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Abstract The surge of frameworks for automated unsupervised clustering problems exposed the

notable gap in performance assessment, unified datasets and methodologies for this field.

The lack of standardization and proper clustering goal setting obscures the applicability

and suitability of such solutions. Therefore, we propose a benchmark to bridge this gap

by offering a comparative analysis of AutoML frameworks for clustering, using several

criteria and a comprehensive set of benchmarking problems. Four prominent AutoML

unsupervised frameworks (AutoML4Clust, Autocluster, cSmartML, and ML2DAC) were

compared following our methodology. By extending the evaluation beyond quantitative

metrics, this research contributes to a more nuanced understanding of the applicability and

performance of AutoML for a diverse set of clustering problems. Our analysis shows the

evident demand for effort in the direction of pipeline synthesis (i.e., search and optimization

of complete pipelines), clustering goal definition and suitable analysis dimensions.

1 Introduction

In the evolving landscape of data analysis, clustering serves as a foundational technique with

widespread applications in tasks such as pattern recognition (Baraldi and Blonda, 1999), image

segmentation (Mittal et al., 2021) and anomaly detection (Chandola et al., 2009). The inherent

complexity and diversity of datasets demand a certain level of expertise and ability from the data

practitioners who wish to produce effective clustering solutions. This prompts the integration of

Automated Machine Learning (AutoML) methods into the clustering domain. The primary goal of

AutoML is to make machine learning more accessible to individuals with varying levels of expertise

by automating the complex and time-consuming aspects of machine learning development (Hutter

et al., 2019).

The automated generation of unsupervised clustering solutions presents a formidable challenge.

The datasets can often exhibit high-dimensionality, varying shapes, and sizes of clusters (Assent,

2012; Strehl and Ghosh, 2003), as well as the presence of noise and outliers (Ester et al., 1996).

The dynamic nature of real-world data introduces a level of intricacy that demands sophisticated

methodologies for discerning meaningful patterns. Since unsupervised clustering lacks clear targets,

there is no single metric that describes every dataset equally well (Bonner, 1964; Ezugwu et al., 2022).

Consequently, assessing the efficacy and performance of current AutoML frameworks designed

for unsupervised learning remains an open issue, highlighting the need for further research and

standardization efforts in this domain.

Furthermore, the proliferation of AutoML frameworks for unsupervised clustering presents a

paradox to AutoML’s fundamental objective of simplifying machine learning (Hutter et al., 2019).

While these frameworks aim to streamline model development and deployment, their abundance

introduces a counter-intuitive complexity, as each tool offers diverse capabilities, strengths, and

limitations. Practitioners must possess not only a deep understanding of the clustering datasets

they are working with but also comprehensive knowledge of the functionalities and performance of

various AutoML frameworks. Thus, navigating this landscape demands a blend of domain expertise,
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technical proficiency, and informed decision-making to leverage AutoML for unsupervised learning

tasks effectively.

However, while supervised learning has garnered significant attention in the literature, the

evaluation of AutoML techniques for unsupervised problems remains considerably understudied.

To bridge this gap, we provide a benchmarking to evaluate AutoML clustering frameworks to assess

their usability, clustering performance, and scalability. By examining usability aspects, such as

installation process and documentation quality, we aim to provide insights into the ease of use and

overall user experience of these tools. Evaluating clustering performance across diverse datasets

and algorithms would identify the strengths and weaknesses of AutoML frameworks in terms of

clustering quality and accuracy. Additionally, by analyzing scalability characteristics we assess

their ability to handle large-scale datasets and efficiently utilize computational and time resources.

Overall, this work offers valuable guidance for selecting the most suitable AutoML framework for

clustering tasks, thereby advancing automated clustering techniques and enhancing accessibility

to machine learning technology.

In the context of clustering, we selected four AutoML frameworks, namely: ML2DAC (Treder-

Tschechlov et al., 2023a), Autocluster (Liu et al., 2021), cSmartML (ElShawi et al., 2021) and, finally,

AutoML4Clust (Tschechlov et al., 2021). Our experiments showed that while usability aspects can

vary between the frameworks, the clustering performance remains relatively consistent across

most, with scalability favoring ML2DAC and AutoML4Clust. The experiments compared the

AutoML clustering frameworks by leveraging a varied collection of 100 clustering datasets, ensuring

comprehensive stress testing. The main contributions of this paper are:

• The first benchmarking of AutoML frameworks for clustering.

• Introduction of quantitative and qualitative criteria for AutoML frameworks for clustering.

• Development of a set of one hundred clustering datasets for comprehensive framework bench-

marking.

2 Theoretical background

Algorithm Selection (AS), Hyperparameter Optimization (HPO), and Combined Algorithm Selection

and Hyperparameter Optimization (CASH) are fundamental tasks in AutoML. Here, we provide

formal definitions for each of these tasks.

AS involves selecting the optimal algorithm 𝐴∗
from a set of candidate algorithms A to solve a

given problem instance represented by a dataset 𝐷 . Formally, AS aims to optimize (i.e., maximize)

a performance function F (·, ·):
𝐴∗ ∈ argmax

𝐴∈A
F (𝐷,𝐴) (1)

where F (𝐷,𝐴) denotes the performance of using algorithm 𝐴 to process the problem instance 𝐷 .

