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ABSTRACT

The variational autoencoder (VAE) typically employs a standard normal prior
as a regularizer for the probabilistic latent encoder. However, the Gaussian tail
often decays too quickly to effectively accommodate the encoded points, failing
to preserve crucial structures hidden in the data. In this paper, we explore the
use of heavy-tailed models to combat over-regularization. Drawing upon insights
from information geometry, we propose t3VAE, a modified VAE framework that
incorporates Student’s t-distributions for the prior, encoder, and decoder. This
results in a joint model distribution of a power form which we argue can better fit
real-world datasets. We derive a new objective by reformulating the evidence lower
bound as joint optimization of KL divergence between two statistical manifolds and
replacing with γ-power divergence, a natural alternative for power families. t3VAE
demonstrates superior generation of low-density regions when trained on heavy-
tailed synthetic data. Furthermore, we show that t3VAE significantly outperforms
other models on CelebA and imbalanced CIFAR-100 datasets.

1 INTRODUCTION

The variational autoencoder (VAE, Kingma & Welling, 2013) is a popular probabilistic generative
model for learning compact latent data representations. The VAE consists of two conditional models:
an encoder which models the posterior distribution of the latent variable z given an observation x,
and a decoder which infers the observation from its latent representation, which are jointly trained by
optimizing the evidence lower bound (ELBO). The VAE framework a priori does not require the
prior, encoder or decoder to be a particular probability distribution; the usual choice of Gaussian is
mainly due to feasibility of the reparametrization trick and closed-form computation of divergence.

However, real-world data frequently exhibits outlier-heavy or heavy-tailed behavior which is better
captured by models of similar nature. Recently, Floto et al. (2023) showed that the Gaussian VAE
encodes many points in low-density regions of the prior; the distribution is too tight to effectively
fit complex latent representations. We argue that distributing more mass to the tails allows encoded
points to spread out easily, leading us to adopt a Student’s t-distributed prior. We also incorporate a
t-distributed decoder which amplifies variability of data generated from low-density regions. From
a Bayesian perspective, this is equivalent to incorporating a latent precision affecting both x, z.
Together with the prior, this results in a joint model pθ,ν(x, z) of a power form, generalizing the
exponential form of the original VAE analogously to how the t-distribution generalizes the Gaussian.

Changing the distributions usually necessitates numerical integration to estimate the ELBO. We
provide a novel alternative based on recent theoretical insights from information geometry. Han et al.
(2020) showed that the ELBO can be reformulated as minimization of KL divergence between two
statistical manifolds. Separately, Eguchi (2021) has developed a theory of γ-power divergence that
parallels KL divergence. In this new geometry, power families play the role of exponential families,
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providing a natural setting for joint optimization of heavy-tailed models. By minimizing γ-power
instead of KL divergence, we construct a general-purpose framework implementing t-distributions
for the prior, encoder and decoder and a new objective called γ-loss, which we call the t3VAE.

t3VAE requires a single hyperparameter ν which is coupled to the degrees of freedom of the t-
distributions and controls as a balance between reconstruction and regularization. In particular,
t3VAE encompasses the Gaussian VAE and ordinary autoencoder as the limiting cases ν → ∞
and ν → 2, respectively. The γ-loss has an approximate closed form analogous to the ELBO
and can be optimized via a t-reparametrization trick. We empirically demonstrate that t3VAE can
successfully approximate low-density regions of heavy-tailed datasets. Furthermore, t3VAE is able to
learn and generate high-dimensional images in richer detail compared to various alternative VAEs.
Finally, we extend our model to a hierarchical architecture, the t3HVAE, which is able to reconstruct
high-resolution images with more sophistication.

1.1 RELATED WORKS

Many authors point out the standard normal prior can induce over-regularization, losing valuable
semantics hidden in the data. Alternative priors based on Gaussian mixtures (Tomczak & Welling,
2018; Dilokthanakul et al., 2016), the Dirichlet distribution (Joo et al., 2020), the von Mises-Fisher
distribution (Davidson et al., 2018), normalizing flows (Rezende & Mohamed, 2015) or stochastic
processes (Goyal et al., 2017; Nalisnick & Smyth, 2017) have been proposed to mitigate this influence.

Another line of research has focused on modifying the ELBO using different divergences (Li &
Turner, 2016; Deasy et al., 2021) or weights (Higgins et al., 2017). Instead of only changing the KL
regularizer, we take advantage of the joint KL divergence formulation for the first time. The γ-power
and similar divergences have been studied before in the robust statistics literature. Some examples are
density power divergence (Basu et al., 1998), logarithmic γ-divergence (Fujisawa & Eguchi, 2008),
and robust variational inference (Futami et al., 2018).

Some previous works have studied VAEs incorporating the t-distribution, namely the Student-t
VAE with a t-decoder (Takahashi et al., 2018), the VAE-st with a t-prior and t-encoder (Abiri &
Ohlsson, 2020), and the ‘disentangled’ or DE-VAE with a product of t-priors (Mathieu et al., 2019).
Unlike t3VAE, none of these stray from the ELBO framework, and the latter two require numerical
integration to compute the KL regularizer. We also point out that these models all use a product
of univariate t-distributions while t3VAE uses the multivariate t-distribution. We implement and
compare with these models in our experiments.

Finally, heavy-tailed distributions have also been used as base densities in the normalizing flow
literature (Alexanderson & Henter, 2020; Jaini et al., 2020; Laszkiewicz et al., 2022; Amiri et al.,
2022), where it has been argued that t-distributions lead to improved robustness and generalization.
We take a step further by enforcing a power form on the joint model, which is key to t3VAE’s success.

2 THEORETICAL BACKGROUND

In this section, we summarize key aspects of the motivating theories of variational inference and
information geometry. Details and proofs are deferred to Appendix A.

2.1 VAE AS JOINT MINIMIZATION

Formally, a VAE models the distribution pdata(x) of the observed variable x ∈ Rn by jointly learning
a stochastic latent variable z ∈ Rm. Generation is performed by sampling z from the prior pZ(z),
then sampling x according to a probabilistic decoder pθ(x|z) parametrized by θ ∈ Θ. The observed
likelihood pθ(x) =

∫
pθ(x|z)pZ(z)dz is intractable, so we instead aim to approximate the posterior

pθ(z|x) with a parametrized encoder qφ(z|x) by minimizing their KL divergence. This leads to
maximizing the evidence lower bound (ELBO) of the log-likelihood, defined as

L(x; θ, φ) : = log pθ(x)−DKL(qφ(z|x) ‖ pθ(z|x)) (1)
= Ez∼qφ(·|x) [log pθ(x|z)]−DKL(qφ(z|x) ‖ pZ(z)). (2)

Since −Ez∼qφ(·|x) [log pθ(x|z)] is the cross-entropy reconstruction loss of the original data, the
ELBO can be understood as adding a KL regularization term, forcing qφ(z|x) close to the prior
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in order to ensure that the latent state z encodes only useful information. In practice, the prior is
typically standard normal and the encoder and decoder distributions are parametrized Gaussians,

pZ(z) ∼ Nm(0, I), qφ(z|x) ∼ Nm(µφ(x),Σφ(x)), pθ(x|z) ∼ Nn(µθ(z), σ
2I) (3)

in which case the reconstruction loss is equal to the mean squared error (MSE) between x and the
decoded mean up to a constant,

Ez∼qφ(·|x) [log pθ(x|z)] = Ez∼qφ(·|x)

[
− 1

2σ2 ‖x− µθ(z)‖2
]
+ const. (4)

The encoder covariance is usually taken as (but not assumed to be) diagonal, Σφ(x) = diag σ2
φ(x).

Han et al. (2020) point out that the VAE can be reinterpreted as a joint minimization process between
two statistical manifolds. Let P = {pθ(x, z) = pθ(x|z)pZ(z) : θ ∈ Θ} be the model distribution
manifold, and Q := {qφ(x, z) = pdata(x)qφ(z|x) : φ ∈ Φ} the data distribution manifold, both
finite-dimensional submanifolds of the space of joint distributions. The divergence between points on
P,Q may be recast (Appendix A.1) as

DKL(qφ(x, z) ‖ pθ(x, z)) = −Ex∼pdata
[L(x; θ, φ)]−H(pdata), (5)

where H(pdata) denotes the differential entropy of the data distribution. Thus, maximizing the ELBO
is equivalent to finding the joint minimizer

(pθ∗ , qφ∗) = argmin
p∈P, q∈Q

DKL(q ‖ p). (6)

2.2 INFORMATION GEOMETRY AND γ-POWER DIVERGENCE

Any divergence D on a statistical manifold M of probability distributions automatically induces a
Riemannian metric g and two affine connections Γ,Γ∗ on M dually coupled with respect to g (Amari,
2016, Chapter 6). For KL divergence, g is the Fisher information metric and the Γ and Γ∗-autoparallel
curves connecting two points p, q are the m-(mixture) geodesic pt(x) = (1 − t)p(x) + tq(x) and
the e-(exponential) geodesic pt(x) ∝ exp((1− t) log p(x) + t log q(x)), respectively. In particular,
the Γ∗-flat submanifolds consist of the exponential families. The problem (6) may then be solved by
applying the information geometric em-algorithm (Csiszár, 1984; Han et al., 2020).

Paralleling the KL case, Eguchi (2021) defines the γ-power entropy and cross-entropy for probability
distributions q, p with power γ as

Hγ(p) := −‖p‖1+γ = −
(∫

p(x)1+γdx

) 1
1+γ

, Cγ(q, p) := −
∫

q(x)

(
p(x)

‖p‖1+γ

)γ

dx (7)

and the γ-power divergence as Dγ(q ‖ p) = Cγ(q, p) − Hγ(q). In our paper, we introduce an
additional factor of 1/γ in order to extend to the case −1 < γ < 0,1

Dγ(q ‖ p) := γ−1Cγ(q, p)− γ−1Hγ(q). (8)

We show that Dγ is indeed a divergence and derive its induced metric in Appendix A.2. Computing
the dual connections yields that the totally Γ∗-geodesic (or γ-flat) submanifolds consist of power
families of the form

Sγ = {pθ(x) ∝ (1 + γθ>s(x))
1
γ : θ ∈ Θ}. (9)

In particular, the family of d-variate Student’s t-distributions with variable mean µ, scale matrix Σ
and fixed degrees of freedom ν

tp(x|µ,Σ, ν) = Cν,d |Σ|−
1
2

(
1 +

1

ν
(x− µ)>Σ−1(x− µ)

)− ν+d
2

, Cν,d =
Γ(ν+d

2 )

Γ(ν2 )(νπ)
d
2

(10)

is γ-flat when γ = − 2
ν+d , which we assume in the remainder of this Section. Furthermore, the

γ-power divergence from qν ∼ td(µ0,Σ0, ν) to pν ∼ td(µ1,Σ1, ν) is finite when ν > 2 and can be

1Eguchi (2021) also points out that the t-distribution naturally emerges as the maximal entropy distribution
when γ = − 2

ν+1
, see Proposition 2. However, his original definition of γ-power divergence is erroneously

non-negative only for γ > 0, necessitating our modification.
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expressed in closed-form (Proposition 3) as

Dγ(qν ‖ pν) = − 1
γC

γ
1+γ

ν,d

(
1 + d

ν−2

)− γ
1+γ

[
− |Σ0|−

γ
2(1+γ)

(
1 + d

ν−2

)
+ |Σ1|−

γ
2(1+γ)

(
1 + 1

ν−2 tr
(
Σ−1

1 Σ0

)
+ 1

ν (µ0 − µ1)
>Σ−1

1 (µ0 − µ1)
)]

.
(11)

KL divergence may be retrieved from γ-power divergence as limγ→0 Dγ(q ‖ p) = DKL(q ‖ p),
see Proposition 4. Moreover, Equation (11) converges to the KL divergence between the limiting
Gaussian distributions q∞ ∼ Nd(µ0,Σ0) and p∞ ∼ Nd(µ1,Σ1) as ν → ∞.

