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Abstract

We introduce CobA, a dataset designed to eval-
uate the compositional properties of neural
models. The dataset consists of simple arith-
metic expressions combining natural integers
with addition and multiplication operators. For
example, (5 + 4) x 2. We distinguish four
aspects of compositionality: localism, substi-
tutivity, productivity, and systematicity. We
generate partitions of the dataset with specific
in-domain and generalization sets, designed
to evaluate the model’s ability for each com-
positional aspect. By carefully selecting ex-
pressions from the in-domain and generaliza-
tion sets, we introduce controlled differences
between the two sets. We show that models
achieve competitive performance on a random
partition, for which there is no controlled dif-
ference. Yet, for partitions requiring composi-
tional extrapolation, performances drastically
decrease for most encoder architectures. We
observe distinctions among architectures, in
particular fixed-length context transformers, se-
quential or tree-structured LSTM.

1 Introduction

Compositionality is thought to be a key feature of
human language. Symbolic generative theories of
language indeed imply the possibility to produce
an infinite number of grammatical phrases and sen-
tences using only finite means (Chomsky, 1957;
Montague, 1970; Hauser et al., 2010). Humans
derive phrase meaning by composing syntactic and
semantic components using compositional rules
(Partee et al., 1984; Cann, 1993; Dowty, 2007).
On the other hand, language models are trained
using self-supervised objectives with no direct lin-
guistically oriented supervision. Nonetheless, re-
cent large foundation models have shown striking
abilities to process human language. They over-
perform humans on many benchmarks (Devlin
et al., 2019; Brown et al., 2020). They also exhibit
strong consistency on agreements (subject-verb,

noun-adverb, verb-verb) which are determined by
abstract structures and not just linear order of words
(Linzen et al., 2016; Gulordava et al., 2018; Marvin
and Linzen, 2018; Newman et al., 2021). Yet, many
studies point that their compositional abilities are
surprisingly limited and that they struggle to gen-
eralize to specific out-of-domain examples (Lake
and Baroni, 2018; Kim and Linzen, 2020; Hupkes
et al., 2020).

The ability of language models to process lan-
guage without inducing exhaustive symbolic com-
position rules is not yet fully understood. Baroni
(2019) suggests neural networks may process lan-
guage using partially or different rules than hu-
mans. They emphasize human language is not fully
characterized by algebraic rules. Language models
might rely on less systematic phenomena such as
semi-lexicalized constraints in syntax or irregular
inflections. Tenenbaum (2018) explores the possi-
bility that language models overcome their lack of
compositional abilities with an exposition to huge
amounts of data.

It is undoubtedly possible to train efficient lan-
guage models without prior or posterior composi-
tional properties. Yet, building more compositional
models is an active subject of research. In particular
using extensive pre-training, specific architectures
or inductive biases (Russin et al., 2019; Furrer et al.,
2020; Ontanoén et al., 2021). Such methods seek
to improve transformer models at learning compo-
sitional rules. The gain might be to increase the
model robustness toward out-of-domain examples,
that is examples with statistically different proper-
ties but generated with the same set of rules.

Evaluating model compositional properties is no-
toriously hard. First—as for every other language
evaluation benchmark—creating the data is a criti-
cal step. Labeling raw data is time-consuming and
it is difficult to control precisely the property of
the examples. On the other hand, generating ar-
tificial data may lead to poor lexical or structural



diversity. Additionally, studies show that models
might use lexical biases or shallow heuristics in
the data to achieve the task (Linzen and Leonard,
2018). Popular benchmarks require to generate the
answer, which makes it difficult to disentangle the
effect of the encoding and decoding parts. Indeed,
some errors might be related to the decoding part.
This makes it difficult to precisely assess model
compositional properties.

We introduce CobA, a Compositionality
benchmark using Arithmetic. Arithmetic indeed
defines a self-contained universe which can be de-
scribed using a limited set of symbols and compo-
sition rules. This makes it easy to build specific
examples with isolated properties. Moreover, we
formulate the benchmark as a classification task.
The task can be solved using a simple encoder, with-
out the need to decode the answer. Thus, our setup
minimizes complex interactions between encoding
and decoding.

