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ABSTRACT

Synthetic time series are vital for data augmentation, stress testing, and prototyp-
ing in quantitative finance. Yet in cryptocurrency markets, characterized by 24/7
trading, extreme volatility, and rapid regime shifts, existing Time Series Genera-
tion (TSG) methods and benchmarks often fall short, jeopardizing practical util-
ity. Most prior work targets non-financial or traditional financial domains, fo-
cuses narrowly on classification and forecasting while neglecting crypto-specific
complexities, and lacks critical financial evaluations, particularly for trading ap-
plications. To bridge these gaps, we introduce CTBench, the first Cryptocurrency
Time series generation Benchmark. It curates an open-source dataset of 452 to-
kens and evaluates models across 13 metrics spanning forecasting accuracy, rank
fidelity, trading performance, risk assessment, and computational efficiency. A
key innovation is a dual-task evaluation framework: the Predictive Utility mea-
sures how well synthetic data preserves temporal and cross-sectional patterns for
forecasting, while the Statistical Arbitrage assesses whether reconstructed series
support mean-reverting signals for trading. We systematically benchmark eight
state-of-the-art models from five TSG families across four market regimes, re-
vealing trade-offs between statistical quality and real-world profitability. Notably,
CTBench provides ranking analysis and practical guidance for deploying TSG
models in crypto analytics and trading applications. The source code is available
at https://anonymous.4open.science/r/CTBench-F5A3/.

1 INTRODUCTION

Time Series Generation (TSG) has become foundational for numerous downstream tasks, including
data augmentation (Bao et al., 2024; Ramponi et al., 2018), anomaly detection (Ang et al., 2023b;
Wang et al., 2021), privacy preservation (Jordon et al., 2018; Tian et al., 2024), and domain adap-
tation (Cai et al., 2021; Li et al., 2022b). The core objective of TSG is to synthesize sequences
that preserve the temporal dependencies and structural characteristics of real-world data. Despite
growing interest, the vast majority of existing TSG benchmarks and methods target domains such
as healthcare, mobility, or sensor data (Ang et al., 2023a; 2024). Financial time series, which are
inherently noisy, non-stationary, and adversarial, remain underexplored in the context of generative
modeling. More importantly, even financial TSG efforts primarily focus on stock data (Yoon et al.,
2019; Wiese et al., 2020), often under simplifying assumptions that fail to generalize to emerging
financial modalities. Consequently, the unique characteristics of modern financial markets, particu-
larly in the digital asset space, are largely overlooked.

Cryptocurrencies, as a prominent subclass of financial time series with a global market capital-
ization exceeding $4 trillion as of May 2025 (Reuters, 2025), introduce new modeling and evalua-
tion challenges. Unlike traditional financial instruments, crypto markets operate 24/7, lack intrinsic
valuation anchors, and exhibit extreme volatility driven by speculation, fragmented liquidity, and
decentralized exchange infrastructure. These properties violate assumptions embedded in existing
financial benchmarks (Hu et al., 2025; Wang et al., 2025; Qiu et al., 2024), which typically rely on
regular trading hours, stable macroeconomic signals, or broad stationarity assumptions.

While recent benchmarks for financial time series, such as FinTSB (Hu et al., 2025) and FinTS-
Bridge (Wang et al., 2025), have advanced evaluation practices, they fall short in three critical as-
pects when applied to cryptocurrency settings:
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Figure 1: Aggregate rankings of eight TSG models on both tasks from 2021 to 2024: Predictive
Utility (left) assesses fidelity and predictive signal quality, and Statistical Arbitrage (right) evaluates
trading performance under realistic fee conditions. The results reveal distinct trade-offs across fi-
delity, tradability, and robustness, with no model uniformly dominating all measures.

• Limited Domain Generality: Existing works (Ang et al., 2023a; Hu et al., 2025) focus primarily
on traditional assets such as equities and indices (e.g., SPX and CSI300) with lower volatility
and restricted trading hours, offering minimal support for cryptocurrency data. They overlook the
high-frequency, 24/7 dynamics of crypto markets.

• Narrow Task Scope: Most financial time series benchmarks emphasize classification and fore-
casting, neglecting generation and trading-centric tasks like arbitrage, which are vital for crypto-
specific applications such as arbitrage and market-neutral strategies. Moreover, TSG methods in
crypto contexts remain largely unexplored.

• Lack of Crypto-Specific Evaluation: Existing benchmarks underrepresent measures needed to
assess real trading utility. While TSGBench focuses on statistical fidelity, and FinTSB introduces
limited financial metrics, both rely on assumptions from traditional markets, failing to continuous
trading, heavy-tailed risk, and actionable signal quality unique to crypto assets.

To address these limitations, we introduce CTBench, the first Cryptocurrency Time series gen-
eration Benchmark. It is an open-source benchmark for rigorous evaluation of TSG methods in
cryptocurrency markets, with three key contributions:

• Crypto-Centric Dataset. We provide a curated cryptocurrency dataset from major global ex-
changes, processed via a standardized pipeline with crypto-specific feature support. This ensures
analysis-ready data reflecting the volatility and structural nuances of crypto markets.

• Dual-Task Benchmarks. To operationalize the utility of synthetic data in real-world finance,
CTBench introduces a dual-task evaluation framework that jointly assesses predictive fidelity
and tradability. The Predictive Utility task trains forecasters on synthetic data and tests them on
real returns, while the Statistical Arbitrage task evaluates whether reconstructed residuals yield
tradable mean-reverting signals.

• Financial Metric Suite. CTBench introduces a comprehensive evaluation suite over diverse trad-
ing strategies spanning forecasting accuracy, rank-based measures, trading performance, and risk
metrics, designed to reflect crypto-specific market realities.

We benchmark eight state-of-the-art TSG models and analyze trade-offs across fidelity, tradability,
and robustness. Figure 1 shows aggregate rankings across two tasks, with measures radially ar-
ranged and averaged over strategies and fee settings. No model dominates universally, highlighting
distinct trade-offs between fidelity, tradability, and robustness, and underscoring CTBench’s value
for informed model selection in crypto trading contexts.

2 PRELIMINARIES

Let R ∈ Rn×l denote the log-return matrix, where n is the number of tradable crypto-assets and
l is the number of hourly return observations. At each time t ≥ 1, the log-return vector across
all assets is rt = [r1,t, · · · , rn,t] ∈ Rn, where each element is defined as ri,t = log

pi,t

pi,t−1
, with

pi,t the price of asset i at hour t. To mimic real-world backtesting, we employ a rolling-window

2
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Figure 2: Overall architecture of CTBench. The framework unifies five modules: (1) crypto-centric
datasets, (2) dual-task evaluation (predictive utility and statistical arbitrage), (3) trading strategies,
(4) comprehensive financial metrics, and (5) diverse TSG models into a unified benchmark pipeline.

protocol: Given a training window size w and a test step s, we define split offsets τ ∈ O =
{w,w + s, · · · , w + (k − 1)s}, where k = ⌊ l−w

s ⌋. Each offset τ yields a training and test split:

R
(τ)
train = [rτ−w+1, · · · , rτ ], R(τ)

test = [rτ+1, · · · , rτ+s].

For each split, a TSG model g(τ) is trained on R
(τ)
train and evaluated in two modes: (1) Generation

Mode: sampling synthetic sequences from Gaussian noise, Rgen = g(τ)(z), z ∼ N (0, I); (2) Re-
construction Mode: reconstructing training and test set, R̂train = g(τ)(R

(τ)
train), R̂test = g(τ)(R

(τ)
test ).

We further define a basic portfolio simulation setup: Starting with initial capital V0 > 0, the strategy
allocates weights ηt = [η1,t, · · · , ηn,t] ∈ Rn at each hour t, where ηi,t denotes the fraction invested
in asset i. The portfolio value then evolves as Vt = Vt−1×(ηt ·rt), with hourly profit-and-loss given
by ∆Vt = Vt − Vt−1. A summary of notations is provided in Appendix A. To maintain clarity and
scope, CTBench restricts its benchmark design to datasets, trading strategies, evaluation measures,
and TSG models, as detailed in Appendix B.

3 CTBENCH

We present CTBench, the first benchmark specifically designed to evaluate Time Series Generation
(TSG) models in cryptocurrency markets (Figure 2).

3.1 CRYPTO-CENTRIC DATASETS

Data Overview and Preprocessing. Our benchmark leverages historical hourly data from all
USDT-denominated spot pairs on Binance (Binance Exchange, 2025b), spanning January 2020 to
December 2024 and capturing diverse market regimes such as bull runs, crashes, and consolidation
phases. To ensure quality, we exclude assets with missing records and retain only USDT pairs,
yielding 452 unique cryptocurrencies, a robust foundation for TSG evaluation.