HPO aims to find the optimal hyperparameters 𝜃 ∗ that optimize a given objective function

F (·, ·), considering a learning model𝑀 and a dataset 𝐷 :

𝜃 ∗ ∈ argmax

𝜃 ∈Θ
F (𝑀 (𝐷, 𝜃 )) (2)

where Θ denotes the hyperparameter space.

CASH integrates the tasks of AS and HPO. Given a set of candidate algorithms A, and their

associated hyperparameter spaces Θ𝐴, CASH aims to find both the optimal algorithm 𝐴∗
and its

corresponding hyperparameters 𝜃 ∗ that maximizes the objective function F (·, ·, ·):

𝐴∗, 𝜃 ∗ ∈ arg max

𝐴∈A,𝜃 ∈Θ𝐴
F (𝐷,𝐴, 𝜃 ) (3)
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3 Related Work
Reviewing the literature, we considered as related the works that focused mainly on comparing

AutoML methods and frameworks. Notable among these is Gijsbers et al. (2019), which intro-

duces a benchmarking framework specifically tailored for AutoML. This benchmarking platform

incorporates diverse evaluation criteria, such as predictive performance metrics, computational

resource consumption, and ease of use, to evaluate four AutoML frameworks on 39 classification

datasets. Another important work was presented by Balaji and Allen (2018), which evaluates

AutoML frameworks in the context of regression in addition to classification. It compares the

predictive performance of four AutoML frameworks on 30 regression datasets and 57 classification

datasets.

Moreover, Zoller and Huber (2021) combined the benchmarking of popular AutoML frameworks

with a very thorough survey of AutoML methods. The benchmarking evaluates the predictive

performance of 6 AutoML frameworks in performing CASH on 73 classification datasets. The

survey portion provides insights regarding features, capabilities, and applicability across different

domains of AutoML methods for supervised machine learning.

Poulakis et al. (2024) presented a systematic review of AutoML methods for unsupervised

learning. The survey includes recent research works in automated clustering and proposes a

taxonomy for categorizing existing methods. By performing a qualitative comparison, the survey

offers an overview of the field of AutoML for clustering, highlighting the current state-of-the-art

and potential research directions. However, no quantitative comparison was provided, limiting the

analysis landscape.

The lack of standardized benchmarking criteria and datasets for evaluating AutoML solutions

in clustering is the primary motivation for this research. Establishing a set of qualitative and

quantitative evaluation criteria, and clustering datasets is crucial to promote transparency and

replicability in research findings and pave the way for future research.

4 Benchmarking Design

4.1 Datasets

To properly compare the performance of AutoML frameworks, it is important to assemble a set of

datasets that represent a diverse range of clustering scenarios. In the context of clustering, this is

not a well-defined or simple process. According to Von Luxburg et al. (2012), there are basically

three types of datasets that are commonly used to evaluate clustering algorithms: (i) real world

data, (ii) classification datasets and (iii) artificial data.

Using real world datasets to evaluate clustering algorithms may sound like a sensible approach

for every case, although it comes with its own limitations. The main one is the lack of generalization,

since it enables only the evaluation of algorithms considering their relevance to particular contexts

or objectives (e.g., healthcare, finance, social networks).

Using classification datasets to evaluate clustering algorithms can be misleading since class

labels in classification datasets are predefined categories, which may not align with the intrinsic

groupings identified by clustering algorithms. This discrepancy can obscure the true performance

of clustering algorithms and hinder the identification of meaningful clusters within the data (Fränti

and Sieranoja, 2018).

The usage of synthetic data serves to assess the statistical performance of clustering algorithms

within specified assumptions about the data generation process. However, it is essential to note

that this method does not inherently gauge the practical utility of clustering, in the sense that the

usefulness depends on specific domains or applications.

In our proposed benchmarking, we do not aim to set specific applications or clustering objec-

tives to evaluate the performance of clustering algorithms, we only want to assess the statistical

performance (see Sections 5.2 and 5.3). In this sense, labeled clustering synthetic data aligns better
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with our objectives, as it allows the manipulation of desired parameters for study while mitigating

the influence of other factors.

We synthesized
1
a set of 100 labeled clustering datasets, by sampling data from probabilistic

mixture models based on dataset archetypes defined by the combinations of the features and

ranges presented in Table 1. In a practical sense, an archetype is a high-level representation of

the overall geometry of a dataset. Once an archetype is defined, it is straightforward to generate

different datasets with similar structures. This characteristic makes these kinds of benchmarks more

reproducible, since it is possible to replicate new data based on pre-defined archetypes (Zellinger

and Bühlmann, 2023). The archetypes that were obtained by the combinations of the features from

Table 1 are described in the Appendix 6 and displayed in Figure 4.

Table 1: Features and ranges of proposed benchmarking clustering datasets.