We organize our paper as follows: we first re-
view the related work in Section 2. In Section 3,
we detail the data generation process and the dis-
tinct dataset partitions. In Section 4, we present
our training and evaluation setup. We also present
our main results on the CobA generalization set.
Finally, in Section 5, we perform an in-depth
study to better analyze how the choice of hyper-
parameters might leverage specific performances
and how the expression complexity impacts model
performances.

2 Related work

Evaluating compositionality Specific datasets
exist to assess compositionality of language mod-
els: SCAN (Lake and Baroni, 2018), PCFG (Hup-
kes et al., 2020), CFQ (Keysers et al., 2020) and
COGS (Kim and Linzen, 2020). All use a text-to-
text setup: models take raw text as input and should
map it to a semantic form. For the SCAN dataset,
raw sentences should be mapped to a sequence of
instructions, CFQ maps sentences to Sparql queries,
and COGS to semantic forms.

Other setups exist: Dasgupta et al. (2018) mea-
sure compositionality for sentence embeddings us-
ing a natural language inference task. They con-
struct pairs of examples that may be solved using
compositional operations. Andreas (2019) propose
a formalism to measure compositionality using sim-
ilarity metrics through a communication game.

The work of Bowman et al. (2015) is perhaps the

closest to ours. They analyze model compositional
abilities by inferring logical relations between pairs
of sentences. Such sentences are artificially gener-
ated using an artificial language based on logical
statements. They compare the impact of structured
models to encode these sentences with explicit la-
tent recursive structures. In our work, we try here
to better characterize the effect of encoder architec-
tures, given the various compositional aspects.

Enhancing model compositional ability is ad-
dressed through multiple means. Some models
propose to integrate structural biases within the
architecture: in particular Tree-LSTM (Tai et al.,
2015) or latter in transformers with structured atten-
tion (Russin et al., 2019). Some methods propose
also to adapt the pre-training or fine-tuning proce-
dure (Furrer et al., 2020). Finally, other methods
propose to complete models with modules dedi-
cated for compositional operations (Liu et al., 2020;
Ontaiién et al., 2021).

Using arithmetic with neural networks Neural
networks may be properly trained to solve mathe-
matical expressions. A line of work outlines that
pre-trained language models or static word em-
beddings capture scales and notions of numeracy
(Wallace et al., 2019; Naik et al., 2019; Sundarara-
man et al., 2020; Zhang et al., 2020; Thawani et al.,
2021). Beyond representing numbers, further work
also analyzes the ability of models to perform basic
mathematics reasoning (Saxton et al., 2019; Dua
et al., 2019; Geva et al., 2020) or solve mathemati-
cal expressions (Lample and Charton, 2020).

3 Dataset description

The key contribution in our work is to build a
dataset of arithmetic expressions to evaluate neu-
ral model compositional abilities. Indeed, numer-
ically evaluating formal expressions theoretically
requires capturing the formal rules of arithmetic.
CobA focuses on aspects of compositionality that
may also be declined for language (Hupkes et al.,
2020). But contrary to previous work, we do not
mix raw text and numeracy. We derive many arith-
metic expressions, using limited formal explicit
rules and symbols. In this section, we detail the
generation of the dataset.

3.1 Generation procedure

Using an automatic procedure, we generate arith-
metic expressions. First, we generate a natural



Partitions | Random Systematicity  Productivity Localism Substitutivity
Mean value 66.3/66.2 67.0/68.2 66.4/65.3 66.1/67.4 66.1/66.4
Min number of operators 0/0 2/2 0/4 2/2 2/2
Mean number of operators 2.8/28 26/25 2.8/6.5 2.8/2.7 2.8/2.7
Max number of operators 3/3 3/3 3/9 3/3 3/3
Expressions with odds and evens (%) 85.6/85.4 0.0/100.0 85.6/98.3 85.7/85.3 85.7/85.1
Swapped-expressions in-domain (%) 1.3/1.6 10.0/0.0 1.2/0.0 12/1.5 0.0/0.0
Sub-expressions in-domain (%) 22/23 42/1.3 2.1/0.7 0.0/00 1.0/1.1

