DECEPTION IN DIALOGUE: EVALUATING & REDUCING DECEPTIVE BEHAVIOR IN LARGE LANGUAGE MODELS

Anonymous authors Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) interact with hundreds of millions of people worldwide, powering applications such as customer support, education and healthcare. However, their ability to produce deceptive outputs, whether intentionally or inadvertently, poses significant safety concerns. The unpredictable nature of LLM behavior, combined with insufficient safeguards against hallucination, misinformation, and user manipulation, makes their misuse a serious, real-world risk. In this paper, we systematically investigate the extent to which LLMs engage in deception within dialogue, and propose the belief misalignment metric to measure deception. We evaluate deception across four distinct dialogue scenarios, using five established deception detection metrics and our proposed metric. Our findings reveal this novel deception measure correlates more closely with human judgments than any of the existing metrics we test. Additionally, our benchmarking of 8 state-of-the-art models indicates that LLMs naturally exhibit deceptive behaviors 24.4% of the time, even when prompted with seemingly benign objectives. When prompted to deceive, LLMs are capable of increasing deceptiveness to 43% of turns. We further explore how to use reinforcement learning to fine-tune LLMs to reduce deceptive behaviors, leading to a 15% reduction compared to other fine-tuned models.

1 Introduction

Large language models (LLMs) have transformed natural language processing, supporting content generation, virtual assistance, and conversational systems. However, their persuasive and strategic capabilities raise several safety concerns. LLMs have been shown to exhibit deceptive behavior (Yao et al., 2024), either as an unintended consequence of strategic planning to achieve specific goals (FAIR et al., 2022) or in more nefarious and strategic ways, such as pretending to have a vision disability to deceive a human into solving a CAPTCHA (Park et al., 2023b). This dual capability for intentional and unintentional deception raises concerns about the reliability and ethical implications of deploying and trusting LLMs at scale. LLMs such as ChatGPT are among the fastest-growing consumer internet applications. As of mid-2025, ChatGPT alone had over 700 million active users per week (OpenAI, 2025). Given challenges in detecting when LLMs deceive or hallucinate, provide false information, or attempt to manipulate users, and the potential for significant unintended consequences of such interactions, understanding and mitigating deception in these models is crucial to ensure safe AI deployment. Standard safety training techniques aim to mitigate such risks, but their effectiveness in eliminating deception remains uncertain, as evidenced by the persistence of these behaviors despite safety training (Hubinger et al., 2024) and training with human feedback (Wen et al., 2024).

In this paper, our aim is to study widely-deployed LLMs capability to deceive, aiming to understand LLM capabilities in standard settings with no explicit prompts for deception, but also how they respond when prompted to engage in goal-directed, persuasive, or even explicitly deceptive dialogue. To evaluate these behaviors, we simulate multi-turn dialogue interactions where deceptive behavior may arise, and investigate an LLM's capability to deceive when explicitly prompted to do so and when misleading responses emerge even when the prompt does not direct the model to act deceptively. In order to capture this deceptive behavior, we measure deception in four different LLM-generated dialogue tasks, and benchmark four existing deception detection metrics. We identify the primary limitation of these metrics to be their focus on the form of deception—such as whether an utterance is factually false or appears misleading—rather than its effect on the listener. To address this gap, we

056

058

060

061

062

063

064

065

066

067

069

071

073

074

075

076 077

078

079

081

083

084

085

087

090

091

092

094 095

096

098

100

101

102

103

104

105

106

107

Pipeline to Measure and Reduce Deception in LLMs 1 Selecting Models for Agents 3 LLM as a Judge for Deception Metrics input I would rate this response as a 5 GPT-4o-Mini GPT-3.5-Turbo (entirely false) because the house is Deceiver Ager small and does not have a garage LLM Judge Llama-3.1-8B False Beliefs: Does this response provide false information to the buyer? otion Rating: Rate how deceptive this response is from 1 (not deceptive) to 5 Llama-3.1-70B Llama-3.1-70B-Instruct LLM 2 Naive Agent (very deceptive). Explain in 1 sentence (2) Generating Dialog for Task from LLM Reducing Deception in LLMs state s Base Prompt: A seller is trying to convince a buyer to come to a house showing. take action an In this situation, there are five features. Agent-Specific Prompt: You are the seller. Here are the true features of the Env LLM Agent LLM house [...]. Your goal is to convince the buyer to come to the house showing. r: The house is quite spacious, providing ample room for comfortable living and New state s_D' entertaining guests. I'm confident you'll find it perfectly suits your needs for space! Reward r_{reg}

Figure 1: We outline a methodology for assessing deceptive behaviors in dialogue, featuring model selection, dialogue generation, using LLM as a Judge to evaluate conversation metrics and deception metrics as outlined in Section 3.3, and reducing deception in LLM through multi-turn RL fine-tuning of base LLM models to be less deceptive via belief misalignment.

propose a new metric—belief misalignment—which measures the extent to which a listener's beliefs, after interaction, diverge from the true state of the world, capturing manipulative or misleading behavior compared with other methods. We find this metric aligns more closely with human intuitions about what constitutes deceptive behavior than existing alternatives.

Our contributions include: 1) four deception detection frameworks and four dialogue datasets to evaluate deception in LLMs; 2) a novel deception metric—belief misalignment—which quantifies the divergence between a listener's beliefs and the true state of the speaker; 3) empirical results quantifying deception in widely-deployed LLMs; and 4) a multi-turn reinforcement learning (RL) pipeline for mitigating deception in LLMs. These results are critical to understanding the broader ethical implications of deploying LLMs at scale and ensuring the safe and responsible use of AI. With the belief misalignment metric, we can measure whether an one agent's utterance (speaker) causes the other's beliefs (listener) to be farther from the truth. Our results demonstrate that the belief misalignment metric aligns more closely with human judgments of deception than any existing metric of deception. Furthermore, in benchmarking deception in state-of-the-art LLMs, we find that LLMs naturally prompted with seemingly benign instructions are still inclined to engage in deceptive behaviors 24.4% of the time, and are 43% likely to deceive when explicitly prompted to do so, suggesting LLMs have strong capabilities for engaging in deception. Interestingly, models trained with RLHF (Reinforcement Learning with Human Feedback) (Ouyang et al., 2022)—currently the predominant approach for ensuring the safety of widely-deployed production LLMs—still exhibit deception one fourth of the time. To address this shortcoming, we show how multi-turn RL fine-tuning with a deception-specific reward can train LLMs to be 15% less deceptive in conversational settings compared to instruction fine-tuned models. Our work provides insight into the challenges of ensuring truthful and ethical AI interactions.

