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ABSTRACT

In deep learning, stochastic gradient descent (SGD) finds many minima that are
functionally similar but divergent in parameter space, and connecting the two SGD
solutions will depict a loss landscape called linear mode connectivity (LMC), where
barriers usually exist. Improving LMC plays an important role in model ensemble,
model fusion, and federated learning. Previous works of re-basin map different
solutions into the same basin to reduce the barriers in LMC, using permutation
symmetry. It is found that the re-basin methods work poorly in early training and
emerge to improve LMC after several epochs. Also, the performances of re-basins
are usually suboptimal that they can find permutations to reduce the barrier but
cannot eliminate it (or the reduction is marginal). However, there is no unified
theory on when and why re-basins will improve LMC above chance, and unveiling
the behind mechanism is fundamental to improving re-basin approaches and further
understanding the loss landscape and training dynamics of deep learning. Therefore,
in this paper, we propose a theory from the neuron distribution perspective to
demystify the mechanism behind the LMC of re-basin. In our theory, we use
Shannon entropy to depict the uniformity of neuron distributions and derive that
non-uniformity (entropy decrease) will result in better LMC after re-basin. In
accordance with our theory, we present the following observations, all of which
can be aptly explained by our theory. i) The LMC of re-basin changes in various
non-uniform initializations. ii) The re-basin’s LMC improvement emerges after
training due to the neuron distribution change. iii) The LMC of re-basin changes
when pruning with different pruning ratios. Building upon these findings, we
further showcase how to apply our theory to refine the performances of other
neuron alignment methods beyond re-basin, e.g., OTFusion and FedMA.

1 INTRODUCTION

Optimization in deep learning is a non-convex problem in high-dimensional space due to its numerous
number of parameters and non-linearity of activations. The effectiveness of stochastic gradient
descent (SGD) algorithms in deep learning is still an open problem since SGD always robustly
finds minima with generalization, but what are all the minima and how are they connected are
mysterious (Ainsworth et al., 2022; Vlaar & Frankle, 2022; Lucas et al., 2021).
Visualizing and understanding the loss landscapes of deep neural networks is helpful for demysti-
fying the mechanisms of the SGD process and solutions in deep learning (Li et al., 2018; Nguyen,
2019; Fort & Jastrzebski, 2019). Linear mode connectivity (LMC) depicts the loss landscape of
linearly connecting two independent SGD solutions, and it is intriguing to see there usually exist
barriers in LMC (Entezari et al., 2021), indicating the two SGD solutions fall into two different loss
basins (Ainsworth et al., 2022). LMC plays a significant role in federated learning (Wang et al.,
2020b; Li et al., 2020) and fusion-based model ensemble method (Singh & Jaggi, 2020), because
they require linear fusion of multiple models, and if the models are not connected in the landscape,
the fused model will settle into the bad loss area with poor generalization.
Recent advances conjecture that by taking permutation symmetry (also known as permutation
invariance) into account, two SGD solutions can be mapped into the same loss basin (Entezari
et al., 2021; Ainsworth et al., 2022), therefore improving LMC and model fusion (Peña et al., 2023;
Zhou et al., 2023), and these methods are called “re-basin” (Ainsworth et al., 2022). The re-basin
empirically sheds light on the potential of post-matching in improving LMC. However, there is no
unified theoretical explanation about how the LMC improvement in re-basin emerges and in which

1



Under review as a conference paper at ICLR 2024

cases, re-basin can be better above chance. Specifically, the mechanism of re-basin in LMC poses the
following pressing questions:

1. Why cannot re-basin improve the LMC at initialization and early training (Ainsworth et al., 2022)?
2. What affects re-basin’s LMC after training?
3. In this paper, we observe that pruning can improve re-basin’s LMC, but what is the mechanism?

Intuitively speaking, training renders the model increasingly deterministic, making neuron distribu-
tions gather around minima and become non-uniform, while pruning restricts parameter distribution
to only certain positions, causing non-uniformity as well. The non-uniform neuron distribution may
make the re-basin easier. Therefore, we present the following conjecture to explain and understand
re-basin’s LMC:

Our Conjecture (informal): Increasing non-uniformity in neuron parameter distribution leads to
the enhancement in linear mode connectivity after applying re-basin.

Figure 1: How increasing the non-uniformity of neuron parameters can enhance re-basin’s
linear mode connectivity. The shadow areas represent possible distribution of parameters after
training. The higher the non-uniformity of neuron parameters, the narrower the region where the
parameters are most likely distributed. Such non-uniformity facilitates easier matching between
parameters, and consequently, after the re-basin process, the linear mode connectivity between models
is enhanced.

The intuition of our conjecture is shown in Figure 1. In this paper, we provide a formal definition of
neuron distribution non-uniformity and discuss its relationship with re-basin’s LMC, both theoretically
and empirically. We validate our conjecture and explore its practical implications for model fusion.
In summary, the main contributions of this paper are as follows:

1. We first introduce a theoretical framework based on neuron distribution non-uniformity to
analyze the LMC of re-basin. We use Shannon entropy to depict the uniformity of neuron
distributions and derive that non-uniformity (entropy decrease) will result in better LMC
after re-basin.

2. Empirically, our theory is justified under three distinct scenarios: i) under different non-
uniform initializations; ii) before and after training; and iii) pruning. We discover and
highlight that pruning can enhance the effects of re-basin.

3. By applying our theory and findings to other neuron alignment techniques, such as OTFusion
(Singh & Jaggi, 2020) and FedMA (Wang et al., 2020b), we improve the accuracy of the
fused models, which showcases the prospects of our theory.

2 BACKGROUND

In this section, we provide the basic backgrounds and definitions regarding linear mode connectiv-
ity, neuron distribution entropy, and the re-basin algorithm in Ainsworth et al. (2022) for finding
permutation symmetry to improve LMC.

2.1 DEFINITIONS

Let N be the number of training samples, X = [x1, ...,xN ]T ∈ RN×din and [y1, ...,yn]
T ∈ RN×dout

be inputs and labels of training dataset respectively with xi ∈ Rdin and yi ∈ Rdout . Let fθ(x)
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be a function represented by a neural network with parameter vector θ ∈ RM which includes
all parameters of the the neural network and L(fθ(X),Y) be the convex loss function measures
the difference between the neural network’s predictions and the labels of dataset {X,Y}. Let
L(θ) = L(fθ(X),Y) as a function of parameter vector θ on space RM for fixed dataset. We aim to
explore the re-basin process, which finds permutation symmetry to improve the linear connectivity of
two parameters θ1 and θ2. The linear connectivity is depicted by the barrier in the loss landscape
between θ1 and θ2 along a linear path, defined as follows.

Definition 2.1 (Loss barrier (Entezari et al., 2021)) Given two parameters θ1,θ2, the loss barrier
B(θ1,θ2) is defined as the highest difference between the loss occurred when linearly connecting
two parameters θ1,θ2 and linear interpolation of the loss values at both of them:

B(θ1,θ2) = | sup
α

[L(αθ1 + (1− α)θ2)]− αL(θ1)− (1− α)L(θ2)|. (1)

In this work, we mainly use the neural distribution entropy in each layer to study the LMC of re-basin.
Here, we provide the formal definition of non-uniformity using the neural distribution entropy.

Definition 2.2 Neuron Distribution Entropy Consider an arbitrary network fθ(x) and an arbitrary
layer i of network fθ(x). If neurons in layer i all follows the probability distribution w ∼ P , then the
neuron distribution entropy of layer i is defined as the discrete estimation Shannon entropy H∆(P )
of the probability distribution.

Remark 2.3 H∆(P ) means discretizing each 1-dimensional continuous random variable component
into 2N intervals and calculating discrete entropy. For smooth distributions, its relationship with
continuous entropy H(P ) = −

∫
Rd p(x) log p(x)dx is H∆(P ) = d ·∆ +H(P ) for d-dimension

random vector, while for discrete distributions with defined values, its value is H∆(P ). Here d is the
dimension of w and ∆ is the length of the discrete interval. The reason for employing this discrete
estimation of Shannon entropy can be found in Appendix B. In this paper, we also define H̃ = H

d as
the average entropy for each element of a neuron. And for continuous distribution, we sometimes use
continuous entropy H for simplicity, because the difference between H and H∆ is a constant ∆

In the subsequent sections, for simplicity and without losing generality, we primarily use multi-layer
fully connected neural networks for theoretical study. Here we provide a formal definition of an L-
layer fully connected neural network. Let ni be the number of neurons at layer i and Wi ∈ Rni×ni−1

and bi ∈ Rni be the weight matrix and biases at layer i respectively, where nL = dout and n0 = din.
Let σ : R→ R be a continuous activation function following Lipschitz assumption, which is applied
to vector or matrix element-wise. Each layer is represented by a function f i

(Wi,bi)
and the output zi

of the i-th layer is called the activations of the i-th layer, where zi+1 = f i
(Wi,bi)

(zi). The neural
network can be represented recursively as

y = fL
(WL,bL)(zL−1) = WLzL−1,

zi+1 = fL
(Wi+1,bi+1)

(zi) = σ(Wi+1zi + bi+1), 0 < i < L,

. . . ,

z1 = fL
(W1,b1)

(x) = σ(W1x+ b1).