Table 1: Dataset key statistics given each partition. For each statistic, we report the figures for the in-domain /
generalization set. We express the "Expressions with odds and evens", "Swapped-expressions in-domain" and
"Sub-expressions in-domain" as the proportion of expressions verifying the property for each set. The statistics that
are determinants for the aspect studied in a given partition appear in bold.

integer between 1 and 100, for example, 34. We
then decompose it as the addition or multiplication
of two other integers, for example, 2 x 17. We
then recursively decompose each integer in the new
expression as the product or sum of two integers or
keep it unchanged, with a probability p'.

As in Lample and Charton (2020), we use pre-
fix notation (also known as normal Polish nota-
tion). The arithmetic expression 2 x (14 4 3) is
represented as the sequence X2 + 14 3. This no-
tation avoids the use of parenthesis and therefore
leads to shorter expressions. We assign each sym-
bol—natural integer or operator sign—to a given to-
ken. For each expression, we make the distinction
between two distinct left and right hand sides of
an operator. For example, we make the distinction
between the expression 14 + 3 and 3 + 14. Given
this procedure, we generate over 2.5M unique ex-
pressions with between 0 and 9 operators.

3.2 Partitioning the dataset

Our dataset aims at evaluating model compositional
properties. We take inspiration from the procedure
proposed in SCAN (Lake and Baroni, 2018; Loula
et al., 2018). We carefully select expressions to cre-
ate partitions (in-domain and generalization sets)
from the dataset. We split them such that in-domain
and generalization sets have different distributions.
It is not possible to infer generalization examples
without fully capturing the properties ruling this
specific aspect in the in-domain set. We thus com-
pare the ability of models to perform out-of-domain
generalization. We make the distinction between
model learning shallow heuristics such as local
pattern matching and the one learning true compo-
sitional operations.

"'We implement specific rules for numbers that are prime

and cannot be decomposed with multiplication. We set the
probability p to expand, by default, at 0.5.

We build partitions given the work from Hupkes
et al. (2020), which distinguishes sub-properties
within compositionality. Localism, Substitutivity,
Productivity and Systematicity”. Each of the par-
titions detailed below has a key statistic distribution
and is designed to evaluate a model’s performance
along a given aspect. Each partition contains an
in-domain set of 24,000 expressions and a general-
ization set of 12,000 expressions. We present other
key statistics for the partitions in Table 1.

Random is a regular training procedure. We split
the dataset randomly without any specific control
during the selection of the expressions. While in-
domain and generalization examples are all distinct
they share the same distributions and have similar
underlying characteristics.

Systematicity evaluates the recombination of
known parts to form new sequences. We build
the partition using the distinction between odd and
even natural integers. The training set contains ex-
pressions with only either odd or even numbers.
For examples 2 x 4 + 8. or 3 + 5 + 7. The test
set contains expressions with both even and odd
numbers such as 3 +2 x 5 4 4.

Productivity evaluates the extrapolation to
longer sequences. We train the model on expres-
sion with up to 3 operators. We then evaluate the
model on longer expressions with up to 9 operators.

Substitutivity evaluates the robustness towards
the introduction of synonyms. In our work, we
interpret this definition as the robustness towards
paraphrases and evaluate the ability of models to
perceive an operator’s commutative property. We

2Hupkes et al. (2020) also enumerate the over-
generalisation aspect which evaluate the accommodation to
exceptions. However, we find it complex to adapt this property
for our specific dataset and therefore discard it in this work.



organize our dataset as a collection of "swapped
expressions”. Swapped expressions are tuples of
expressions with the same value and that only differ
by swapping the left and right hand sides of each
operator. We illustrate this swapping organization
in Figure 1. During training, we only expose the
model to a single expression per tuple. Therefore
the model cannot learn the commutative property
from shallow pattern matching. During the evalua-
tion, we evaluate the model’s commutative ability
by comparing couples of predicted values for ex-
pressions from the same tuple.