Feature Range Description

Dimensions 2 - 100 Refers to the number of dimensions of the dataset

Clusters 2 - 35 Refers to the number of clusters in the dataset

Samples 150 - 5000 Quantity of data points

Aspect Ref 1-10 Determines how elongated or spherical the clusters are

Aspect Max Min 1-10 Determines how much the Aspect Ref varies between clusters

Radius Max Min 1-10 Determines the volume variation in clusters

Imbalance Ratio 1 - 3 Refers to the disproportionate sizes between clusters

4.2 Selection Criteria

After reviewing the state-of-the-art on AutoML for clustering, we identified a set of 20 frameworks

related to general clustering tasks, as presented in Table 2. It is possible to organize the current

frameworks into four different tasks: AS, AS and HPO in sequence, CASH and Pipeline Synthesis

(PS). PS automatically selects and configures the appropriate preprocessing techniques, feature

engineering methods, clustering algorithms, and hyperparameters to build an optimal pipeline for

a specific dataset (Karmaker et al., 2021).

Considering the limitations inherent in AS-only approaches for fully addressing clustering

tasks (specially, the heavy impact of hyperparameters in clustering algorithms), we opted not to

include frameworks solely dedicated to this task. Instead, we focused on frameworks capable of

recommending a candidate solution, favoring a single tuned clustering algorithm over ranking

or multiple solutions. This constraint narrowed down our selection of frameworks. Additionally,

we prioritized frameworks with complete transparency and reproducibility support to ensure

compliance with all evaluation criteria. In line with these principles, only four frameworks met our

stringent criteria
23
: Autocluster, cSmartML, AutoML4Clust, and ML2DAC.

4.3 Evaluation Criteria

To conduct a thorough evaluation of the selected AutoML frameworks, we have established a

comprehensive set of evaluation criteria. They are:

• General comparison. Although the selected frameworks share a common goal of simplifying

and automating the clustering process, they have different approaches and strategies to achieve

1
Datasets were generated using Repliclust. A Python package for generating synthetic clustering datasets, based on

high-level geometric representations of whole classes of datasets.

2
GitHub: https://github.com/wywongbd/autocluster, https://github.com/DataSystemsGroupUT/csmartml,

https://github.com/tschechlovdev/Automl4Clust, https://github.com/tschechlovdev/ml2dac
3
Python Package Index: https://pypi.org/project/autocluster/
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Table 2: Summary of state-of-the-art AutoML frameworks for clustering grouped by AutoML task.

Task Frameworks

AS Ferrari and de Castro (2015), Pimentel and de Carvalho (2019), CBOvalue (Adam et al.,

2015), de Souto et al. (2008), Pimentel and de Carvalho (2018), Nascimento et al. (2009),

Ferrari and de Castro (2012), Soares et al. (2009), Fernandes et al. (2021), Pimentel and

de Carvalho (2019), Gabbay et al. (2021), MARCO-GE (Cohen-Shapira and Rokach,

2021)

AS→ HPO AutoClust (Poulakis et al., 2020), Autocluster (Liu et al., 2021), cSmartML (ElShawi

et al., 2021)

CASH AutoML4Clust (Tschechlov et al., 2021),ML2DAC (Treder-Tschechlov et al., 2023b),

COBS (Van Craenendonck and Blockeel, 2017), MASSCAH (Shalamov et al., 2018)

PS TPE-AutoClust (ElShawi and Sakr, 2022)

this goal. The first criterion evaluates the design principles by comparing and contrasting: (i)

optimization strategies (techniques to explore the search space); (ii) application of techniques

to increase resource efficiency (e.g., parallelization, meta-learning, warm start); (iii) the degree

of automation in the selection of algorithms, preprocessing techniques, and hyperparameters;

Furthermore, we also evaluate the usability (Nichols and Twidale, 2002) and the diversity of

clustering algorithms - search space composition - (Dongkuan Xu, 2015).

• Clustering performance. We employ specific Cluster Validity Indices (CVI) designed to measure

the quality and similarity of clustering results (Vendramin et al., 2010). These metrics are

fundamental in our evaluation and fall into two distinct categories: internal and external. Internal

metrics assess how well the clusters are formed within the dataset, measuring attributes such as

cohesion and separation. On the other hand, external metrics measure the clustering performance

by comparing the results to ground truth labels.

• Scalability. We evaluated the scalability and consistency (Boden et al., 2017) of AutoML frame-

works by testing their performance regarding memory consumption and on datasets of varying

dimensions and instances.

4.4 Frameworks Configuration

All frameworks were executed in an isolated environment using the latest version of Anaconda

(ana, 2020). Each framework was built using the exact packages and versions specified in their

respective documentations. The experiments were conducted on a Dell Precision 5820 Tower

X-Series, equipped with an Intel Core i9-10980XE CPU boasting 18 cores and 36 threads, reaching a

maximum clock speed of 4.6 GHz. It featured 62.5 GiB of RAM, powered by two SK Hynix PC801

NVMe 1TB drives. The system was augmented with an NVIDIA Quadro T1000 Mobile GPU and

operated on Ubuntu 22.04.2 LTS (Jammy Jellyfish).

5 Results4

5.1 General comparison

Autocluster automatically recommends a clustering algorithm using a distance-based strategy,

considering meta-features such as simple, statistical, PCA-based, and landmarkers obtained from

both a meta-database and the meta-features extracted from the new clustering problem. After

having selected the closest candidates approaches (i.e., AS task), it conducts a grid-search for HPO

4
The repository with the experiments that we conducted can be found https://github.com/biagiolicari/

Benchmark_result_AutoML.
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to enhance the performance of CVIs including the Calinski-Harabasz Index (Caliński and Harabasz,

1974), Davies-Bouldin Index (DBS) (Davies and Bouldin, 1979), and Silhouette Coefficient (SIL)

(Rousseeuw, 1987). Each CVI contributes to a vote regarding the best score, employing a majority

voting strategy to recommend the optimal algorithm. It is worth noting that this framework does

not have preset hyperparameters, allowing flexibility in selecting different clustering algorithms.