(2)

For the analysis in the following sections, we ignore the biases bi for simplicity, as it can be added to
the weight matrix Wi through small adjustment.

2.2 PRELIMINARY OF GIT RE-BASIN

For two arbitrary solutions θ1,θ2 found by SGD, there is almost no linear connectivity between
them (Draxler et al., 2018; Garipov et al., 2018), while Ainsworth et al. (2022); Entezari et al.
(2021) demonstrate by applying a layer-wise permutation π to the parameter θ1 and leveraging the
permutation invariance of neural network, it induces linear connectivity between the parameters
θ2 and the equivalent parameter π(θ1) in practice. Here "equivalent" means that for any input x,
the output fπ(θ1)(x) and fθ1

(x) are equal. It is indicated that the permutation invariance of fully
connected networks and that of the other kinds (e.g., convolutions) are similar (Ainsworth et al.,
2022). Permutation invariance is shown by applying arbitrary permutation matrix Pi ∈ Rni×ni to the
weight matrix Wi,Wi+1 of i-th layer and i+ 1-th layer, the new neural network with new weight
matrices W ′

i = PiWi,W
′
i+1 = Wi+1P

T
i is equivalent to the original neural network such that

W ′
i+1z

′
i = Wi+1P

T
i z′

i = Wi+1P
T
i σ(PiWizi−1) = Wi+1σ(Wizi−1) = Wi+1zi. (3)
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After applying a layer-wise permutation π = (P1, ...,PL−1) and repeating the above process, the
permuted neural network have parameter π(θ) = (P1W1,P2W2P

T
1 , ...,WLP

T
L−1).

Finding the optimal permutation π that minimizes the loss barrier B(π(θ1),θ2) is NP-hard, while the
prior work Ainsworth et al. (2022) summarizes three effective methods for searching for the optimal
permutations and these methods are called "re-basin". We primarily employ the weight matching
method as the studied re-basin method, as it aligns closely with our theoretical analysis and it has
broad applications. The weight matching method is shown in subsection A.2 and the objective of
the weight matching method is to find permutation solving problem minπ ||π(θ1) − θ2||2, which
promotes LMC under the assumption that "two neurons are associated when they have close values"
(Ainsworth et al., 2022). In our analysis, we will also show this assumption is meaningful.

3 THEORETICAL RESULTS

In this subsection, we introduce a theoretical framework for analyzing multi-layer fully connected
networks and relate the LMC of re-basin to the random Euclidean matching problems (Theorem 3.1).
Using bounds (Theorem 3.2) from the random Euclidean matching problems (Goldman & Trevisan,
2022; Ambrosio & Glaudo, 2019; Goldman & Trevisan, 2021), we demonstrate the correlation
between LMC and the entropy of neuron distribution (Theorem 3.3), which serves as the foundation
for our subsequent analysis of the role of the neuron distribution entropy in the LMC of re-basin.

Theorem 3.1 (Relation between Random Matching Problem and Linear Mode Connectivity )
If each row w

(i)
j,: of the weight matrix Wi of layer i follows distribution Rni−1 ∋ w =

(w1, ...,wni−1
) ∼ P i.i.d. with bi

∆
=

√∑ni−1

j=1 V ar(wj), and the input of the neural network x is

bounded ||x||2 < bx, then for any δ > 0, with probability 1− δ,

sup
α∈[0,1]

|fαθ1+(1−α)θ2
(x)− αfθ1

(x)− (1− α)fθ2(x)| ≤ BL−1bx. (4)

And BL−1 is bounded by the following recursive equations

Bi+1 = Õ(n
1
2
i+1bi+1(Bi +Di−1));

Di = Õ(n
1
2
i+1bi+1Di−1 +DE(W

(1)
i+1,W

(2)
i+1)Π

i
j=1n

1
2
j bjbx);

B1 = 0, D0 = Õ(DE(W
(1)
1 ,W

(2)
1 )bx);

(5)

where DE(W
(1)
i ,W

(2)
i ) = E

W
(1)
i ,W

(2)
i

minP∈Sni
||PW1 −W2||2 as the expectation of minimum

distance after permutation and Sni is the set of permutation matrices with size ni × ni. The proof
can be found in subsection D.1

Although the form of this theorem is relatively complex, it indeed has a theoretical value which we
will show in Appendix C with examples. In Appendix C, some propositions related to LMC are
deduced by Theorem 3.1, including an extended result of the Theorem 3.1 in Entezari et al. (2021).

Lemma 3.2 (Relation between Neuron Distribution Entropy and A Bound of Random Matching)
Consider matrices W1,W2 ∈ Rn1×n2 whose rows are i.i.d. random vector of arbitrary Hölder
continuous probability density ρ on a bounded open set Ω, for large n2 > 2, the bound for

D(W1,W2) becomes D(W1,W2) ≤ cδn
1
2−

2
n2

1 ecH̃(ρ) with probability 1− δ and constant c. The
proof can be found in subsection D.2

Theorem 3.1 elucidates the relationship between the random matching problem and LMC, while
Theorem 3.2 demonstrates the relevance of neuron distribution entropy to the bound of the random
matching problem. By combining Theorem 3.2 and Theorem 3.1, we derive the principal theoretical
finding of this paper, which reflects the correlation between neuron distribution entropy and LMC.

Theorem 3.3 (Effect of Neuron Distribution Entropy in Linear Mode Connectivity) The other
conditions are identical to those of Theorem 3.1 and then the bound BL−1bx is
Õ(f(n1, ..., nL−1)maxi e

cH̃(ρi)), where ρi is the probability density of layer i, and f(n1, ..., nL−1)
is a polynomial function of n1, ..., nL−1.

4



Under review as a conference paper at ICLR 2024

This theorem presents the primary finding of this paper, illustrating that the increasing non-uniformity
(which means a reduction of neuron distribution entropy H̃∆(ρ)) within neural networks can reduce
the loss barrier and augment the LMC of re-basin at an exponential rate. The conditions required
to satisfy naturally hold when calculating the LMC of re-basin at initialization time, using common
initialization methods (Glorot & Bengio, 2010; He et al., 2015). If the training process follows the con-
straints A1 ∼ A4 outlined in Mei et al. (2018; 2019), this theorem still holds both during and after the
training process. In addition, our experiments demonstrate that in other cases, the proposition that neu-
ron distribution can enhance the LMC of re-basin also holds true. This conclusion will be further val-
idated through three scenarios in the subsequent section, from which its applications will be derived.

4 ANALYSIS IN PRACTICE

In this section, we will explore the impact of neuron distribution entropy on the LMC of re-basin
in three scenarios, where the neuron distribution entropy and the LMC of re-basin change together.
The following scenarios are validated by our theory: (1) the influence of varying non-uniform
initializations with different entropy on the LMC of re-basin at initialization, (2) the increase in
neuron distribution entropy before and after the training process enhances the LMC of re-basin, and
(3) pruning algorithms enhance the LMC of re-basin. Among them, enhancing non-uniformity before
and after the training process provides an explanation for the phenomenon elucidated in Ainsworth
et al. (2022) that the LMC of re-basin enhances after training, and our finding that pruning algorithms
enhancing the LMC of re-basin of neural networks provides a possible practical application for our
theoretical framework, which leads to the application of our theory in model fusion and federated
learning in section 5.