Localism evaluates the recursive evaluation of
smaller constituents before larger constituents. We
also organize our dataset as a collection of "sub-
expressions". Sub expressions are tuples of expres-
sions with the same value that only differ by the
level of decomposition of the expressions as illus-
trated in Figure 1. We use the same training and
evaluation protocol as for Substitutivity.

4 Experiments

We train the model using a classification objective.
Given an arithmetic expression, the model predicts
its value among the 100 possible integers. This
setup avoids the use of a complex decoder module ;
a simple probe is sufficient. The architecture is
decomposed as follows: first, an encoder maps
the arithmetic expression to an embedding vector.
Then, a two-layer perceptron followed by a softmax
outputs a probability distribution. We train the
model by minimizing a cross-entropy loss.

4.1 Encoder architectures

‘We list below the encoders architectures we use.

Bow The expression’s embedding vector is the
sum of its embeddings from each symbol. This
representation accounts for neither the order nor
the structure of the expression.

Sequential LSTM  We use unidirectional or bidi-
rectional LSTM (Hochreiter and Schmidhuber,
1997). We use the last token hidden state as embed-
ding for the expression.

Tree LTSM  We represent each arithmetic expres-
sion as a binary tree where each node is either a
natural number or an operator sign. We encode the

3For the clarity of the illustration, we use the infix form
for the expressions

Substitutivity

24+2x4 24+4x2 4XxX2+2 2XxX4+2
+ + + +
P P P s
2 x 2 x x 2 x 2
/\ N /N N
2 4 4 2 4 2 2 4
Swapped expressions Swapped expression
(order 1) (order 2)
Localism
2+5+2x4 7+2x4 2+5+8 7+8
+ & + +
+ x 7 X + 8 7 8
N\ N\ /N 2N

2 5 2 4 2 4 2 5

Sub-expressions
(order 1)

Sub-expression
(order 2)

Figure 1: Generation of expressions tuples for probing
substitutivity and localism?. For localism, we can de-
duce expressions from the expression seed by evaluating
sub-components. For substitutivity, we can deduce ex-
pressions from each other by swapping left and right
hand sides of operators.

tree using a N-ary tree LSTM (Tai et al., 2015) and
use the root node as expression embedding.

Transformers We derive two simple encoders
from the architectures of BERT (Devlin et al., 2019)
and ALBERT (Lan et al., 2020). We use the [CLS]
token hidden state from the last layer as expression
embedding. We initialize our models randomly and
train them from scratch. Their architectures are
light compared with standard transformer scales:
we use a hidden size of 128, 6 hidden layers, and 8
attention heads. This represents 1.2M parameters
for BERT and 300k for ALBERT since parameters
are tied across layers. As observed in Csord4s et al.
(2021) and Ontaiién et al. (2021), transformers’ po-
sitional encoding are particularly important for this
task. We use the method from Wallace et al. (2019)
and add some random padding at the beginning of
the input so that the encoder does not solve the task
by overfitting the absolute position of the symbols.

4.2 Training configuration

We design all encoders comparable, with roughly
the same number of parameters (1.2M), as detailed
in Table 2. We also use the same hidden and em-
bedding size range for all encoders: 256 for LSTM-
based encoders and 128 for transformer-based en-
coders. We use the same optimization procedure
for each model. We train all models using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a 1e~3 learning rate, 1 epoch warm-up with
polynomial decay and a batch size of 100. For each
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Figure 2: Illustration of the train and evaluation setup for assessing model compositional properties using the CobA
dataset. We train the model to evaluate in-domain expressions. We then infer expressions from the generalization
set. The dataset includes partitions for Localism, Substitutivity, Productivity, and Systematicity.

partition, we separate the in-domain set between
a train and dev set using a random 90/10% split.
We measure the RMSE between the expression pre-
dicted and the true value on the dev set. We stop
the training when no improvement is made for 5
consecutive epochs or after 100 maximum epochs.
We train all models on an Nvidia 2080 Ti GPU. The
training time is around 10 minutes per partition and
model. Since our setup is relatively light, we set
parameters given the literature on the subject and
do not perform hyper-parameters search*.