Formally, let n denote the number of tradable crypto assets and (l + 1) the number of hourly obser-
vations. Each asset i ∈ {1, · · · , n} at time t ∈ {0, · · · , l} is represented by four standard fields:

xi,t = [Oi,t, Hi,t, Li,t, Ci,t] ∈ R4,

where O, H , L, and C are the Open, High, Low, and Close prices (quoted in USDT), respectively.
Stacking across all assets yields the multi-asset OHLC data array: D = [xi,t] ∈ Rn×(l+1)×4.
We focus primarily on Close prices and define hourly log-returns as: ri,t = log

Ci,t

Ci,t−1
, where

t ∈ {1, · · · , l}, giving the return matrix R ∈ Rn×l.

Feature Extraction. To capture key market dynamics, we extract d features widely used in quan-
titative trading, such as Alpha101 factors (Kakushadze, 2016), Bollinger Bands, RSI, and moving

3
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Figure 3: Architectures of dual-task benchmarks.

averages (Sun et al., 2023; Zhu & Zhu, 2025; Zhang et al., 2020; Tsai & Hsiao, 2010). These fea-
tures encode signals such as momentum, mean-reversion, and volatility. Applying the same pipeline
to both real and synthetic data enables consistent evaluation of TSG models’ ability to replicate the
statistical and structural properties vital for downstream tasks.

Formally, let Φ = {ϕj}dj=1 be the feature set, where each ϕj : Rn×l → Rn×l acts on the return
matrix R. Applying Φ yields a feature tensor with shape Rn×l×d. The dataset exhibits strong cross-
sectional dispersion and cap-dependent volatility, motivating crypto-specific evaluation of predictive
structure and cross-asset dynamics beyond marginal similarity (see Appendix C.1).

3.2 DUAL-TASK EVALUATION

To connect generation fidelity with financial utility, CTBench introduces dual-task evaluation as-
sessing both predictive realism and tradable structure. As shown in Figure 3, these tasks measure
whether synthetic data preserves useful forecasting signals (predictive utility) or enables the discov-
ery of stationary, market-neutral alpha (statistical arbitrage). Details are in Appendix C.2.

Predictive Utility Task. This task tests whether synthetic data can train forecasting models that
generalize to real markets. As shown in Figure 3(a), given a training log-return window R

(τ)
train, a

TSG model g generates synthetic returns Rgen = g(z), z ∼ N (0, I). Features Φ(Rgen) are then
extracted and used to train a forecasting model f instantiated as XGBoost (Chen & Guestrin, 2016)
for its robustness to heterogeneous features and noisy financial environments (Vancsura et al., 2025;
Liu et al., 2021; Yun et al., 2021). The ablation study in §4.4 comparing additional forecasters
confirms that XGBoost uniquely balances low prediction error with strong cross-sectional ranking
fidelity, a property essential for downstream trading evaluation.

The trained f is deployed on real test data Rtest to generate signals for a dollar-neutral long-short
portfolio, rebalanced hourly over a month. This setup tests whether Rgen preserves predictive sig-
nals with measurable economic value. All components, TSG model, features, and forecaster, are
modular, allowing extensibility across architectures.

Statistical Arbitrage Task. In contrast to the generation-focused task, this task evaluates whether
TSG models can reconstruct market structure and isolate tradable, mean-reverting residuals for sta-
tistical arbitrage. As depicted in Figure 3(b), a model g is trained on real returns Rtrain to produce
reconstructions R̂train, and the residuals ρi,t = ri,t− r̂i,t are assumed to follow Ornstein–Uhlenbeck
(OU) processes (Uhlenbeck & Ornstein, 1930), parameterized by estimated (µi, θi, σi) per asset.

On test data, new residuals ϵi,t are mapped to standardized s-scores si,t = (ϵi,t − µi)/(σi/
√
2θi),

which drive trading decisions via thresholding (γ = 2) and weight normalization. Portfolios are
rebalanced hourly based on these signals. This task complements generation-focused evaluation
by assessing the model’s ability to reveal stationary, market-neutral alpha, thus bridging statistical
fidelity and practical trading utility.

3.3 TRADING STRATEGIES

CTBench is strategy-agnostic, allowing TSG models to be evaluated across diverse trading
paradigms. Rather than relying on a single approach, we compute profitability and risk met-
rics (§3.4) consistently for all backtests. This enables rigorous stress testing and reveals whether

4
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TSG models capture genuine market structure or merely overfit specific trading styles. We evaluate
models under three canonical trading strategies commonly adopted in cryptocurrency markets:

• Cross-Sectional Momentum (CSM): take long positions in the top decile of predicted assets
while shorting the bottom decile, capturing relative momentum effects.

• Long-Only Top-Quantile (LOTQ): build an equal-weight portfolio of the top 20% of assets,
reflecting long-biased strategies often favored in practice.

• Proportional Weighting (PW): allocate capital in proportion to predicted returns, directly trans-
lating forecasts into position sizes.

This modular design supports plug-and-play integration of additional or proprietary strategies. Full
details are provided in Appendix C.3.

3.4 FINANCIAL METRIC SUITE

Evaluating TSG models for financial applications requires more than mere statistical similarity, it
demands measuring whether synthetic data enables profitable and risk-aware trading. To this end,
CTBench defines thirteen core metrics, grouped into six practitioner-relevant categories:

• Error-based Evaluation: At the most fundamental level, do synthetic returns numerically re-
semble real ones? Metrics include Mean Squared Error (MSE), which emphasizes volatility
mismatches, and Mean Absolute Error (MAE), which is more robust to outliers.

• Rank-based Evaluation: Do synthetic returns preserve relative asset ordering? Information
Coefficient (IC) measures rank correlation, and Information Ratio (IR) evaluates its stability.

• Trading Performance: Does synthetic data yield actionable, profitable signals? Statistical accu-
racy does not guarantee financial profitability. We therefore use Compound Annual Growth Rate
(CAGR) for long-term growth and Sharpe Ratio (SR) for return-to-risk balance.

• Risk Assessment Metrics: Do models capture fat tails and downside risks? We compute Max-
imum Drawdown (MDD) for worst-case loss, Value at Risk (VaR) at 95% confidence, and Ex-
pected Shortfall (ES) for tail risk beyond VaR.

• Efficiency: Can models support real-time deployment? We track Training Time and Inference
Time to assess adaptability in fast-moving crypto markets.

• Visualization: Do results exhibit contextual realism? We report Simulated Growth Curves
for a $10,000 investment and cross-sectional Ranking Plots across market regimes to illustrate
interpretability and contextual realism.

Together, these metrics ensure balanced evaluation of fidelity, utility, and practicality. Full defini-
tions are in Appendix C.4.

3.5 TSG MODEL ZOO

Generative models for time series aim to capture temporal dependencies and structural patterns, with
backbones spanning GANs, VAEs, diffusion models, flow models, and mixed-type models (Ang
et al., 2023a; Nikitin et al., 2023) (see Table 3). Yet, nearly half of prior TSG works do not evaluate
in financial contexts, and those that do typically focus on traditional markets such as equities or
macroeconomic data, leaving a gap for cryptocurrency applications. To close this gap, CTBench
evaluates eight state-of-the-art models spanning five families:

• GANs: Quant-GAN (Wiese et al., 2020) and COSCI-GAN (Seyfi et al., 2022), applied only in
forecasting tasks since GANs do not natively support reconstruction (Goodfellow et al., 2020).

• VAEs: TimeVAE (Desai et al., 2021) and KoVAE (Naiman et al., 2024b), which extend varia-
tional autoencoders for temporal dynamics.

• Diffusion Models: Diffusion-TS (Yuan & Qiao, 2024) and FIDE (Galib et al., 2024), leveraging
denoising-based generative processes for time series.

• Flow-based Models: Fourier-Flow (Alaa et al., 2021)), employing invertible transformations for
likelihood-based generation.

• Mixed-type Models: LS4 (Zhou et al., 2023), designed to unify strengths across multiple gener-
ative paradigms.

These models are selected for their generative fidelity and practical relevance to financial down-
stream tasks. Further details are in Appendix C.5.
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Figure 4: Annual forecasting performance of TSG models on the Predictive Utility task.
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Figure 5: Annual trading performance of TSG models on the Predictive Utility task.

4 EXPERIMENTS

We evaluate CTBench on 452 USDT trading pairs using a walk-forward setup: each cycle trains on
500 days and tests on 30 days (Predictive Utility) or 15 days (Statistical Arbitrage), with retraining
before every window. To isolate generator quality, transaction fees are zero by default; for Statistical
Arbitrage, we also report results under a 0.03% fee reflecting typical exchange costs Zhang et al.
(2023); Winkel & Härdle (2023); Binance Exchange (2025a). We benchmark eight TSG models
across five architectural families and include two classical baselines widely used in quantitative fi-
nance: ARMA-GARCH (Engle, 1982), evaluated on both tasks, and a Bootstrap generator (Rubin,
1981), used only for Predictive Utility. All models follow recommended or stable hyperparameters
and are scored using CTBench’s full financial metric suite (details in Appendix D).