3 THE t3-VARIATIONAL AUTOENCODER

3.1 STRUCTURE OF THE t3VAE

Throughout this section, we present definitions and theoretical properties of our t3VAE model and
γ-loss function. Full derivations are provided in Appendix B. When the prior, encoder and decoder
are normally distributed as in Equation (3), the joint model distribution pθ(x, z) ∈ P takes the form

pθ(x, z) ∝ σ−n exp

[
−1

2

(
‖z‖2 + 1

σ2
‖x− µθ(z)‖2

)]
. (12)

Since the tail is exponentially bounded, its capacity to approximate the data distribution manifold
corresponding to real-world data is limited. To mitigate this problem, we propose a heavy-tailed
model pθ,ν(x, z) of a power form, parametrized by the degrees of freedom ν > 2,

pθ,ν(x, z) ∝ σ−n

[
1 +

1

ν

(
‖z‖2 + 1

σ2
‖x− µθ(z)‖2

)]− ν+m+n
2

, (13)

which is obtained from the prior and decoder distributions

pZ,ν(z) = tm (z|0, I, ν) , (14)

pθ,ν(x|z) = tn

(
x
∣∣∣µθ(z),

1+ν−1‖z‖2

1+ν−1m σ2I, ν +m
)
. (15)

Since the true posterior z|x is t-distributed with degrees of freedom ν+n when the decoder is shallow
(discussed in Appendix B.2), we are also motivated to incorporate a t-distributed encoder

qφ,ν(z|x) = tm
(
z
∣∣µφ(x), (1 + ν−1n)−1Σφ(x), ν + n

)
. (16)

Hence, the t3VAE model and data distribution manifolds are Pν = {pθ,ν(x, z) = pθ,ν(x|z)pZ,ν(z) :
θ ∈ Θ} and Qν = {qφ,ν(x, z) = pdata(x)qφ,ν(z|x) : φ ∈ Φ}. This generalizes the Gaussian VAE
in the sense that pθ,ν(x, z) and qφ,ν(·|x) uniformly converge to pθ(x, z) and qφ(·|x) as ν → ∞.

3.2 γ-POWER DIVERGENCE LOSS

From the geometric relationship of γ-power divergence and power families and the model equation
(13), we are motivated to replace the KL objective in the joint minimization problem (6) with γ-power
divergence for t3VAE,

(pθ∗,ν , qφ∗,ν) = argmin
p∈Pν , q∈Qν

Dγ(q ‖ p) (17)

where γ is coupled to ν as γ = − 2
ν+n+m . The γ-power divergence from qφ,ν ∈ Qν to pθ,ν ∈ Pν can

be computed in closed-form after an approximation of order γ2 (Proposition 5). After rearranging
constants, we obtain the γ-loss objective which is amenable to Monte Carlo estimation,

Lγ(θ, φ) =
1

2
Ex∼pdata

[
1

σ2
Ez∼qφ,ν(·|x) ‖x− µθ(z)‖2

+ ‖µφ(x)‖2 +
ν

ν + n− 2
trΣφ(x)−

νC1

C2
|Σφ(x)|−

γ
2(1+γ)

] (18)

for constants C1 =
(

ν+m+n−2
ν+n−2

(
1 + n

ν

) γm
2 Cγ

ν+n,m

) 1
1+γ

and C2 =
(

ν+m+n−2
ν−2 σnC−1

ν,m+n

)− γ
1+γ

.
See Appendix B.3 for proofs and analysis of error.
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Figure 1: (a) Dependency of regularization on Σφ(x) when m = n = 1, σ = 1 (left); (b) graph of the
alternative prior scale τ against ν (middle), (c) graph of the regularizer coefficient α against ν (right).

The γ-loss does not lower bound the data likelihood; its precise role will be made clear shortly. We
emphasize that our framework is to view the ELBO not as a bound of likelihood (which leads to
modifying the KL regularizer), but as a divergence between joint distributions (leads to modifying
the entire divergence). This change is further justified in Fujisawa & Eguchi (2008) which shows
that γ-type divergence minimizers are asymptotically efficient M-estimators, lending support to our
approach as a solid alternative to maximum likelihood methods for statistical inference.

3.3 ν CONTROLS REGULARIZATION STRENGTH

We now shine light on the meaning of the t3VAE hyperparameter ν. Analogously to the ELBO, the
γ-loss (18) consists of an MSE reconstruction error and additional terms which act as a regularizer.
This can be made precise: in fact, the remaining terms are equivalent (up to constants) to the γ-power
divergence from the posterior qφ,ν(z|x) to the alternative prior

p?ν(z) = tm
(
z|0, τ2I, ν + n

)
; τ2 = 1

1+ν−1n

(
σ−nCν,n(1 +

n
ν−2 )

−1
) 2

ν+n−2

, (19)

derived in Appendix B.4. Equation (18) can then be rewritten as

Lγ(θ, φ) = Ex∼pdata

[
1

2σ2Ez∼qφ,ν(·|x) ‖x− µθ(z)‖2 + αDγ(qφ,ν ‖ p?ν)
]
+ const. (20)

Hence, γ-loss can be interpreted similarly as a balance between reconstruction and regularization,
and ν controls both the target scale τ2 and the regularizer coefficient α = − γν

2C2
.

Figure 1(a) plots the regularizer as a function of Σφ(x) for a range of ν when m = n = 1. The KL
graph verifies that Σφ(x) is forced towards τ2 = 1 in the Gaussian case, and this effect is particularly
strong when Σφ(x) < τ2. For smaller degrees of freedom, τ becomes less than 1 and the forcing
effect for small Σφ(x) decreases as well, allowing the encoded distributions to be more point-like.
The overall weakening of regularization is consistent with our motivations for adopting a heavy-tailed
prior. This also separates t3VAE from models which simply assign a weight to the KL regularizer
such as β-VAE (Higgins et al., 2017), where the target τ2 remains constant.

Figure 1(b),(c) further show the dependency of τ, α against ν for n ∈ {1, 4, 16, 64}. As ν → ∞,
t3VAE converges to the Gaussian VAE. As ν → 2, in theory both τ, α → 0 so that regularization
vanishes and t3VAE regresses to a raw autoencoder. However, this does not occur in practice in high
dimensions as the model is much less sensitive to ν near 2 due to the slow convergence rate. In low
dimensions, this regime does come into play and t3VAE performs significantly worse if ν is very
small. We therefore suggest selecting ν − 2 to be roughly logarithmically spaced to observe varying
levels of regularization strength, and only a few values are needed for higher dimensional datasets.

3.4 t3HVAE: THE BAYESIAN HIERARCHY

The principle of t3VAE naturally extends to hierarchical VAEs (HVAEs), which have recently shown
great success in generating high-quality images and learning structured features (Vahdat & Kautz,
2020; Child, 2021; Havtorn et al., 2021). In Appendix B.1, we prove t3VAE may be viewed as a
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Algorithm 1: Overview of t3VAE

Require data x(1), · · · , x(K), hyperparameter ν
compute γ, τ, C1, C2

for i ∈ {1, . . . ,K} do
retrieve µφ(x

(i)),Σφ(x
(i))

sample z(i) ∼ qφ,ν(z|x(i)) . (16)
retrieve µθ(z

(i))

sample x
(i)
recon ∼ pθ,ν(x|z(i)) . (15)

if TRAINING PHASE then
Take gradient step with ∇φ,θLγ(φ, θ)
using t-reparametrization trick . (24)

if GENERATION PHASE then
sample zgen ∼ p?ν(z) . (19)
retrieve µθ(zgen)
sample xgen ∼ pθ,ν(x|zgen) . (15)

Figure 2: Log-histograms of samples generated from t3VAE (ν = 9, 12, 15, 18, 21), Gaussian VAE,
β-VAE (β = 0.1), Student-t VAE, DE-VAE and VAE-st. Solid lines illustrate the true density pheavy.

Bayesian model by introducing a latent precision λ affecting both x and z2:

λ ∼ χ2(λ|ν), z|λ ∼ Nm(z|0, νλ−1I), x|z, λ ∼ Nn(x|µθ(z), νλ
−1σ2I). (21)

It is then straightforward to add any number of latent layers zi|z<i, λ ∼ Nmi
(zi|µθ(z<i), νλ

−1σ2
i I)

to obtain a heavy-tailed hierarchical prior (z1, · · · , zL). In Appendix B.5, we develop a two-level
hierarchical t3VAE or t3HVAE, where the priors z1 and z2|z1, decoder x|(z1, z2) and encoders
z1|x and z2|(x, z1) are all t-distributed. We also rederive the γ-loss from the information geometric
formulation (17), showcasing the applicability of our approach.

4 EXPERIMENTS

In this section, we explore the empirical advantages that t3VAE offers over the Gaussian VAE and
other alternative models by analyzing various aspects of performance on synthetic and real datasets.
A summary of our framework is provided in Algorithm 1 to assist with implementation. Experimental
details including the reparametrization trick for t3VAE, network architectures and further results are
documented in Appendix C.

4.1 LEARNING HEAVY-TAILED BIMODAL DISTRIBUTIONS

Univariate dataset. We begin by analyzing generative performance on a univariate heavy-tailed
dataset. We compare t3VAE with ν ∈ {9, 12, 15, 18, 21}, Gaussian VAE and β-VAE, as well as other
t-based models: Student-t VAE (Takahashi et al., 2018), DE-VAE (Mathieu et al., 2019) and VAE-st
(Abiri & Ohlsson, 2020). Each model is trained on 200K samples from the bimodal density

pheavy(x) = 0.6× t1(x| − 2, 12, 5) + 0.4× t1(x|2, 12, 5). (22)

We then generate 500K samples from each of the trained models and compare to pheavy, illustrated
in Figure 2. We plot log-scale histograms in order to capture behavior in low-density regions. The
Gaussian and β-VAE completely fail to produce reliable tail samples, in particular generating none
beyond the range of ±10. In contrast, t-based models (with the exception of VAE-st) are capable of
learning a much wider range of tail densities, establishing the efficacy of heavy-tailed models. For

2The factor 1+ν−1‖z‖2
1+ν−1m

in the t-decoder (15) may hence be understood as incorporating information gained
on the latent precision when z is observed. For tail region values encoded with large magnitude, one infers a
smaller precision and thus increased variance for the output.
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Table 1: p-values for the MMD test for (a) univariate and (b) bivariate synthetic heavy-tailed data.
Rejected values are shown in red. Hyperparameters are tuned separately for each model and the best
versions are reported; see Tables C1 and C2 for the full data.