4.1 NEURON DISTRIBUTION ENTROPY AT INITIALIZATION
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Figure 2: Neuron distribution entropy and LMC of re-basin at
different initialization. Here we use function L = eaH+b to fit the
values of entropy H and loss barrier L. The blue curve in the graph
represents the best-fit line. (30 models are used for statistics)

This scenario is used to val-
idate our theory under the
simplest conditions. We
consider different initializa-
tion distributions for param-
eters, and then randomly se-
lect two parameter points
based on that distribution.
We compute the value of
their loss barrier after the
re-basin process as an in-
dicator of linear mode con-
nectivity. Then we com-
pare the trends of the loss
barrier value and the en-
tropy of the initialization
distribution and validate the
relationship between them.
The following initialization
scheme is primarily used to
lead to different neuron dis-
tribution entropy: compo-
nents of the neurons follow
a normal distribution i.i.d,
and by altering the standard
deviation, we achieve varying degrees of non-uniformity. Here the standard deviation is set to cdσHe,
where σHe is the standard deviation for the initialization in He et al. (2015); and cd, called standard
deviation coefficient, its changes resulting to different entropy. To obviate the influence of the absolute
magnitude of the loss itself, for scheme (1), we normalize the loss barrier by the model’s intrinsic loss,
namely B(θ1,θ2)

(L(θ1)+L(θ2))/2
. After obtaining the data of loss barrier L and neuron distribution entropy H

at initialization, we fit the function L = eaH+b with the data and find that L increases exponentially
with the rise of H , which is consistent with Theorem 3.3. The results are shown in Figure 2.
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4.2 THE CHANGES OF NEURON DISTRIBUTION ENTROPY AFTER TRAINING

Now, we show the decrease in neuron distribution entropy before and after the training process
enhances linear mode connectivity. Take a wide two-layer fully connected network for example.
Initially, the parameter vectors of neurons in the hidden layer are assumed to follow some distribution
ρ0 i.i.d, and after k training steps and assuming conditions A1-A4 in Mei et al. (2018; 2019) hold, these
parameter vector of neurons still follow a distribution ρk i.i.d., which is given by ρk = ρ(

∑k
i=0 si)

and ∂tρ = 2ξ(t)∇θ · (ρt∇θΨλ(θ; ρ)), where sk is the step size at the kth step and see (Mei et al.,
2018; 2019) for definitions of other symbols. Training a neural network is an iterative refinement
process, causing the entropy of ρ to reduce over time when the parameter distribution gradually
converges to the lowest points on the loss surface. According to Theorem 3.3, a decrease in the
entropy H̃(ρ) of ρ will result in a decrease in the bound of the loss barrier. Consequently, the linear
mode connectivity strengthens as training continues.
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Figure 3: Changes in neuron distribution before and after training.
The first layer of a single-input MLP (64 models are used for statistics).

To validate the process
above, we conduct ex-
periments using the First
and Third Degree Polyno-
mial dataset and the single-
input, single-output MLP
with two hidden layers in
Von Oswald et al. (2019);
Peña et al. (2023). Our anal-
ysis focuses on comparing
the distribution of neuron
parameters in the first hid-
den layer, the entropy, and
the loss barrier before and after training. As a result, Figure 3 shows the changes in the distribution
of neuron coefficients in the first layer of the neural network before and after training, which shows
a noticeable reduction in the entropy of the neuron distribution. On the First Degree Polynomial,
the training loss barrier and test loss barrier decrease from 0.1523 and 0.1560 to 0.0460 and 0.0538,
respectively. For the Third Degree Polynomial, these values decrease from 0.1434 for both to 0.0189
and 0.0264, respectively.

4.3 DECREASE OF NEURON DISTRIBUTION ENTROPY WHEN PRUNING

Intuitively speaking, pruning causes certain parameters of neurons to become the value zero, making
the neuron’s values more deterministic, thereby reducing the entropy of the neuron distribution.
Therefore, according to Theorem 3.3, pruning should lead to an enhancement in the network’s linear
mode connectivity after re-basin. The statement of the decline in entropy of the neuron distribution
after pruning can be proved formally by Lemma 4.1. In Lemma 4.1, before pruning, distributions
of the individual neuron components are described by random variables x1, ..., xn and after pruning
with a ratio of r/n, the components of neurons can be described by random variables yr+1, ..., yn
and r zero components, leading to a reduction in the entropy.

Lemma 4.1 Let x1,x2,...,xn be n i.i.d. random variables with continuous cumulative distribution
function F (x) and probability density function f(x). Let xi:n denotes the i-th order statistics of all the
n random variables and yr+1, ..., yn be the order statistics xr+1:n, ..., xn:n without order. Then the
entropy H∆(0, 0, ..., 0, yr+1, ..., yn) is less than H∆(x1, ..., xn), where H∆(0, 0, ..., 0, yr+1, ..., yn)
denotes the approximation discrete entropy of the union distribution of random variables yr+1, ..., yn
and r zero-valued deterministic random variables and H∆(x1, ..., xn) similarly.

Then we empirically validate the conclusion that pruning can enhance the linear mode connectivity
of models. To maintain consistency with Lemma 4.1, we apply a consistent pruning rate using the
local unstructure pruning method across all layers (Li et al., 2016; Han et al., 2015). We employ
three pruning strategies: (1) Only Pruning (pruning applied only after training). (2) Lottery Ticket
Hypothesis (Frankle & Carbin, 2018). (3) Pruning Followed by Fine-tuning. Details of the testing
results of our pruning process are shown in subsection A.3. After pruning, we conduct a re-basin
operation on models, calculate and observe their linear mode connectivity, and find that pruning
increases linear mode connectivity. In our experiments, we train MLP, VGG, and ResNet neural
networks on both MNIST and CIFAR-10 datasets. In our preliminary experiments, we prune the
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Table 1: Barrier loss comparison with re-basin and our pruning method under different tasks.
Linear mode connectivity of re-basin is enhanced after pruning.

Stage Method VGG16
CIFAR-10

VGG16
MNIST

ResNet20
CIFAR-10

ResNet20
CIFAR-100

MLP
CIFAR-10

Train Re-basin 0.4734 1.7772 0.4326 2.1639 0.1925
Ours 0.3657 1.2591 0.4154 1.6108 0.1552

Test Re-basin 0.3205 1.7446 0.2464 1.6172 0.1048
Ours 0.2841 1.2326 0.2294 1.2239 0.0732
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Figure 4: The loss and accuracy landscape after re-basin for MLP, VGG16, ResNet20 on
different Dataset. Linear mode connectivity is enhanced after our pruning strategy. More results are
shown in subsection A.4.

models with varying pruning rates and compare the results between the linear mode connectivity of
the pruned models and the linear mode connectivity of their non-pruned counterparts after re-basin.
It is found that the pruning strategies Pruning Followed by Fine-tuning can lead to the best linear
mode connectivity and we take it as our pruning+re-basin method. The results of our pruning+re-basin
method can be found in Figure 4 and Table 1. It can be observed that pruning leads to a significant
reduction in the loss barrier, indicating an enhancement in linear mode connectivity. The results of
Only Pruning and Lottery Ticket Hypothesis and discussion of the reasons for their failure are
shown in subsection A.3.
We also observe that during the pruning ratio increases, LMC first increases and then drops Figure 5.
This phenomenon could be explained as follows. At a low pruning rate, even though the model’s
performance decreases after pruning, it can be restored to its original performance through fine-tuning.
At the same time, the neuron distribution entropy is lower, as a result, the loss barrier is reduced, so the
performance of the merged model is better. However, as the pruning rate increases, the performance
loss of the model cannot be restored through fine-tuning, leading to a continuous decline in model
performance.

5 EXPERIMENT AND APPLICATION

In this section, we pull out our conclusion that "pruning can improve linear mode connectivity" to
other neuron alignment methods than weight matching re-basin method by experiments, including
OTFusion (Singh & Jaggi, 2020) and FedMA (Wang et al., 2020b), and show that our conclusion can
be applied to abundant applications, including scenarios with multiple models and heterogeneous data.

Experiments on OTFusion To prove our method transferable, we apply our pruning strategies to
improve the OTFusion method (Singh & Jaggi, 2020). OTFusion develops an optimal-transport-based

7
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Table 2: The accuracy of the fused model after OTFusion with pruning. m: the number of
samples used in OTFusion. The number of models is 2, lr = 0.004 (SGD), batch size = 128/1000 for
VGG and 64/1000 for ResNet. The fine-tuning learning rate is set as 1e-3, and the corresponding
epoch is 30. (Singh & Jaggi, 2020).