4.1 PREDICTIVE UTILITY TASK

Figures 4 and 5 report year-wise forecasting and trading performance from 2021 to 2024. The blue
dashed line denotes the baseline using real data (without TSG), whose consistently strong returns
validate the effectiveness of our feature-extraction pipeline (§3.1).

Annual Predictive Utility Analysis. Across all four market regimes, predictive accuracy and fi-
nancial profitability often diverge, underscoring the difficulty of converting statistical fidelity into
tradable signals. In 2021 (Bull Market), Diffusion-TS achieves the best forecasting error yet fails
to convert it into returns, while TimeVAE and COSCI-GAN demonstrate strong risk-adjusted per-
formance by balancing denoising and alpha amplification. In 2022 (High Volatility), TimeVAE
remains resilient, and COSCI-GAN benefits from dispersion, whereas Diffusion-TS struggles with
frequent reversals. During 2023 (Consolidation), Fourier-Flow outperforms in risk-adjusted metrics
due to its frequency-preserving structure, while trend-reliant models degrade. By 2024 (Low-Signal
/ Mean Reversion), Most models face diminishing signal strength; only TimeVAE retains marginal
profitability. Classical baselines ARMA-GARCH and Bootstrap maintain mid-tier performance:
solid risk control but limited forecasting capability. Overall, results show that synthetic data must
align with market structure and strategy design, not just minimize reconstruction error.

Ranking Analysis. Radar-plot rankings in Figure 6 reveal three consistent patterns: (1) Diffusion-
TS achieves the strongest forecasting scores but performs poorly in trading, illustrating a common
gap between statistical fidelity and economic usefulness. (2) TimeVAE and COSCI-GAN show

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Quant-GAN COSCI-GAN TimeVAE KoVAE Diffusion-TS FIDE Fourier-Flow LS4 ARMA-GARCH Bootstrap

  MSE

  MAE

  IC

  IR

CAGR Sharpe
MDD  

VaR  

ES  

CAGR     

Sharpe       

MDD  

VaR  

ES  
CAGR Sharpe

MDD

VaR

ES

10
9

8
7

6
5

4
3

2
1

Forecasting

CSM Strategy

LO
TQ

 S
tra

te
gy

PW Strategy

(a) 2021.

  MSE

  MAE

  IC

  IR

CAGR Sharpe
MDD  

VaR  

ES  

CAGR     

Sharpe       

MDD  

VaR  

ES  
CAGR Sharpe

MDD

VaR

ES

10
9

8
7

6
5

4
3

2
1

Forecasting

CSM Strategy

LO
TQ

 S
tra

te
gy

PW Strategy

(b) 2022.

  MSE

  MAE

  IC

  IR

CAGR Sharpe
MDD  

VaR  

ES  

CAGR     

Sharpe       

MDD  

VaR  

ES  
CAGR Sharpe

MDD

VaR

ES

10
9

8
7

6
5

4
3

2
1

Forecasting

CSM Strategy

LO
TQ

 S
tra

te
gy

PW Strategy

(c) 2023.

  MSE

  MAE

  IC

  IR

CAGR Sharpe
MDD  

VaR  

ES  

CAGR     

Sharpe       

MDD  

VaR  

ES  
CAGR Sharpe

MDD

VaR

ES

10
9

8
7

6
5

4
3

2
1

Forecasting

CSM Strategy

LO
TQ

 S
tra

te
gy

PW Strategy

(d) 2024.

Figure 6: Annual rankings of TSG models on the Predictive Utility task.
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Figure 7: Annual performance of TSG models on the Statistical Arbitrage task.

regime-dependent strengths: TimeVAE excels in stable or mean-reverting markets due to its regu-
larization, while COSCI-GAN benefits from volatile, directional regimes where amplified variance
enhances trend signals. (3) Fourier-Flow maintains steady mid-to-high rankings across categories,
positioning it as a robust, all-weather choice for risk-managed deployment.

These trends reinforce a core insight: low reconstruction or prediction error does not ensure trad-
ing success. Over-regularization can suppress alpha-bearing variance, while models that preserve
structural noise (TimeVAE, COSCI-GAN) produce more actionable signals. Effective model choice
must consider market regime and strategy alignment.

Equity Curve Dynamics. Figure 14 presents log-scaled equity curves from 2021–2024 for each
TSG model across three trading strategies, highlighting how model inductive biases shape cumula-
tive returns. COSCI-GAN consistently captures directional gains, while TimeVAE and Fourier-Flow
provide smoother but moderate returns. Diffusion-based models underperform due to volatility sup-
pression, and LS4 remains conservatively flat. The ARMA-GARCH baseline similarly yields largely
flat. The Bootstrap generator typically sits in the upper middle of the pack, with equity curves that
track the top 3-5 models. Full results and visualizations are in Appendix E.1.

4.2 STATISTICAL ARBITRAGE TASK

Figure 7 reports annualized trading and risk metrics under both zero-fee and realistic-fee conditions.
The blue dashed line represents a Principal Component Analysis (PCA) baseline trained on Rtrain,
reflecting a standard statistical-arbitrage baseline used as a reference for TSG evaluation.

Annual Performance Analysis. All models exhibit reduced profitability under transaction costs,
with the impact tied to turnover. Among TSG models, KoVAE excels in volatile regimes with high
but mean-reverting swings, whereas LS4 achieves strong returns with stable drawdowns, particu-
larly in 2023. Even after fees, both maintain leading positions, underscoring the value of regime
adaptability and cost-aware design. TimeVAE and Diffusion-TS form a second tier, trading off
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Figure 8: Annual rankings of TSG models on the Statistical Arbitrage task.

peak returns for smoother, fee-resilient SR, though their exposure to tail risk, especially in 2021 and
2024, limits overall efficiency. FIDE consistently yields negligible or negative returns but achieves
the lowest VaR, ES, and MDD, suggesting over-regularized residuals that suppress tradable variance.
Fourier-Flow similarly underperforms, failing to capture mean-reverting structure despite effective
noise smoothing, highlighting the limitations of exact-likelihood flow models in arbitrage-centric
tasks. ARMA-GARCH delivers the top CAGR across 2021 to 2023, but consistently exhibits the
weakest tail-risk profile, with the worst VaR and ES among all models.

Ranking Analysis. Figure 8 visualizes annual model rankings via radar plots, revealing how TSG
models balance return, risk, and stability across regimes. KoVAE and LS4 form polygons that
strongly protrude along CAGR and Sharpe but collapse along risk dimensions, indicating high re-
turns paired with elevated drawdown and tail exposure, especially in turbulent years. FIDE shows
the opposite pattern: tight risk control but consistently weak returns, reflecting a capital-preserving
yet alpha-limited design. TimeVAE and Diffusion-TS produce more rounded, balanced shapes with
neither dominant peaks nor severe failures, suggesting steady, regime-agnostic robustness.

Introducing trading fees compresses the rank distances: high-turnover models (e.g., KoVAE) lose
several Sharpe positions, whereas smoother, lower-turnover models (e.g., TimeVAE, Diffusion-TS)
retain most of their ranking. This highlights an important practical insight: models that generate
smoother residual signals naturally incur lower costs and therefore achieve better fee-adjusted per-
formance. Finally, the year-to-year evolution of polygon shapes reveals regime sensitivity: LS4
expands sharply on CAGR in 2023 but suffers high drawdowns in 2022, while KoVAE excels in
volatile periods yet underperforms in calmer markets. These dynamics emphasize that model selec-
tion must consider both regime characteristics and operational constraints.

Equity Curve Dynamics. Figure 15 illustrates fee-adjusted equity curves starting at $10,000 with
0.03% trading fees. LS4 and KoVAE deliver sustained growth, while TimeVAE plateaus in later
regimes. Diffusion-TS is stable but low-return; FIDE and Fourier-Flow underperform due to overly
smoothed residuals. Remarkably, ARMA-GARCH exhibits moderate gains through early 2023 but
experiences substantial growth afterward, ultimately becoming the top-performing model by 2024-
2025. Full results and visualizations are detailed in Appendix E.2.

4.3 EFFICIENCY

Training Inference

1 ms.

1 s.
1 min.
1 hour

Ti
m

e

Quant-GAN
COSCI-GAN

TimeVAE
KoVAE

Diffusion-TS
FIDE

Fourier-Flow
LS4

Figure 9: Training and inference time of TSG models.