Model Full Left tail Right tail Model Full Left tail Right tail

t3VAE (ν = 18) 0.322 0.377 0.693 Student t-VAE 0.587 0.291 0.114
VAE 0.514 0.036 0.003 DE-VAE (ν = 9) 0.943 0.424 0.814
β-VAE (β = 0.1) 0.614 0.011 < 0.001 VAE-st (ν = 12) < 0.001 0.953 0.643

(a) MMD test p-values for univariate data.

Model Full Left tail Right tail Model Full Left tail Right tail

t3VAE (ν = 30) 0.276 0.214 0.213 Student t-VAE 0.530 < 0.001 < 0.001
VAE 0.116 0.004 < 0.001 DE-VAE (ν = 3) 0.624 0.002 0.057
β-VAE (β = 0.5) 0.251 0.011 < 0.001 VAE-st (ν = 3) 0.485 < 0.001 < 0.001

(b) MMD test p-values for bivariate data.

t3VAE, we observe the best performance for ν ≈ 20; smaller ν leads to tail overestimation, while
further increasing ν loses mass and ultimately converges to the Gaussian case as ν → ∞.

For a quantitative comparison, we apply the maximum mean discrepancy (MMD) test (Gretton et al.,
2012) to evaluate whether the generated distributions are distinguishable from the original. As the
test is insensitive to tail behavior, we also truncate the data by removing all points with absolute
value less than 6 and apply the MMD test to the resulting tails. Table 1(a) shows p-values for the full
dataset, left (x < −6) and right tails (x > 6). Testing with the full dataset fails to reject most models;
restricted to low-density regions, however, MMD testing completely rejects the Gaussian VAE and
tuned β-VAE. In contrast, our model output is indistinguishable from pheavy for moderate values of ν.

Bivariate dataset. To distinguish t3VAE from other t-based models, we further design a bivariate
heavy-tailed dataset. We generate 200K samples xi from pheavy(x) = 0.7× t1(x| − 2, 22, 5)+0.3×
t1(x| 2, 22, 5) and take yi = xi+2 sin

(
π
4xi

)
with noise distributed as t2((0, 0)>, I2, 6). We then run

the MMD test for the full data and the left (x2 + y2 > 102, x < 0) and right (x2 + y2 > 102, x > 0)
tail regions. The results are presented in Table 1(b). All models approximate the true distribution well
in high-density regions; however, for low-density generation, the null hypothesis is rejected in every
case except for t3VAE, demonstrating the utility of implementing the multivariate t-distribution.

4.2 LEARNING HIGH-DIMENSIONAL IMAGES

We now showcase the effectiveness of our model on high-dimensional data via both reconstruction
and generation tasks in CelebA (Liu et al., 2015; 2018). The Fréchet inception distance (FID) score
(Heusel et al., 2017) is employed to evaluate image quality. In order to comprehensively establish
superiority, we also compare against a wide range of recent alternative VAE models.

A natural question to ask is whether heavy-tailedness is indeed the factor contributing to effective
latent encoding. We address these concerns by comparing with simpler alternatives: a Gaussian prior
with increased variance Nm(0, κ2I) for κ > 1, and β-VAE with regularizer weighting β < 1. We
also include Student-t VAE and DE-VAE as an ablation study of t-based model components. In
addition, we implement two strong models which address latent structural collapse from different
perspectives. The Tilted VAE (Floto et al., 2023), whose prior is designed to contain more mass in
high-density rather than low-density regions; and FactorVAE (Kim & Mnih, 2018), to assess the
effect of disentanglement. Hyperparameters of all models are tuned separately for each experiment.

CelebA reconstruction. We evaluate the quality of reconstructed 64× 64 images in Table 2(a),
where t3VAE consistently achieves the lowest FID out of all models. While Tilted VAE and β-VAE
also show good performance, they still cannot match t3VAE, in particular for rarer class labels.
These images exist in low-density regions of the data distribution; therefore, we hypothesize that the
heavy-tailedness of t3VAE makes it better suited in particular to learning rare features. We note that
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Table 2: Reconstruction FID scores of CelebA and CIFAR100-LT. In CelebA, both overall scores and
selected classes are shown. Bald, Mustache (Mst), and Gray hair (Gray) are rare classes (less than 5%
of the total), while No beard (No Bd) is common (over 50%). In CIFAR100-LT, FID is measured
varying imbalance factor ρ. Complete results of tuning each model are included in Appendix C.3.

(a) CelebA

Framework All Bald Mst Gray No Bd

t3VAE (ν = 10) 39.4 66.5 61.5 67.2 40.1
VAE 57.9 85.8 79.7 91.0 58.4
VAE (κ = 1.5) 73.2 105.3 96.4 114.5 73.8
β-VAE (β = 0.05) 40.4 69.3 62.7 71.1 40.9
Student-t VAE 78.4 112.0 104.2 118.7 78.6
DE-VAE (ν = 5) 58.9 89.6 84.3 94.9 59.1
Tilted VAE (τ = 50) 42.6 73.0 65.4 73.7 42.9
FactorVAE (γtc = 5) 59.8 91.7 85.7 95.2 60.8

(b) CIFAR100-LT

Framework ρ = 1 10 50 100

t3VAE (ν = 10) 97.5 102.8 108.3 128.7
VAE 256.1 267.2 277.4 287.3
VAE (κ = 1.5) 274.2 290.5 296.7 297.7
β-VAE (β = 0.1) 114.1 130.4 138.5 160.6
Student-t VAE 259.5 314.1 323.7 333.4
DE-VAE (ν = 2.5) 219.4 250.2 256.7 258.5
Tilted VAE (τ = 50) 101.0 126.1 147.0 193.2
FactorVAE (γtc = 5) 232.3 272.5 275.6 270.1

Original t3VAE VAE VAE (κ = 1.5) Tilted VAE

Figure 3: Original and reconstructed images by t3VAE (ν = 10), Gaussian VAE, VAE with κ = 1.5,
and Tilted VAE (τ = 50).

simply increasing the variance of a Gaussian VAE results in images with reduced clarity. Moreover,
disentangling does not seem to significantly alleviate over-regularization.

Investigating further, the images in Figure 3 display rare feature combinations; for example, the top
left image belongs to the intersection of the Male and Heavy Make-up classes, which constitute
around 1% of all images. We see that the Gaussian VAE largely fails to learn the image and instead
generates a much more feminine face, evidenced by e.g. eyeshadow and lip color. In contrast, our
model is able to more closely mirror the original image. Hence, t3VAE is capable of learning images
more accurately, in particular those with rare features.

t3VAE (ν = 10) VAE

VAE (κ = 1.5) β-VAE

Student-t VAE DE-VAE

Tilted VAE FactorVAE

Framework FID

t3VAE (ν = 10) 50.6
VAE 64.7
VAE (κ = 1.5) 79.6
β-VAE (β = 0.05) 51.8
Student-t VAE 82.3
DE-VAE (ν = 2.5) 58.9
Tilted VAE (τ = 30) 59.2
FactorVAE (γtc = 2.5) 67.0

Table 3: Generation FID scores for
CelebA.
J Figure 4: Generated CelebA ex-
ample images.

CelebA generation. Works on VAE models often do not consider the generative aspect due to
difficulties in producing sharp images. Nevertheless, we find that t3VAE consistently generates
high-quality samples if we sample from the alternative t-prior p?ν(z). As demonstrated in Table 3 and
Figure 4, t3VAE outperforms all other models in FID score and generates more vivid images. We
note that β-VAE is a close contender but cannot surpass t3VAE even when β is fine-tuned; generation
FID scores for various β values are documented in Appendix C.3.
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Original t3HVAE HVAE

Figure 5: Original and reconstructed images by t3HVAE (ν = 10) and HVAE.

Imbalanced CIFAR. One interpretation of the heavy-tailedness of real-world data is when the
occurrence frequencies of each class follow a long-tailed distribution. For instance, CelebA comprises
facial attribute labels with highly varying frequencies. Motivated by this observation, we conduct
reconstruction experiments with the CIFAR100-LT dataset (Cao et al., 2019), which is a long-tailed
version of the original CIFAR-100 (Krizhevsky, 2009). We further consider varying degrees of
imbalance, quantified by the imbalance factor ρ which is defined as the ratio of instances in the
largest class to the smallest. In this experiment, we take ρ ∈ {1, 10, 50, 100} by linearly reducing the
number of instances in each class.

Table 2(b) reports reconstruction FID scores of each tuned model, where t3VAE again achieves the
lowest scores. This time, we draw the reader’s attention to the comparative performance of t3VAE,
β-VAE and Tilted VAE as ρ varies. While the scores are relatively similar in the balanced case, the
gaps become larger as ρ increases; that is, t3VAE experiences less of a performance drop even for
extremely lopsided datasets (ρ = 100). In conclusion, we verify that t3VAE is especially strong with
regard to imbalanced data with long tails.

t3HVAE. We additionally implement the two-layer hierarchical t3HVAE constructed in Appendix
B.5 and compare with the Gaussian HVAE on higher resolution 128 × 128 CelebA images. The
reconstruction results are displayed in Figure 5, and corresponding FID scores are recorded in Table
C3. We see that the increased hierarchical depth allows t3HVAE to learn more sophisticated images,
again with substantially higher clarity and sharper detail compared to the Gaussian HVAE. These
results further justify the generality and effectiveness of our theoretical framework.

Training cost and hyperparameter selection. Unlike models such as DE-VAE or VAE-st which
require numerical integration to calculate KL divergence between t-distributions for each data point,
the explicit form of the γ-loss (18), as well as the t-based sampling and reparametrization processes,
do not create any computational bottlenecks or instability issues; the runtime of t3VAE was virtually
identical to the corresponding Gaussian VAE. In addition, as shown in Figure 1 and also corroborated
by experiments, t3VAE’s performance remains consistent across different values of ν for high-
dimensional data. Thus another unique strength of our model is that there is no need to extensively
tune the hyperparameter; only a couple of trials suffice.