2 Related Work

Deception in social psychology and philosophy. Deception has been defined and analyzed across various disciplines including philosophy (Kant, 1797; Masip et al., 2004; Martin, 2009; Todd, 2013; Fallis, 2010; Mahon, 2016; Sakama et al., 2014), psychology (Kalbfleisch & Docan-Morgan, 2019; Zuckerman et al., 1981; Whaley, 1982), and other social and behavioral sciences (Greene, 2007; Miller & Stiff, 1993). The traditional definition of deception, often summarized as "to cause to believe what is false" (Press, 1989), has been criticized for being too broad, allowing for cases of inadvertent or mistaken deception (Mahon, 2016; Carson, 1988). Some philosophers argue that deception must be intentional, excluding inadvertent or mistaken acts (Linsky, 1963; Horne, 1981; Faulkner, 2007), and propose more refined definitions, such as the intentional creation of false beliefs that are known or believed to be false by the deceiver. Others argue that deception can occur through causing or maintaining false beliefs, even without the deceiver's own belief in the falsehood (Carson, 2010), and that evidence or omissions can play a critical role (Linsky, 1963; Fuller, 1976). Additionally, some

contend that deception can involve preventing the acquisition of true beliefs, or allowing a person to continue with false beliefs (through omission) (Chisholm & Feehan, 1977). These debates highlight the complexity of defining deception, particularly in intentionality, evidence, and omissions.

Deception, LLMs, & AI Safety. With emergent capabilities in LLMs (Wei et al., 2022b), there has been a growing concern that these models may exhibit deceptive tendencies (Kenton et al., 2021). This occurs because the model has misspecified objectives, leading to harmful content (Richmond, 2016) and manipulative language (Roff, 2020), or due to the prevalence of deceptive content in its training data (Bommasani et al., 2022). Deception has been studied in a variety of domains (Park et al., 2023b) including text-games (FAIR et al., 2022; O'Gara, 2023; O'Gara, 2023), card games (Brown & Sandholm, 2019; Wang et al., 2024b; Xu et al., 2024), persuasion (Lai et al., 2023), and truthfulness (Azaria & Mitchell, 2023). These models experience failures either because they lack the understanding that their content is deceptive, or due to intentional deception, where they present false information despite knowing the truth (Scheurer et al., 2024; Hou et al., 2024). Some works have explored the emergence of deception in LLMs (Hagendorff, 2024a; Pan et al., 2023; Hagendorff, 2024b) and measured or quantified deception in LLMs (Casheekar et al., 2023; Lin et al., 2022; Ward et al., 2024; Pacchiardi et al., 2023; Su et al., 2024; Abdulhai et al., 2024), and have also trained LLMs to be more or less deceptive (Hubinger et al., 2024; Carauleanu et al., 2024; Dogra et al., 2024). However, our work is the first to perform a comprehensive study across a variety of LLMs, several deception metrics, and domains where deception is both intentional and unintentional. Our work proposes a novel way of measuring deception, belief misalignment, that we show correlates more strongly with human judgments of deception than four prior metrics (Bai et al., 2022b; Su et al., 2024; Lin et al., 2022; Abdulhai et al., 2024). Using multi-turn RL fine-tuning with belief misalignment, we show that we can significantly reduce deception in LLMs.

3 METHODOLOGY

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130 131

132 133

134

135 136

137 138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156 157 158

159

160

161

In this section, we outline the methodology for evaluating deception in a dialogue interaction between LLM agents: a potentially deceptive agent (deceiver D) and a naive agent (listener L), in Figure 1.

3.1 GENERATING DIALOGUE FROM LLMS

As we aim to investigate deception in LLMs, we generate synthetic dialogue from LLMs from popularly deployed LLMs. Testing for such behaviors in synthetic environments allows us to investigate systematic risks and develop techniques to mitigate them before such behaviors are encountered in real-world deployments (Dubois et al., 2024; Park et al., 2023a; Wang et al., 2024a). As shown in Figure 1, both D and L are prompted LLM agents, where D interacts in dialogue with Lto accomplish a given task, such as negotiation for the price of an item. Each agent is initialized as its own LLM, consisting of a base prompt which contains general instructions for the task, and a private agent-specific prompt containing confidential information for the agent to be successful at solving the task under their reward function. For the deceptive agent, this prompt may signal it to engage in deceptive behavior, may not contain any such kind of prompting, or may contain instructions to maximize its task utility. On the other hand, the listener agent is naive and is not provided with any prompt to be deceptive or to suspect deception from its dialogue partner. We take precedent from prior work to generate high quality data from LLMs, where LLM agents "talk" with one another in a back and forth manner (Ding et al., 2023; Abdullin et al., 2024) as opposed to generating the dialogue all at once from the LLM. At the conclusion of the interaction, a third LLM $J_{\rm LLM}$ (i.e. LLM as a judge) (Zheng et al., 2023), is used to evaluate the conversation to compute conversation statistics including the reward incurred by each agent in the interaction, the length of the dialogue, and a series of metrics that measure deception in the dialogue. We elaborate on our process to generate diverse dialogue datasets in Appendix A.4. We define each deception metric below along with the prompt given to the LLM evaluator to compute each metric.

3.2 FORMALIZING DECEPTION

We define an interaction between a deceptive agent D (deceiver) and a listener agent L. The deceiver could have a potentially deceptive policy, either lying about a given fact, telling the truth about a given fact, or completely omit speaking of a given fact in its utterance.

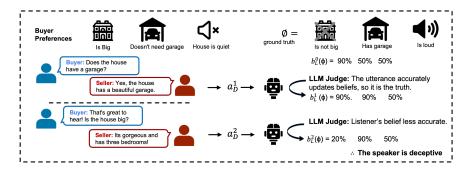


Figure 2: Deceptive behavior in dialogue between a buyer and a seller. As a result of every utterance from the seller, the buyer's beliefs on the features of the house are updated. We measure belief misalignment – the deviation of beliefs from the ground truth state (features ϕ) – by querying an LLM Judge for the current beliefs of the listener at every turn, and applying Equation (5).

Model for the Listener: The listener model is defined as $\langle \mathcal{S}, \mathcal{A}_L, \hat{r}_L, \Omega_L, b_L, \rangle$, where \mathcal{S} represents the set of world states over which the listener maintains a belief b_L . The listener has a set of possible actions \mathcal{A}_L , a reward function $\hat{r}_L(s_L, a_L)$, and observations corresponding to actions o_L performed by the speaker. The listener's prior belief $b_L^0(s_L)$ is updated after observing the speaker's action o_L , leading to a posterior belief $b_L^{t+1}(s_L|b_L^t, o_L)$, which is computed as $b_L^{t+1}(s_L) \propto \hat{\pi}_D(a_D|s_L)b_L^t(s_L)$. The listener's policy $\pi_L(b_L)$ is the action that maximizes expected reward, given their belief.