We compare training and inference
times for all TSG models in Figure 9.
VAE-based models are the most ef-
ficient: TimeVAE trains in under
a minute and achieves sub-second
inference, making it ideal for real-
time applications, low-latency back-
testing, and rapid retraining in fast-
moving markets. GAN-based models
offer moderate efficiency: COSCI-GAN maintains balanced runtimes, while Quant-GAN is sig-
nificantly more expensive to train with no corresponding speed advantage at inference. Diffusion-
based models are the slowest: Diffusion-TS incurs the longest runtimes due to iterative denoising,
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(a) XGBoost: strongest overall evaluator, with low errors and high rank correlation.
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(b) Linear: weak predictive power and near-zero rank correlation.
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(c) Random Forest: lower errors but poor cross-sectional ranking ability.
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(d) MLP: flexible yet unstable, yielding high errors across regimes.
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(e) Transformer: captures long-range patterns but fails to produce stable rankings.

Figure 10: Ablation on the choice of forecasting model in the Predictive Utility task. We compare
five forecasters: XGBoost, Linear Regression, Random Forest, MLP, and Transformer, to assess
whether TSG-model rankings remain stable across evaluators.

and FIDE provides only modest improvements. Despite their strong fidelity and risk–return pro-
files, these models are best suited for offline or compute-rich settings. Flow-based and mixed-type
models occupy the middle ground, offering reasonable efficiency and reliable likelihood calibration,
though their latency limits real-time use. Overall, VAE-based models and LS4 emerge as the most
practical choices for latency-sensitive or resource-constrained deployment, whereas diffusion-based
models are better reserved for offline or batch-generation pipelines.

4.4 ABLATION STUDY ON FORECASTING MODELS

A crucial component of the Predictive Utility task is the choice of forecasting model used to assess
the quality of synthetic data. In CTBench, we adopt XGBoost (Chen & Guestrin, 2016) as the
default forecaster due to its strong empirical performance in quantitative finance and its robustness
to heterogeneous, noisy features, properties particularly well aligned with crypto markets (Vancsura
et al., 2025; Liu et al., 2021; Yun et al., 2021).

To validate this design choice, we conduct an ablation study comparing five forecasting architec-
tures: XGBoost, Linear Regression (Hilt & Seegrist, 1977), Random Forest (Breiman, 2001), a
Multi-Layer Perceptron (MLP) (Hinton, 1990), and a Transformer-based sequence model (Vaswani
et al., 2017). Each forecaster is trained on features extracted from identical sets of synthetic data,
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Table 1: Scenario-based recommendations for selecting TSG models in cryptocurrency markets.

Scenario Recommendation Rationale

Trend-following / Direc-
tional Markets COSCI-GAN, KoVAE

COSCI-GAN amplifies trend and dispersion; KoVAE offers al-
pha with higher drawdowns

Mean-reverting / Range-
bound Regimes

TimeVAE, Fourier-Flow,
Diffusion-TS

TimeVAE / Fourier-Flow provide balance; Diffusion-TS pre-
serves rank order

Fee-sensitive / Low-
turnover Settings TimeVAE, Diffusion-TS Smooth residuals, stable Sharpe under transaction costs

Risk Tolerance / Portfolio
Design

KoVAE, LS4, TimeVAE,
Diffusion-TS, FIDE

KoVAE / LS4 maximize returns with risk; TimeVAE / Diffusion-
TS balance Sharpe and drawdown; FIDE is defensive

Deployment Efficiency TimeVAE, LS4
Fast retraining and low-latency inference; diffusion models bet-
ter suited for offline use

ensuring that performance differences arise solely from the forecasting backbone rather than the
underlying TSG model. Evaluation follows the same walk-forward protocol as the main benchmark
and uses both error-based metrics (MSE, MAE) and rank-based metrics (IC, IR).

Figure 10 summarizes the results. Linear Regression and MLP consistently exhibit high MSE
and MAE, indicating poor point-wise prediction accuracy. Random Forest and Transformer re-
duce point-wise errors but fail to preserve cross-sectional ordering, both achieving near-zero IC/IR,
suggesting that they primarily fit short-term fluctuations rather than tradable structure. In contrast,
XGBoost achieves the strongest balance: low prediction error paired with robust rank correlations,
making it significantly more sensitive to the differences across TSG models and more aligned with
how trading strategies consume forecasts.

Overall, the ablation demonstrates that XGBoost offers the most discriminative and trading-
relevant evaluation signal, supporting its use as the default forecaster in CTBench. It consistently
reveals meaningful differences between TSG models while avoiding the instability or rank collapse
seen in alternative forecasters.

4.5 RECOMMENDATIONS

Our findings reveal a four-way trade-off among TSG model families: (1) VAE-based models ensure
stable reconstruction but might under-react to fast-changing regimes. (2) GAN-based approaches
extract trend alpha but suffer from volatility-induced instability. (3) Diffusion models handle regime
clustering and fat tails well, but degrade under low signal regimes. (4) Flow-based models prioritize
likelihood but offer limited utility, while mixed-type ones are efficient but inconsistent in risk-return.

Based on these findings, Table 1 presents actionable guidelines for practitioners. These recom-
mendations help align model choice with market conditions, strategic objectives, and operational
constraints. Crucially, there is no one-size-fits-all TSG model for cryptocurrency markets. In-
stead, practitioners should: (1) diagnose the prevailing market regime, alpha source, and system
constraints; (2) select a model whose inductive bias strengthens the target structure while preserv-
ing tradability; and (3) evaluate performance using task–metric pairs that best reflect production
goals. By integrating dual-task design with a comprehensive evaluation suite, CTBench provides
the decision surface needed to navigate these choices effectively.

5 CONCLUSION AND FUTURE WORK

We present CTBench, the first benchmark explicitly designed for time series generation in cryp-
tocurrency markets, combining a high-frequency token dataset, a dual-task evaluation framework,
and a comprehensive suite of financial metrics to assess both statistical fidelity and practical via-
bility. Empirical results reveal key trade-offs across TSG families and highlight strategy-dependent
model behaviors, offering actionable insights for real-world deployment.

Looking ahead, we plan to enhance CTBench by incorporating more advanced forecasters in the
Predictive Utility task and integrating richer residual modeling processes for the Statistical Arbitrage
task. Future directions also include expanding to a broader set of tokens, incorporating exogenous
signals such as trading volume, and benchmarking more sophisticated generative architectures.
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ETHICS STATEMENT

The goal of this research is to advance the robustness and relevance of TSG evaluations for financial
applications by incorporating realistic trading tasks, crypto-specific risk metrics, and open-source re-
producibility. We believe this contributes positively to both machine learning research and practical
applications in quantitative finance.

Data Usage. All datasets used in this study are either publicly available or derived from de-identified
and aggregate-level market data, with no inclusion of private or personally identifiable information.

Bias and Fairness. CTBench’s design and metrics aim to capture the unique characteristics of
cryptocurrency markets. However, as with common data-driven benchmarks, models trained on
historical market data might reflect structural biases or artifacts. We encourage further research into
fairness and robustness in financial AI systems, especially in volatile and high-risk domains.

Financial Use Disclaimer. This paper is intended solely for informational and research purposes.
The models, strategies, and market data presented are used to demonstrate our evaluation framework.
They are not intended as investment research, financial advice, or a recommendation to buy or sell
any financial product. CTBench should not be used to evaluate the merits of any financial transaction
or for live trading purposes without further validation.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility and transparency of CTBench.

Source Code. To facilitate replication and future extensions, we have made our source code publicly
available at the following anonymous repository: https://anonymous.4open.science/
r/CTBench-F5A3/. It includes all components necessary to reproduce CTBench, such as data
loaders, preprocessing pipelines, task definitions, evaluation measures, and scripts for benchmarking
TSG models.

Datasets. All cryptocurrency datasets used in CTBench are publicly accessible. Detailed descrip-
tions, token selection criteria, time ranges, and preprocessing steps are provided in Section 3.1 and
Appendix C.1.

Benchmark Design. The benchmark covers eight state-of-the-art TSG models evaluated on Pre-
dictive Utility and Statistical Arbitrage tasks. Implementation details and task formulations are
described in Section 4 and Appendices C–D. The definitions of all evaluation metrics are included
in Section 3.4 and Appendix C.4. Key hyperparameters used for training and evaluation of each
model are summarized in Appendix D to ensure comparability and reproducibility.

Together, these resources provide a complete toolkit for reproducing our results and conducting
future research on TSG in financial domains.
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generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Asadullah Hill Galib, Pang-Ning Tan, and Lifeng Luo. FIDE: Frequency-Inflated Conditional Diffu-
sion Model for Extreme-Aware Time Series Generation. In NeurIPS, pp. 114434–114457, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. Communications of the
ACM, 63(11):139–144, 2020.

Donald E Hilt and Donald W Seegrist. Ridge, a computer program for calculating ridge regression
estimates, volume 236. Department of Agriculture, Forest Service, Northeastern Forest Experi-
ment, 1977.

Geoffrey E Hinton. Connectionist learning procedures. In Machine learning, pp. 555–610. 1990.