However, it requires a reliable meta-database capable of supporting the distance-based strategy.

Additionally, the limitations of grid search could potentially lead to inefficient optimization.

AutoML4Clust approaches CASH by limiting its search space to only k-based clustering algo-

rithms and the hyperparameter tuning to only the number of clusters (k). The framework optimizes

internal CVIs through techniques such as Bayesian Optimization (BO), HyperBand optimization (Li

et al., 2016), and the combination of HyperBand and BO (BOHB) (Falkner et al., 2018). It allows for

multiple optimization tasks to be run concurrently during the optimization phase. However, this is

only possible for the BOHB and HyperBand optimizators. The framework introduces a budget for

time or iterations as a hyperparameter to limit the exploratory space during optimization. Unlike

other frameworks, AutoML4Clust focuses solely on the recommendation phase. A proper selection

of the budget is mandatory, as the optimization phase involves combinations of all algorithms and

hyperparameters without optimized strategies.

The framework cSmartML capitalizes on past task experiences, maintaining a repository of

dataset meta-features and evaluations to enhance its performance. Users provide datasets and

time budget constraints, initiating the selection and tuning process. Using meta-features and

eight clustering techniques, cSmartML assesses clustering quality using twelve internal indices

and multiple objective functions. It ranks configurations based on performance correlations with

external validation using Normalized Mutual Information and Spearman’s rank correlation. Notably,

cSmartML creates a set of hyper-partitions for a selected algorithm, which are then fine-tuned in

parallel using an evolutionary algorithm. Unlike Autocluster and AutoML4Clust, cSmartML follows

a tuning strategy based on two different levels of hyperparameter impact: main and conditional

levels. While cSmartML introduces a strategy to reduce the HPO task, it operates in two different

stages, AS then HPO, without taking advantage of mapping the problem as in traditional CASH.

ML2DAC is a framework that leverages a meta-knowledge repository built during an initial

learning phase, drawing insights from various pre-clustered datasets and best CVI candidates for

a particular task. This framework demands a very costly offline phase to build the meta-dataset,

considering meta-feature extraction, diverse CVIs for further recommendation and additional meta-

information. In the subsequent application phase, it identifies similar datasets from its repository,

retrieves configurations for warm start, and selects the CVI using a trained model. Selecting warm

start configurations and narrowing the search space reduce complexity and optimize performance

using BO. By executing multiple configurations, the framework calculates the selected CVI values

to identify the best-performing configuration. The offline phase is balanced by a lightweight

online phase, employing suitable strategies to enhance recommendation performance. However,

this framework does not support the dynamic increment of algorithms or CVIs, necessitating a

reset of the offline phase from scratch. Table 3 presents an overview of the design strategy for

performance-boosting methods and the proposed architecture of each framework.

Usability. We evaluated the usability of each framework by assessing their documentations

and installation processes. The summary of our evaluation is presented in Table 4, where Au-

toML4Clust and cSmartML presented the least updated and usable frameworks mainly due to

outdated installation processes or lack of comprehensive examples of usage and documentation.

Autocluster and ML2DAC on the other hand equip users with the necessary resources to easily

install and utilize their frameworks, by providing their frameworks as packages through Python’s

package-management system.

Search space. The adaptability of AutoML frameworks greatly influences clustering effective-

ness. Our analysis of supported clustering algorithms (see Table 5) concluded that Autocluster
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Table 3: Framework design strategies.

Framework Performance boosting methods Architecture

AutoML4Clust Time or Iterations Budget Online (optimization)

cSmartML Time Budget, hyperpameters hierarchy

tuning based on two levels

Offline (meta-features) and online (optimization)

Autocluster - Offline (meta-features) and online (optimization)

ML2DAC Iterations Budget and warm start Offline (meta-features and CVIs extensive calculation)

and online (optimization)

Table 4: Summary of Documentation Evaluation among AutoML Frameworks.

Framework Last Update Examples Documentation Installation

AutoML4Clust Oct 13, 2020 Repository provides us-

age examples, and de-

tailed configurations.

Clear documentation

with brief explanations.

Challenging installation pro-

cess due to outdated packages

and programming language.

cSmartML Dec 27, 2021 Sparse examples in

repository; GUI image

available.

Lacks comprehensive

documentation.

User-friendly interface, intu-

itive for interaction.

Autocluster Jan 9, 2023 Repository showcases

usage examples and cus-

tomizations.

Detailed documenta-

tion and reports.

Easy installation and usagewith

provided examples.

ML2DAC Sep 18, 2023 Repository contains us-

age demos and cus-

tomizations.

Covers installation and

result reproduction.

Simple installation and execu-

tion with provided demos.

and ML2DAC presented the greater search space range for AS. Autocluster and ML2DAC embrace

diverse clustering algorithms, leaning towards density-based and affinity propagation models.