Networks Pruning Rate 0%(baseline) 10% 20% 30% 40% 50% 60%

VGG

Simple Pruning 85.44 85.02 85.09 84.99 83.91 / /

Pruning with One-shot Fine-tuning 85.44 86.92 86.44 85.57 84.95 / /

Pruning with Fine-tuning Multiple Times 85.44 86.67 86.21 85.9 85.09 / /

ResNet50/m=100

Simple Pruning 67.19 69.02 68.96 69.02 68.97 68.76 64.39

Pruning with One-shot Fine-tuning 67.19 69.83 70.66 71.44 71.61 71.44 67.05

Pruning with Fine-tuning Multiple Times 67.19 68.66 70.65 71.14 71.93 71.52 66.74

ResNet50/m=200

Simple Pruning 68.8 68.31 69.16 70.13 70.75 / /

Pruning with One-shot Fine-tuning 68.8 68.04 68.06 70.07 69.49 / /

Pruning with Fine-tuning Multiple Times 68.8 68.46 68.58 70.08 69.37 / /
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Figure 5: Changes in loss of the linearly connected model with different pruning rates, compar-
ing re-basin and our pruning+re-basin method.

strategy to achieve neuron alignments for enhancing the ensembling performance. OTFusion aligns
neurons layer by layer and we modify OTFusion by adding pruning operation to each layer before
the neuron alignment occur in that layer.
We test our modified OTFusion-pruning method on the dataset CIFAR-10 with network VGG11 and
ResNet50. For the pruning process in the modified OTFusion-pruning method, we take 3 different
pruning strategies, including (1) Simple Pruning: only implementing local unstructured pruning for
each layer; (2) Pruning with One-Shot Fine-Tuning: fine-tuning the model after pruning for certain
epochs; and (3) Pruning with Fine-Tuning Multiple Times: repeating pruning and fine-tuning for n
times, and each time pruning p

n elements, where p is the whole pruning ratio. In implementation, we
prune each layer before the neuron alignment operation in OTFusion.
In Table 2, it is shown that the modified OTFusion approach with pruning will have enhanced accuracy
of the fused model, which is consistent with our observation in subsection 4.3 that the connectivity of
the re-basin method benefits from pruning.
As an efficient method, our three pruning strategies steadily surpass the baseline with a low pruning
rate. In the Table 2, we notice that fine-tuning strategies (one-shot, multi-times) work better than
simple pruning in VGG and ResNet with m = 100 and they are better than the result of m = 200. In
this format, the accuracy of pruning methods goes through the rise to a peak, then drops down, which
exposes a similar law to our main experiment’s Theorem 4.1 study of effect pruning.

Experiments on FedMA Our pruning+neuron alignment strategy works on the very basic units
(neurons and layers) and ensembling model, the intuition tells us we can use it on federated learning.
FedMA (Wang et al., 2020a) constructs the shared global model in a layer-wise manner by matching
neurons and activations to improve the model aggregation in federated learning. We implement our
pruning+neuron alignment strategy by incorporating pruning before the FedMA process in federated
learning. It is observed that this strategy can promote the global model generalization. Due to the
space limit, we include the results in subsubsection A.1.3.

8
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6 RELATED WORK

(Linear) Mode connectivity Freeman & Bruna (2016); Garipov et al. (2018); Draxler et al. (2018);
Nguyen (2019) demonstrate that after training with the SGD algorithm, any two minima on the loss
surface can be connected by a curve with low loss. This phenomenon is termed "mode connectivity".
However, direct low-loss connections are typically absent. Another study by Entezari et al. (2021)
hypothesizes that due to the permutation invariance of neural networks, the minima found by SGD
could be directly connected by a low-loss line after an appropriate permutation, which is referred
to as "linear mode connectivity", and its experiments provide evidence supporting this hypothesis.
Ainsworth et al. (2022) concludes three neuron alignment methods to identify permutations facilitating
linear mode connectivity between minima, which is termed ’re-basin’. Subsequently, Peña et al. (2023)
extends the Gumbel-Sinkhorn method to achieve a differentiable re-basin for broader applications.
Mode connectivity offers both algorithmic inspiration and theoretical support for a wide range
of applications, including continual learning (Mirzadeh et al., 2020; Lubana et al., 2022), model
ensemble (Benton et al., 2021; Liu et al., 2022), pruning (Frankle et al., 2020), and adversarial
robustness (Zhao et al., 2020). Among them, Frankle et al. (2020) is similar to the application of our
work, but it uses linear mode connectivity as a measure of stability for pruning while our approach
integrates pruning techniques into the re-basin process, enhancing the linear mode connectivity
between minima.

Model Fusion Model fusion is crucial in federated learning since several local models need to be
fused into one global model on the server. Bayesian nonparametric framework (Yurochkin et al.,
2019) is utilized for better neuron alignment in federated learning. FedMA (Wang et al., 2020b)
further extends this Bayesian nonparametric framework by considering permutation invariance and
using a layer-wise manner. Additionally, the method OTFusion (Singh & Jaggi, 2020) utilizing
optimal transport is devised to improve neuron alignment in model fusion, and it can realize one-shot
knowledge transfer. Graph matching is also used in neuron matching for better model fusion (Liu
et al., 2022). In federated learning, ensemble distillation methods (Lin et al., 2020; Chen & Chao,
2021) are proposed to improve the global model after model fusion. Besides, it is found that global
weight shrinking is beneficial to model fusion by setting the sum of fusion weights smaller than
one (Li et al., 2023).

Random Bipartite Matching Problem The Random Bipartite Matching problem primarily exam-
ines statistic information of LMBM , the smallest possible sum of distances between corresponding
vectors from two identically distributed random vector sets, after any possible permutation. Steele
(1981); Boutet de Monvel & Martin (2002); Goldman & Trevisan (2021) provide a formula for the
asymptotic behavior of expectation of LMBM as the number of vector elements increases, along
with concentration inequalities for uniformly distributed random vectors in square region While
Ledoux (2019); Ledoux & Zhu (2019) discuss this phenomenon for standard Gaussian distribution.
Subsequently Ambrosio & Glaudo (2019); Benedetto & Caglioti (2020); Ambrosio et al. (2022)
hypothesize and demonstrate the relationship between LMBM and the volume of the probability
space for random vectors with more general distributions, indicating a potential relationship between
LMBM and characteristics of the distribution. Goldman & Trevisan (2022) details the formula linking
the expectation of LMBM for non-uniformly distributed random variables and the Rényi entropy of
their distribution. In this paper, we bridge linear mode connectivity with the Random Bipartite Match-
ing problem, leveraging conclusions from the latter to unveil the theoretical relationship between
non-uniformity and linear mode connectivity.

7 DISCUSSION AND FUTURE WORK

In this paper, we unveil linear mode connectivity after re-basin through neuron distribution and find
the role of neuron distribution entropy in linear mode connectivity. We present theoretical findings
that establish a relationship between neural distribution entropy and linear model connectivity.
Specifically, we assert that a decrease in neural distribution entropy (or an increase in the non-
uniformity of neural distribution) can enhance linear mode connectivity. We then empirically validate
our theoretical findings across three practical scenarios wherein neural distribution varies, including
differing initializations, before and after training, and before and after pruning. During our validation,
we find that pruning can improve linear mode connectivity after re-basin. We extend this conclusion
to other neuron alignment methods across multiple models and heterogeneous data and improve their
performances, demonstrating the practical implications of our theory.
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Appendix
In this appendix, we provide the details omitted in the main paper and more analyses and discussions.

• Appendix A: implementation details, including experiment setting, weight matching method
of the re-basin method, pruning process, etc.

• Appendix B: some explanations of definitions, experiments,etc.
• Appendix C: some other theoretical results, based on the theoretical analysis in the main

text.
• Appendix D: missing proofs for theorems in the main text

A IMPLEMENTATION DETAILS

A.1 EXPERIMENT SETTING

A.1.1 EXPERIMENT SETTING FOR SUBSECTION 4.1 AND SUBSECTION 4.2
In subsection 4.1 we change the standard deviation by changing standard deviation coefficient cd in
the set of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and sample 60 models by the normal distribution
with standard deviation cdσHe for each layer. We test 4 cases, including MLP on MNIST, VGG16
on MNIST, MLP on CIFAR-10 and VGG16 on CIFAR-10. After sample 60 models, we do re-basin
operation for pairs of mode i and i+ 1, i = 1, ..., 30 and calculate their train loss barrier L. Then
we calculate the neuron distribution entropy of each layer using the entropy calculation formula
H = 1

2 (ln(2π(cdσHe)
2)) + 1 for normal distribution. Actually, the average entropy H̃ of a neuron

is the entropy of its element, for each element is i.i.d. We calculate the maximum value of H̃ of
each layer. After getting the data of neuron distribution entropy and loss barrier, we then fit the data
by function L = eaH+b and this form is predicted by our theory. In Figure 2, we validate that L
increases exponentially with the rise of H .
In subsection 4.2, we use the First Degree Polynomial Task and the Third Degree Polynomial Task in
Von Oswald et al. (2019); Peña et al. (2023). The reason why we use these tasks is that this task is
single-input, and we can easily count the neuron distribution entropy of the first layer, because neurons
in the first layer is 1D random vector. Counting entropy for high-dimension random vector is hard
and it requires too large amount of sampled models for the complete neuron distribution. The first and
third-degree polynomial approximation datasets are TPol1 = {(x, y){y = x+ 3, x ∈ (−4,−2)} and
TPol3 = {(x, y) | y = (x− 3)3, x ∈ (2, 4)}. A small Gaussian noise with distribution N (0, 0.05) is
added to the regression target.