Yang Hu, Xiao Wang, Lirong Wu, Huatian Zhang, Stan Z Li, Sheng Wang, and Tianlong Chen.
FM-TS: Flow Matching for Time Series Generation. arXiv preprint arXiv:2411.07506, 2024.

Yifan Hu, Yuante Li, Peiyuan Liu, Yuxia Zhu, Naiqi Li, Tao Dai, Shu-tao Xia, Dawei Cheng, and
Changjun Jiang. FinTSB: a comprehensive and practical benchmark for financial time series
forecasting. arXiv preprint arXiv:2502.18834, 2025.

Daniel Jarrett, Ioana Bica, and Mihaela van der Schaar. Time-series generation by contrastive imi-
tation. In NeurIPS, pp. 28968–28982, 2021.

12

https://www.binance.com/en/fee/schedule
https://www.binance.com/en/fee/schedule
https://binance.com/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Paul Jeha, Michael Bohlke-Schneider, Pedro Mercado, Shubham Kapoor, Rajbir Singh Nirwan,
Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Psa-gan: Progressive self attention gans
for synthetic time series. In ICLR, 2021.

Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. GT-GAN: gen-
eral purpose time series synthesis with generative adversarial networks. In NeurIPS, pp. 36999–
37010, 2022.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In ICLR, 2018.

Zura Kakushadze. 101 formulaic alphas. Wilmott, 2016(84):72–81, 2016.

Patrick Kidger, James Foster, Xuechen Li, and Terry J Lyons. Neural SDEs as Infinite-Dimensional
GANs. In ICML, pp. 5453–5463, 2021.

Daesoo Lee, Sara Malacarne, and Erlend Aune. Vector quantized time series generation with a
bidirectional prior model. In AISTATS, pp. 7665–7693, 2023.

Hongming Li, Shujian Yu, and Jose Principe. Causal recurrent variational autoencoder for medical
time series generation. In AAAI, pp. 8562–8570, 2023.

Xiaomin Li, Vangelis Metsis, Huangyingrui Wang, and Anne Hee Hiong Ngu. TTS-GAN: A
transformer-based time-series generative adversarial network. In AIME, pp. 133–143, 2022a.

Yang Li, Han Meng, Zhenyu Bi, Ingolv T. Urnes, and Haipeng Chen. Population aware diffusion
for time series generation. In AAAI, pp. 18520–18529, 2025.

Yuening Li, Zhengzhang Chen, Daochen Zha, Mengnan Du, Jingchao Ni, Denghui Zhang, Haifeng
Chen, and Xia Hu. Towards learning disentangled representations for time series. In KDD, pp.
3270–3278, 2022b.

Haksoo Lim, Minjung Kim, Sewon Park, and Noseong Park. Regular Time-series Generation using
SGM. arXiv preprint arXiv:2301.08518, 2023.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing net-
worked time series data: Challenges, initial promise, and open questions. In Proceedings of the
ACM Internet Measurement Conference, pp. 464–483, 2020.

Guang Liu, Yuzhao Mao, Qi Sun, Hailong Huang, Weiguo Gao, Xuan Li, Jianping Shen, Ruifan Li,
and Xiaojie Wang. Multi-scale two-way deep neural network for stock trend prediction. In IJCAI,
pp. 4555–4561, 2021.

Yuansan Liu, Sudanthi Wijewickrema, Ang Li, and James Bailey. Time-Transformer AAE: Con-
necting Temporal Convolutional Networks and Transformer for Time Series Generation, 2023.
URL https://openreview.net/forum?id=fI3y_Dajlca.

Olof Mogren. C-rnn-gan: A continuous recurrent neural network with adversarial training. In
Constructive Machine Learning Workshop (CML) at NIPS 2016, pp. 1, 2016.

Ilan Naiman, Nimrod Berman, Itai Pemper, Idan Arbiv, Gal Fadlon, and Omri Azencot. Utilizing
image transforms and diffusion models for generative modeling of short and long time series. In
NeurIPS, pp. 121699–121730, 2024a.

Ilan Naiman, N. Benjamin Erichson, Pu Ren, Michael W. Mahoney, and Omri Azencot. Generative
modeling of regular and irregular time series data via koopman VAEs. In ICLR, 2024b.

Hao Ni, Lukasz Szpruch, Magnus Wiese, Shujian Liao, and Baoren Xiao. Conditional Sig-
Wasserstein GANs for Time Series Generation. arXiv preprint arXiv:2006.05421, 2020.

Hao Ni, Lukasz Szpruch, Marc Sabate-Vidales, Baoren Xiao, Magnus Wiese, and Shujian Liao. Sig-
Wasserstein GANs for time series generation. In Proceedings of the Second ACM International
Conference on AI in Finance, pp. 1–8, 2021.

13

https://openreview.net/forum?id=fI3y_Dajlca


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alexander Nikitin, Letizia Iannucci, and Samuel Kaski. TSGM: A Flexible Framework for Genera-
tive Modeling of Synthetic Time Series. arXiv preprint arXiv:2305.11567, 2023.

Hengzhi Pei, Kan Ren, Yuqing Yang, Chang Liu, Tao Qin, and Dongsheng Li. Towards generating
real-world time series data. In ICDM, pp. 469–478, 2021.

Jian Qian, Bingyu Xie, Biao Wan, Minhao Li, Miao Sun, and Patrick Yin Chiang. TimeLDM: Latent
Diffusion Model for Unconditional Time Series Generation. arXiv preprint arXiv:2407.04211,
2024.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo,
Aoying Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods. Proceedings of the VLDB Endowment, 17(9):
2363–2377, 2024.

Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen. T-CGAN: conditional
generative adversarial network for data augmentation in noisy time series with irregular sampling.
arXiv preprint arXiv:1811.08295, 2018.

Carl Remlinger, Joseph Mikael, and Romuald Elie. Conditional loss and deep euler scheme for time
series generation. In AAAI, pp. 8098–8105, 2022.

Reuters. Crypto sector breaches $4 trillion in market value during pivotal week. Reuters, 2025.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In NeurIPS, pp. 5320–5330, 2019.

Donald B Rubin. The bayesian bootstrap. The Annals of Statistics, pp. 130–134, 1981.

Ali Seyfi, Jean-François Rajotte, and Raymond T. Ng. Generating multivariate time series with
common source coordinated GAN (COSCI-GAN). In NeurIPS, pp. 32777–32788, 2022.

Kaleb E Smith and Anthony O Smith. Conditional GAN for Timeseries Generation. arXiv preprint
arXiv:2006.16477, 2020.

Padmanaba Srinivasan and William J Knottenbelt. Time-series transformer generative adversarial
networks. arXiv preprint arXiv:2205.11164, 2022.

Shuo Sun, Rundong Wang, and Bo An. Reinforcement learning for quantitative trading. ACM
Transactions on Intelligent Systems and Technology, 14(3):1–29, 2023.

Muhang Tian, Bernie Chen, Allan Guo, Shiyi Jiang, and Anru R Zhang. Reliable generation of
privacy-preserving synthetic electronic health record time series via diffusion models. Journal of
the American Medical Informatics Association, 31(11):2529–2539, 2024.

Chih-Fong Tsai and Yu-Chieh Hsiao. Combining multiple feature selection methods for stock pre-
diction: Union, intersection, and multi-intersection approaches. Decision Support Systems, 50(1):
258–269, 2010.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
Review, 36(5):823, 1930.
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A NOTATIONS

Table 2 summarizes the symbols and definitions used throughout the paper for quick reference.

Table 2: List of frequently used notations.

Symbol Description

R ∈ Rn×l Log-return matrix with n assets and l hourly observations
rt = [ri,t] ∈ Rn Log-return vector of time t of all n assets
w, s, k, τ Training window size, test step, # of splits, split offset
Rtrain,Rtest Training data of returns, test data of returns
g Time series generation (TSG) model
Rgen, R̂train, R̂test Generated time series, reconstruction of train and test sets
ηt = [ηi,t] ∈ Rn Portfolio weight vector at hour t
V0, Vt, and ∆Vt Initial capital, portfolio equity, and profit-and-loss at hour t
O,H,L,C Open, High, Low, and Close (OHLC) prices
D = [xi,t] Multi-asset OHLC data array
Φ = {ϕj}dj=1 A feature set Φ with d feature mapping function ϕj
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B SCOPE ILLUSTRATION

To ensure clarity and fairness in benchmarking, CTBench explicitly defines its scope across datasets,
strategies, evaluation measures, and model families. This scoped design avoids confounding factors,
emphasizes crypto-specific characteristics, and provides a standardized basis for comparing diverse
TSG methods. The followings detail these design choices.

Scope of Datasets. CTBench is restricted to cryptocurrency markets due to their unique properties,
such as 24/7 trading, high volatility, and fragmented liquidity. In selecting the concrete dataset,
we focus on Binance USDT spot pairs Binance Exchange (2025b) because Binance is consistently
ranked as the largest centralized exchange by global spot volume and provides broad, liquid coverage
of actively traded assets. Its freely accessible, high-quality historical data ensures that CTBench
remains fully reproducible without requiring proprietary data contracts.