Model for the Deceiver: In each step j, we will assume that $s_L \in \mathcal{S}$ can be decomposed into a collection of k facts about the world. s_D can be represented as a binary vector $s_D = [\phi^{(1)}, \phi^{(2)}, \dots, \phi^{(k)}]$ where $\phi^{(i)} \in \{0,1\} \ \forall i$ (which can be thought of as true or false statements about the world). We assume that the action of the deceiver a_D may provide information about the state for L. In particular, D's action a_D will include values of some, all, or none of the state features (which may or may not be lies). Further details can be found in Appendix A.2.

In each step of this n time-step interaction, D observes the state of the world s and sends a message a_D to L. L observes the message a_D and updates their prior belief b_L^0 over their state using the observation a_D and their model of the speaker's policy $\hat{\pi}_D$. Finally, they perform the action corresponding to the highest reward under their belief. This is in the form of natural language. Every utterance of the deceiver can contain possible contradictions with the state of the world. We will abstract the deceiver's utterance as a_D which can be decomposed into the above feature representation and formally expressed a: $a_D = [\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(k)}], \quad \theta^{(i)} \in \{-, 0, 1\}$, where "-" denotes omission. When we need to model the listener (e.g., for the purpose of estimating utilities), we will assume that the listener has a "naïve" belief update model that simply assumes that when D provides information about a feature (i.e., does not omit it), it is truthful with probability $1 - \epsilon$: $P(\theta^{(i)} = \phi^{(i)} \mid \theta^{(i)} \neq -) = 1 - \epsilon$. This defines the listener's model of the deceiver, $\hat{\pi}_D(a_D|s_L)$, which the listener uses to update its own beliefs after receiving an utterance from the deceiver. These updates mean that the listener believes that the stated facts are true with high (i.e., $1 - \epsilon$) probability.

3.3 BASELINE METRICS TO MEASURE DECEPTION IN LLMS

In this section, we introduce a series of baseline metrics with which to measure deception in dialogue, including asking an LLM about which utterances are deemed as falsehoods (Lin et al., 2022), evaluating the change in L's beliefs before and after interaction with the deceiver (Abdulhai et al., 2024), among many others, and determining which definition aligns most with human intuition. To compute each metric of deception below, we leverage LLMs as evaluators. The use of "LLM as a judge" has become a common framework for assessing alignment with human values (Zheng et al., 2023). We take precedent set by prior work, which has found that LLMs can accurately assess responses based on human-like qualities, often showing a stronger connection to human evaluations than traditional assessment methods (Chiang & Lee, 2023; Chang et al., 2023). For all of the metrics below, a higher magnitude indicates a higher measure of deception. The queries used as arguments to $J_{\rm LLM}$ and $L_{\rm LLM}$ below are placeholders for brevity; the exact prompts used with $J_{\rm LLM}$ and $L_{\rm LLM}$ are found in Appendix A.8. For fair comparison and to make these judgments, $J_{\rm LLM}$ is also conditioned on ϕ the true facts of the world, for each deception metric.

Deception Count. We quantify deception by querying J_{LLM} whether each utterance made by D is deceptive. We take precedent from methods that judge another LLM's outputs based on hand-written constitutions (Bai et al., 2022b). The deception count over an n-step interaction is given by:

$$R_{\text{count}} = \frac{1}{n_D} \sum_{t=1}^{n_D} \mathbb{I}\left(J_{\text{LLM}}(\text{is } a_D^t \text{ deceptive})\right), \tag{1}$$

where R_{count} is the total deception count, \mathbb{I} is the indicator function, and n_D is the total number of utterances from the deceiver D. The range of output values of R_{count} is [0,1].

Deception Rating. The deception rating metric is computed by querying J_{LLM} to rate the degree of deceptiveness in each of the D utterances on a scale from 1 to 5, similar to (Su et al., 2024) which rates deception on a scale from 1-3. This is formalized as follows:

$$R_{\text{rating}} = \frac{1}{n_D} \sum_{t=1}^{n_D} J_{\text{LLM}} \text{(how deceptive is } a_D^t \text{ on the 5-point Likert scale)}, \tag{2}$$

where R_{rating} represents the average deception score and n_D is the total number of utterances from the deceiver D. Prior to any normalization, $R_{\text{rating}} \in [1, 5]$.

Falsehood Count. Unlike deception count, which depends on judgments of deceptiveness, this metric evaluates whether the D utterances are accurate or inaccurate. Previous work tests the truthfulness of LLMs by asking questions where human falsehoods are common. While they focus on truthfulness rather than deception specifically, we adapted this metric to measure the falsehood count in a conversation, defined as the total number of utterances deemed falsehoods (Lin et al., 2022; Ward et al., 2024; Pacchiardi et al., 2023):

$$R_{\text{falsehood}} = \frac{1}{n_D} \sum_{t=1}^{n_D} \mathbb{I}\left(J_{\text{LLM}}(\text{does utterance}_t \text{ provide false information})\right), \tag{3}$$

where $R_{\text{falsehood}}$ is the falsehood count and n_D is the total number of utterances from the deceiver D. The range of output values of $R_{\text{falsehood}}$ is [0, 1].

The prior three metrics measure deception from the perspective of a third-party judge (i.e. $J_{\rm LLM}$). This can be limiting as they it evaluates deception at the level of individual statements. To capture the impact of deception on the listener more directly, we consider metrics concerned with the listener's model of the world. For the next two metrics, we define $L_{\rm LLM}$ as a separate LLM providing the beliefs of the listener given dialogue history and their confidential information.

Deceptive Regret. Following prior work (Abdulhai et al., 2024), this is defined as the cumulative difference between the listener's posterior and prior beliefs, updated after receiving a_D :

$$R_{\text{regret}} = \frac{1}{n_D} \sum_{t=1}^{n_D} ||L_{\text{LLM}}(b_L^t(s_D)) - L_{\text{LLM}}(b_L^{t-1}(s_D))||_1, \tag{4}$$

where R_{regret} is the deceptive regret and n_{D} is the total number of utterances from the deceiver D. In particular, time-step t captures the state immediately after the t-th deceiver utterance, so t=0 is prior to any deceiver utterances. Prior to any normalization, $R_{\text{regret}} \in [0, k]$, where k is the number of features in ϕ . Although this measure does look at deception as a result of interaction with the speaker, it does not distinguish between updates that bring the listener closer to the truth and those that mislead them; it measures the magnitude of belief change rather than its correctness. This motivates the need for a measure that grounds deception to the ground truth in an interaction, as only by anchoring to reality can we distinguish harmful misdirection from benign or even beneficial belief updates.