A.1.2 EXPERIMENT SETTING FOR SUBSECTION 4.3

Table 3: Experiments settings for different datasets using different models of subsubsection A.1.2

Model Dataset Epoch Learning Rate Width Multiplier

VGG16 CIFAR-10 100 1e-4 64
MNIST 25 1e-2 64

ResNet20 CIFAR-10 250 1e-1 4
CIFAR-100 250 1e-1 4

MLP CIFAR-10 100 1e-1 /

In this section that details experiments across various models on different datasets, both the combined
pruning and finetuning experiments and the pruning-only experiments maintain consistent experi-
mental settings and hyperparameters. We uniformly employ SGD as the optimizer. The batch size for
finetuning is consistently set at 100. For the ResNet20 model (He et al., 2016), the weight decay is
set to 1e-4. Hyperparameters for finetuning remain consistent with those of training. For detailed
settings and hyperparameters for different tasks, which can refer to Table 3. In the tasks demonstrated
in this table, the pruning rate for MLP on CIFAR-10 (Krizhevsky et al., 2009) is set ranging from 0.1
to 0.6 with an increment of 0.1. For ResNet20 on CIFAR-10, the pruning rate ranges from 0.1 to 0.8
with the same increment, whereas on CIFAR-100 it ranges from 0.1 to 0.7. For VGG16 (Simonyan &
Zisserman, 2014) on the MNIST dataset (LeCun, 1998), the pruning rates are set as [0.02, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6], on the CIFAR-10 dataset the pruning rates are set as [0.05, 0.1,
0.15, 0.2, 0.4, 0.6].
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A.1.3 EXPERIMENT SETTING FOR SECTION 5

Our experiment have additional supplement materials. Our settings for FedMA can be transformed
into the following formula: For the results, we compare to benchmark with prune rate setting 0.1,

Table 4: Experiments settings for FedMA with pruning in section 5, communication round=9, epoch
for each train=20

Model Dataset Epoch Learning Rate Commute round Batch Size
FedMA (with pruning) CIFAR-10 20 1e-1(SGD) 9 20

Table 5: Experimental results for FedMA with pruning in section 5

Model w/o Pruning Pruning Rate 0.1 Pruning Rate 0.3 Pruning Rate 0.5
FedMA (with pruning) 0.8100 0.8142 0.8165 0.8078

0.3, 0.5, and the results can be found in Table 5. The trend of this experiment similar to main pruning
experiment and OTFusion-pruning experiment.

A.2 THE RE-BASIN ALGORITHM, WEIGHT MATCHING

In accordance with the discussion in subsection 2.2, during the re-basing process of weight matching,
for the parameters θ1 = (W

(1)
1 , ...,W

(1)
L ) and θ2 = (W

(2)
1 , ...,W

(2)
L ), a layer-wise permutation

π = (P1, ...,PL−1) is found to apply to θ1, where π(θ1) = (P1W1,P2W2P
T
1 , ...,WLP

T
L−1). π

should achieve the optimal objective of minπ ||π(θ1)− θ2||2. The objective could be transformed
into the following formula:

arg min
π={Pi}

||π(θ1)− θ2||22 = argmax
π

π(θ1) · θ2

= arg max
π={Pi}

⟨W (1)
1 ,P1W

(2)
1 ⟩F + ⟨W (1)

2 ,P2W
(2)
1 P T

1 ⟩F + ....

+ ⟨W (1)
L ,W

(2)
L P T

L−1⟩F ,

(6)

where ⟨A,B⟩F =
∑

i,j Ai,jBi,j denotes the Frobenius inner product matrices A and B. Ainsworth
et al. (2022) solves this optimization problem through an iterative approach, called Permutation
Coordinate Descent. At each iteration, it focuses on a single permutation matrix Pl, which is chosen
randomly, while keeping the other permutation matrices unchanged. This helps the optimization
problem be simplified into a classical Linear Assignment Problem (LAP):

argmax
Pl

⟨W (1)
l ,PlW

(2)
l P T

l−1⟩F + ⟨W (1)
l+1,Pl+1W

(2)
l+1P

T
l ⟩F

= argmax
Pl

⟨Pl,W
(1)
l Pl−1W

(2)
l

T
+W

(1)
l+1

T
Pl+1W

(2)
l+1⟩F

(7)

Consequently, the optimal solution for each iteration can be obtained using LAP-solving techniques
(Kuhn, 1955; Jonker & Volgenant, 1986). The whole process of weight matching is presented in
Algorithm 1.

Algorithm 1 Permutation Coordinate Descent

Initialize: P1 ← I, ...,PL−1 ← I
repeat

for l ∈ RandomPermutation(1, ..., L) do
Pl ← SolveLAP(Pl,W

(1)
l Pl−1W

(2)
l

T
+W

(1)
l+1

T
Pl+1W

(2)
l+1)

end for
until convergence
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A.3 PRUNING PROCESS AND SOME DISCUSSIONS

In our experiments, we use local structure pruning with different pruning rate and have explored three
pruning methods, including:

1. Simple Pruning: After pruning, the pruned models are directly used for weight matching.

2. Lottery Ticket Hypothesis: After pruning the trained model and obtaining mask, the model
is retrained from the initial state applying the mask during training. The resulting winning
ticket is used for weight matching.

3. Pruning Followed by Fine-tuning: After pruning, the model’s performance is improved
to approximately the pre-pruning level using fine-tuning, and then weight matching is
performed for the fine-tuned models.

We found that only the method (3) Pruning Followed by Fine-tuning yielded favorable results, and
the results are presented in section 5. In contrast, the results of method (1) Simple Pruning and (2)
Lottery Ticket Hypothesis are shown in subsection A.3. Here, we provide possible reasons for the
failure of these two methods respectively.

1. Simple Pruning: From Figure 7 and Figure 6, it can be observed that after using (1) Simple
Pruning as the pruning method, the loss barrier between the two models is quite low.
However, due to the loss of model accuracy caused by pruning, their accuracy remains poor
even after model fusion.

2. Lottery Ticket Hypothesis: For Simple Pruning, after using local unstructured pruning,
each neuron within the same layer still follows nearly the same distribution (described
by Yr+1, ..., Yn in Theorem D.1). Then by Theorem 3.3, the connectivity between neural
networks can be maintained. Pruning Followed by Fine-tuning method only fine-tune the
model obtaining from simple pruning, and the neuron distribution it induces is similar to that
caused by simple pruning. While for Lottery Ticket Hypothesis, it retrain from the initial
state, using different fixed masks, and then the neuron of winning tickets don’t follows the
same distribution. Then neuron matching is difficult.(Like the distance between (0,w) and
(w, 0) is always larger that distance between (0,w) and (0,w) in the average sense, where
w is a random variable.). The result is shown in Figure 8.
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Figure 6: Train accuracy and loss of Simple Pruning method.

A.4 MORE RESULTS OF PRUNING FOLLOWED BY FINE-TUNING

We also have more results for Pruning Followed by Fine-tuning method on training and test dataset
of CIFAR-100 with ResNet20 and CIFAR-10 with VGG16 models (Figure 10 and Figure 11). The
corresponding result to Figure 4 on training dataset is in Figure 9
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Figure 7: Test accuracy and loss of Simple Pruning method.
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Figure 8: Accuracy and loss of the Lottery Ticket Hypothesis method

B EXPLANATIONS OF DEFINITION OF NON-UNIFORMITY

There may be 2 doubts regarding neuron distribution entropy:
1. How do we find entropy is related to the linear mode connectivity of neural networks? Why

not other more conventional metrics like standard deviation?
2. Why do we employ discrete estimation Shannon entropy instead of the more conventional

continuous entropy or discrete entropy?
Explanations for these two doubts are provided below.
Explanation 1: For our post-re-basin linear mode connectivity (measure loss barrier after re-basin),
our analysis (Theorem 3.1) shows connection of this post-re-basin linear connectivity with Random
Bipartite Matching problem. In Random Bipartite Matching problem, the characteristic measure of
neuron distribution associated with bounds is entropy(Theorem 3.2).
Explanation 2: The reason for using discrete estimation Shannon entropy is that, when measuring the
distribution of neurons, especially during pruning, we encounter both discrete random variables with
fixed values and continuous random variables. The continuous entropy of discrete random variables
is not meaningful(which is −∞), so in this paper, we discretize continuous probability distributions
and unify the analysis of the two types of random distributions using discrete entropy. For a detailed
discussion, please refer to Chakrabarti et al. (2005); Marsh (2013). Numerically, its effect is to impose
a lower bound on the commonly used continuous entropy, while in terms of information theory, it
compensates for the part log∆ that is omitted during the definition of continuous entropy to give
entropy an absolute measure of information. Discrete estimation Shannon entropy for discrete random
variables is the discrete entropy itself and discrete estimation Shannon entropy for 1D continuous
random variables (high-dimensional continuous random variables are similar) is defined as follows in
details (Chakrabarti et al., 2005; Marsh, 2013):