Moreover, we use only raw time series inputs (i.e., returns), excluding side-channel information
(e.g., order books, blockchain logs, or news). This isolates core generative capabilities without
reliance on auxiliary signals. We employ only well-established financial features (e.g., Alpha101
(Kakushadze, 2016)) to ensure compatibility with real-world quantitative trading while minimizing
noise from complex feature engineering.

Scope of Trading Strategies. To capture diverse trading behaviors, we benchmark TSG models
across three canonical strategies, ranging from rank-based to magnitude-sensitive and from direc-
tional to market-neutral setups. This ensures a holistic evaluation of whether synthetic data general-
izes across real-world trading paradigms or merely overfits to specific signal patterns.

Scope of Evaluation Measures. Our benchmark incorporates a curated set of evaluation measures
widely recognized in financial TSG research (Ang et al., 2023a; Wiese et al., 2020), ensuring a
holistic assessment of statistical fidelity and financial utility. We have excluded metrics with limited
practical relevance or interpretability to maintain a focused and meaningful evaluation framework
for the crypto domain.

Scope of TSG Models. We select TSG models capable of handling multivariate inputs typical in
crypto markets, encompassing both general-purpose and finance-specific architectures. Our selec-
tion spans five model families: GAN, VAE, diffusion, flow, and mixed-type, favoring architectures
with general applicability over domain-specific requirements. All models are trained under a unified
protocol without excessive hyperparameter tuning to ensure fair benchmarking and reflect practical
deployment constraints.

C BENCHMARK DETAILS

C.1 CRYPTO-CENTRIC DATASETS

Data Descriptive Statistics. Understanding the statistical profile of crypto returns is essential for
designing effective TSG benchmarks. We analyze the distribution of log-returns to identify devi-
ations from normality, such as skewness and kurtosis, stylized facts well documented in financial
time series. Cryptocurrencies, in particular, often exhibit fat-tailed distributions, indicating ele-
vated probability of extreme price movements.

Figure 11 presents histograms of the mean hourly log-return and mean hourly volatility (standard
deviation of log-returns) across all 452 cryptocurrencies. The mean hourly returns are centered
around zero but show a slight right skew, suggesting modestly positive drift in most assets. In
contrast, the mean hourly volatility exhibits a long right tail, indicating that while many assets trade
with low volatility, a notable subset experiences highly volatile price swings.

To visualize market dynamics over time, we categorize cryptocurrencies into large-, mid-, and small-
cap groups and plot representative closing prices annually from 2020 to 2024 in Figure 12. These
trajectories highlight significant market regimes, including the bull runs of 2020–2021, sharp cor-
rections in 2022, and subsequent periods of recovery or consolidation. Notably, mid- and small-cap
assets often display greater volatility and sharper price swings than their large-cap counterparts.

Given that cryptocurrency markets operate 24/7, intraday patterns provide valuable insights into mar-
ket microstructure. Figure 13 depicts the mean hourly log-return and volatility by time of day. We
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Figure 11: Histograms of the mean hourly log-return (%) (left) and mean hourly volatility (%)
(right).

Figure 12: Line plots of closing returns for representative cryptocurrencies, with large-cap examples
(top row), mid-cap examples (middle row), and small-cap examples (bottom row), displayed annu-
ally from 2020 to 2024.
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Figure 13: The mean hourly log-return (%) (left) and mean hourly volatility (%) (right) by hour of
day (UTC).

observe return peaks around early morning (5–7 AM) and late evening (9–11 PM), reflecting height-
ened trading during transitions between major global financial centers. Volatility peaks notably
around midnight and during overlapping trading hours between US and Europe (12–5 PM), suggest-
ing periods of intensified market activity driven by global participation and algorithmic strategies.

Discussions. Our analysis reveals several critical insights shaping the design of CTBench:

• Complex Market Dynamics: Crypto markets exhibit high-frequency, high-dimensional behav-
iors with distinct volatility profiles, intraday cycles, and regime shifts. These factors necessitate
benchmarks tailored for crypto time series.

• Benchmark Task Design: Given the data’s complexity, evaluation tasks must probe whether
synthetic data preserves predictive structures critical for practical applications such as forecasting
and statistical arbitrage.

• TSG Model Requirements: Capturing the intricate temporal and cross-sectional dependencies
of crypto markets demands advanced TSG architectures capable of modeling both short-term
fluctuations and long-term trends.

• Evaluation Metrics: Assessing TSG performance in crypto markets requires multifaceted met-
rics that go beyond statistical fidelity to capture financial viability and risk sensitivity.

Collectively, these insights underscore the need for crypto-specific benchmarks like CTBench to
advance the evaluation and development of TSG models for this rapidly evolving domain.
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C.2 DUAL-TASK EVALUATION

C.2.1 PREDICTIVE UTILITY TASK

Training Phase. Let R(τ)
train = [rτ−w+1, · · · , rτ ] ∈ Rn×w denote the real log-return matrix for a

split offset τ with length w = 500 × 24 hours. A TSG model g is trained on R
(τ)
train to capture

both temporal dependencies and cross-sectional relationships. From this trained model, we sample
synthetic returns:

Rgen = g(z), z ∼ N (0, I).

Next, features are extracted from Rgen via the pipeline: Φ(Rgen) ∈ Rn×s×d. A forecasting model
f : Rd → R then predicts the next-hour return:

r̂i,t+1 = f(Φ(Rgen)[i, t, :]).

We use XGBoost (Chen & Guestrin, 2016) as the forecasting model, chosen for its balance of robust-
ness, interpretability, and minimal hyperparameter tuning (Vancsura et al., 2025; Liu et al., 2021;
Yun et al., 2021), ensuring that benchmark results primarily reflect the quality of the generated data
rather than model capacity.

Trading Phase. The trained forecaster is then applied to a test period of length s = 30 × 24
hours. For each hour t and asset i, we predict r̂i,t+1 = f(Φ(Rtest)[i, t, :]), rank the vector
r̂t+1 = [r̂i,t+1]

n
i=1, and construct a dollar-neutral portfolio by longing the top half of assets (highest

r̂i,t+1) and shorting the bottom half (lowest r̂i,t+1). This portfolio is rebalanced hourly over the test
window, maintaining balanced long and short exposures.

Discussions. This task reveals how well synthetic data generalizes to real markets, operationalizing
the notion of functional realism. If Rgen preserves the predictive structures of R(τ)

train, the realized
P&L ∆Vt will score highly across CTBench’s evaluation suite. Thus, synthetic data are valued not
merely for statistical closeness to historical distributions but for the economic utility they unlock.
Importantly, every component in Figure 3(a) is modular: researchers can substitute alternative TSG
models, forecasters (e.g., Transformers), or feature sets, while retaining a unified scoring framework.

C.2.2 STATISTICAL ARBITRAGE TASK

Training Phase. The Statistical Arbitrage task typically hinges on pairs or baskets of assets whose
spreads revert toward a long-term mean. In this task, residuals between real Rtrain and reconstructed
returns R̂train are assumed to follow mean-reverting dynamics. For asset i and time t, we define
training residual:

ρi,t = ri,t − r̂i,t,

where ri,t ∈ Rtrain and r̂i,t ∈ R̂train. For each asset i, these residuals are then fitted to an Ornstein–
Uhlenbeck (OU) process (Uhlenbeck & Ornstein, 1930):

dρi,t = θi(µi − ρi,t)dt+ σidWt,

where θi > 0 (mean reversion speed), µi (long-run mean), and σi (volatility) are estimated per asset,
and dWt is a standard Wiener increment.

Trading Phase. On test data Rtest, the model reconstructs returns R̂test, producing test residuals for
ri,t ∈ Rtest and r̂i,t ∈ R̂test:

ϵi,t = ri,t − r̂i,t.

Each residual ϵi,t is converted to an s-score:

si,t =
ϵi,t − µi

σi/
√
2θi

,

quantifying the deviation from equilibrium. Trading signals are then derived via:

• Thresholding: Open or maintain a short position if si,t > +γ, a long if si,t < −γ, otherwise
stay flat, with γ = 2.

• Weight Normalization: Raw signals ηi,t = sgn(−si,t) · |si,t| are normalized to η̃i,t =
ηi,t/(

∑
j |ηj,t|).
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• Execution: Portfolios are rebalanced hourly based on η̃i,t.

Discussions. The Statistical Arbitrage task evaluates whether reconstructed time series reveal stable,
mean-reverting residuals suitable for statistical arbitrage, complementing the generation-focused
task by addressing market-neutral alpha extraction. These tasks ensure TSG models are tested not
only for statistical fidelity but also for practical effectiveness in real-world crypto trading.