In contrast, cSmartML prioritizes hierarchy models with some density-based and graph theory

adoption. AutoML4Clust’s search space is composed of only three partitioning-based clustering

algorithms and a Gaussian Mixture Model (GMM) (Bishop, 2006).

Table 5: Clustering algorithms supported by each framework.

AutoML4Clust Autocluster cSmartML ML2DAC

Affinity Propagation ✗ ✓ ✓ ✓

OPTICS ✗ ✓ ✓ ✓

Agg. Clustering ✗ ✓ ✓ ✓

MeanShift ✗ ✓ ✓ ✓

GMM ✓ ✓ ✗ ✓

Spectral Clustering ✗ ✓ ✓ ✓

Mini Batch KMeans ✓ ✓ ✗ ✓

K-medoids ✓ ✗ ✗ ✗

DBSCAN ✗ ✓ ✓ ✓

KMeans ✓ ✓ ✓ ✓

Birch ✗ ✓ ✓ ✓
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5.2 Clustering performance

For the experiments, we instantiated all frameworks with their default configurations. We set a

limit of 5 hours for the maximum execution time, after which the execution was considered failed.

We also specified the amount of memory available as resource constraints and limited it to 16GiB.

Additionally, we declared the user intent by choosing the optimization mode to maximize the quality

of the result based on the internal CVIs
5
SIL and DBS, since they are common for every framework

in the benchmark. Additionally, for the external CVI, we selected the Adjusted Random Index (ARI)

(Hubert and Arabie, 1985), considering its ability to evaluate clustering solutions without assuming

a priori knowledge, making it versatile and applicable to diverse datasets and algorithms (Santos

and Embrechts, 2009).

The meta-CVI functionality of cSmartML and ML2DAC was utilized to obtain their results. The

meta-learning capabilities of ML2DAC, cSmartML, and Autocluster were also used. We did not

impose any additional constraints or customization to the evaluated frameworks’ configuration

parameters. This approach aimed to mirror the practical application of these systems closely. To

conclude, we decided to use cSmartML’s single optimization mode instead of its multi-objective

optimization capability to match the other frameworks.

We ran each framework five times on the group of datasets, where we measured the perfor-

mance regarding the internal and external CVIs, as displayed in Figure 1. Regarding ARI and

SIL, ML2DAC produced the best results and AutoML4Clust the second best, while being closely

followed by Autocluster in ARI and followed by cSmartML in SIL. The optimal DBS is 0. There-

fore, AutoML4Clust obtained the best results, closely followed by cSmartML and ML2DAC, while

Autocluster obtained the worst results.

(a) ARI (b) SIL (c) DBS

Figure 1: Boxplot showing the performance of the selected frameworks, sorted from best to worse

result based on the median for (a) ARI, (b) SIL, (c) DBS.

To truly assess the difference in cluster quality between the selected frameworks, we employed

the non-parametric Friedman test at p < 0.05 to identify any statistically significant deviations

in the average rank distributions. After conducting a statistical analysis, we use the Nemenyi

post-hoc test to identify pairs that show significant differences. Lower ranks in the diagram

indicate better performance. Figure 2 shows the Critical Distance (CD) diagrams (Demar, 2006) for

each benchmarking metric. ML2DAC achieves better ranks across all settings, however, it is not

statistically different than other frameworks in all analysis dimensions. Only for ARI and SIL we

notice that the best three frameworks are statistically different than the worst framework. This

analysis highlights that in practical scenarios, most frameworks have quite similar performance,

and none of them can be considered optimal or statistically advantageous.

5
The formalization for every CVI used can be found in the Appendix A.
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(a) ARI (b) SIL

(c) DBS

Figure 2: CD plot for respectively ARI, SIL, and DBS scores.

5.3 Scalability

Execution time. The results in Figure 3a indicate that AutoML4Clust outperforms other frameworks

in terms of speed, with an average execution time of 1.11 minutes across all datasets and all

executions. ML2DAC also performs well, with an average execution time of 2.27 minutes, although

it is not as fast as AutoML4Clust. In comparison, Autocluster and cSmartML take much longer

to execute, with times of 8.92 and 18.04 minutes, respectively. When comparing Autocluster and

cSmartML, Autocluster is almost 2 times faster. Overall, while AutoML4Clust is the fastest, ML2DAC

presents a balanced option for clustering tasks, combining speed and quality.

Memory usage. Analysing the memory usage across various AutoML frameworks for clustering

has highlighted significant disparities that can impact framework selection. Autocluster is the

framework that requires less memory usage, with an average memory consumption of 3.74 GB.

AutoML4Clust requires an average of 4.72 GB. ML2DAC requires approximately 5.31 GB. Whereas

cSmartML uses an average memory usage of approximately 5.68 GB. These variations underscore

the importance of a comprehensive evaluation process that takes into account performance metrics

and system resource limitations in selecting an AutoML framework.

Scalability over dataset. Here, a comparison is made between the performance of frameworks

concerning increasing dataset dimensions and instances. As indicated in Figure 3, AutoML4Clust

exhibits almost constant execution time, together with ML2DAC, demonstrating stable performance.

cSmartML, on the other hand, displays an exponential rise. cSmartML appears to be the most

affected by larger datasets, indicating potential scalability challenges.

6 Discussions

In this study, we conducted experiments to evaluate three main criteria of four AutoML frameworks

designed for clustering.

