in Table 2. We also use the same hidden and em- 315

bedding size range for all encoders: 256 for LSTM- 316

based encoders and 128 for transformer-based en- 317

coders. We use the same optimization procedure 318

for each model. We train all models using the 319

AdamW optimizer (Loshchilov and Hutter, 2019) 320

with a 1e−3 learning rate, 1 epoch warm-up with 321

polynomial decay and a batch size of 100. For each 322
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Figure 2: Illustration of the train and evaluation setup for assessing model compositional properties using the CobA
dataset. We train the model to evaluate in-domain expressions. We then infer expressions from the generalization
set. The dataset includes partitions for Localism, Substitutivity, Productivity, and Systematicity.

partition, we separate the in-domain set between323

a train and dev set using a random 90/10% split.324

We measure the RMSE between the expression pre-325

dicted and the true value on the dev set. We stop326

the training when no improvement is made for 5327

consecutive epochs or after 100 maximum epochs.328

We train all models on an Nvidia 2080 Ti GPU. The329

training time is around 10 minutes per partition and330

model. Since our setup is relatively light, we set331

parameters given the literature on the subject and332

do not perform hyper-parameters search4.333

Regarding the natural integer embeddings, We334

use the DICE method (Sundararaman et al., 2020).335

The method uses a deterministic approach to con-336

struct natural integer embeddings. It obtains state-337

of-the-art results on evaluation benchmarks (Wal-338

lace et al., 2019). We do not update natural integer339

embeddings during training. For operators and340

specific tokens such as CLS or SEP tokens, we ini-341

tialize embeddings randomly (with the same scale)342

and update them during training.343

4.3 Evaluation setup344

We evaluate our models and report metrics from345

the generalization set. We illustrate the evaluation346

setup in Figure 2. For the random, systematicity,347

and productivity partitions, we compute an evalua-348

tion score as the mean RMSE between each expres-349

sion’s true and predicted value. For the localism350

and substitutivity partitions, we refine the evalua-351

tion procedure to take advantage of the additional352

paired structure of the partition described in section353

3.2. We compute both an agreement score as the354

mean RMSE between the predicted values from355

the two expressions of each pair and an evaluation356

score as the RMSE between the predicted and true357

4Except for the random seed, since we observe it is a
crucial parameter for transformers.

value of the expression. We report the harmonic 358

mean between the agreement and evaluation scores. 359

This score reflects the consistency of the model’s 360

predictions between two expressions as well as its 361

ability to predict the true value. It for example dis- 362

cards trivial models which always predict the same 363

value or model accurately evaluating one expres- 364

sion of the pair but failing for the other. 365

4.4 Results 366

Table 2 presents the results on the generalization set. 367

We use two baselines: one that randomly predicts 368

the value of any expression and the BoW model. 369

We use the RMSE to compare the models. The 370

lower it is, the better are predictions on average. 371

By a small margin, BoW outperforms the ran- 372

dom guessing baseline. This suggests that the task 373

requires accounting for the expression structure. 374

Lexical information may provide insights for solv- 375

ing the task: an expression containing numbers 376

such as a 56 and 43 is more likely of being equal 377

to a high value such as 89 than an expression con- 378

taining only a 2 and a 3. Yet, local information 379

alone may not be sufficient to solve the task since 380

expressions with a high overlap may greatly differ 381

in value. For example, the expressions 3 + 3 and 382

3× 3 contain the same symbols but are not equal 383

since they used different mathematical operators. 384

Models can generalize to examples with simi- 385

lar distributions. On the random partition, all the 386

models indeed achieve low RMSE, significantly 387

lower than the baselines. Models are also robust 388

toward the introduction of paraphrases since scores 389

on substitutivity and random partitions are similar. 390

For other partitions, results are more contrasted. 391

In general, encoders relying on LSTM cells 392

outperform transformers. For productivity and 393

systematicity, sequential models strongly outper- 394
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Encoders
Number of
parameters

(×100)
Random Localism Systematicity Productivity Substitutivity

Random — 39.3 (0.1) 40.0 (0.1) 39.9 (0.2) 39.3 (0.1) 40.0 (0.1)
BoW 68 28.7 (8.1) 11.7 (10.8) 37.0 (0.2) 38.3 (5.4) 0.0 (0.0)

LSTM (uni) 595 3.5 (0.4) 6.7 (0.8) 2.7 (0.3) 14.1 (0.4) 2.4 (0.3)
LSTM (bi) 1,186 2.2 (0.2) 6.9 (0.8) 2.5 (0.3) 13.5 (1.1) 1.3 (0.1)
LSTM (tree) 1,012 5.4 (0.1) 8.6 (0.2) 7.4 (0.6) 15.0 (0.5) 4.8 (0.3)