Regarding the natural integer embeddings, We
use the DICE method (Sundararaman et al., 2020).
The method uses a deterministic approach to con-
struct natural integer embeddings. It obtains state-
of-the-art results on evaluation benchmarks (Wal-
lace et al., 2019). We do not update natural integer
embeddings during training. For operators and
specific tokens such as CLS or SEP tokens, we ini-
tialize embeddings randomly (with the same scale)
and update them during training.

4.3 Evaluation setup

We evaluate our models and report metrics from
the generalization set. We illustrate the evaluation
setup in Figure 2. For the random, systematicity,
and productivity partitions, we compute an evalua-
tion score as the mean RMSE between each expres-
sion’s true and predicted value. For the localism
and substitutivity partitions, we refine the evalua-
tion procedure to take advantage of the additional
paired structure of the partition described in section
3.2. We compute both an agreement score as the
mean RMSE between the predicted values from
the two expressions of each pair and an evaluation
score as the RMSE between the predicted and true

“Except for the random seed, since we observe it is a
crucial parameter for transformers.

value of the expression. We report the harmonic
mean between the agreement and evaluation scores.
This score reflects the consistency of the model’s
predictions between two expressions as well as its
ability to predict the true value. It for example dis-
cards trivial models which always predict the same
value or model accurately evaluating one expres-
sion of the pair but failing for the other.

4.4 Results

Table 2 presents the results on the generalization set.
We use two baselines: one that randomly predicts
the value of any expression and the Bow model.
We use the RMSE to compare the models. The
lower it is, the better are predictions on average.
By a small margin, BoW outperforms the ran-
dom guessing baseline. This suggests that the task
requires accounting for the expression structure.
Lexical information may provide insights for solv-
ing the task: an expression containing numbers
such as a 56 and 43 is more likely of being equal
to a high value such as 89 than an expression con-
taining only a 2 and a 3. Yet, local information
alone may not be sufficient to solve the task since
expressions with a high overlap may greatly differ
in value. For example, the expressions 3 + 3 and
3 x 3 contain the same symbols but are not equal
since they used different mathematical operators.
Models can generalize to examples with simi-
lar distributions. On the random partition, all the
models indeed achieve low RMSE, significantly
lower than the baselines. Models are also robust
toward the introduction of paraphrases since scores
on substitutivity and random partitions are similar.
For other partitions, results are more contrasted.
In general, encoders relying on LSTM cells
outperform transformers. For productivity and
systematicity, sequential models strongly outper-



Number of
Encoders parameters Random Localism Systematicity Productivity = Substitutivity
(x100)
Random — 39.3 (0.1) 40.0 0.1 39.9 (0.2 39.3 (0.1) 40.0 (0.1
BoW 68 28.7 8.1) 11.7 (10.8) 37.0 (0.2) 38.3 (5.4) 0.0 (0.0
LSTM (uni) 595 3.504 6.7 (0.8) 2.7(0.3) 14.1 (0.4 2.40.3)
LSTM (bi) 1,186 2.2 (02) 6.9 (0.8) 2.50.3) 13.5 (1.1 1.3 0.1
LSTM (tree) 1,012 5.4 0.1 8.6 (0.2) 7.4 (0.6) 15.0 (0.5 4.8 (0.3)
Transformer (BERT) 1,290 3.6 (1.1) 10.1 (0.4 20.6 4.9 30.2 (1.8) 2.2 (0.7)
Transformer (ALBERT) 315 6.9 (1.5) 12.2 (0.9 16.6 (6.6) 259 3.0 4.6 (0.8)

Table 2: Compositionality evaluation. We report metrics from the generalization set. For the random, systematicity
and productivity partitions, we report the evaluation score, which is the RMSE between the true and the predicted
values. For the localism and ssubstitutivity partitions, we report the harmonic mean between the evaluation and
consistency score. For each metric, we report the mean value over 4 runs (standard deviation in parentheses).

form models using fixed-length context. Surpris-
ingly, sequential LSTMs constantly outperform
tree LSTMs, despite having fewer structural biases.