5 CONCLUSION

Motivated by topics in over-regularization and information geometry, we establish a novel VAE
framework for approximating heavy-tailed densities that uses Student’s t-distributions for prior,
encoder and decoder. We also derive the γ-loss objective by replacing the KL divergence joint
optimization formulation of ELBO with γ-power divergence, and study the effects of its regularizer.
The generative and tail-modeling capabilities of t3VAE are demonstrated on heavy-tailed synthetic
data. Finally, we show that t3VAE outperforms various alternative VAE models and can learn images
in richer detail, especially in the presense of rare classes or imbalance. Our ideas may hopefully be
extended to other probabilistic or divergence-based inference models in future works.
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APPENDIX

In Appendices A and B we give precise statements, proofs and more details for the theory presented
in Sections 2 and 3. The argument in A.1 is due to Han et al. (2020). The material in A.2 up to
Proposition 2 is adapted from Eguchi (2021), while the general theory of information geometry is
presented in Amari (2016). All subsequent material is our own original work. In Appendix C, we
provide implementation and training details for the experiments conducted in our paper.

A THEORETICAL DETAILS

A.1 REWRITING THE ELBO AS KL DIVERGENCE

Equation (5) states that minimizing the divergence between points on the model and data distribution
manifolds is equivalent to maximizing the expected ELBO. This can be shown by performing the
following algebraic manipulation:

DKL(qφ(x, z) ‖ pθ(x, z)) =
∫∫

pdata(x)qφ(z|x) log
pdata(x)qφ(z|x)
pθ(x)pθ(z|x)

dzdx

=

∫
pdata(x) log

pdata(x)

pθ(x)
dx+

∫
pdata(x)

[∫
qφ(z|x) log

qφ(z|x)
pθ(z|x)

dz

]
dx

= Ex∼pdata
[− log pθ(x) +DKL(qφ(z|x) ‖ pθ(z|x))]−H(pdata)

= −Ex∼pdata
[L(x; θ, φ)]−H(pdata).

This formulation opens the door to various VAE modifications by replacing the joint model KL
divergence with other divergences, assuming closed-form computation is possible and results in an
estimable objective.

A.2 INFORMATION GEOMETRY OF γ-POWER DIVERGENCE

Let M = {pθ(x) : θ ∈ Θ} be a statistical manifold of probability distributions on a probability
space X parametrized by local coordinates θ = (θ1, · · · , θd)>. A divergence on M is a C2 function
D : M×M → R≥0 satisfying

1. D(q ‖ p) ≥ 0 for all p, q ∈ M,
2. D(q ‖ p) = 0 if and only if p = q,
3. At any point pθ ∈ M, D(pθ ‖ pθ′) is a positive-definite quadratic form for infinitesimal

displacements θ′ = θ + dθ,

D(pθ ‖ pθ′) =
1

2

d∑
i,j=1

gij(θ)dθidθj +O(‖dθ‖3)

for a symmetric positive-definite matrix g(θ) = (gij(θ))1≤i,j≤d.
Proposition 1. γ-power divergence as defined in Equations (7)-(8) for γ ∈ (−1, 0) ∪ (0,∞) is a
divergence on the finite γ-entropy submanifold {p ∈ M : ‖p‖1+γ < ∞} of M.

Proof. When γ > 0, we have by Hölder’s inequality∫
q(x)p(x)γdx ≤ ‖q‖1+γ ‖p

γ‖1+1/γ = ‖q‖1+γ ‖p‖
γ
1+γ ,

with equality iff p = q. When −1 < γ < 0, we have by the reverse Hölder inequality∫
q(x)p(x)γdx ≥ ‖q‖1+γ ‖p

γ‖1+1/γ = ‖q‖1+γ ‖p‖
γ
1+γ ,

again with equality iff p = q. In both cases we conclude that

Dγ(q ‖ p) = − 1

γ

∫
q(x)

(
p(x)

‖p‖1+γ

)γ

dx+
1

γ
‖q‖1+γ ≥ 0.
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The 1st and 2nd order local expansion terms of Dγ(pθ ‖ pθ′) around θ′ = θ can be computed as

∂

∂θi

∣∣∣∣
θ′=θ

Dγ(pθ ‖ pθ′) = − 1

γ

∫
∂pθ
∂θi

(x)

(
pθ(x)

‖pθ‖1+γ

)γ

dx+
1

γ
‖pθ‖−γ

1+γ

∫
pθ(x)

γ ∂pθ
∂θi

(x)dx = 0,

∂

∂θ′i

∣∣∣∣
θ′=θ

Dγ(pθ ‖ pθ′) = −
∫

pθ(x)

(
pθ(x)

‖pθ‖1+γ

)γ−1
∂

∂θi

(
pθ(x)

‖pθ‖1+γ

)
dx = 0,

and

gij(θ) = − ∂2

∂θi∂θ′j

∣∣∣∣
θ′=θ

Dγ(pθ ‖ pθ′)

=

∫
∂pθ
∂θi

(x)

(
pθ(x)

‖pθ‖1+γ

)γ−1
∂

∂θj

(
pθ(x)

‖pθ‖1+γ

)
dx

= ‖pθ‖−1−2γ
1+γ

[(∫
pθ(x)

1+γdx

)(∫
pθ(x)

γ−1 ∂pθ
∂θi

(x)
∂pθ
∂θj

(x)dx

)
−
(∫

pθ(x)
γ ∂pθ
∂θi

(x)dx

)(∫
pθ(x)

γ ∂pθ
∂θj

(x)dx

)]
from which we can check that gij(θ) = gji(θ).

Any divergence D on M thus naturally induces a Riemannian metric g on M. For KL divergence,
this is the Fisher information metric. D also induces two affine connections Γ,Γ∗ on M as

Γk
ij(θ) = − ∂3

∂θi∂θj∂θ′k

∣∣∣∣
θ′=θ

D(pθ ‖ pθ′), Γ∗k
ij (θ) = − ∂3

∂θ′i∂θ
′
j∂θk

∣∣∣∣
θ′=θ

D(pθ ‖ pθ′).

The connections are dually coupled with respect to g, i.e. the parallel transport of any two vectors,
each by Γ and Γ∗, preserves their inner product. For γ-power divergence, it is straightforward to
check that Γk

ij(θ) vanish identically for mixture families

pθ(x) =

d∑
i=1

θip
(i)(x) +

(
1−

d∑
i=1

θi

)
p(0)(x).

Hence, the Γ-autoparallel curve connecting two points is equivalent to the linearly interpolating
m-geodesic, identically to KL divergence. Moreover, the dual symbols

Γ∗k
ij (θ) =

1

γ

∫
∂pθ
∂θi

(x)
∂2

∂θj∂θk

(
pθ(x)

‖pθ‖1+γ

)γ

dx

vanish when pθ(x)
γ is linear in θ. Hence the Γ∗-autoparallel curve from distribution p to q is given

by the γ-power geodesic

pt(x) ∝

[
(1− t)

(
p(x)

‖p‖1+γ

)γ

+ t

(
q(x)

‖q‖1+γ

)γ
] 1

γ

, t ∈ [0, 1].

Moreover, the totally Γ∗-geodesic submanifolds consist of power families (9) and in particular
t-distributions with γ = − 2

ν+d . The power form can also be recovered as the maximal γ-entropy
distributions.
Proposition 2. For any statistic s0(x), a maximal γ-entropy distribution p satisfying the mean
constraint Ex∼p [s0(x)] = µ is of the form of Equation (9).

Proof. Introducing a multiplier λ, we seek the stationary points of the Lagrangian functional

J (p, λ) =

∫
p(x)1+γdx+ λ>

∫
(s0(x)− µ)p(x)dx.

The corresponding Euler-Lagrange equation is

(1 + γ)p(x)γ + λ>(s0(x)− µ) = 0,

which yields Equation (9) after a suitable scaling with s(x) ∝ s0(x).
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We proceed to analyze the γ-power divergence between two t-distributions.
Proposition 3. The γ-power divergence from qν ∼ td(µ0,Σ0, ν) to pν ∼ td(µ1,Σ1, ν) is given by
Equation (11) when ν > 2 and γ = − 2

ν+d .

Proof. We first evaluate the power integral∫
qν(x)pν(x)

γdx = Ex∼qν [pν(x)
γ ]

= Ex∼qν

[
Cγ

ν,d |Σ1|−
γ
2

(
1 +

1

ν
(x− µ1)

>Σ−1
1 (x− µ1)

)]
= Cγ

ν,d |Σ1|−
γ
2

(
1 +

1

ν
Ex∼qν

[
tr
(
Σ−1

1 (x− µ1)(x− µ1)
>)])

= Cγ
ν,d |Σ1|−

γ
2

(
1 +

1

ν
tr

(
Σ−1

1

ν

ν − 2
Σ0 +Σ−1

1 (µ0 − µ1)(µ0 − µ1)
>
))

= Cγ
ν,d |Σ1|−

γ
2

(
1 +

1

ν − 2
tr
(
Σ−1

1 Σ0

)
+

1

ν
(µ0 − µ1)

>Σ−1
1 (µ0 − µ1)

)
and similarly∫

qν(x)
1+γdx = Cγ

ν,d |Σ0|−
γ
2

(
1 +

d

ν − 2

)
,

∫
pν(x)

1+γdx = Cγ
ν,d |Σ1|−

γ
2

(
1 +

d

ν − 2

)
.

The γ-power entropy and cross-entropy may then be computed as

Hγ(qν) = −
(∫

qν(x)
1+γdx

) 1
1+γ

= −C
γ

1+γ

ν,d |Σ0|−
γ

2(1+γ)

(
1 +

d

ν − 2

) 1
1+γ

,

Cγ(qν , pν) = −
(∫

qν(x)pν(x)
γdx

)(∫
q(x)1+γdx

)− γ
1+γ

= −C
γ

1+γ

ν,d |Σ1|−
γ

2(1+γ)

×
(
1 +

d

ν − 2

)− γ
1+γ

(
1 +

1

ν − 2
tr
(
Σ−1

1 Σ0

)
+

1

ν
(µ0 − µ1)

>Σ−1
1 (µ0 − µ1)

)
,

which combine to give Equation (11).

Proposition 4. γ-power divergence converges to KL divergence as γ → 0 in the following cases.

1. For any two fixed distributions p, q, limγ→0 Dγ(q ‖ p) = DKL(q ‖ p).

2. For qν ∼ td(µ0,Σ0, ν) and pν ∼ td(µ1,Σ1, ν) with ν = − 2
γ − d and limiting distributions

q∞ ∼ Nd(µ0,Σ0) and p∞ ∼ Nd(µ1,Σ1), limγ→0 Dγ(qν ‖ pν) = DKL(q∞ ‖ p∞).

Proof. For 1, we may calculate the linearization of Cγ(q, p) in γ via differential coefficients,

lim
γ→0

Cγ(q, p) + 1

γ
= −

∫
q(x) lim

γ→0

1

γ

[(
p(x)

‖p‖1+γ

)γ

− 1

]
dx

= −
∫

q(x)
∂

∂γ

∣∣∣∣
γ=0

(
p(x)

‖p‖1+γ

)γ

dx

= −
∫

q(x) log p(x)dx = C(q, p)

where C(q, p) is the ordinary cross-entropy. The same relation holds for entropy when p = q. Thus,

lim
γ→0

Dγ(q ‖ p) = lim
γ→0

Cγ(q, p) + 1

γ
− Hγ(q) + 1

γ
= C(q, p)−H(q) = DKL(q ‖ p).