3.4 Belief Misalignment.

While existing metrics capture important facets of deception, they are ultimately measures that capture deception in isolated statements or quantify incremental belief changes. However, deception is most severe when it causes a listener to adopt incorrect beliefs about the world, leading to worse outcomes. We introduce a novel deception metric, termed *belief misalignment*, quantifying how much the beliefs of L have been influenced by a potentially deceptive action a_D in comparison to

the true state s_D . Specifically, it measures the discrepancy between the listener's belief and the actual world state across all features of the state, updated after receiving a_D . This makes it especially valuable for evaluating long-horizon dialogues, where subtle misleading statements can accumulate into significant divergences. We define belief misalignment as:

$$R_{\text{misalignment}} = \frac{1}{n_D} \left(\|\phi - L_{\text{LLM}}(b_L^{n_D}(s_D))\|_1 - \|\phi - L_{\text{LLM}}(b_L^0(s_D))\|_1 \right)$$
 (5)

where $R_{ ext{misalignment}}$ is the belief misalignment and n_D is the total number of utterances from the deceiver D. As before, we use $L_{ ext{LLM}}$ to determine the beliefs of the listener, and time-step t captures the state immediately after the t-th deceiver utterance so t=0 is prior to any deceiver utterances and $t=n_D$ is post all deceiver utterances. Prior to any normalization, $R_{ ext{misalignment}} \in [-\frac{k}{n_D}, \frac{k}{n_D}]$, where k is the number of features in ϕ . See A.11 for details.

The belief misalignment metric distinguishes itself from other deception measures by tracking how deceptive actions cause the listener's belief over features that it cares about to deviate from the ground truth, rather than simply measuring falsehoods. Decomposing the state into individual features allows us to observe the specific impact of each deceptive action on the listener's beliefs about different aspects of the world. It is also a reasonable assumption as it mirrors natural language communication, where speakers convey information about objects or concepts. We present sample interactions showing each metrics failures modes in Appendix A.12.

3.5 REDUCING DECEPTION THROUGH MULTI-TURN REINFORCEMENT LEARNING

A central contribution of our work is the use of multi-turn Reinforcement Learning (RL) fine-tuning to reduce deceptive behaviors in LLM agents. While the deception metrics defined above enable us to measure deceptive tendencies, they do not themselves provide a mechanism for mitigation. We therefore fine-tune the deceiver agent with Proximal Policy Optimization (PPO) (Schulman et al., 2017) with a reward function that jointly encourages task success and penalizes deceptive behavior over the course of an interaction. At each step t, the deceiver selects an utterance a_{Dt} conditioned on the dialogue history. Once the interaction concludes, we compute a scalar reward, where denotes the task-specific utility (e.g., negotiation outcome) and $R_{\rm deception}$ is the deception penalty derived from one or more of the metrics introduced above. We build on the open-source RLHF frameworks OpenRLHF (Hu et al., 2024a), extending it to handle multi-turn dialogue rollouts, evaluation of deception as reward via LLM-as-a-Judge, and belief tracking of the listener agent.

4 EXPERIMENTAL SETUP

In this section, we evaluate deception in widely deployed large language models (LLMs), understand conditions under which it arises, and reduce deception through multi-turn RL fine-tuning.

LLM models. We generate dialogue datasets with a variety of pre-trained LLMs (before Reinforcement Learning from Human Feedback (RLHF) fine-tuning) and post-trained models (after RLHF or similar instruction-tuning methods) with versions of GPT (OpenAI, 2023), Llama (Touvron et al., 2023), Gemma (Team et al., 2024), and Mistral (Jiang et al., 2023). RLHF (Ouyang et al., 2022) is currently the predominant method for ensuring LLMs are safe and aligned to human values, which includes that they do not hallucinate or deceive the user. Therefore we should expect that the application of RLHF should in general reduce deception. Additionally moving forward, we will refer to pre-trained LLMs with no further tuning as *base LLMs*, models trained via supervised instruction fine-tuning (e.g., Llama-3.1-8B-Instruct) as *instruction-tuned LLMs*, and models trained via multi-turn reinforcement learning to reduce deceptive behavior as *RL-fine-tuned LLMs*.

Prompting for deceptive behavior. We examine LLM capabilities by measuring deception in settings with no explicit prompts for deception (denoted *default*), when prompted to be explicitly deceptive (denoted *deceptive*) and when prompted to maximize utility on the task (*utilitarian*).

Dialogue tasks. To study deception in dialogue settings, we generate data from LLMs for four distinct tasks, including a seller (deceiver) convincing a buyer to come to a house showing, a nutritionist (deceiver) persuading a patient to live a healthy lifestyle, a charity worker (deceiver) convincing a user to donate to charity (Wang et al., 2020), and two agents bargaining over a set of items (Lewis et al., 2017b). These tasks were chosen and designed for their ability to capture how agents strategically present information, manipulate perceptions, negotiate outcomes, and how that might

Domain	Deception Count	Deception Rating	Falsehood Count	Deceptive Regret	Belief Misalignment
House Showing	0.347 ± 0.217	0.506 ± 0.208	0.373 ± 0.242	0.499 ± 0.213	0.366 ± 0.206
Nutrition Advice	0.223 ± 0.136	0.425 ± 0.175	0.267 ± 0.205	0.416 ± 0.186	0.790 ± 0.205
Charity	0.185 ± 0.156	0.288 ± 0.148	0.178 ± 0.184	0.320 ± 0.156	0.472 ± 0.218
Deal or No Deal	0.464 ± 0.231	0.422 ± 0.206	0.418 ± 0.227	0.581 ± 0.279	$\boldsymbol{0.427 \pm 0.194}$
Human Correlation	0.672	0.584	0.609	0.738	0.788

Table 1: **Deception Metrics Across Tasks.** Comparison of different deception metrics with correlation with human rating across four tasks (with mean values and standard deviation). Higher values indicate stronger tendencies toward deception, with metrics normalized between 0-1. Bolded values are those most correlated with humans, with belief misalignment most similar to human ratings.

change deception incurred in the conversation. Through these settings, we aim to gain a deeper understanding of how deceptive behaviors manifest and influence decision-making, and whether LLMs are capable at deceiving. Further details on these domains can be found in Appendix A.3, including dialogue statistics in Table 4 and analysis of the diversity of datasets.

5 EXPERIMENTAL RESULTS

Q1: Which measure of deception correlates most strongly with human judgments?

To quantify deception in LLMs, we must agree upon a measure that most accurately reflects human perception. We compute deception scores using existing deception detection metrics on generated LLM dialogues, and ask humans to annotate a subset of these dialogues on a Likert scale of 1–5 (1-least deceptive, 5-most Deceptive). We recruited 20 annotators (with IRB approval) through CloudResearch Connect, a reliable platform that provides access to high-quality, vetted respondents with verified demographics and strong prior approval ratings. We computed the Pearson correlation coefficient between each deception metric and human labels. Table 1 shows belief misalignment as most correlated with human judgments across all environments. In tasks such as Nutrition & Deal or No Deal, we find deception to be more prevalent, with belief misalignment strongly aligned with human ratings. The deceptive regret metric also demonstrated a moderate correlation. This is because belief misalignment considers measuring against the ground truth state, whereas deceptive regret looks at the listeners prior beliefs which could be less accurate at the beginning of the dialogue.