C.3 TRADING STRATEGIES

Beyond the datasets and dual-task evaluation, trading strategies play a central role in assessing
whether synthetic time series capture signals that are economically meaningful. Since no single
strategy can fully characterize market behavior, CTBench incorporates multiple paradigms that re-
flect how practitioners deploy forecasts in real trading:

• S1: Cross-Sectional Momentum (CSM) takes long positions in the top decile and short posi-
tions in the bottom decile of assets ranked by predicted one-hour returns. This probes a model’s
ability to capture ranking-based alpha signals.

• S2: Long-Only Top-Quantile (LOTQ) equally weights and goes long in the top 20% of assets
based on predicted returns, with all other weights set to zero. This isolates pure directional signals
without short exposure.

• S3: Proportional-Weighting (PW) allocates weights proportionally to predicted returns: ηi,t =
r̂i,t/(

∑n
j=1 r̂j,t), emphasizing the magnitude of forecasted signals rather than merely their ranks.

Each strategy exploits different statistical regularities, including level effects, cross-sectional disper-
sion, and serial correlations, ensuring that no single modeling flaw remains undetected. They span
the primary mandates seen on crypto desks: beta-neutral long–short equity, directional trend cap-
ture, and volatility harvesting. Finally, the CTBench pipeline is fully plug-and-play. Traders can
drop in any proprietary strategies without altering the benchmark code, fostering fair comparison
across future studies.

C.4 FINANCIAL METRIC SUITE

Evaluating TSG models in crypto requires more than statistical similarity, it demands metrics that
connect directly to financial relevance and practical usability. To this end, CTBench employs a
structured suite of measures that balance fidelity, predictive utility, trading performance, and risk
management, while also accounting for computational efficiency.

Error-based Evaluation. Given the actual return ri,t and prediction r̂i,t for asset i and time t:

• E1: Mean Squared Error (MSE) is defined as:

MSE =
1

k · s · n
∑
τ∈O

s∑
t=1

n∑
i=1

(ri,t+τ − r̂i,t+τ )
2
.

• E2: Mean Absolute Error (MAE) is defined as

MAE =
1

k · s · n
∑
τ∈O

s∑
t=1

n∑
i=1

|ri,t+τ − r̂i,t+τ |.

Low values in both metrics reflect strong signal fidelity, while differences help distinguish outliers
from widespread minor errors.

Rank-based Evaluation. Given realized returns rt and predictions r̂t for all assets at time t:

• E3: Information Coefficient (IC) is defined as the average Spearman correlation between pre-
dicted and actual rankings, where ICτ,t = SpearmanCorr(rt+τ , r̂t+τ ). It is computed as:

IC =
1

k · s
∑
τ∈O

s∑
t=1

ICτ,t.

• E4: Information Ratio (IR) measures the stability of IC:

IR =
Mean(ICτ,t)

Std(ICτ,t)
.
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A consistently positive IC shows the generator preserves rankings essential for long-short strategies,
despite absolute errors.

Trading Performance. To assess economic utility, we evaluate both profitability and risk-adjusted
returns using the hourly profit-and-loss ∆Vt and the simple return of equity ∆Vt/Vt−1 at time t:

• E5: Compound Annual Growth Rate (CAGR) captures the annualized return based on equity
growth, where V0 and Vs are the initial and final equity. It is calculated as:

CAGR =
(Vs

V0

)8760/s

− 1.

• E6: Sharpe Ratio (SR) is defined as:

SR =
E[∆Vt/Vt−1]

Std(∆Vt/Vt−1)
·
√
8760.

These metrics capture both returns and the risk profile of synthetic-data-driven strategies.

Risk Assessment Metrics. Given profit-and-loss series ∆Vt and simple return of equity ∆Vt/Vt−1:

• E7: Maximum Drawdown (MDD) is defined as:

MDD = max
u≤t

(Vu − Vt

Vu

)
.

• E8: Value at Risk (VaR) at 95% confidence is defined as:

VaR0.95 = −Percentile5%(∆Vt/Vt−1).

• E9: Expected Shortfall (ES) at 95% confidence is defined as:

ES0.95 = −E
[
(∆Vt/Vt−1) | (∆Vt/Vt−1) ≤ −VaR0.95

]
.

VaR captures potential worst-day losses, while ES reveals mean loss beyond that threshold, offering
a fuller picture of tail risk.

Efficiency. CTBench evaluates efficiency along two dimensions: training and inference time, to
capture both scalability during model development and responsiveness in real-time use.

• E10: Training Time is the wall-clock time at which a TSG model is trained.

• E11: Inference Time is the mean wall-clock time to generate or reconstruct one batch of data (n
assets × s time steps).

C.5 TSG MODEL ZOO

GAN-based Methods. These methods (Seyfi et al., 2022; Wiese et al., 2020; Pei et al., 2021; Wang
et al., 2023) leverage adversarial training to generate realistic series. They incorporate recurrent
neural architectures and specialized attention mechanisms tailored to temporal dependencies.

• M1: Quant-GAN (Wiese et al., 2020) approximates a trading utility function, optimizing the
generator for downstream profitability.

• M2: COSCI-GAN (Seyfi et al., 2022) integrates causal self-attention and statistical conditioning
to consider temporal order and cross-asset correlations.

VAE-based Methods. These Methods use variational inference to capture both local and global
temporal patterns (Desai et al., 2021; Lee et al., 2023; Li et al., 2023). They have shown strong
performance in general TSG tasks (Ang et al., 2023a; Bao et al., 2024).

• M3: TimeVAE (Desai et al., 2021) is a sequence-aware VAE with temporal convolutions, de-
signed to capture both local and long-range dependencies in multivariate time series.

• M4: KoVAE (Naiman et al., 2024b) enhances TimeVAE by incorporating Koopman operator-
based latent dynamics for smoother and more interpretable generation.

Diffusion-based Methods. Diffusion models (Yuan & Qiao, 2024; Galib et al., 2024; Chen et al.,
2024; Li et al., 2025; Naiman et al., 2024a) progressively convert noise into structured data via
iterative denoising, proving highly effective in modeling complex market dynamics.
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Table 3: Summary of popular TSG methods with their backbone models and financial datasets used.

Year Method Backbone Financial Datasets Used

2016 C-RNN-GAN (Mogren, 2016) GAN /
2017 RCGAN (Esteban et al., 2017) GAN /
2018 T-CGAN (Ramponi et al., 2018) GAN /
2019 TimeGAN (Yoon et al., 2019) GAN Stocks
2019 WaveGAN (Donahue et al., 2019) GAN /
2020 COT-GAN (Xu et al., 2020) GAN /
2020 DoppelGANger (Lin et al., 2020) GAN /
2020 Quant-GAN (Wiese et al., 2020) GAN SPX
2020 SigCWGAN (Ni et al., 2020) GAN SPX & DJI
2020 TSGAN (Smith & Smith, 2020) GAN /
2021 RTSGAN (Pei et al., 2021) GAN Stocks
2021 Sig-WGAN (Ni et al., 2021) GAN SPX & DJI
2021 TimeGCI (Jarrett et al., 2021) GAN /
2022 CEGEN (Remlinger et al., 2022) GAN Stocks & Electric Price
2022 COSCI-GAN (Seyfi et al., 2022) GAN /
2022 PSA-GAN (Jeha et al., 2021) GAN /
2022 TsT-GAN (Srinivasan & Knottenbelt, 2022) GAN Stocks
2022 TTS-GAN (Li et al., 2022a) GAN /
2023 AEC-GAN (Wang et al., 2023) GAN /
2023 TT-AAE (Liu et al., 2023) GAN Stocks

2021 TimeVAE (Desai et al., 2021) VAE Stocks
2023 CRVAE (Li et al., 2023) VAE /
2023 TimeVQVAE (Lee et al., 2023) VAE /
2024 KoVAE (Naiman et al., 2024b) VAE Stocks

2023 DiffTime (Coletta et al., 2023) Diffusion Stocks
2023 TSGM (Lim et al., 2023) Diffusion Stocks
2024 Diffusion-TS (Yuan & Qiao, 2024) Diffusion Stocks
2024 FIDE (Galib et al., 2024) Diffusion Stocks
2024 ImagenTime (Naiman et al., 2024a) Diffusion Stocks
2024 SDformer (Chen et al., 2024) Diffusion Stocks
2025 PaD-TS (Li et al., 2025) Diffusion Stocks

2020 CTFP (Deng et al., 2020) Flow /
2021 Fourier-Flow (Alaa et al., 2021) Flow Stocks
2024 FlowTS (Hu et al., 2024) Flow Stocks

2018 Neural ODE (Chen et al., 2018) ODE + RNN /
2019 ODE-RNN (Rubanova et al., 2019) ODE + RNN /
2021 Neural SDE (Kidger et al., 2021) ODE + GAN Stocks
2022 GT-GAN (Jeon et al., 2022) ODE + GAN Stocks
2023 LS4 (Zhou et al., 2023) ODE + VAE /
2024 TimeLDM (Qian et al., 2024) Diffusion + VAE Stocks

• M5: Diffusion-TS (Yuan & Qiao, 2024) is a score-based diffusion model that refines Gaussian
noise into realistic trajectories, achieving state-of-the-art sample fidelity on financial data.