For 2, it is straightforward to show directly that Equation (11) converges to

DKL(q∞ ‖ p∞) =
1

2

(
log

|Σ1|
|Σ0|

− d+ tr
(
Σ−1

1 Σ0

)
+ (µ0 − µ1)

>Σ−1
1 (µ0 − µ1)

)
by noting that Cν,d ∼ (2π2ν)−d/2 from Stirling’s approximation and γν → −2.
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B t3VAE COMPUTATIONS

B.1 DERIVATION OF JOINT MODEL AND BAYESIAN VIEW

The joint model distribution (13) of t3VAE is explicitly defined as

pθ,ν(x, z) = Cν,m+nσ
−n

[
1 +

1

ν

(
‖z‖2 + 1

σ2
‖x− µθ(z)‖2

)]− ν+m+n
2

.

We may retrieve the prior (14) by marginalizing out x, which also confirms pθ,ν is a valid density:

pZ,ν(z) =

∫
pθ,ν(x, z)dx

= Cν,m+nσ
−n

(
1 +

1

ν
‖z‖2

)− ν+m+n
2

∫ (
1 +

1 + ν−1m

1 + ν−1 ‖z‖2
‖x− µθ(z)‖2

(ν +m)σ2

)− ν+m+n
2

dx

= Cν,m+nσ
−n

(
1 +

1

ν
‖z‖2

)− ν+m+n
2

C−1
ν+m,n

(
1 + ν−1 ‖z‖2

1 + ν−1m
σ2

)n
2

= Cν,m+nC
−1
ν+m,n

(
1 +

m

ν

)−n
2

(
1 +

1

ν
‖z‖2

)− ν+m
2

= Cν,m

(
1 +

1

ν
‖z‖2

)− ν+m
2

= tm(z|0, I, ν),
where we have used the fact that

Cν,m+n =
Γ
(
ν+m+n

2

)
Γ
(
ν+m
2

)
((ν +m)π)

n
2

Γ
(
ν+m
2

)
Γ
(
ν
2

)
(νπ)

m
2

(
1 +

m

ν

)n
2

= Cν+m,nCν,m

(
1 +

m

ν

)n
2

.

Consequently, the t3VAE decoder is derived as

pθ,ν(x|z) =
pθ,ν(x, z)

pZ,ν(z)

= Cν+m,nσ
−n

(
1 + ν−1 ‖z‖2

1 + ν−1m

)−n
2
(
1 +

1 + ν−1m

1 + ν−1 ‖z‖2
‖x− µθ(z)‖2

(ν +m)σ2

)− ν+m+n
2

= tn

(
x

∣∣∣∣∣µθ(z),
1 + ν−1 ‖z‖2

1 + ν−1m
σ2I, ν +m

)
.

We now prove that the prior-decoder pair is equivalent to the Bayesian hierarchical model (21). By
integrating out the latent precision:

z ∼
∫ ∞

0

Nm

(
z

∣∣∣∣0, 1

ν−1λ
I

)
χ2(λ|ν)dλ

∝
∫ ∞

0

exp

(
− λ

2ν
‖z‖2 − λ

2

)
λ

ν
2+

m
2 −1dλ

∝
(
1 +

1

ν
‖z‖2

)− ν+m
2

,

and

x|z ∼
∫ ∞

0

Nn

(
x

∣∣∣∣µθ(z),
1

ν−1λ
σ2I

)
Nm

(
z

∣∣∣∣0, 1

ν−1λ
I

)
χ2(λ|ν)dλ

∝
∫ ∞

0

exp

(
− λ

2νσ2
‖x− µθ(z)‖2 −

λ

2ν
‖z‖2 − λ

2

)
λ

ν
2+

m
2 +n

2 −1dλ
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∝
(
1 +

1

ν
‖z‖2 + 1

νσ2
‖x− µθ(z)‖2

)− ν+m+n
2

∝ tn

(
x

∣∣∣∣∣µθ(z),
1 + ν−1 ‖z‖2

1 + ν−1m
σ2I, ν +m

)
,

we recover the t3VAE architecture.

B.2 SHALLOW t3VAE

We consider the simplest case when the decoder mean µθ(z) = Wz + b is linear with parameters
θ = (W, b), W ∈ Rn×m, b ∈ Rn, which we call the ‘shallow’ t3VAE. For completeness, we first
describe the corresponding shallow Gaussian VAE as well. In this case, the joint model (12) with
µθ(z) = Wz + b is easily checked to be normally distributed as(

x
z

)
∼ Nm+n

((
b
0

)
,

(
WW> + σ2I W

W> I

))
and the true posterior can be obtained exactly as

z|x ∼ Nm

(
W>(WW> + σ2I)−1(x− b), I −W>(WW> + σ2I)−1W

)
.

On the other hand, the joint model (13) for the shallow t3VAE is t-distributed:(
x
z

)
∝

[
1 +

1

νσ2

(
x− b
z

)>(
I −W

−W> W>W + σ2I

)(
x− b
z

)]− ν+m+n
2

∝ tm+n

((
b
0

)
,

(
WW> + σ2I W

W> I

)
, ν

)
.

Then the true posterior is in fact also t-distributed, but with degrees of freedom ν + n rather than ν
(Ding, 2016): z|x ∼ tm(µ̃(x), Σ̃(x), ν + n) with mean

µ̃(x) = W>(WW> + σ2I)−1(x− b)

and scale matrix

Σ̃(x) =
1 + ν−1(x− b)>(WW> + σ2I)−1(x− b)

1 + ν−1n
(I −W>(WW> + σ2I)−1W ).

This motivates the definition of the t3VAE encoder (16).

B.3 DERIVATION OF γ-LOSS

Our goal is to derive the γ-power divergence between a point pθ,ν(x, z) on the model distribution
manifold Pν , given by Equation (13), and a point on the data distribution manifold Qν , given by

qφ,ν(x, z) = pdata(x)× tm

(
z

∣∣∣∣µφ(x),
1

1 + ν−1n
Σφ(x), ν + n

)
.

We begin by computing the required double integrals. First,∫∫
pθ,ν(x, z)

1+γdxdz = Ez∼pZ,ν
Ex∼pθ,ν(·|z) [pθ,ν(x, z)

γ ]

= σ−γnCγ
ν,m+nEz∼pZ,ν

Ex∼pθ,ν(·|z)

[
1 +

1

ν

(
‖z‖2 + 1

σ2
‖x− µθ(z)‖2

)]
= σ−γnCγ

ν,m+nEz∼pZ,ν

[
1 +

1

ν
‖z‖2 + 1

νσ2
tr

(
ν +m

ν +m− 2
· 1 + ν−1 ‖z‖2

1 + ν−1m
σ2I

)]

= σ−γnCγ
ν,m+nEz∼pZ,ν

[
1 +

1

ν
‖z‖2 + n

ν +m− 2

(
1 +

1

ν
‖z‖2

)]
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= σ−γnCγ
ν,m+n

(
1 +

m+ n

ν − 2

)
,

where we have repeatedly used the fact that

Ex∼td(µ,Σ,ν) ‖x− µ‖2 = trEx∼td(µ,Σ,ν)[(x− µ)(x− µ)>] =
ν

ν − 2
trΣ.

Next, using the entropy computations in the proof of Proposition 3,∫∫
qφ,ν(x, z)

1+γdxdz =

∫ (∫
qφ,ν(z|x)1+γdz

)
pdata(x)

1+γdx

= Cγ
ν+n,m

(
1 +

n

ν

) γm
2

(
1 +

m

ν + n− 2

)∫
|Σφ(x)|−

γ
2 pdata(x)

1+γdx.

Moreover, we have∫∫
qφ,ν(x, z)pθ,ν(x, z)

γdxdz = Ex∼pdata
Ez∼qφ,ν(·|x) [pθ,ν(x, z)

γ ]

= σ−γnCγ
ν,m+nEx∼pdata

Ez∼qφ,ν(·|x)

[
1 +

1

ν

(
‖z‖2 + 1

σ2
‖x− µθ(z)‖2

)]
= σ−γnCγ

ν,m+nEx∼pdata

[
1 +

1

ν

(
‖µφ(x)‖2

+
ν

ν + n− 2
trΣφ(x) +

1

σ2
Ez∼qφ,ν(·|x) ‖x− µθ(z)‖2

)]
,

by utilizing the sum-of-squares decomposition ‖z‖2 = ‖µφ(x) + (z − µφ(x))‖2. The γ-power
entropy of the joint data distribution is then obtained as

Hγ(qφ,ν) = −
(∫∫

qφ,ν(x, z)
1+γdxdz

) 1
1+γ

= −C
γ

1+γ

ν+n,m

(
1 +

n

ν

) γm
2(1+γ)

(
1 +

m

ν + n− 2

) 1
1+γ

︸ ︷︷ ︸
=:C1

(∫
|Σφ(x)|−

γ
2 pdata(x)

1+γdx

) 1
1+γ

,

and the γ-power cross-entropy is

Cγ(qφ,ν , pθ,ν) = −
(∫∫

qφ,ν(x, z)pθ,ν(x, z)
γdxdz

)(∫∫
pθ,ν(x, z)

1+γdxdz

)− γ
1+γ

= −
(
σ−γnCγ

ν,m+n

) 1
1+γ

(
1 +

m+ n

ν − 2

)− γ
1+γ

︸ ︷︷ ︸
=:C2

× Ex∼pdata

[
1 +

1

ν

(
1

σ2
Ez∼qφ,ν(·|x) ‖x− µθ(z)‖2 + ‖µφ(x)‖2 +

ν

ν + n− 2
trΣφ(x)

)]
.

Substituting the above two expressions in the definition of γ-power divergence (8) yields the formula

Dγ(qφ,ν ‖ pθ,ν) =
C1

γ

(∫
|Σφ(x)|−

γ
2 pdata(x)

1+γdx

) 1
1+γ

− C2

γ

× Ex∼pdata

[
1 +

1

ν

(
1

σ2
Ez∼qφ,ν(·|x)‖x− µθ(z)‖2 + ‖µφ(x)‖2 +

ν

ν + n− 2
trΣφ(x)

)]
.