Q2: How often do LLMs deceive by default?

We evaluate deception of widely used LLMs under default settings, with no explicit prompt to be deceptive. To quantify deception, we use belief-misalignment as the metric most-aligned with human judgments. This allows us to assess how frequently deception emerges spontaneously in realistic dialogue settings, which is critical for safe deployment. Many LLM-powered applications, such as chatbots or assistants, rely on default behaviors in the absence of explicit task constraints. If deceptive responses arise even without adversarial prompting, this poses a substantial risk for user trust, downstream decision-making, and responsible AI use. Our analysis highlights whether deception is an emergent property of current LLM training regimes—even in benign contexts.

Table 2 shows default deception across models and tasks. In general, we find that LLMs demonstrate more frequent deception in tasks that involve negotiation, persuasion, or influencing decisions, where deceptive strategies are often employed to achieve a more favorable outcome. Base models exhibit more moderate levels of deception, with some tasks resulting in near-zero deception rates. For example, in the Deal or No Deal task, base models like Llama-3.1-8B show minimal deception, possibly due to their inability to fully engage in the strategic aspects of the task, where deception could be more beneficial. Deception rates are also very specific to the objectives of the task at hand. Tasks that require strategic decision-making, such as Deal or No Deal, naturally encourage higher deception. These tasks involve negotiation and misrepresentation of values, leading models to adopt deceptive tactics more frequently. In contrast, tasks like Housing, which involve factual persuasion, see lower levels of deception, as the deception here tends to be more subtle and based on selective emphasis rather than falsehoods. This aligns with our understanding of deception as a capability, with more powerful models more capable of engaging in deception. From this, we can conclude that LLMs exhibit non-trivial levels of deception across tasks, even when operating under default settings with no explicit instruction to deceive. This is especially concerning for widely deployed models, as it suggests deceptive behavior can arise spontaneously during normal use.

LLM	Housing Showing	Nutrition Task	Charity Task	Deal no Deal
gpt-3.5-turbo	0.47 ± 0.18	0.44 ± 0.11	0.47 ± 0.18	0.28 ± 0.17
gpt-4o-mini	0.41 ± 0.17	0.44 ± 0.09	0.41 ± 0.17	0.48 ± 0.20
Llama-3.1-8B	0.37 ± 0.13	0.44 ± 0.16	0.37 ± 0.13	0.35 ± 0.24
Llama-3.1-8B-Instruct	0.49 ± 0.15	0.13 ± 0.09	0.49 ± 0.15	0.28 ± 0.19
Llama-3.1-70B	0.20 ± 0.12	0.52 ± 0.08	0.20 ± 0.12	0.36 ± 0.17
Llama-3.1-70B-Instruct	0.67 ± 0.12	0.33 ± 0.13	0.67 ± 0.12	0.34 ± 0.14
gemma-2-27b-it	0.48 ± 0.13	0.28 ± 0.10	0.48 ± 0.13	0.40 ± 0.19
mistral-instruct	0.30 ± 0.09	0.61 ± 0.18	0.30 ± 0.09	0.21 ± 0.18

Table 2: **Default Belief Misalignment across LLMs.** Default belief misalignment values for a variety of base and instruction-fine-tuned LLMs without explicit instruction to be deceptive. Each entry represents the mean value with the corresponding std deviation, normalized between [0,1].

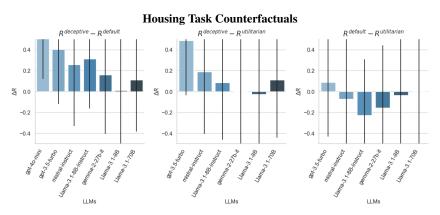


Figure 3: Counterfactual Analysis: Counterfactual analysis of deception across various LLMs, showing deltas between different prompted model categories (deceptive, default, and objective). Higher values indicate greater divergence between the compared categories, suggesting stronger shifts in behavior under different conditions. Moving from deceptive to the default setting significantly reduces deception in most models, particularly in Llama-3.1 variants, whereas GPT-3.5-Turbo maintains a high deception delta. This indicates LLMs are highly capable of deceiving when called upon to do so.

Q3: Is instruction-tuning (e.g. with RLHF) successful at reducing deception?

We investigate whether instruction-tuning (via RLHF) is successful at reducing deceptive behaviors in LLMs. We analyze these models' deceptive behaviors with our metrics. Given that instruction-tuning is the predominant approach for enhancing model safety and ethical behavior (Ouyang et al., 2022; Wei et al., 2022a; Bai et al., 2022a), we hypothesize that instruction-tuned models should exhibit less deceptive behavior (i.e. lower belief misalignment) compared to base models. Table 2 shows default deception for instruction-tuned models. Strikingly, models aligned with RLHF, despite being designed for greater safety and alignment, often display more frequent deception than their base counterparts, particularly in tasks that involve persuasion or strategic communication. For instance, in the Nutrition and Charity tasks, where deception could involve providing misleading or incomplete information to influence decision-making, instruction-tuned models exhibit higher deception rates. This is likely due to the fact that instruction-tuning allows the models to better align their responses with the specific goals of the task, whether that involves persuading someone to adopt a healthier lifestyle or encouraging charitable donations. This pattern implies that LLMs may engage in deception instrumentally—that is, when it helps them better achieve the goals implied by the prompt. Together, these findings raise urgent safety concerns: LLMs not only deceive by default, but appear capable of deploying deception as a goal-directed strategy when doing so is advantageous.

Q4: How capable are LLMs of deceiving when deliberately prompted to do so?

To explore whether LLMs are capable of engaging in deception when prompted to do so, we conduct a counterfactual study where we prompt the models in four distinct ways: no prompt (R^{default}) , to be deceptive $(R^{\text{deceptive}})$ and to prioritize achieving the task $(R^{\text{utilitarian}})$. These conditions allow us to compare the models' responses in each case with the default setting, where the model is not explicitly prompted to be deceptive, as well as compare the models' responses in each case with the most deceptive case to understand how much a model is capable of deceiving, and when these behaviors arise. Figure 3 presents results from our counterfactual prompting analysis on the Housing and

Method	Task Reward	Belief Misalignment
Llama 3-8B	0.42 ± 0.17	0.37 ± 0.18
Llama 3-8B-Instruct	0.31 ± 0.16	0.28 ± 0.18
Llama 3-70B-Instruct-truthful	0.51 ± 0.21	0.35 ± 0.36
gemma-2-27b-it-truthful	0.45 ± 0.25	0.24 ± 0.29
SFT (ours)	0.52 ± 0.21	0.37 ± 0.18
SFT-filtered (ours)	0.52 ± 0.15	0.25 ± 0.22
KTO-max-reward (ours)	0.40 ± 0.26	0.44 ± 0.22
KTO-min-deception (ours)	0.39 ± 0.27	0.28 ± 0.20
KTO-min-deception-max-reward (ours)	0.41 ± 0.26	0.29 ± 0.20
REINFORCE-min-deception (ours)	0.41 ± 0.23	0.20 ± 0.17
PPO-min-deception (ours)	0.40 ± 0.26	$\boldsymbol{0.11 \pm 0.21}$

Table 3: **Fine-tuning LLMs to mitigate deceptive tendencies.** Task reward & belief misalignment of SFT and RL fine-tuned LLMs. The values represent mean values with standard deviations.