• Given a continuous random variable w and choose an range L where it is most likely to
occur (Which means that 1− P (L) < ϵ for some small ϵ > 0). Then split the range L into
N bins L1, ...,LN equally with ∆ = |L|

N as the size of each bin.
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• Calculate pi =
∫
Li
p(x)dx, where p is probability density function of random variable w

• Then the discrete estimation Shannon entropy is H∆(p) = −
∑N

i=1 pi log pi

The relationship between discrete estimation Shannon entropy and continuous entropy for continuous
random variable is shown as follow:

H∆(p) = −
N∑
i=1

pi log pi

= −
N∑
i=1

p(xi)∆ log(p(xi)∆)

= −
N∑
i=1

p(xi) log(p(xi))∆ +

N∑
i=1

p(xi)∆ log∆

= −
∫
L
p(x) log(p(x))dx+ log∆

= H(p) + log∆

(8)

where xi is an arbitrary point in the bin Li.
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Figure 9: Trained accuracy and loss corresponding to subsection 4.3.

C OTHER THEORETICAL RESULTS

In the following analysis, we define D(W
(1)
i ,W

(2)
i ) = minP∈Sni

||PW
(1)
i −W

(2)
i ||2 as the

minimum distance after permutation, D(θ1,θ2) = minπ ||π(θ1) − θ2|| as the minimum distance
of all parameter after permutation, D̃E(W

(1)
i ,W

(2)
i ) = E

W
(1)
i ,W

(2)
i
||W1 −W2||2 as the expectation

of distance of W (1)
i and W

(2)
i and the definitions of W (1)

i ,W
(2)
i , and DE(W

(1)
i ,W

(2)
i ) are show in

section 3.

C.1 RE-BASIN METHOD DEDUCE LINEAR MODE CONNECTIVITY

Here we extend the result of

Theorem C.1 (Extension of Theorem 3.1 in Entezari et al. (2021)) When bi ∈
√

1
ni+ni−1

(you
may refer to to the definition of bi in Theorem 3.3), and neural network with wide hidden layers
ni ≫ nin, nout and ni ∼ n, i ̸= 0, L, with probability 1− δ

BL−1 = Õ(n− 1
2 bx) (9)
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Figure 10: Trained accuracy and loss of other finetuning experiments.
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Figure 11: Tested accuracy and loss of other finetuning experiments.
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Thus the loss barrier is bounded by D(W1,W2) = Õ(n− 1
2 b2x), which is an extension of the

conclusion in Entezari et al. (2021) to multi-layer neural networks, and it further improves the order
derived in Entezari et al. (2021).
If remove the re-basin operation and the loss barrier is bounded by Õ(||x||2), which shows that
re-basin deduce linear mode connectivity.

Remark Many commonly used initialization methods satisfy the condition bi ∈
√

1
ni+ni−1

to ensure
that the variance remains unchanged as information passes through each layer (Glorot & Bengio,
2010; He et al., 2015). Therefore, setting this condition is reasonable and does not lead to limitations
in the inference.
For proving Theorem C.1, we need the following Lemma.

Lemma C.2 Consider matrices W1,W2 ∈ Rn1×n2 whose rows are i.i.d. random vector with
uniform distribution in [0, 1]n2 , if n2 > 2, then with probability 1 − δ, there exists a constant cδ

associated with δ such that D(W1,W2) ≤ cδn
1
2−

2
n2

1 . If we do not permute the matrices, then with
1− δ probability the bound for ||W1 −W2||2 become ||W1 −W2||2 ≤ c̃δ

√
n1n2 for a constant c̃δ

associated with δ.

Proof of Theorem C.1 By Lemma C.2, ||W (1)
i −W

(2)
i ||2 = Õ(bin

1
2−

1
ni−1

i ), then we have

B(i+1) = Õ(n
1
2
i+1bi+1(Bi +Di−1))

Di = Õ(n
1
2
i+1bi+1Di−1 + bin

1
2−

1
ni−1

i Πi
j=1n

1
2
j bj ||x||2)

(10)

Under the assumption bi ∼
√

1
ni+ni−1

, for neural network with wide hidden layers, we have:

Di = Õ(Di−1 + n
− 1

ni−1

i ||x||2)

D0 = Õ(n
− 1

n0
1 ||x||2)⇒

Di = Õ(||x||2)

(11)

For Bi we have
BL−1 = Õ(n

− 1
2

L−1(BL−2 +DL−3))

B(i+1) = Õ((Bi +Di−1)), i < L− 2
(12)

Then we have the bound for the neural network with wide hidden layers:

BL−1 = Õ(n− 1
2 ||x||2) (13)

If we remove the re-basin process and the matrices are not permuted, the recursive structure is

B(i+1) = Õ(n
1
2
i+1bi+1(Bi +Di−1))

Di = Õ(n
1
2
i+1bi+1Di−1 + bi

√
nini−1Π

i
j=1n

1
2
j bj ||x||2)

(14)

And repeat the process above, we will have BL−1 = Õ(||x||2)

Proof for Lemma C.2 Here we write the jth row of matrix Wi as w
(i)
j,: and

EW1,W2(minP∈Sn1
||PW1 −W2||22) = E(minπ

∑n1

i=1 ||w
(1)
i,: − w

(2)
i,: ||22), which is the formula

of the random Euclidean matching problemBenedetto & Caglioti (2020). Here π is the permutation

of set {1, ..., n1}. Define Zn1 = n
− 1

2+
1
n2

1 minπ(
∑n1

i=1 ||w
(1)
i,: − w

(2)
π(i),:||

2
2)

1
2 (Boutet de Monvel &

Martin (2002), while they represent Zn in the form of the Wasserstein distance.) The Theorem 1.1 in
Boutet de Monvel & Martin (2002) proves that

lim
n1→∞

E(Z2
n1
) = c, lim

n1→∞
E(Zn1

) = c
1
2 (15)
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where c is a constant. Then ignoring lower-order small terms, it holds that for large n1

E(Z2
n1
) ≈ c, E(Zn1) ≈ c

1
2 (16)

For r > 0, the following concentration inequality holds

P (|Zn1
− E[Zn1

]| ≥ r) ≤ 2 exp(−cr2n
1− 2

n2
1 ) (17)

Then for D(W1,W2) = minP∈Sn1
||PW1 −W2||2, we have inequality

P (|n
− 1

2+
1
n2

1 D(W1,W2)− E[Zn1
]| ≥ r) ≤ 2 exp(−c2r2n

1− 2
n2

1 ) (18)

Thus with probability 1− δ, we have

n
− 1

2+
1
n2

1 D(W1,W2) ≤
n

1
n2

− 1
2

1√
c2

ln
1
2
2

δ
+ c

1
2
1

(19)

Then we have the bound for D(W1,W2) as

D(W1,W2) ≤ cδn
1
2−

1
n2

1
(20)

for some constant cδ associated with δ. Then we calculate the bound of ||W1 −W2||2. For w(1)
j,: ,

w
(2)
j,: are i.i.d, then E(||W1 −W2||22) = n1E(||w(1)

0,: −w
(2)
0,: ||22), and E(||w(1)

0,: −w
(2)
0,: ||22) can be

calculated as

E(||w(1)
0,: −w

(2)
0,: ||22) = E(

n2∑
j=1

(w
(1)
0,j −w

(2)
0,j )

2)

=

n2∑
j=1

E((w
(1)
0,j −w

(2)
0,j )

2)

= c3n2

(21)

Where c3 = Ex,y∼U([0,1]),i.i.d((x − y)2) is constant. Thus E(||W1 −W2||22) = c3n1n2. By the
concentration inequality, we have

P (||W1 −W2||22 − E(||W1 −W2||22)|| ≥ t) ≤ 2e
−2t2

n1n2 (22)

Then with probability 1− δ, we have

||W1 −W2||22 ≤ E(||W1 −W2||22) +
√

n1n2

2
ln

2

δ

≤ c3n1n2 +

√
n1n2

2
ln

2

δ

(23)

So there exist constant c̃δ associated with δ such that ||W1 −W2||2 ≤ c̃δ
√
n1n2, with probability

1− δ.