We now provide justification for the approximation(∫
|Σφ(x)|−

γ
2 pdata(x)

1+γdx

) 1
1+γ

'
∫

|Σφ(x)|−
γ

2(1+γ) pdata(x)dx−H(pdata) · γ

which is valid up to first order when |γ| � 1. Note that the linear coefficient H(pdata) is independent
of parameters θ and φ, leading to the γ-loss (18) after rearranging constants:

Lγ(θ, φ) ≈ − γν

2C2
Dγ(qφ,ν ‖ pθ,ν)−

γνC1

2C2
H(pdata)−

ν

2
.
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Proposition 5. Let σ be any positive continuous function, γ ∈ (−1, 0), and suppose the values

Hj,k := Hj,k(pdata) :=

∫
pdata(x)

1+jγ |log pdata(x)|k dx

are finite for each j ∈ {0, 1}, k ∈ {1, 2}. Then for any compact set Ω ⊆ supp pdata,(∫
Ω

σ(x)−γpdata(x)
1+γdx

) 1
1+γ

−
∫
Ω

σ(x)−
γ

1+γ pdata(x)dx

= γ

∫
Ω

pdata(x) log pdata(x)dx+O(γ2).

Remark. The assumption on σ is valid since variance is typically trained by setting log Σφ(x) as a
neural network. The integrability condition on pdata is slightly stronger than finite entropy and holds
for e.g. d-dimensional Gaussian and t-distributions (when ν > 2 and γ = − 2

ν+d ).

Proof. Denote by σmin, σmax the minimum and maximum of σ on Ω, respectively. We begin by
linearizing the first term. Set h(x) := σ(x)−1pdata(x). For each x ∈ Ω, we may Taylor expand

h(x)γ = 1 + γ log h(x) +
1

2
γ2 · (log h(x))2h(x)γ

∗(x)

for some γ∗(x) ∈ (γ, 0), and the integral of the remainder is bounded since∫
Ω

(log h(x))2h(x)γ
∗(x)pdata(x)dx

≤
∫
Ω∩{h≥1}

(log h(x))2pdata(x)dx+

∫
Ω∩{h<1}

(log h(x))2h(x)γpdata(x)dx

≤
∫
Ω∩{h≥1}

(log pdata(x)− log σmin)
2pdata(x)dx

+ σ−γ
max

∫
Ω∩{h<1}

(log pdata(x)− log σmax)
2pdata(x)

1+γdx

≤ (log σmin)
2 + 2 |log σmin|H0,1 +H0,2 + σ−γ

max

(
(log σmax)

2 + 2 |log σmax|H1,1 +H1,2

)
< ∞.

Therefore, we obtain the approximation(∫
Ω

h(x)γpdata(x)dx

) 1
1+γ

= 1 + γ

∫
Ω

log h(x) · pdata(x)dx+O(γ2).

For the second term, setting h(x) = σ(x)−1 and linearizing with respect to η := γ
1+γ , we have∫

Ω

σ(x)−ηpdata(x)dx = 1− η

∫
Ω

log σ(x) · pdata(x)dx+O(η2)

with the remainder bounded by η2/2 ·max{(log σmax)
2, (log σmin)

2}max{1, σ−1
min}. Plugging in

η = γ +O(γ2) and subtracting both sides gives the desired approximation.

B.4 DERIVATION OF γ-REGULARIZER

We compute the γ-power divergence from the encoder distribution (16) to the alternative prior

p?ν(z) = tm(z|0, τ2I, ν + n),

where the constant τ is yet to be determined. By Equation (11), we have for γ = − 2
ν+m+n ,

Dγ(qφ,ν ‖ p?ν) =

− 1

γ
C

γ
1+γ

ν+n,m

(
1 +

m

ν + n− 2

)− γ
1+γ

[
−
(
1 +

n

ν

) γm
2(1+γ) |Σφ(x)|−

γ
2(1+γ)

(
1 +

m

ν + n− 2

)
+

1

ν + n
τ−2− γm

1+γ

(
‖µφ(x)‖2 +

ν

ν + n− 2
trΣφ(x) + (ν + n)τ2

)]
.

19



Published as a conference paper at ICLR 2024

Figure B1: Structure of hierarchical t3VAE.

Note that the coefficient of trΣφ(x) relative to the ‖µφ(x)‖2 term is ν
ν+n−2 , aligning with the γ-loss

formula (18). It remains to choose τ to match the coefficient −νC1

C2
of the |Σφ(x)|−

γ
2(1+γ) term:

−(ν + n)τ2+
γm
1+γ

(
1 +

n

ν

) γm
2(1+γ)

(
1 +

m

ν + n− 2

)
= −νC1

C2

= −ν

(
ν +m+ n− 2

ν + n− 2

(
1 +

n

ν

) γm
2

Cγ
ν+n,m

) 1
1+γ

(
ν +m+ n− 2

ν − 2
σnC−1

ν,m+n

) γ
1+γ

,

from which we obtain

τ2 =
1

1 + ν−1n

(
σ−nCν,n

(
1 +

n

ν − 2

)−1
) 2

ν+n−2

.

Furthermore, the precise multiplicative factor required to match the γ-loss is (again looking at the
‖µφ(x)‖2 term)

1

2
×

[
− 1

γ
C

γ
1+γ

ν+n,m

(
1 +

m

ν + n− 2

)− γ
1+γ 1

ν + n
τ−2− γm

1+γ

]−1

= −γν

2
C

− γ
1+γ

ν+n,m

(
1 +

m

ν + n− 2

) γ
1+γ (

1 +
n

ν

)− γm
2(1+γ)

σ
γn
1+γ C

− γ
1+γ

ν,n

(
1 +

n

ν − 2

) γ
1+γ

= −γν

2
C

− γ
1+γ

ν,m+n

(
1 +

m+ n

ν − 2

) γ
1+γ

σ
γn
1+γ

= − γν

2C2
,

which is positive, implying that Dγ(qφ,ν ‖ p?ν) indeed acts as a regularizer. Finally, the additive
constant in Equation (20) is equal to − 1

2 (ν + n)τ2.

B.5 CONSTRUCTING THE t3HVAE

We develop the heavy-tailed version of the two-level hierarchical VAE (Sønderby et al., 2016) with
latent variables (z1, z2) ∈ Rm1+m2 , depicted in Figure B1. In the generative phase, z1 is sampled
from the initial prior pZ,ν , then z2 is drawn from the conditional prior pθ,ν(z2|z1) and x is drawn
from the decoder pθ,ν(x|z1, z2). In the encoding phase, z1 and z2 are successively drawn from the
hierarchical encoders qφ,ν(z1|x) and qφ,ν(z2|x, z1), respectively. We remark that the second level
decoder and encoder can also depend through skip connections on z1 and x. Moreover, we assume
two levels only for simplicity, and t3HVAE can be readily expanded to any hierarchical depth.

The Bayesian scheme (21) naturally extends to

λ ∼ χ2(λ|ν), z1|λ ∼ Nm1(z1|0, νλ−1I),

z2|z1, λ ∼ Nm2
(z2|ζθ(z1), νλ−1σ2

zI), x|z1, z2, λ ∼ Nn(z|µθ(z1, z2), νλ
−1σ2

xI),

which likewise to the derivation in Appendix B.1 integrates to give the t-priors and t-decoder:

pZ,ν(z1) = tm1(z|0, I, ν),
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pθ,ν(z2|z1) = tm2

(
z2

∣∣∣∣∣ζθ(z1), 1 + ν−1 ‖z1‖2

1 + ν−1m1
σ2
zI, ν +m1

)
,

pθ,ν(x|z1, z2) = tn

(
x

∣∣∣∣∣µθ(z1, z2),
1 + ν−1‖z1‖2 + ν−1σ−2

z ‖z2 − ζθ(z1)‖2

1 + ν−1(m1 +m2)
σ2
xI, ν +m1 +m2

)
.

We also define the t-encoder distributions as

qφ,ν(z1|x) = tm1

(
z1

∣∣∣∣ζφ(x), 1

1 + ν−1n
Λφ(x), ν + n

)
,

qφ,ν(z2|x, z1) = tm2

(
z2

∣∣∣∣µφ(x, z1),
1

1 + ν−1(m1 + n)
Σφ(x, z1), ν +m1 + n

)
.

Defining γ = − 2
ν+m1+m2+n , the joint model distribution is derived as

pθ,ν(x, z1, z2) = pZ,ν(z1)pθ,ν(z2|z1)pθ,ν(x|z1, z2)

= Cν,m1

(
1 +

1

ν
‖z1‖2

)− ν+m1
2

× Cν+m1,m2

(
1 + ν−1 ‖z1‖2

1 + ν−1m1
σ2
z

)−m2
2
(
1 +

1

νσ2
z

‖z2 − ζθ(z1)‖2

1 + ν−1 ‖z1‖2

)− ν+m1+m2
2

× Cν+m1+m2,n

(
1 + ν−1 ‖z1‖2 + ν−1σ−2

z ‖z2 − ζθ(z1)‖2

1 + ν−1(m1 +m2)
σ2
x

)−n
2

×

(
1 +

1

νσ2
x

‖x− µθ(z2)‖2

1 + ν−1 ‖z1‖2 + ν−1σ−2
z ‖z2 − ζθ(z1)‖2

)− ν+m1+m2+n
2

= Cν,m1
Cν+m1,m2

Cν+m1+m2,nσ
−m2
z σ−n

x

(
1 +

m1

ν

)m2
2

(
1 +

m1 +m2

ν

)n
2

×

(
1 +

‖z1‖2

ν
+

‖z2 − ζθ(z1)‖2

νσ2
z

+
‖x− µθ(z1, z2)‖2

νσ2
x

)− ν+m1+m2+n
2

= Cν,m1+m2+nσ
−m2
z σ−n

x

(
1 +

‖z1‖2

ν
+

‖z2 − ζθ(z1)‖2

νσ2
z

+
‖x− µθ(z1, z2)‖2

νσ2
x

) 1
γ

.

We proceed to derive the γ-power divergence between pθ,ν(x, z1, z2) and the data distribution
qφ,ν(x, z1, z2) = qφ,ν(z2|x, z1)qφ,ν(z1|x)pdata(x) analogously to Appendix B.3.

For the γ-entropy of the joint data distribution, Proposition 5 needs to be applied twice, first with
respect to pdata(x) then with respect to qφ,ν(z1|x):

Hγ(qφ,ν) = −
(∫∫∫

qφ,ν(x, z1, z2)
1+γdz2dz1dx

) 1
1+γ

= −
(∫∫ (∫

qφ,ν(z2|x, z1)1+γdz2

)
qφ,ν(z1|x)1+γpdata(x)

1+γdz1dx

) 1
1+γ

= −C
γ

1+γ

ν+m1+n,m2

(
1 +

m1 + n

ν

) γm2
2(1+γ)

(
1 +

m2

ν +m1 + n− 2

) 1
1+γ

︸ ︷︷ ︸
=:C̃1

×
(∫∫

|Σφ(x, z1)|−
γ
2 qφ,ν(z1|x)1+γpdata(x)

1+γdz1dx

) 1
1+γ
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≈ −C̃1

(∫ (∫
|Σφ(x, z1)|−

γ
2 qφ,ν(z1|x)1+γdz1

) 1
1+γ

pdata(x)dx−H(pdata) · γ

)

≈ −C̃1

∫ (∫
|Σφ(x, z1)|−

γ
2(1+γ) qφ,ν(z1|x)dz1 −H(qφ,ν(·|x)) · γ

)
pdata(x)dx+ const.