Regarding transformers, the RMSE highly dete-
riorates for productivity. We confirm their known
limitation in terms of productivity. We also ob-
serve transformers stumbling upon systematicity.
Finally, we observe the benefit of tying parameters.
ALBERT use the same architecture as BERT, ex-
cept that weights are tied across layers. ALBERT
achieve results comparable or above BERT despite
using far less parameters.

5 In-depth analysis

Since we use generated arithmetic expressions, it
is easy to control their fine-grained properties. We
investigate further the influence of parameters for
each partition. As part of our study, we observe
how the complexity of the examples impacts com-
positional abilities and how we can enhance them
by modifying model hidden size or exposing mod-
els to generalization examples during training.

5.1 Impact of the expression’s complexity

Complexity of compositional operations As ob-
served in Table 2, all models perform reasonably
well on the random partition. Yet, this performance
might be heterogeneous across examples. We de-
compose the examples according to the type of
operations involved. We consider expressions con-
taining at least one addition sign (Add), at least one
multiplication sign (Mul), only addition sign(s)
(Only Add), only multiplication sign(s) (Only
Add) and at least one multiplication and addition
sign (Add and Mul). We present the performance
given this stratification in Figure 4a.

Arithmetic expressions involving at least one
addition operator obtain better results. Multipli-
cations, on the other hand, tend to make the task
harder. In expressions that involve addition and
multiplication, there may be cases where multipli-
cation should take precedence over addition, and
for which computation order matters. Surprisingly,
these expressions reach performance in line with
expressions containing only one operator type.

Number of operators for productivity Produc-
tivity is notoriously hard (Kim and Linzen, 2020;
Hupkes et al., 2020; Baroni, 2019). We also ob-
serve that neural networks struggle to generalize to
longer expressions in our main results Table 2. In
Figure 3a, we decompose the productivity gener-
alization set according to the number of operators
per expression and plot the evolution of the RMSE.
In line with intuition, performance declines as the
number of operators grows. This evolution is not
uniform across architectures: LSTM architectures
generalize better to long sequences.

Number of swaps For substitutivity, we organize
the dataset given tuples of swapped expressions.
During evaluation, we pair each expression with an
expression from the same tuple and we compare
the predicted value between the two. As illustrated
in Figure 1, we can rank all expression pairs given
the number of swaps necessary to generate one
given the other. For example, given the expression
2 + 2 x 4 we can generate 2 + 4 x 2 with only one
swap. We refer to this pair as level-1. We need to
perform two swaps to generate 4 x 2 + 2: we refer
to the pair as level-2. Figure 4c decomposes the
results from the substitutivity partition given these
levels. Encoders tend to reach better performance
for expression pairs with only one swap.
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Figure 3: Evolution of the RMSE on the productivity generalization set given the number of operators. (a) We report
the mean evolution over 4 runs for each encoder (standard deviation in light). As detailed in Table 1, expressions
from the in-domain set have 2.8 operators on average. (b) For the BERT-based encoder, we expose the model to a

proportion of generalization examples during training.

Complexity of local evaluations For the local-
ism partition, we organize the dataset given tuples
of sub-expressions. As illustrated in Figure 1, we
can rank all expression pairs given the number of
evaluated intermediate operators between the two.
For example, given the expression 2 + 5 + 2 x 4,
we evaluate only the first addition operator to gen-
erate 7 + 2 x 4. We refer to the expression pair
as level-1. If also we evaluate the multiplication
operator, we obtain 7 + 8. We then refer to the
expression pair as level-2. We compare the results
on the Localism partition by decomposing general-
ization examples given this level. We aim to better
quantify how local the encoder performs compo-
sition operations. Surprisingly, Figure 4b shows
that level-2 expression pairs reach better scores for
all encoders. We hypothesize that expressions with
intermediate evaluated operators are shorter and
therefore reach higher evaluation scores.