• M6: FIDE (Galib et al., 2024) introduces factorized conditional diffusion with attention-driven
score networks, enabling conditional generation based on market regimes or liquidity factors.

Flow-based Methods. These methods (Alaa et al., 2021; Hu et al., 2024) employ invertible trans-
formations to model data distributions, ensuring exact likelihood estimation and efficient sampling.
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• M7: Fourier-Flow (Alaa et al., 2021) uses frequency-domain coupling layers for invertible
transformations, allowing fast sampling and exact likelihood computation while preserving pe-
riodic structures.

Mixed-based Methods. Hybrid models (Zhou et al., 2023; Rubanova et al., 2019; Jeon et al., 2022)
typically combine multiple modeling paradigms (e.g., ODEs and VAEs) to capture nuanced temporal
dynamics and stochastic characteristics.

• M8: LS4 (Zhou et al., 2023) fuses deep state-space modeling with stochastic latent variables via
variational inference, providing flexible and interpretable modeling of complex crypto dynamics.

D EXPERIMENTAL SETUP

Datasets. We employ the datasets (Binance Exchange, 2025b) described in §3.1 for the experiments.
To simulate real-world deployment, we adopt a walk-forward rolling-window validation scheme,
using 500 days of hourly data for training, and 30 or 15 days for testing on the Predictive Utility and
Statistical Arbitrage tasks, respectively. After each cycle, the window advances by the test period
length, with models retrained. This process spans from January 2020 to December 2024, covering
diverse market regimes.

Benchmark Configurations. To isolate core TSG model performance, we assume zero trading
fees by default in both Predictive Utility and Statistical Arbitrage tasks, enabling fair comparison
of signal quality without interference from platform-specific costs. For the Statistical Arbitrage
task, we also apply a 0.03% trading fee, reflecting the fee level that a typical liquidity provider
can achieve on major centralized exchanges (Zhang et al., 2023; Winkel & Härdle, 2023; Binance
Exchange, 2025a), providing a more grounded evaluation of net profitability.

Trading Strategies. For the Predictive Utility task, we employ three representative trading strate-
gies in §3.3 to evaluate synthetic data across varied portfolio constructions. In contrast, the Statis-
tical Arbitrage task employs the mean-reversion strategy to isolate the model’s ability to preserve
exploitable residual structures.

TSG Methods. We evaluate eight representative TSG models across five major families in §3.5.
Hyperparameter settings follow published recommendations or are tuned for stable training.

• GAN-based: Quant-GAN adopts latent dim = 8, hidden dim = 80, gradient penalty λgp = 10.0,
and critic steps ncritic = 5; COSCI-GAN uses latent dim = 32, γ = 5, and ngroups = 4 with
MLP-based central discriminators, as per (Seyfi et al., 2022).

• VAE-based: TimeVAE uses latent dim = 8 with stacked hidden layers of 50, 100, and 200 units;
KoVAE follows (Naiman et al., 2024b), setting WKL = 0.009 and WPRED = 0.03 for KL and
auxiliary loss terms.

• Diffusion-based: Diffusion-TS uses 1000 timesteps, 3 encoder layers, 6 decoder layers, and
dmodel = 64; FIDE applies 1000 steps, hidden dim = 64, 8 layers, and σ = 0.05.

• Flow-based: Fourier-Flow incorporates DFT-based coupling layers with hidden size = 128 and 3
flow layers.

• Mixed-type: LS4 employs hidden dim = 6, latent dim = 8, and a batch size of 512.

Financial Baseline Models. We added two baselines commonly used in quantitative finance:

• ARMA-GARCH (Engle, 1982): We fit multivariate VAR–DCC–GARCH models, which are
multivariate extensions of univariate ARMA–GARCH models, to jointly capture the conditional
mean, volatility, and dynamic correlation structure of returns. Specifically, we use a VAR(1)
specification for the conditional mean (corresponding to an ARMA(1,0) structure in each marginal
series), univariate GARCH(1,1) processes for the conditional variances, and a DCC(1,1) structure
for the time-varying conditional correlations.

• Bootstrap (Rubin, 1981): We implement a bootstrap-style generator that resamples returns to
preserve marginal distributions and local dependence structures without explicit parametric dy-
namics.

These models are evaluated under the same Predictive Utility task as the learning-based TSG models.
In addition, for the Statistical Arbitrage task, we use the ARMA–GARCH model’s filtered (fitted)
conditional mean process as reconstructions as in Section 3.2.
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Figure 14: Simulated growth curves of $10,000 over four years under three trading strategies.
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Figure 15: Simulated growth curves of $10,000 for the Statistical Arbitrage task (with 0.03% fee).

Evaluation Metrics. We adopt the thirteen metrics detailed in §3.4, thereby scoring each model on
forecasting accuracy, rank correlation, trading profitability, tail risk, and computational efficiency.

Experiments Environments. All experiments are conducted on a machine equipped with an Intel®
Xeon® Platinum 8480C @3.80GHz, 64 GB RAM, and an NVIDIA H100 GPU.

E ADDITIONAL RESULTS ON EQUITY CURVE DYNAMICS

E.1 PREDICTIVE UTILITY TASK

Figure 14 presents log-scaled equity curves (initialized at $10,000) for each TSG model under three
trading strategies from 2021 to 2024, highlighting cumulative returns and how inductive biases in-
teract with shifting market regimes.

Under CSM, COSCI-GAN and TimeVAE deliver steady gains by effectively preserving rank order
and alpha signals, though both limit upside potential by dampening extreme winners. In contrast,
Diffusion-TS and FIDE exhibit persistent declines, as their denoising processes suppress volatility
and weaken long–short execution.

Under LOTQ, COSCI-GAN clearly outperforms, likely benefiting from adversarially enhanced
right-tail signals that capture strong directional momentum. TimeVAE and Fourier-Flow sustain
modest but stable growth, whereas Diffusion-TS falters by missing rare yet critical upward spikes.

Finally, under PW, which emphasizes consistent pairwise rankings, COSCI-GAN again dominates.
TimeVAE and Fourier-Flow show smooth compounding, reflecting robust generalization from well-
regularized latent spaces. By contrast, LS4 remains largely flat across all strategies, suggesting its
conservative design behaves more like a low-beta portfolio than an alpha-generating model.

E.2 STATISTICAL ARBITRAGE TASK

Figure 15 illustrates the equity curves under the Statistical Arbitrage task, starting from $10,000 and
incorporating 0.03% trading fees.

At the top end, LS4 compounds almost monotonically, underscoring its strong fee resilience, with
two staircase-like surges in mid-2022 and early 2023. This pattern suggests that its latent-switching
mechanism is particularly effective at capturing regime shifts rather than merely reacting to incre-
mental mean-reversion. KoVAE follows with a similarly convex trajectory, initially smooth with
shallow drawdowns through 2023, though its growth fades amid the turbulence of 2024. TimeVAE
maintains steady gains through 2022, plateaus in mid-2023, and drifts sideways or slightly down-
ward in 2024, reflecting its dependence on residual signals that weaken as cross-sectional dispersion
compresses.
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Among mid-tier performers, Diffusion-TS delivers a notably stable curve with minimal drawdowns,
though its terminal return is the lowest among viable models, consistent with its characterization as
a fee-resilient, risk-balanced generator.

At the lower end, FIDE collapses early, suggesting that its residuals may be over-regularized to the
point of eliminating tradable structure. Meanwhile, Fourier-Flow experiences a slow but persistent
bleed after mid-2022, likely driven by over-smoothed residual patterns that generate a sustained
negative carry.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used mainly as auxiliary tools to aid and polish the writing of the paper.

24


	Introduction
	Preliminaries
	CTBench
	Crypto-Centric Datasets
	Dual-Task Evaluation
	Trading Strategies
	Financial Metric Suite
	TSG Model Zoo

	Experiments
	Predictive Utility Task
	Statistical Arbitrage Task
	Efficiency
	Ablation Study on Forecasting Models
	Recommendations

	Conclusion and Future Work
	Notations
	Scope Illustration
	Benchmark Details
	Crypto-Centric Datasets
	Dual-Task Evaluation
	Predictive Utility Task
	Statistical Arbitrage Task

	Trading Strategies
	Financial Metric Suite
	TSG Model Zoo

	Experimental Setup
	Additional Results on Equity Curve Dynamics
	Predictive Utility Task
	Statistical Arbitrage Task

	The Use of Large Language Models (LLMs)