= −C̃1Ex∼pdata

{
Ez1∼qφ,ν(·|x)

[
|Σφ(x, z1)|−

γ
2(1+γ)

]
− γ

2
log |Λφ(x)|

}
+ const.

Note that a new order O(γ) correction term log |Λφ(x)| appears in the inner approximation due to
the dependency of the differential entropy of qφ,ν(·|x) on x.

Next, we evaluate the required integrals in the γ-power cross-entropy,∫∫∫
pθ,ν(x, z1, z2)

1+γdxdz2dz1 = Ez1∼pZ,ν
Ez2∼pθ,ν(·|z1)Ex∼pθ,ν(·|z1,z2) [pθ,ν(x, z1, z2)

γ ]

= Cγ
ν,m1+m2+nσ

−γm2
z σ−γn

x Ez1∼pZ,ν
Ez2∼pθ,ν(·|z1)

[
1 +

‖z1‖2

ν
+

‖z2 − ζθ(z1)‖2

νσ2
z

+
1

νσ2
x

tr

(
ν +m1 +m2

ν +m1 +m2 − 2
· 1 + ν−1 ‖z1‖2 + ν−1σ−2

z ‖z2 − ζθ(z1)‖2

1 + ν−1(m1 +m2)
σ2
xI

)]

= Cγ
ν,m1+m2+nσ

−γm2
z σ−γn

x

ν +m1 +m2 + n− 2

ν +m1 +m2 − 2

× Ez1∼pZ,ν
Ez2∼pθ,ν(·|z1)

[
1 +

‖z1‖2

ν
+

‖z2 − ζθ(z1)‖2

νσ2
z

]

= Cγ
ν,m1+m2+nσ

−γm2
z σ−γn

x

(
1 +

m1 +m2 + n

ν − 2

)
.

Furthermore,∫∫∫
qφ,ν(x, z1, z2)pθ,ν(x, z1, z2)

γdz2dz1dx

= Ex∼pdata
Ez1∼qφ,ν(·|x)Ez2∼qφ,ν(·|x,z1) [pθ,ν(x, z1, z2)

γ ]

= Cγ
ν,m1+m2+nσ

−γm2
z σ−γn

x

× Ex∼pdata
Ez1∼qφ,ν(·|x)Ez2∼qφ,ν(·|x,z1)

[
1 +

‖z1‖2

ν
+

‖z2 − ζθ(z1)‖2

νσ2
z

+
‖x− µθ(z1, z2)‖2

νσ2
x

]

= Cγ
ν,m1+m2+nσ

−γm2
z σ−γn

x Ex∼pdata

{
1 +

1

ν

(
‖ζφ(x)‖2 +

ν

ν + n− 2
trΛφ(x)

)
+

1

νσ2
z

Ez1∼qφ,ν(·|x)

[
‖µφ(x, z1)− ζθ(z1)‖2 +

ν

ν +m1 + n− 2
trΣφ(x, z1)

]
+

1

νσ2
x

Ez1∼qφ,ν(·|x)Ez2∼qφ,ν(·|x,z1) ‖x− µθ(z1, z2)‖2
}
.

Therefore, the γ-power cross-entropy is obtained as
Cγ(qφ,ν , pθ,ν)

=

(∫∫∫
qφ,ν(x, z1, z2)pθ,ν(x, z1, z2)

γdz2dz1dx

)(∫∫∫
pθ,ν(x, z1, z2)

1+γdxdz2dz1

)− γ
1+γ

= −
(
Cγ

ν,m1+m2+nσ
−γm2
z σ−γn

x

) 1
1+γ

(
1 +

m1 +m2 + n

ν − 2

)− γ
1+γ

︸ ︷︷ ︸
=: C̃2

× Ex∼pdata

{
1 +

1

ν

(
‖ζφ(x)‖2 +

ν

ν + n− 2
trΛφ(x)

)
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+
1

νσ2
z

Ez1∼qφ,ν(·|x)

[
‖µφ(x, z1)− ζθ(z1)‖2 +

ν

ν +m1 + n− 2
trΣφ(x, z1)

]
+

1

νσ2
x

Ez1∼qφ,ν(·|x)Ez2∼qφ,ν(·|x,z1) ‖x− µθ(z1, z2)‖2
}
.

Putting everything together and tidying constants, we finally obtain the γ-loss for t3HVAE,

L̃γ(θ, φ) =
1

2
Ex∼pdata

{
1

σ2
x

Ez1∼qφ,ν(·|x)Ez2∼qφ,ν(·|x,z1) ‖x− µθ(z1, z2)‖2︸ ︷︷ ︸
reconstruction error

+ ‖ζφ(x)‖2 +
ν

ν + n− 2
trΛφ(x) +

γνC̃1

2C̃2

log |Λφ(x)|︸ ︷︷ ︸
regularizer for qφ,ν(z1|x)

+
1

σ2
z

Ez1∼qφ,ν(·|x)

[
‖µφ(x, z1)− ζθ(z1)‖2 +

ν · trΣφ(x, z1)

ν +m1 + n− 2
− νσ2

zC̃1

C̃2

|Σφ(x, z1)|−
γ

2(1+γ)︸ ︷︷ ︸
regularizer for qφ,ν(z2|x,z1)

]}
.

(23)

Similarly to the γ-loss, we see that L̃γ(θ, φ) consists of the reconstruction error and a sum of
regularizing terms for each of the first and second level encoders. It is also possible to replace the
term log |Λφ(x)| with a constant times − |Λφ(x)|−

γ
2(1+γ) for consistency by converting the order

O(γ) correction term in Proposition 5 from differential entropy to γ-power entropy.

C EXPERIMENTAL DETAILS

All experiments are implemented via Python 3.8.10 with the PyTorch package (Paszke et al., 2019)
version 1.13.1+cu117, and run on Linux Ubuntu 20.04 with Intel® Xeon® Silver 4114 @ 2.20GHz
processors, an Nvidia Titan V GPU with 12GB memory, CUDA 11.3 and cuDNN 8.2. The code is
available on Github.

C.1 REPARAMETRIZATION TRICK FOR t3VAE

Recall that for the Gaussian VAE, given N data points x(1), · · · , x(N), a Monte Carlo estimate of the
observed ELBO is computed using L samples z(i,1), · · · , z(i,L) drawn from qφ(·|x(i)),

L̂(θ, φ) = 1

N

N∑
i=1

[
1

L

L∑
`=1

log pθ(x
(i)|z(i,`))−DKL(qφ(z|x(i)) ‖ pZ(z))

]
.

In order to backpropagate gradients through stochastic nodes, the reparametrization trick must be
used wherein z(i,`) = µφ(x

(i)) + σφ(x
(i)) � ε(i,`) and ε(i,`) is sampled from Nm(0, I). Since the

t-distribution behaves similarly under affine transformations, this mechanism is simple to implement
for our model.

A multivariate t-distribution T ∼ td(µ,Σ, ν) may be constructed from a multivariate centered
Gaussian Z ∼ Nd(0,Σ) and an independent chi-squared variable V ∼ χ2(ν) via

T
d
= µ+

Z√
V/ν

.

We use an encoder with diagonal covariance,

qφ,ν(z|x) = tm

(
z

∣∣∣∣µφ(x),
1

1 + ν−1n
diag σ2

φ(x), ν + n

)
,
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hence we may obtain z(i,`) by drawing ε(i,`) ∼ Nm(0, I) and δ(i,`) ∼ χ2(ν + n) independently and
computing

z(i,`) = µφ(x
(i)) +

1√
δ(i,`)/(ν + n)

σφ(x
(i))√

1 + ν−1n
� ε(i,`)

= µφ(x
(i)) +

√
ν

δ(i,`)
σφ(x

(i))� ε(i,`).

(24)

C.2 DETAILS ON SYNTHETIC DATASETS

We first generate 200K train data, 200K validation data, and 500K test data from the heavy-tailed
bimodal distribution (22). We then construct decoder and encoder networks with a common multi-
layer perceptron architecture, which consists of two fully connected layers each with 64 nodes
and Leaky ReLU activations. In the training process, we use a batch size of 128 and employ the
Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1× 10−3 and weight decay 1× 10−4.
Moreover, we adapt early stopping using validation data with patience 15 to prevent overfitting. All
models finished training within 80 epochs except VAE-st.

After completing training, we generate 500K samples from each model. The large sample size is
necessary in order to accurately plot the far tails. For MMD hypothesis testing, we employ the fast
linear time bootstrap test (Gretton et al., 2012) with 100K subsamples from each distribution and 1K
repetitions. For the tail distributions, we employ the same test with appropriate subsampling to match
sample sizes.

Moreover, we also compare the reconstruction loss of t3VAE and Gaussian VAE in Table C1. This
comparison is valid since both the ELBO (2) and γ-loss (20) optimize the same MSE loss with
different regularizers. We observe that models with smaller ν exhibit smaller reconstruction loss,
demonstrating the relaxation of regularization discussed in Section 3.2. Smaller losses can of course
be achieved by β-VAE by decreasing β, which is close to a simple autoencoder.

The empty blocks for β-VAE (β = 2.0) and VAE-st (ν = 15.0) are due to no tail samples being
generated at all. Also, the reconstruction loss of Student-t VAE cannot be numerically compared as it
assumes learnable variance σ2.

C.3 DETAILS ON CELEBA AND CIFAR100-LT

The original CIFAR100 dataset is provided by Krizhevsky (2009). CIFAR100 consists of 60K 32×32
color images with 100 balanced classes, divided into 50K train images and 10K test images. The
CelebA dataset is provided by Liu et al. (2015; 2018). The dataset consists of 202,599 face images
from 10,177 celebrities, which are split into 182,637 training and 19,962 test images following the
recommendation provided in the CelebA official documentation. Each image is subjected to uniform
center-cropping, specifically by 148×148 pixels, followed by downsizing to 64×64 pixels.

All VAE models are trained for 50 epochs using a batch size of 128 and a latent variable dimension
of 64 with the Adam optimizer. We tune learning rates separately for each model within the range of
5× 10−5 ∼ 5× 10−4 and present the best result. In particular, good results are obtained when the
learning rate is set to 8× 10−5 ∼ 1× 10−4 in CelebA, and 2× 10−4 ∼ 4× 10−4 in CIFAR100-LT.
In the case of FactorVAE, a separate Adam optimizer is used for the discriminator with a learning
rate of 1× 10−5.

The basic encoder and decoder architectures for most models are based on the public GitHub
repository (Subramanian, 2020) with modifications. The encoder network consists of 5 convolutional
layers with hidden layer sizes of 128, 256, 512, 1024, 2048. Batch normalization and ReLU activation
are applied after each convolutional layer. Two fully connected layers for µφ(x) and Σφ(x) then
flatten the encoder output to the latent space. The decoder network is the reverse of the encoder
architecture, with 5 transposed convolutional layers instead. The final part of the decoder is a pair of
transposed convolutional layers and a tanh activation.