Transformer (BERT) 1,290 3.6 (1.1) 10.1 (0.4) 20.6 (4.9) 30.2 (1.8) 2.2 (0.7)
Transformer (ALBERT) 315 6.9 (1.5) 12.2 (0.9) 16.6 (6.6) 25.9 (3.1) 4.6 (0.8)

Table 2: Compositionality evaluation. We report metrics from the generalization set. For the random, systematicity
and productivity partitions, we report the evaluation score, which is the RMSE between the true and the predicted
values. For the localism and ssubstitutivity partitions, we report the harmonic mean between the evaluation and
consistency score. For each metric, we report the mean value over 4 runs (standard deviation in parentheses).

form models using fixed-length context. Surpris-395

ingly, sequential LSTMs constantly outperform396

tree LSTMs, despite having fewer structural biases.397

Regarding transformers, the RMSE highly dete-398

riorates for productivity. We confirm their known399

limitation in terms of productivity. We also ob-400

serve transformers stumbling upon systematicity.401

Finally, we observe the benefit of tying parameters.402

ALBERT use the same architecture as BERT, ex-403

cept that weights are tied across layers. ALBERT404

achieve results comparable or above BERT despite405

using far less parameters.406

5 In-depth analysis407

Since we use generated arithmetic expressions, it408

is easy to control their fine-grained properties. We409

investigate further the influence of parameters for410

each partition. As part of our study, we observe411

how the complexity of the examples impacts com-412

positional abilities and how we can enhance them413

by modifying model hidden size or exposing mod-414

els to generalization examples during training.415

5.1 Impact of the expression’s complexity416

Complexity of compositional operations As ob-417

served in Table 2, all models perform reasonably418

well on the random partition. Yet, this performance419

might be heterogeneous across examples. We de-420

compose the examples according to the type of421

operations involved. We consider expressions con-422

taining at least one addition sign (Add), at least one423

multiplication sign (Mul), only addition sign(s)424

(Only Add), only multiplication sign(s) (Only425

Add) and at least one multiplication and addition426

sign (Add and Mul). We present the performance427

given this stratification in Figure 4a.428

Arithmetic expressions involving at least one 429

addition operator obtain better results. Multipli- 430

cations, on the other hand, tend to make the task 431

harder. In expressions that involve addition and 432

multiplication, there may be cases where multipli- 433

cation should take precedence over addition, and 434

for which computation order matters. Surprisingly, 435

these expressions reach performance in line with 436

expressions containing only one operator type. 437

Number of operators for productivity Produc- 438

tivity is notoriously hard (Kim and Linzen, 2020; 439

Hupkes et al., 2020; Baroni, 2019). We also ob- 440

serve that neural networks struggle to generalize to 441

longer expressions in our main results Table 2. In 442

Figure 3a, we decompose the productivity gener- 443

alization set according to the number of operators 444

per expression and plot the evolution of the RMSE. 445

In line with intuition, performance declines as the 446

number of operators grows. This evolution is not 447

uniform across architectures: LSTM architectures 448

generalize better to long sequences. 449

Number of swaps For substitutivity, we organize 450

the dataset given tuples of swapped expressions. 451

During evaluation, we pair each expression with an 452

expression from the same tuple and we compare 453

the predicted value between the two. As illustrated 454

in Figure 1, we can rank all expression pairs given 455

the number of swaps necessary to generate one 456

given the other. For example, given the expression 457

2+ 2× 4 we can generate 2+ 4× 2 with only one 458

swap. We refer to this pair as level-1. We need to 459

perform two swaps to generate 4× 2 + 2: we refer 460

to the pair as level-2. Figure 4c decomposes the 461

results from the substitutivity partition given these 462

levels. Encoders tend to reach better performance 463

for expression pairs with only one swap. 464
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(a) (b)

Figure 3: Evolution of the RMSE on the productivity generalization set given the number of operators. (a) We report
the mean evolution over 4 runs for each encoder (standard deviation in light). As detailed in Table 1, expressions
from the in-domain set have 2.8 operators on average. (b) For the BERT-based encoder, we expose the model to a
proportion of generalization examples during training.