The first criterion involved qualitative general comparisons assessing the different design

principles of each framework and their ease of use, aswell as usability and search space composition.

According to the criteria that we proposed to evaluate this criterion, ML2DAC obtained the superior

performance by balancing offline model training with meta-learning and warm start to produce

high quality and resource-efficient optimizations, on a diverse search space. Furthermore it provides

users with reproducible results, and easy installation process and documentation that helps lower

the learning-curve.

Moving on to the second criterion, we evaluated quantitative clustering performance. The

experiments revealed that the frameworks generally obtained statistically similar results, except

9



(a) Scalability over dataset dimensions. (b) Scalability over dataset instances.

Figure 3: Average performance of frameworks over (a) dataset dimension and (b) dataset instances.

for cSmartML, which exhibited statistically lower ARI and SIL scores. This underscores that in

practical scenarios, none of the frameworks can be deemed optimal or statistically advantageous.

In terms of the third criterion, scalability performance, the experiments demonstrated that

both CASH frameworks, ML2DAC and AutoML4Clust, consistently delivered faster results across

datasets of different sizes compared to Autocluster and cSmartML. Moreover, the most effective

techniques capitalized on BO, distinguishing them from the evolutionary optimization employed

by cSmartML and the grid search utilized by Autocluster. However, it is important to mention that

AutoML4Clust presents a limited algorithm space compared to ML2DAC, as detailed in Table 5.

The improved results of ML2DAC are attributed to the warm start strategy.

It is important to note that there may be limitations in the design and execution of benchmarks

for AutoML frameworks. These frameworks differ in their design choices, including code libraries,

search space, and optimization techniques, which can affect their performance. It is also worth

noting that all the experiments were conducted within a time budget, which can limit insights

regarding the scalability and performance of frameworks. Additionally, it is important to note that

only the results produced by the final model of each framework are recorded.

7 Conclusion

In conclusion, our novel benchmarking analysis sheds light on the strengths and limitations of

AutoML frameworks for clustering tasks. While usability and search space vary among the frame-

works, clustering performance remains relatively consistent across most, with scalability favoring

CASH approaches. These findings provide valuable insights for researchers and practitioners in

selecting the most suitable AutoML framework for clustering tasks, emphasizing the importance

of considering both qualitative and quantitative aspects in framework evaluation and selection.

Additionally, our contribution to developing a diverse set of clustering datasets for benchmarking

AutoML frameworks holds significant value in the field. This collection, meticulously curated to

encompass a wide spectrum of data distributions, dimensions, and complexities, enables us the

conduct comprehensive evaluations of AutoML frameworks across diverse scenarios.

8 Broader Impact Statement

After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment.
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A CVIs Formalization

A.1 Silhouette
The SIL score, as introduced by Rousseeuw (1987), ranges from -1 to 1, where a higher score

indicates better-defined clusters. A score close to 1 suggests that the data point is well-matched to

its own cluster and poorly matched to neighboring clusters, signifying a strong and appropriate

clustering. Conversely, a score near -1 implies that the point may be assigned to the wrong cluster,

while a score around 0 indicates overlapping clusters. Let the 𝑖, 𝑗 be n-dimensional feature vectors

(data points) and 𝑖, 𝑗 ∈ 𝐶𝐼 ; 𝐶 as a given cluster of the dataset 𝐷 ; 𝑑 (𝑖, 𝑗) as the average Euclidian
distance between data points 𝑖 and 𝑗 ; |𝐶𝑖 | as the number of data points in cluster 𝐶𝐼 and |𝑁 | is the
total number of data points present in the dataset 𝐷 . The Silhouete Score for 𝑖 can be calculated

using (4) if and only if |𝐶𝐼 | > 1.

SIL(𝑖) = 𝑏 (𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏 (𝑖)} (4)

Where, 𝑎(𝑖) is the average distance from the 𝑖-th data point to the other data points in the same

cluster, given by (5).

𝑎(𝑖) = 1

|𝐶𝐼 | − 1

∑︁
𝑗∈𝐶𝐼 , 𝑗≠𝑖

𝑑 (𝑖, 𝑗) (5)

And, 𝑏 (𝑖) is the smallest average distance between the 𝑖-th data point of 𝐶𝐼 and the 𝑘-th data

point of 𝐶𝐾 , where 𝐶𝐼 ≠ 𝐶𝐾 , given by (6).

𝑏 (𝑖) = min

𝐾≠𝐼

1

|𝐶𝐾 |
∑︁
𝑘∈𝐶𝐾

𝑑 (𝑖, 𝑘) (6)

Finally, the overall SIL score for the entire dataset 𝐷 is the average of the SIL scores for all data

points, as given by (7):

SIL𝐷 =
1

|𝑁 |

𝑁∑︁
𝑖=1

𝑆 (𝑖) (7)

A.2 Davies-Bouldin Score
The DBS, as introduced by Davies and Bouldin (1979), is defined as the ratio of compactness within

clusters and the separation between clusters. A DBS closer to 0 indicates better clustering, with

well-defined and separated clusters. Let 𝐶𝐼 be a cluster of a dataset 𝐷 ; 𝜎 the average Euclidian

distance from each data point of 𝐶𝐼 to its centroid 𝐴𝐼 ; 𝑑 (𝐶𝐼 ,𝐶𝐾 ) be the Euclidian distance between

the 𝐴𝐼 and 𝐴𝐾 ; and the data-point 𝑖 ∈ 𝐶𝐼 ; |𝐶 | be the total number of clusters in 𝐷 ; and |𝐶𝐼 | be the
total number of datapoints in 𝐶𝐼 .