Hierarchical models, HVAE and t3HVAE, maintain the encoder and decoder networks of the original
model while adding a second encoder qφ,ν(z2|x, z1) and a layer that estimates the mean of the second
prior ζθ(z1) using a multi-layer perceptron. The dimension of z2 is set to half that of z1, and skip
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Table C1: Full results of MMD test p-values of 1-dimensional synthetic data analysis. Rejected
values are shown in red.

Model Parameter MMD test p-values Recon loss
Full Left tail Right tail

t3VAE

ν = 9.0 < 0.001 0.130 0.580 0.707
ν = 12.0 0.026 0.330 0.347 0.744
ν = 15.0 0.008 0.363 0.622 0.831
ν = 18.0 0.322 0.377 0.693 0.847
ν = 21.0 0.372 0.188 0.838 0.853

VAE - 0.514 0.036 0.003 1.028

β-VAE

β = 0.1 0.614 0.011 < 0.001 0.102
β = 0.2 0.137 < 0.001 0.032 0.210
β = 0.5 0.050 0.007 0.027 0.506
β = 2.0 < 0.001 - - -

Student t-VAE - 0.587 0.291 0.114 -

DE-VAE

ν = 9.0 0.943 0.424 0.814 1.012
ν = 12.0 0.068 0.222 0.406 1.018
ν = 15.0 0.481 0.046 0.443 0.997
ν = 18.0 0.763 0.219 0.411 0.984
ν = 21.0 0.597 0.376 0.146 0.985

VAE-st

ν = 9.0 < 0.001 0.179 0.460 1.062
ν = 12.0 < 0.001 0.953 0.643 1.057
ν = 15.0 < 0.001 0.363 - 1.045
ν = 18.0 < 0.001 0.925 < 0.001 0.981
ν = 21.0 < 0.001 0.326 < 0.001 1.094

Table C2: Full results of MMD test p-values of 2-dimensional synthetic data analysis. Rejected
values are shown in red.

Model Parameter MMD test p-values
Full Left tail Right tail

t3VAE

ν = 30.0 0.276 0.214 0.213
ν = 40.0 0.716 0.130 < 0.001
ν = 50.0 0.766 0.142 0.004
ν = 60.0 0.665 0.060 0.002
ν = 70.0 0.773 0.100 0.002

VAE - 0.116 0.004 < 0.001

β-VAE
β = 0.1 0.631 < 0.001 < 0.001
β = 0.2 0.359 < 0.001 < 0.001
β = 0.5 0.251 < 0.001 0.015

Student t-VAE - 0.530 < 0.001 < 0.001

DE-VAE ν = 3.0 0.624 < 0.002 0.057
ν = 5.0 0.672 < 0.001 < 0.001
ν = 7.0 0.452 < 0.001 < 0.001
ν = 9.0 0.539 < 0.001 < 0.001

VAE-st ν = 3.0 0.485 < 0.001 < 0.001
ν = 5.0 0.092 < 0.001 0.020
ν = 7.0 0.250 < 0.001 < 0.001
ν = 9.0 0.156 < 0.001 0.020
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connections are implemented by concatenating the connected input with the original input. After
training, we load the best model of all epochs and evaluate FID scores for the whole dataset and each
class separately.

The complete version of Table 2. In Tables C3 and C4, we provide the complete version of Table
2 including the FID scores with varying hyperparameters. We verify that t3VAE achieves the lowest
FID scores, regardless of ν. In addition, we include the FID scores of Hierarchical model at the
bottom of Table 2, emphasizing that t3HVAE consistently yields more favorable outcomes compared
to the conventional model.

Table C3: CelebA FID scores for overall and selected attribute classes with varying hyperparameters
for each model, including Pale Skin (Pale) and Double Chin (Chin). We also include the Gaussian
HVAE and t3HVAE reconstruction scores.

Framework Parameter Overall Bald Mst Gray Pale Chin No Bd Young

t3VAE

ν = 10 39.4 66.5 61.5 67.2 54.6 57.2 40.1 46.7
ν = 5 40.2 67.5 62.6 68.8 55.1 58.1 40.8 47.8
ν = 2.5 40.0 67.6 62.0 68.0 55.8 57.7 40.7 47.2
ν = 2.1 40.4 68.5 62.5 68.0 55.8 58.4 41.0 47.6

VAE κ = 1 57.9 85.8 79.7 91.0 70.8 78.2 58.4 69.1
κ = 1.5 73.2 105.3 96.4 114.5 85.3 97.5 73.8 84.1

β-VAE
β = 0.5 50.9 81.0 72.4 84.3 66.0 71.6 51.4 60.1
β = 0.25 46.7 76.5 69.3 79.1 60.7 66.9 46.9 55.7
β = 0.1 42.1 72.1 65.3 74.8 56.1 62.4 42.5 51.3
β = 0.05 40.4 69.3 62.7 71.1 55.1 59.8 40.9 49.0

Student-t VAE - 78.4 112.0 104.2 118.7 91.7 100.7 78.6 88.9

DE-VAE

ν = 10 59.7 89.2 83.8 95.6 73.8 81.4 59.9 69.4
ν = 5 58.9 89.6 84.3 94.9 72.8 80.2 59.1 68.9
ν = 2.5 59.0 84.6 81.3 93.1 72.1 78.2 59.4 68.1
ν = 2.1 59.1 90.5 83.7 94.5 72.9 80.9 59.4 69.1

Tilted VAE

τ = 20 49.5 79.8 73.3 82.1 63.8 70.3 49.9 59.3
τ = 30 45.9 75.1 69.5 77.1 60.6 65.4 46.3 54.7
τ = 40 45.0 74.4 68.1 76.6 59.9 65.1 45.2 54.1
τ = 50 42.6 73.0 65.4 73.7 57.8 62.1 42.9 50.8

FactorVAE

γtc = 20 61.2 96.7 88.7 100.1 77.1 84.8 61.3 71.8
γtc = 10 60.8 95.4 87.2 101.2 75.6 85.5 60.8 72.4
γtc = 5 59.8 91.7 85.7 95.2 74.2 81.5 59.9 70.0
γtc = 2.5 60.8 92.5 86.6 96.8 73.6 82.5 60.8 71.1

HVAE - 56.9 85.4 78.9 88.1 68.0 89.1 56.7 67.2

t3HVAE
ν = 10 37.5 65.9 59.6 67.7 52.8 56.1 37.8 45.2
ν = 5 37.0 65.4 59.3 67.2 52.6 55.9 37.4 44.5
ν = 2.5 36.7 64.6 58.6 66.1 52.5 54.9 37.1 43.8

Comparing β-VAE and t3VAE. For more accurate comparisons between β-VAE and t3VAE in
CelebA generation, we vary β within a range from 0.001 to 1. We again note that the performance of
t3VAE is not sensitive to ν, so no fine-tuning is required. Figure C2 shows that β-VAE performs best
when β is set to 0.05 and becomes less effective as β deviates further from 0.05.

This aspect is also considered in the reconstruction experiment design. If β is set to ever smaller
values, the reconstruction results may appear to improve over other models. However, this is because
β-VAE essentially regresses to a raw autoencoder as β → 0, so that while reconstruction performance
can be improved, generation performance will simultaneously deteriorate. We therefore do not tune
for extremely small values of β.

26



Published as a conference paper at ICLR 2024

Table C4: FID scores (Total data and lower 10% of tailed class) on CIFAR100-LT with varying
imbalance factor ρ.

Framework Parameter ρ = 1 ρ = 10 ρ = 50 ρ = 100

Total Rare Total Rare Total Rare Total Rare

t3VAE

ν = 2.1 100.0 142.2 101.2 146.2 123.5 166.2 130.2 170.8
ν = 2.5 98.5 140.9 100.4 144.8 128.5 170.7 130.0 172.1
ν = 5 100.2 141.8 103.8 147.7 126.8 171.3 131.0 173.7
ν = 10 97.5 140.9 102.8 147.6 128.5 170.8 128.7 170.9

VAE κ = 1 256.1 305.7 267.2 315.5 277.4 332.7 287.3 342.3
κ = 1.5 274.2 298.9 290.5 313.1 296.7 318.9 297.7 319.6

β-VAE
β = 0.5 179.5 210.2 198.2 230.8 214.6 245.8 223.7 252.9
β = 0.25 142.1 178.0 160.0 197.7 169.2 204.5 182.5 217.5
β = 0.1 114.0 154.7 130.4 170.8 138.5 178.4 160.6 199.0

Student-t VAE – 259.5 315.8 314.1 353.1 323.7 364.1 333.4 374.3

DE-VAE

ν = 2.1 230.4 258.5 250.0 280.0 255.0 282.7 254.4 285.6
ν = 2.5 219.4 250.0 250.2 281.6 256.7 285.1 258.5 303.2
ν = 5 232.6 260.9 252.9 284.6 252.0 281.3 269.7 306.7
ν = 10 230.9 262.0 250.5 278.0 258.0 283.6 272.4 303.5

Tilted VAE

τ = 20 113.8 154.1 131.2 172.6 149.6 189.5 181.8 221.8
τ = 30 104.4 146.1 124.1 166.5 143.3 184.5 179.1 220.6
τ = 40 101.0 142.5 123.9 167.4 179.1 220.6 172.4 223.6
τ = 50 101.0 142.8 126.1 168.4 147.0 187.8 193.2 229.7

FactorVAE

γtc = 20 238.8 266.2 277.6 322.8 273.8 301.8 269.1 297.8
γtc = 10 240.4 268.6 273.5 324.3 270.5 298.1 270.2 298.2
γtc = 5 232.3 263.3 272.5 323.6 275.6 306.3 270.1 296.7
γtc = 2.5 236.0 264.4 275.7 328.9 269.2 298.2 269.8 297.8

Figure C2: Generation FID scores against
β values for β-VAE.

Framework Parameter FID Framework Parameter FID

t3VAE

ν = 10 50.6

DE-VAE

ν = 10 62.8
ν = 5 50.9 ν = 5 61.6
ν = 2.5 50.6 ν = 2.5 58.9
ν = 2.1 50.7 ν = 2.1 60.4

β-VAE

β = 0.5 57.8

Tilted VAE

τ = 20 58.4
β = 0.25 54.7 τ = 30 59.2
β = 0.1 52.4 τ = 40 60.8
β = 0.05 51.8 τ = 50 61.1

VAE κ = 1 79.6

FactorVAE

γtc = 2.5 67.1
κ = 1.5 64.7 γtc = 5 68.0

Student-t VAE – 82.3
γtc = 10 73.1
γtc = 20 78.6

Table C5: CelebA FID scores for overall classes with
varying hyperparameters for each model.
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