D MISSING PROOFS

Some definition of symbols can be found in Appendix C.

D.1 MISSING PROOF FOR THEOREM 3.1
Theorem 3.1 If each row w

(i)
j,: of the weight matrix Wi of layer i follows distribution Rni−1 ∋

w = (w1, ...,wni−1) ∼ P i.i.d. with bi
∆
=

√∑ni−1

j=1 V ar(wj), and the input of the neural network x

is bounded ||x||2 < bx, then for any δ > 0, with probability 1− δ,
sup

α∈[0,1]

|fαθ1+(1−α)θ2
(x)− αfθ1(x)− (1− α)fθ2(x)| ≤ BL−1bx (24)

And BL−1 is bounded by the following recursive equations

Bi+1 = Õ(n
1
2
i+1bi+1(Bi +Di−1)

Di = Õ(n
1
2
i+1bi+1Di−1 +DE(W

(1)
i+1,W

(2)
i+1)Π

i
j=1n

1
2
j bjbx)

B1 = 0, D0 = Õ(DE(W
(1)
1 ,W

(2)
1 )bx)

(25)

where DE(W
(1)
i ,W

(2)
i ) = E

W
(1)
i ,W

(2)
i

minP∈Sni
||PW1 −W2||2 as the expectation of minimum

distance after permutation and Sni is the set of permutation matrices with size ni × ni.
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Proof For L-layer fully connected neural network fθ(x) with parameter θ = (W1, ...,WL), we
define the function represented by the first i layer as f

(i)

Wj |ij=1
(x) = f

(i)
Wi

(...f
(1)
W1

(x)) and for two

neural networks with parameters θ1 = (W
(1)
1 , ..., ) and θ2 = (W

(1)
1 , ..., ) we define the first i+ 1

layer difference (with parameter α)as

B(i+1) = sup
α

B(i+1)
α

= sup
α
||(αW (1)

i+1 + (1− α)W
(2)
i+1)f

(i)

αW
(1)
j +(1−α)W

(2)
j |ij=1

(x)−

αW
(1)
i+1f

(i)

W
(1)
j |ij=1

(x)− (1− α)W
(2)
i+1f

(i)

W
(2)
j |ij=1

(x)||2

(26)

Then we begin to calculate the bound B
(i+1)
α as

B(i+1)
α = ||(αW (1)

i+1 + (1− α)W
(2)
i+1)σ((αW

(1)
j + (1− α)W

(2)
j )f

(i−1)

αW
(1)
j +(1−α)W

(2)
j |i−1

j=1

(x))−

αW
(1)
i+1σ(W

(1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x))− (1− α)W
(2)
i+1σ(W

(2)
i f

(i−1)

W
(2)
j |i−1

j=1

(x))||2

≤ ||αW (1)
i+1||2||σ((αW

(1)
i + (1− α)W

(2)
i )f

(i−1)

αW
(1)
j +(1−α)W

(2)
j |i−1

j=1

(x))−

σ(W
(1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x))||2+

||(1− α)W
(2)
i+1||2||σ((αW

(1)
i + (1− α)W

(2)
i )f

(i−1)

αW
(1)
j +(1−α)W

(2)
j |i−1

j=1

(x))−

σ(W
(2)
i f

(i−1)

W
(2)
j |i−1

j=1

(x))||2
(27)

The Hoeffding’s inequality tells that for a random vector v ∈ Rd and if elements of v are independent
and with 0 mean value and bound [−b1, b1], ..., [−bd, bd] respectively, then for a coefficient vector
r ∈ Rd it holds

P (|vr| ≥ t) ≤ 2e
−dt2

2||r||22
∑d

i=1
b2
i

(28)

Then with probability 1− kδ, we have

|vr| < ||r||2

√
2
∑d

i=1 b
2
i ln2k/δ

d
(29)

Apply the inequation above for random matrix Wi ∈ Rni×ni−1 , with initialization that
∑d

j=1 b2j,i
ni−1

=

b2i , with probability 1-kδ, we have(here using inequation above for ni times and using the union
bound):

||Wir||2 < ||r||2

√
2nib2i ln

2kni

δ
(30)

Then calculate B
(i+1)
α , with the Lipschitz assumption of activate function σ

B(i+1)
α ≤

√
2ni+1b2i+1ln

2kni+1

δ
{α||(αW (1)

i + (1− α)W
(2)
i )f

(i−1)

αW
(1)
j +(1−α)W

(2)
j |i−1

j=1

(x)−

W
(1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x)||2+

(1− α)(αW
(1)
i + (1− α)W

(2)
i )f

(i−1)

αW
(1)
j +(1−α)W

(2)
j |i−1

j=1

(x)−W
(2)
i f

(i−1)

W
(2)
j |i−1

j=1

(x)||2}
(31)
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We first compute the first term on the right-hand side of the inequality above

||(αW (1)
i + (1− α)W

(2)
i )f

(i−1)

αW
(1)
j +(1−α)W

(2)
j |i−1

j=1

(x)−W
(1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x)||2

≤ ||(αW (1)
i + (1− α)W

(2)
i )f

(i−1)

αW
(1)
j +(1−α)W

(2)
j |i−1

j=1

(x)

− αW
(1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x)− (1− α)W
(2)
i f

(i−1)

W
(2)
j |i−1

j=1

(x)||2+

(1− α)||W (1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x)−W
(2)
i f

(i−1)

W
(2)
j |i−1

j=1

(x)||2

= Bi + (1− α)Di−1

(32)

Here we define Di = ||W (1)
i+1f

(i)

W
(1)
j |ij=1

(x) −W
(2)
i+1f

(i)

W
(2)
j |ij=1

(x)||2, and Di have the following

inequality

Di = ||W (1)
i+1f

(i)

W
(1)
j |ij=1

(x)−W
(2)
i+1f

(i)

W
(2)
j |ij=1

(x)||2

≤ ||W (1)
i+1f

(i)

W
(1)
j |ij=1

(x)−W
(2)
i+1f

(i)

W
(1)
j |ij=1

(x)||+ ||W (2)
i+1f

(i)

W
(1)
j |ij=1

(x)−W
(2)
i+1f

(i)

W
(2)
j |ij=1

(x)||2

≤ ||(W (1)
i+1 −W

(2)
i+1)f

(i)

W
(1)
j |ij=1

(x)||2 + ||W (2)
i+1(f

(i)

W
(1)
j |ij=1

(x)− f
(i)

W
(2)
j |ij=1

(x))||2

≤ ||(W (1)
i+1 −W

(2)
i+1)f

(i)

W
(1)
j |ij=1

(x)||2 + ||f (i)

W
(1)
j |ij=1

(x)− f
(i)

W
(2)
j |ij=1

(x))||2

≤
√
2ni+1b2i+1ln

2kni+1

δ
Di−1 + ||(W (1)

i+1 −W
(2)
i+1)f

(i)

W
(1)
j |ij=1

(x)||2
(33)

For ||f (i)

W
(1)
j |ij=1

(x)||2 = ||σ(W (1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x))||2 ≤ ||W (1)
i f

(i−1)

W
(1)
j |i−1

j=1

(x)||2 =√
2nib2i ln

2kni

δ ||f
(i−1)

W
(1)
j |i−1

j=1

(x)||2, then we have

||f (i)

W
(1)
j |ij=1

(x)||2 ≤ Πi
j=1

√
2njb2j ln

2knj

δ
||x||2 (34)

After summarizing the discussion above, and ignore the lower-order term log ni(in subsequent
analysis, it can indeed be found that log ni is a lower-order term).

B(i+1) ≤
√
2ni+1b2i+1 ln

2kni+1

δ
(Bi + 2α(1− α)Di−1) = Õ(n

1
2
i+1bi+1(Bi +Di−1))

Di = Õ(n
1
2
i+1bi+1Di−1 +Πi

j=1n
1
2
j bj ||x||2||W

(1)
i+1 −W

(2)
i+1||2)

(35)

with initial value D0 = Õ(||W (1)
1 −W

(2)
1 ||2||x||2) and B1 = 0. The discussion above have not

consider the optimal permutation, and add the optimal permutation π, the recursive structure for
bound can be expressed as:

B(i+1) ≤
√
2ni+1b2i+1 ln

2kni+1

δ
(Bi + 2α(1− α)Di−1) = Õ(n

1
2
i+1bi+1(Bi +Di−1))

Di = Õ(n
1
2
i+1bi+1Di−1 +DE(W

(1)
i+1,W

(2)
i+1)Π

i
j=1n

1
2
j bjbx)

(36)

D.2 MISSING PROOF FOR LEMMA 3.2

Lemma 3.2 Consider matrices W1,W2 ∈ Rn1×n2 whose rows are i.i.d. random vector of arbitrary
Hölder continuous probability density ρ on a bounded open set Ω, for large n2 > 2, the bound for

D(W1,W2) becomes D(W1,W2) ≤ cδn
1
2−

2
n2

1 ecH̃(ρ) with probability 1− δ and constant c.