Where, the compactness of 𝐶𝐼 is given by (8):

𝜎𝐼 =
1

|𝐶𝐼 |

|𝐶𝐼 |∑︁
𝑖=1

| |𝑖 −𝐴𝐼 | | (8)

The distance between the centroids is given by (9):

𝑑 (𝐶𝐼 ,𝐶𝐾 ) = | |𝐴𝐼 −𝐴𝐾 | | (9)

And, the DBS for the entire dataset 𝐷 is calculated using the equation (10):

DBS𝐷 =
1

|𝐶 |

|𝐶 |∑︁
𝐼=1

max

𝐾≠𝐼

(
𝜎𝐼 + 𝜎𝐾

𝑑 (𝐶𝐼 ,𝐶𝐾 )

)
(10)
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A.3 Adjusted Random Index

Hubert and Arabie (1985) The Rand Index (RI) is a measure of similarity between two clusterings.

It is particularly useful in evaluating the performance of clustering algorithms when the ground

truth is known. RI considers pairs of samples and classifies them as either concordant or discordant

based on whether they are placed in the same or different clusters in both clusterings. It ranges

from 0 to 1, where 1 indicates perfect agreement between the true and predicted clusterings, and 0

indicates no agreement beyond that expected by chance. Let 𝑛 be the number of elements in the set

𝑆 = {𝑜1, ..., 𝑜𝑛}, where 𝑈 = {𝑢1, ..., 𝑢𝑅} and 𝑉 = {𝑣1, ..., 𝑣𝐶 } represent two different partitions of 𝑆

into subsets 𝑅 and 𝐶𝑆 ;

The Rand Index is calculated using the formula (11):

𝑅𝐼 =
𝛼 + 𝛽(
𝑛
2

) (11)

For 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗, 1 ≤ 𝑘, 𝑘1, 𝑘2 ≤ 𝑟, 𝑘1 ≠ 𝑘2, 1 ≤ 𝑙, 𝑙1, 𝑙2 ≤ 𝑠, 𝑙1 ≠ 𝑙2,:

• 𝛼 = |𝑆∗ |, where 𝑆∗ = {(𝑜𝑖 , 𝑜 𝑗 ) | 𝑜𝑖 , 𝑜 𝑗 ∈ 𝑈𝑘 ;𝑜𝑖 , 𝑜 𝑗 ∈ 𝑉𝑙 }

• 𝛽 = |𝑆∗ |, where 𝑆∗ = {(𝑜𝑖 , 𝑜 𝑗 ) | 𝑜𝑖 ∈ 𝑈𝑘1 ;𝑜 𝑗 ∈ 𝑈𝑘2 ;𝑜𝑖 ∈ 𝑉𝑙1 ;𝑜 𝑗 ∈ 𝑉𝑙2}

The ARI is a essentially an expansion of of RI. The ARI accounts for chance agreement, providing

a normalized measure that ranges from -1 to 1. A score of 1 indicates perfect agreement, 0 suggests

agreement expected by chance, and negative values imply worse-than-chance agreement. The

formula for the ARI is given by:

ARI =

∑
𝑖 𝑗

(𝑛𝑖 𝑗
2

)
− [∑𝑖

(
𝛼𝑖
2

) ∑
𝑗

(𝛽 𝑗
2

)
]/
(
𝑛
2

)
1

2
[∑𝑖

(
𝛼𝑖
2

)
+∑

𝑗

(𝛽 𝑗
2

)
] − [∑𝑖

(
𝛼𝑖
2

) ∑
𝑗

(𝛽 𝑗
2

)
]/
(
𝑛
2

) (12)

This formula normalizes the Rand Index by accounting for random chance, making the ARI a

valuable tool for assessing clustering accuracy in various fields, including biology, image analysis,

and social sciences.

B Synthetic datasets archetypes

Archetype Dim Clusters Instances Aspectref Aspectmaxmin Radius Imbalance

Archetype 0 53 20 350 1.5 1 3 2

Archetype 1 10 3 350 3.0 1 3 2

Archetype 2 11 12 400 3.0 3 3 2

Archetype 3 53 4 3000 1.5 1 5 1

Archetype 4 10 2 3500 1.5 3 1 2

Archetype 5 11 10 2500 5.0 1 1 2

Archetype 6 10 2 400 1.5 1 1 1

Archetype 7 5 2 2750 5.0 5 3 1

Archetype 8 10 2 1500 1.5 1 5 1

Archetype 9 99 15 450 3.0 3 1 2

Archetype 10 50 21 500 3.0 1 3 2

Archetype 11 52 2 200 3.0 3 5 1

Archetype 12 54 13 1750 1.5 3 1 1

Continued on the next page
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Archetype Dim Clusters Instances Aspectref Aspectmaxmin Radius Imbalance