Complexity of local evaluations For the local-465

ism partition, we organize the dataset given tuples466

of sub-expressions. As illustrated in Figure 1, we467

can rank all expression pairs given the number of468

evaluated intermediate operators between the two.469

For example, given the expression 2 + 5 + 2× 4,470

we evaluate only the first addition operator to gen-471

erate 7 + 2 × 4. We refer to the expression pair472

as level-1. If also we evaluate the multiplication473

operator, we obtain 7 + 8. We then refer to the474

expression pair as level-2. We compare the results475

on the Localism partition by decomposing general-476

ization examples given this level. We aim to better477

quantify how local the encoder performs compo-478

sition operations. Surprisingly, Figure 4b shows479

that level-2 expression pairs reach better scores for480

all encoders. We hypothesize that expressions with481

intermediate evaluated operators are shorter and482

therefore reach higher evaluation scores.483

5.2 Enhancing model compositional abilities484

Model hidden size The number of parameters in-485

dubitably boosts model performance. We analyze486

here whether the number of parameters can also487

leverage performance for out-of-domain general-488

ization. We compare embedding and hidden sizes489

of 128, 256, and 512 and observe the impact on the490

out-of-domain generalization performances. We 491

plot in Figure 4d the mean score for each partition 492

given each encoder. For all encoders, we observe 493

that the number of parameters benefits composi- 494

tional generalization. On average, all models in- 495

deed reach the lowest RMSE on the generalization 496

set with 512 hidden and embedding size than 128. 497

Exposition during training We study how to 498

increase out-of-domain generalization for produc- 499

tivity. We consider exposing the model to a small 500

number of out-of-domain examples during training. 501

We randomly include between 10 and 1,000 ex- 502

pressions from the generalization set in the training 503

samples. These expressions are then removed from 504

the generalization set. In Figure 3b, we plot the evo- 505

lution of RMSE on the productivity extrapolation 506

set given the number of operators per expression 507

for the transformer encoder. 508

With our dataset, only a minimal number of out- 509

of-domain examples exposed during training may 510

not be sufficient to trigger generalization during 511

inference. Even by including a large portion, be- 512

tween 500 and 1,000 expressions, we still observe a 513

significant performance drop for expressions with a 514

large number of operators. With this configuration, 515

the transformer falls short of the trend obtained 516

with the sequential LSTM. 517
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(a) (b)

(c) (d)

Figure 4: Impact of the expression complexity and model hidden size on the compositional performances. (a) We
decompose the expressions from the random partition given the type of operators involved. (b) We decompose the
expressions from the local partition given the number of sub-expression evaluated (c) We decompose the expressions
from the substitutivity partition given the number of swaps (d) We compare the impact of the model hidden size on
the average mean generalization score for each partition. For this specific analysis, we observe transformers might
struggle to converge. We adapt the training procedure by increasing the warm-up to 1000 steps with no decay.

6 Conclusion518

We introduced CobA, a dataset of arithmetic expres-519

sions. The dataset is specifically designed at evalu-520

ating model compositional properties. We partition521

the dataset into multiple in-domain and generaliza-522

tion sets. As arithmetic follows explicit and formal523

rules, we can precisely control the properties of the524

generated expressions and, consequently, the statis-525

tical properties of the sets. For each partition, we526

introduce controlled differences between the distri-527

bution of the two sets. We then study the ability of528

models to evaluate out-of-domain expressions from529

the generalization set, by learning compositional530

rules from the in-domain set. We build partitions to531

evaluate compositional properties (localism, substi-532

tutivity, productivity, and systematicity) that also533

apply to the study of human language. We hope our534

work may help better characterize compositional535

abilities to design more efficient encoders: either536

by adapting architectures or training methods. 537

We use the dataset to compare encoders with 538

distinct structures: transformers, recurrent or tree- 539

structured models. In general, models are robust 540

toward the introduction of paraphrases (substitutiv- 541

ity) and can perform recursive evaluation of sub- 542

components (localism). Yet, transformers struggle 543

to generalize to longer sequences (productivity) or 544

to combine known parts to form new sequences 545

(systematicity). We perform an in-depth analysis 546

and make observations in line with intuition. Mod- 547

els struggle with complex expressions, involving 548

more symbols, more complex structure, or more 549

operators types. We slightly enhance the composi- 550

tionality degree by adapting the number of parame- 551

ters or the exposition to generalization expressions. 552

Yet the encoder architecture is the key parameter in 553

our study. 554

8



Ethical considerations of the work555

Our work aims at improving model compositional556

abilities. We hope it may enhance model out-of-557

domain generalization abilities. To extend, we hope558

this contributes to reducing the model’s number559

of parameters or number of examples seen dur-560

ing training without loss of generality. Increased561

volume of data and parameters indeed require in-562

creased computational resources. Reducing this563

requirement at scale may therefore contribute to564

preserving a balance for a global sustainable envi-565

ronment. Better generalization abilities may also566

improve model robustness towards out-of-domain567

inference and therefore enhance their secure use.568
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