5.2 Enhancing model compositional abilities

Model hidden size The number of parameters in-
dubitably boosts model performance. We analyze
here whether the number of parameters can also
leverage performance for out-of-domain general-
ization. We compare embedding and hidden sizes
of 128, 256, and 512 and observe the impact on the

out-of-domain generalization performances. We
plot in Figure 4d the mean score for each partition
given each encoder. For all encoders, we observe
that the number of parameters benefits composi-
tional generalization. On average, all models in-
deed reach the lowest RMSE on the generalization
set with 512 hidden and embedding size than 128.

Exposition during training We study how to
increase out-of-domain generalization for produc-
tivity. We consider exposing the model to a small
number of out-of-domain examples during training.
We randomly include between 10 and 1,000 ex-
pressions from the generalization set in the training
samples. These expressions are then removed from
the generalization set. In Figure 3b, we plot the evo-
lution of RMSE on the productivity extrapolation
set given the number of operators per expression
for the transformer encoder.

With our dataset, only a minimal number of out-
of-domain examples exposed during training may
not be sufficient to trigger generalization during
inference. Even by including a large portion, be-
tween 500 and 1,000 expressions, we still observe a
significant performance drop for expressions with a
large number of operators. With this configuration,
the transformer falls short of the trend obtained
with the sequential LSTM.
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Figure 4: Impact of the expression complexity and model hidden size on the compositional performances. (a) We
decompose the expressions from the random partition given the type of operators involved. (b) We decompose the
expressions from the local partition given the number of sub-expression evaluated (c) We decompose the expressions
from the substitutivity partition given the number of swaps (d) We compare the impact of the model hidden size on
the average mean generalization score for each partition. For this specific analysis, we observe transformers might
struggle to converge. We adapt the training procedure by increasing the warm-up to 1000 steps with no decay.

6 Conclusion

We introduced CobA, a dataset of arithmetic expres-
sions. The dataset is specifically designed at evalu-
ating model compositional properties. We partition
the dataset into multiple in-domain and generaliza-
tion sets. As arithmetic follows explicit and formal
rules, we can precisely control the properties of the
generated expressions and, consequently, the statis-
tical properties of the sets. For each partition, we
introduce controlled differences between the distri-
bution of the two sets. We then study the ability of
models to evaluate out-of-domain expressions from
the generalization set, by learning compositional
rules from the in-domain set. We build partitions to
evaluate compositional properties (localism, substi-
tutivity, productivity, and systematicity) that also
apply to the study of human language. We hope our
work may help better characterize compositional
abilities to design more efficient encoders: either

by adapting architectures or training methods.

We use the dataset to compare encoders with
distinct structures: transformers, recurrent or tree-
structured models. In general, models are robust
toward the introduction of paraphrases (substitutiv-
ity) and can perform recursive evaluation of sub-
components (localism). Yet, transformers struggle
to generalize to longer sequences (productivity) or
to combine known parts to form new sequences
(systematicity). We perform an in-depth analysis
and make observations in line with intuition. Mod-
els struggle with complex expressions, involving
more symbols, more complex structure, or more
operators types. We slightly enhance the composi-
tionality degree by adapting the number of parame-
ters or the exposition to generalization expressions.
Yet the encoder architecture is the key parameter in
our study.



Ethical considerations of the work

Our work aims at improving model compositional
abilities. We hope it may enhance model out-of-
domain generalization abilities. To extend, we hope
this contributes to reducing the model’s number
of parameters or number of examples seen dur-
ing training without loss of generality. Increased
volume of data and parameters indeed require in-
creased computational resources. Reducing this
requirement at scale may therefore contribute to
preserving a balance for a global sustainable envi-
ronment. Better generalization abilities may also
improve model robustness towards out-of-domain
inference and therefore enhance their secure use.
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