Proof for Lemma 3.2 Before reading this proof, we recommend readers reading Lemma C.2 and
its proof first. By Benedetto & Caglioti (2020); Ambrosio et al. (2022); Goldman & Trevisan (2022),
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it shows that equation Equation 15 holds even when vectors w(1)
i,: ,w

(2)
i,: are not uniformly distributed

but rather distributed in a bounded open set Ω with a Hölder continuous probability density ρ, and
the limit value is related to the non-uniformity of distribution ρ:

lim
n1→∞

supZ2
n1
≤ c

∫
Ω

ρ1−
2
n2 (37)

which is P-a.s. holds. Combined with the discussion in Lemma C.2, it holds that D(W1,W2) ≤
cδ

√∫
Ω
ρ1−

2
n2 n

1
2−

2
n2

1 . Note that for any continuous distribution ρ, the Rényi entropy is defined
as Rα(ρ) =

1
1−α ln(

∫
Ω
ρα) and when α → 1, Rényi entropy converges to Shannon entropy H(ρ).

Thus the bound of D(W1,W2) can be represented as D(W1,W2) ≤ cδn
1
2−

2
n2

1 e
2
n2

Rα(ρ), where

α = 1− 2
n2

and when n2 is large, D(W1,W2) ≤ cδn
1
2−

2
n2

1 e
1
n2

H(ρ) = cδn
1
2−

2
n2

1 eH̃(ρ) holds.

D.3 PROOF OF LEMMA 4.1

Lemma D.1 Let x1,x2,...,xn be n i.i.d. random variables with continuous cumulative distribution
function F (x) and probability density function f(x). Let xi:n denotes the ith order statistics of all the
n random variables and yr+1, ..., yn be the order statistics xr+1:n, ..., xn:n without order. Then the
entropy H∆(0, 0, ..., 0, yr+1, ..., yn) is less than H∆(x1, ..., xn), where H∆(0, 0, ..., 0, yr+1, ..., yn)
denotes the approximation discrete entropy of the union distribution of random variables yr+1, ..., yn
and r zero-valued deterministic random variables and H∆(x1, ..., xn) similarly.

Proof We first calculate the continuous entropy H(yr+1, ..., yn) and H(x1, ..., xn) and use the
relation between continuous entropy H and approximated discrete entropy H∆ to calculate the
approximated discrete H∆(0, 0, ..., yr+1, ..., yn) and H∆(x1, ..., xn).
Let x′i = −xi with cumulative distribution function F ′(x) = 1 − F (−x) and probability density
function f ′(x) = f(−x) and x′i:n denotes the ith order statistics of x′

i. Then the joint entropy of
xr+1:n, ..., xn:n is equal to the joint entropy of the first s = n − r order statistics of x′

i, which is
denoted as H ′

1...s;n for simplicity. Park (2005) gives the formula of H ′
1...s;n

H ′
1...s;n = s− log(

n!

s!
)− n

∫ ∞

−∞
(1− F ′

s:n−1(x))f
′(x)logh′(x)dx (38)

where F ′
s:n−1(x) denotes the cumulative distribution function of the rth order statics among n− 1

random variable and h′(x) is the hazard function defined as h′(x) = f ′(x)/(1 − F ′(x)). After
adding entropy decreases from the order information (Wong & Chen, 1990), H(yr+1, ..., yn) =
log s! +H ′

1...s;n. We expand H(yr+1, ..., yn) as

H(yr+1, ..., yn)

= H ′
1...s;n + log s!

= s− log(n!)− n

∫ ∞

−∞
(1− F ′

s:n−1(x))f
′(x) log h′(x)dx

h′(x)=
f′(x)

1−F (x)
=

f(−x)
F (−x)

= s− log(n!)− n

∫ ∞

−∞
(1− F ′

s:n−1(x))f
′(x) log

f(−x)
F (−x)

dx

F ′
s:n−1=

∑n−1
i=s

(
n−1
i

)
F ′(x)i(1−F ′(x))n−1−i

= s− log(n!)−

n

∫ ∞

−∞
(1−

n−1∑
i=s

(
n−1
i

)
(1− F (−x))iF (−x)n−1−i)f ′(x) log

f(−x)
F (−x)

dx

= s− log(n!)− n

∫ ∞

−∞
(

s−1∑
i=0

(
n−1
i

)
(1− F (x))

i
F (x)n−1−i)f(x) log

f(x)

F (x)
dx

(39)

Similarly, H(x1, ..., xn) = H ′
1...n;n + n! can be expanded as

H(x1, ..., xn) = n− log(n!)− n

∫ ∞

−∞
(

n−1∑
i=0

(
n−1
i

)
(1− F (x))

i
F (x)n−1−i)f(x) log

f(x)

F (x)
dx (40)
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So the difference between H(yr+1, ..., yn) and H(x1, ..., xn) is

H(yr+1, ..., yn)−H(x1, ..., xn) = −r+

n

∫ ∞

−∞
(

n−1∑
i=n−r

(
n−1
i

)
(1− F (x))

i
F (x)n−1−i)f(x) log

f(x)

F (x)
dx

(41)
While H∆(0, 0, ..., yr+1, ..., yn) = H∆(yr+1, ..., yn) = (n − r)N + H(yr+1, ..., yn) and
H∆(x1, ..., xn) = nN + H(x1, ..., xn), difference between H∆(0, 0, ..., yr+1, ..., yn) and
H∆(x1, ..., xn) is

H∆(0, 0, ..., yr+1, ..., yn)−H∆(x1, ..., xn)

= −rN − r + n

∫ ∞

−∞
(

n−1∑
i=n−r

(
n−1
i

)
(1− F (x))

i
F (x)n−1−i)f(x) log

f(x)

F (x)
dx

(42)

Because we are discussing the discrete estimated entropy H∆, according to the definition of H∆

H∆(0, 0, ..., yr+1, ..., yn)−H∆(x1, ..., xn)

= r log∆− r + n

n−1∑
i=n−r

N∑
k=1

(
n−1
i

)
(1− F (x∗

k))
i
F (x∗

k)
n−1−if(x∗

k) log
f(x∗

k)

F (x∗
k)

∆

= −r log∆− r + n

n−1∑
i=n−r

N∑
k=1

(
n−1
i

)
(1− F (x∗

k))
i
F (x∗

k)
n−1−ipk log

pk∑k
j=1 pk

− n

n−1∑
i=n−r

N∑
k=1

(
n−1
i

)
(1− F (x∗

k))
i
F (x∗

k)
n−1−ipk log∆

log
pk∑k

j=1
pk

<0

≤ −r log∆− r − n[log∆

n−1∑
i=n−r

∫ ∞

−∞

(
n−1
i

)
(1− F (x))

i
F (x)n−1−idF (x)]

∫ 1
0
(1−r)irn−1−idr= 1

n

(
n−1
i

)
= −r < 0

(43)

where N is the number of bins for discretion and (x∗
1, ..., x

∗
N ) are N arbitrary points in the N bins

respectively.

24


	Introduction
	Background
	Definitions
	Preliminary of Git Re-basin

	Theoretical Results
	Analysis in Practice
	Neuron Distribution Entropy at initialization
	The Changes of Neuron Distribution Entropy After Training
	Decrease of Neuron Distribution Entropy When Pruning

	Experiment and Application
	Related Work
	Discussion and Future Work
	Implementation details
	Experiment Setting
	Experiment Setting for subsection 4.1 and subsection 4.2
	Experiment Setting for subsection 4.3
	Experiment Setting for section 5

	The Re-basin Algorithm, Weight Matching 
	Pruning Process and Some Discussions
	More Results of Pruning Followed by Fine-tuning

	Explanations of Definition of Non-Uniformity
	Other Theoretical Results
	Re-basin Method Deduce Linear Mode Connectivity

	Missing Proofs
	Missing Proof for Theorem 3.1
	Missing Proof for Lemma 3.2
	Proof of Lemma 4.1