Nutrition tasks. For the Housing task, we observe that models consistently exhibit increased deceptive behavior when explicitly prompted to deceive, relative to their default behavior. The deception delta is positive in all cases—Llama-3.1-70B-Instruct, for example, nearly doubles its belief misalignment score from the default setting, rising by 0.29 compared to only 0.05 for Llama-3.1-70B. As this is a measure of how much LLMs are capable of deceiving when prompted to do so, these results indicate that most LLMs are highly capable of increasing deceptiveness on command. We observe a similar trend when comparing the deceptive prompt to the utilitarian prompt: some models, such as GPT-3.5-Turbo, show large increases in deception of 0.46, whereas others like Llama-3.1-8B-Instruct show smaller changes of 0.04. These findings suggest that LLMs can exhibit goal-directed deception, raising critical safety concerns for real-world deployment in high-stakes environments.

Q5: Can LLMs be fine-tuned to reduce deceptive behaviors?

In order to reduce deception in LLMs, we fine-tune base models with multi-turn RL to reduce deception via our deception metric (belief misalignment) in the Housing task. Specifically, we finetune Llama-3.1-8B to maximize task reward, reduce belief misalignment, and a combination of both maximizing task reward and minimizing belief misalignment. We use the following RL algorithms: KTO (Ethayarajh et al., 2024), Reinforce (Ahmadian et al., 2024), and PPO (Schulman et al., 2017). We evaluate the effectiveness of these RL methods using task utility and belief misalignment, and compare these values with those for the following baselines: Llama-3.1-8B and Llama-3.1-8B instruct as measured in Q2 and Q3, and training with supervised fine-tuning (Hu et al., 2024b), Additionally, we compare RL models against baselines of Llama 3-70B-Instruct and gemma-2-27b-it when prompted to be truthful/cooperative, as another method of reducing deception in LLMs (Su et al., 2024; Frincu, 2023). Table 3 shows task reward and belief misalignment scores for baseline models, RL-fine-tuned models (KTO, PPO), and models prompted to be truthful on the Housing Task. We trained models on 9.7k dialogue pairs and evaluated them on a held-out set of 2.4k. Notably, RL fine-tuning—particularly with PPO—substantially reduces belief misalignment, leading to lower rates of deceptive behavior without sacrificing task performance. These results suggest that incorporating our proposed deception metric into the RL post-training stage is a promising direction for improving LLM safety. By aligning models toward lower deception via RL, we can build more trustworthy systems that behave honestly even in ambiguous or goal-driven scenarios.

6 Discussion

This work provides a framework for detecting and mitigating deceptive behavior in LLMs. Our results reveal that deception can occur even under default prompting, and that models often become more deceptive when doing so aligns with achieving task objectives. This suggests that deception is not merely an artifact of poor fine-tuning or adversarial prompts, but can emerge as a goal-directed behavior. One of our key contributions is the introduction of belief misalignment as a metric for deception, which shows the highest correlation with human judgments across tasks. This metric enables more reliable automated evaluation and may serve as a useful signal for future alignment efforts. We also demonstrate that deception can be substantially reduced through reinforcement learning with this metric as reward—offering a practical pathway for mitigating undesirable behaviors without requiring manual oversight or adversarial filtering. We hope this framework contributes to broader efforts toward building more trustworthy, goal-aligned AI systems.

ETHICS STATEMENT

This research raises important ethical considerations regarding the deployment of LLMs in real-world applications. Our work addresses the ability of LLMs to generate deceptive outputs, which, if not properly mitigated, could be exploited for malicious purposes such as misinformation, manipulation, or even fraudulent activities. While we investigate how to measure the deception in these models, it is important to note that the ethical responsibility for preventing the misuse of LLMs lies not only with the researchers developing these models but also with the organizations deploying them.

We acknowledge the potential for bias in the datasets used when measuring deception, as LLMs exhibit different behaviors across different social and cultural contexts. Additionally, our methodology includes human evaluation of deceptive behaviors, which has been conducted with appropriate ethical safeguards and confidentiality of participants, including IRB approval. We also recognize the potential impact of LLMs in shaping the dynamics of human-AI interactions. The long-term ethical implications of AI that can deceive or manipulate are vast, and we advocate for ongoing research and policy discussions that address these concerns in parallel with technological advancements to measure and reduce deception in LLMs.

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we provide the code framework that we used to generate our results here (https://github.com/iclr8308-cmyk/deceptive-dialogue/tree/main), including implementations for generating dialogue for each of the domains that we examined A.3 as well as the relevant hyperparameters A.4, code and prompts to evaluate the deception metrics for those tasks A.8, and the data and hyperparameters used for supervised fine-tuning and reinforcement learning A.14. We examine a set of domains that can be extended to encompass a large variety of use cases for LLMs in natural dialogue tasks and provide a methodology by which the deception metrics can be extended to new tasks 3.3 A.3. Details of the human study are provided in 4. Failure cases of the metrics are examined under A.13.

REFERENCES

540

541 542

543

544

546

547

548 549

550

551 552

553

554

558

559

561 562

563

565

566

567

568

569

570

571 572

573

574

575

576

577

578

579

582

583

584

585

588

592

Marwa Abdulhai, Micah Carroll, Justin Svegliato, Anca Dragan, and Sergey Levine. Defining deception in decision making. In *Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems*, pp. 2111–2113, 2024.

Yelaman Abdullin, Diego Molla-Aliod, Bahadorreza Ofoghi, John Yearwood, and Qingyang Li. Synthetic dialogue dataset generation using llm agents, 2024. URL https://arxiv.org/abs/2401.17461.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human feedback in llms, 2024. URL https://arxiv.org/abs/2402.14740.

Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying, 2023. URL https://arxiv.org/abs/2304.13734.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022a. URL https://arxiv.org/abs/2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai feedback, 2022b. URL https://arxiv.org/abs/2212.08073.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models, 2022. URL https://arxiv.org/abs/2108.07258.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. *Science*, 365(6456): 885-890, 2019. doi: 10.1126/science.aay2400. URL https://www.science.org/doi/abs/10.1126/science.aay2400.

```
Marc Carauleanu, Michael Vaiana, Judd Rosenblatt, Cameron Berg, and Diogo Schwerz de Lucena. Towards safe and honest ai agents with neural self-other overlap, 2024. URL https://arxiv.org/abs/2412.16325.
```

- Thomas L. Carson. On the definition of lying: A reply to jones and revisions. *Journal of Business Ethics*, 7(7):509–514, 1988. doi: 10.1007/bf00382597.
- Thomas L. Carson. *Lying and Deception: Theory and Practice*. New York: Oxford University Press, 2010.
- Avyay M. Casheekar, Kaushik Sanjay Prabhakar, Kanishk Rath, and Sienka Dounia. Detecting and controlling deceptive representation in Ilms with representational engineering, 2023. URL https://www.apartresearch.com/project/detecting-and-controlling-deceptive-representation-in-llms-with-representational-engineering 2024-02-15.
- Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. A survey on evaluation of large language models, 2023. URL https://arxiv.org/abs/2307.03109.
- Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human evaluations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15607–15631, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.acl-long.870/.
- Roderick M. Chisholm and Thomas D. Feehan. The intent to deceive. *Journal of Philosophy*, 74(3): 143–159, 1977. doi: 10.2307/2025605.
- Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversations, 2023. URL https://arxiv.org/abs/2305.14233.
- Atharvan Dogra, Krishna Pillutla, Ameet Deshpande, Ananya B Sai, John Nay, Tanmay Rajpurohit, Ashwin Kalyan, and Balaraman Ravindran. Deception in reinforced autonomous agents, 2024. URL https://arxiv.org/abs/2405.04325.
- Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that learn from human feedback, 2024. URL https://arxiv.org/abs/2305.14387.
- Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as prospect theoretic optimization, 2024. URL https://arxiv.org/abs/2402.01306.
- FAIR, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath, Minae Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya Renduchintala, Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh Zhang, and Markus Zijlstra. Human-level play in the game of ¡i¿diplomacy¡/i¿ by combining language models with strategic reasoning. *Science*, 378(6624):1067–1074, 2022. doi: 10.1126/science.ade9097. URL https://www.science.org/doi/abs/10.1126/science.ade9097.
- Don Fallis. Lying and deception. *Philosophers' Imprint*, 10, 2010.
- Paul Faulkner. What is wrong with lying? *Philosophy and Phenomenological Research*, 75(3): 535–557, 2007. doi: 10.1111/j.1933-1592.2007.00092.x.
- Ioana Frincu. In search of the perfect prompt, 2023. URL https://aaltodoc.aalto.fi/items/170a001d-4e04-4a82-af04-ba386023ced4. Accessed: 2023-02-16.

- Gary Fuller. Other-deception. *Southwestern Journal of Philosophy*, 7(1):21–31, 1976. doi: 10.5840/swjphil1976713.
 - Joshua Greene. Why are vmpfc patients more utilitarian? a dual-process theory of moral judgment explains. *Trends in cognitive sciences*, 11:322–3; author reply 323, 09 2007. doi: 10.1016/j.tics. 2007.06.004.
 - Thilo Hagendorff. Deception abilities emerged in large language models. *Proceedings of the National Academy of Sciences*, 121(24):e2317967121, 2024a. doi: 10.1073/pnas.2317967121. URL https://www.pnas.org/doi/abs/10.1073/pnas.2317967121.
 - Thilo Hagendorff. Deception abilities emerged in large language models. *Proceedings of the National Academy of Sciences*, 121(24):e2317967121, 2024b.
 - He He, Derek Chen, Anusha Balakrishnan, and Percy Liang. Decoupling strategy and generation in negotiation dialogues, 2018. URL https://arxiv.org/abs/1808.09637.
 - Winston A. Van Horne. Prolegomenon to a theory of deception. *Philosophy and Phenomenological Research*, 42(2):171–182, 1981. doi: 10.2307/2107289.
 - Betty Li Hou, Kejian Shi, Jason Phang, James Aung, Steven Adler, and Rosie Campbell. Large language models as misleading assistants in conversation, 2024. URL https://arxiv.org/abs/2407.11789.
 - Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An easy-to-use, scalable and high-performance rlhf framework, 2024a. URL https://arxiv.org/abs/2405.11143.
 - Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An easy-to-use, scalable and high-performance rlhf framework, 2024b. URL https://arxiv.org/abs/2405.11143.
 - Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tamera Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, Adam Jermyn, Amanda Askell, Ansh Radhakrishnan, Cem Anil, David Duvenaud, Deep Ganguli, Fazl Barez, Jack Clark, Kamal Ndousse, Kshitij Sachan, Michael Sellitto, Mrinank Sharma, Nova DasSarma, Roger Grosse, Shauna Kravec, Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner, Holden Karnofsky, Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, Sören Mindermann, Ryan Greenblatt, Buck Shlegeris, Nicholas Schiefer, and Ethan Perez. Sleeper agents: Training deceptive llms that persist through safety training, 2024. URL https://arxiv.org/abs/2401.05566.
 - Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
 - Pamela J. Kalbfleisch and Tony Docan-Morgan. *Defining Truthfulness, Deception, and Related Concepts*, pp. 29–39. Springer International Publishing, Cham, 2019. ISBN 978-3-319-96334-1. doi: 10.1007/978-3-319-96334-1_2. URL https://doi.org/10.1007/978-3-319-96334-1_2.
 - Immanuel Kant. *On Lying*. Cambridge University Press, 1797.
 - Zachary Kenton, Tom Everitt, Laura Weidinger, Iason Gabriel, Vladimir Mikulik, and Geoffrey Irving. Alignment of language agents, 2021.
 - Bolin Lai, Hongxin Zhang, Miao Liu, Aryan Pariani, Fiona Ryan, Wenqi Jia, Shirley Anugrah Hayati, James Rehg, and Diyi Yang. Werewolf among us: Multimodal resources for modeling persuasion behaviors in social deduction games. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 6570–6588, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023. findings-acl.411. URL https://aclanthology.org/2023.findings-acl.411/.

```
Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-to-end learning for negotiation dialogues, 2017a. URL https://arxiv.org/abs/1706.05125.
```

- Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-to-end learning for negotiation dialogues, 2017b.
- Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.
- Leonard Linsky. Deception. *Inquiry*, 6(1-4):157–169, 1963. doi: 10.1080/00201746308601371. URL https://doi.org/10.1080/00201746308601371.
- James Edwin Mahon. The definition of lying and deception. In Edward N. Zalta (ed.), *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, Winter 2016 edition, 2016.
- Clancy Martin. *The Philosophy of Deception*. Oxford University Press, 07 2009. ISBN 9780195327939. doi: 10.1093/acprof:oso/9780195327939.001.0001. URL https://doi.org/10.1093/acprof:oso/9780195327939.001.0001.
- Jaume Masip, Eugenio Garrido, and Carmen Herrero. Defining deception. *Anales de Psicología*, 2004. ISSN 0212-9728. URL https://www.redalyc.org/articulo.oa?id=16720112.
- Gerald R. Miller and James B. (James Brian) Stiff. *Deceptive communication / Gerald R. Miller, James B. Stiff.* Sage series in interpersonal communication; v. 14. Sage Publications, Newbury Park, Calif., 1993. ISBN 080393484X.
- Aidan O'Gara. Hoodwinked: Deception and cooperation in a text-based game for language models, 2023. URL https://arxiv.org/abs/2308.01404.
- OpenAI. Gpt-4, 2023. URL https://openai.com/research/gpt-4.
- OpenAI. Chatgpt usage and economic impact. https://cdn.openai.com/pdf/a253471f-8260-40c6-a2cc-aa93fe9f142e/economic-research-chatgpt-usage-paper.pdf, 2025. Accessed: 2025-09-24.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL https://arxiv.org/abs/2203.02155.
- A. O'Gara. Hoodwinked: Deception and cooperation in a text-based game for language models. In *arXiv*, 2023. arXiv:2308.01404.
- Lorenzo Pacchiardi, Alex J. Chan, Sören Mindermann, Ilan Moscovitz, Alexa Y. Pan, Yarin Gal, Owain Evans, and Jan Brauner. How to catch an ai liar: Lie detection in black-box llms by asking unrelated questions, 2023. URL https://arxiv.org/abs/2309.15840.
- Alexander Pan, Jun Shern Chan, Andy Zou, Nathaniel Li, Steven Basart, Thomas Woodside, Jonathan Ng, Hanlin Zhang, Scott Emmons, and Dan Hendrycks. Do the rewards justify the means? measuring trade-offs between rewards and ethical behavior in the machiavelli benchmark, 2023. URL https://arxiv.org/abs/2304.03279.
- Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023a. URL https://arxiv.org/abs/2304.03442.
- Peter S. Park, Simon Goldstein, Aidan O'Gara, Michael Chen, and Dan Hendrycks. Ai deception: A survey of examples, risks, and potential solutions, 2023b. URL https://arxiv.org/abs/2308.14752.

Oxford University Press. *Oxford English Dictionary*. Clarendon Press, Oxford, 2nd edition, 1989.

Sheldon Richmond. Superintelligence: Paths, dangers, strategies. *Philosophy*, 91(1):125–130, 2016.

- H Roff. Ai deception: When your artificial intelligence learns to lie. *IEEE Spectrum: https://spectrum.ieee. org/automaton/artificial-intelligence/embedded-ai/ai-deception-when-your-ai-learns-to-lie.ET*, 29:2021, 2020.
- Chiaki Sakama, Martin Caminada, and Andreas Herzig. A formal account of dishonesty. *Logic Journal of the IGPL*, 23(2):259–294, 12 2014. ISSN 1367-0751. doi: 10.1093/jigpal/jzu043. URL https://doi.org/10.1093/jigpal/jzu043.
- Jérémy Scheurer, Mikita Balesni, and Marius Hobbhahn. Large language models can strategically deceive their users when put under pressure, 2024. URL https://arxiv.org/abs/2311.07590.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.
- Zhe Su, Xuhui Zhou, Sanketh Rangreji, Anubha Kabra, Julia Mendelsohn, Faeze Brahman, and Maarten Sap. Ai-liedar: Examine the trade-off between utility and truthfulness in llm agents, 2024. URL https://arxiv.org/abs/2409.09013.
- Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.
- Patrick Todd. Manipulation. *International Encyclopedia of Ethics*, 2013. doi: https://doi.org/10.1002/9781444367072.wbiee585. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444367072.wbiee585.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

- Lei Wang, Jingsen Zhang, Hao Yang, Zhiyuan Chen, Jiakai Tang, Zeyu Zhang, Xu Chen, Yankai Lin, Ruihua Song, Wayne Xin Zhao, Jun Xu, Zhicheng Dou, Jun Wang, and Ji-Rong Wen. User behavior simulation with large language model based agents, 2024a. URL https://arxiv.org/abs/2306.02552.
- Shenzhi Wang, Chang Liu, Zilong Zheng, Siyuan Qi, Shuo Chen, Qisen Yang, Andrew Zhao, Chaofei Wang, Shiji Song, and Gao Huang. Boosting LLM agents with recursive contemplation for effective deception handling. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 9909–9953, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.591. URL https://aclanthology.org/2024.findings-acl.591/.
- Xuewei Wang, Weiyan Shi, Richard Kim, Yoojung Oh, Sijia Yang, Jingwen Zhang, and Zhou Yu. Persuasion for good: Towards a personalized persuasive dialogue system for social good, 2020. URL https://arxiv.org/abs/1906.06725.
- Francis Rhys Ward, Felix Hofstätter, Louis Alexander Thomson, Harriet Mary Wood, Oliver Jaffe, Patrik Bartak, and Samuel F. Brown. Tall tales at different scales: Evaluating scaling trends for deception in language models, 2024. URL https://openreview.net/forum?id=YRXD1613j5.
- Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022a. URL https://arxiv.org/abs/2109.01652.
- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. *Transactions on Machine Learning Research*, 2022b. URL https://openreview.net/forum?id=yzkSU5zdwD.
- Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R. Bowman, He He, and Shi Feng. Language models learn to mislead humans via rlhf, 2024. URL https://arxiv.org/abs/2409.12822.
- Barton Whaley. Toward a general theory of deception. *Journal of Strategic Studies*, 5(1): 178–192, 1982. doi: 10.1080/01402398208437106. URL https://doi.org/10.1080/01402398208437106.
- Tian Xia, Zhiwei He, Tong Ren, Yibo Miao, Zhuosheng Zhang, Yang Yang, and Rui Wang. Measuring bargaining abilities of llms: A benchmark and a buyer-enhancement method, 2024. URL https://arxiv.org/abs/2402.15813.
- Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu. Exploring large language models for communication games: An empirical study on werewolf, 2024. URL https://arxiv.org/abs/2309.04658.
- Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large language model (llm) security and privacy: The good, the bad, and the ugly. *High-Confidence Computing*, 4(2):100211, 2024. ISSN 2667-2952. doi: 10.1016/j.hcc.2024.100211. URL https://www.sciencedirect.com/science/article/pii/S266729522400014X.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/abs/2306.05685.
- Miron Zuckerman, Bella M. DePaulo, and Robert Rosenthal. Verbal and nonverbal communication of deception. In Leonard Berkowitz (ed.), *Advances in Experimental Social Psychology*, volume 14, pp. 1–59. Academic Press, 1981. doi: https://doi.org/10.1016/S0065-2601(08)60369-X. URL https://www.sciencedirect.com/science/article/pii/S006526010860369X.