Archetype 13 53 11 1500 3.0 1 5 1

Archetype 14 2 4 2750 5.0 1 5 2

Archetype 15 10 2 2000 5.0 1 1 1

Archetype 16 51 18 200 3.0 3 5 1

Archetype 17 52 20 450 1.5 3 5 2

Archetype 18 18 4 2250 1.5 5 1 1

Archetype 19 10 4 400 5.0 5 1 2

Archetype 20 18 4 2500 1.5 1 5 1

Archetype 21 53 15 2000 1.5 1 3 1

Archetype 22 18 4 4000 1.5 3 3 2

Archetype 23 2 14 1500 1.5 1 3 2

Archetype 24 3 3 200 3.0 1 5 1

Archetype 25 5 2 4500 1.5 5 5 1

Archetype 26 71 5 2250 1.5 1 1 2

Archetype 27 54 18 2250 3.0 1 5 1

Archetype 28 70 19 3500 3.0 1 5 1

Archetype 29 71 6 2500 3.0 1 3 2

Archetype 30 70 21 4000 1.5 1 1 1

Archetype 31 18 4 4500 1.5 1 3 2

Archetype 32 2 4 3500 5.0 5 1 1

Archetype 33 18 4 500 5.0 5 5 1

Archetype 34 53 13 4500 3.0 3 1 2

Archetype 35 3 3 2000 1.5 5 3 1

Archetype 36 2 15 3500 1.5 1 5 2

Archetype 37 2 16 600 5.0 1 3 2

Archetype 38 5 3 200 5.0 1 3 1

Archetype 39 3 4 300 3.0 3 5 1

Archetype 40 2 14 3500 1.5 3 1 2

Archetype 41 5 2 4000 1.5 1 3 1

Archetype 42 18 4 2000 5.0 1 5 1

Archetype 43 71 19 600 3.0 3 1 1

Archetype 44 54 8 200 1.5 3 3 2

Archetype 45 54 2 200 1.5 3 3 2

Archetype 46 11 10 3500 1.5 5 3 2

Archetype 47 2 6 3000 5.0 5 1 2

Archetype 48 18 5 2500 1.5 1 1 1

Archetype 49 5 3 4000 1.5 1 3 2

Archetype 50 99 18 1750 1.5 3 3 1

Archetype 51 52 7 300 3.0 1 5 2

Archetype 52 11 13 2500 5.0 1 3 1

Archetype 53 11 12 300 1.5 1 1 1

Archetype 54 99 10 200 3.0 3 3 2

Archetype 55 11 12 2500 5.0 5 3 1

Archetype 56 54 18 3000 3.0 3 5 1

Archetype 57 53 19 4500 3.0 3 5 1

Archetype 58 52 19 450 1.5 1 5 2

Continued on the next page
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Archetype Dim Clusters Instances Aspectref Aspectmaxmin Radius Imbalance

Archetype 59 2 3 4000 5.0 5 5 1

Archetype 60 54 18 3000 3.0 3 3 2

Archetype 61 54 11 1750 1.5 3 1 1

Archetype 62 2 5 4500 1.5 1 5 2

Archetype 63 10 2 4500 1.5 3 3 1

Archetype 64 2 4 550 1.5 1 3 1

Archetype 65 10 2 4500 5.0 1 1 1

Archetype 66 2 14 2500 5.0 5 3 1

Archetype 67 3 3 1750 3.0 1 5 1

Archetype 68 11 11 2000 3.0 3 3 1

Archetype 69 3 3 3000 5.0 1 3 2

Archetype 70 11 12 200 1.5 1 1 1

Archetype 71 10 3 3500 5.0 1 5 2

Archetype 72 71 11 2250 3.0 3 1 1

Archetype 73 2 15 200 3.0 3 5 1

Archetype 74 3 3 1750 1.5 5 3 2

Archetype 75 2 3 2000 5.0 1 1 1

Archetype 76 18 5 200 1.5 3 5 1

Archetype 77 51 15 2000 1.5 3 3 2

Archetype 78 99 10 3500 3.0 3 3 2

Archetype 79 11 11 2500 1.5 3 3 2

Archetype 80 3 4 350 5.0 1 3 1

Archetype 81 71 7 2500 1.5 3 1 1

Archetype 82 5 3 350 1.5 5 3 1

Archetype 83 70 13 4500 3.0 1 5 2

Archetype 84 3 3 300 5.0 5 5 1

Archetype 85 5 2 3000 5.0 5 3 2

Archetype 86 71 2 2000 1.5 3 5 1

Archetype 87 70 15 400 3.0 3 3 1

Archetype 88 11 10 200 5.0 1 3 1

Archetype 89 18 5 1500 5.0 5 5 2

Archetype 90 5 3 1500 1.5 1 1 2

Archetype 91 10 4 450 3.0 1 3 1

Archetype 92 18 5 550 1.5 1 5 1

Archetype 93 51 20 400 1.5 1 1 2

Archetype 94 2 6 1750 1.5 1 5 2

Archetype 95 5 2 3000 3.0 1 3 2

Archetype 96 52 20 2250 1.5 3 1 1

Archetype 97 2 16 1750 3.0 3 3 2

Archetype 98 2 14 4000 1.5 1 5 2

Archetype 99 11 13 3500 5.0 1 1 1
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(a) Min and Max Aspect Ratio (b) Aspect Ratio (c) Number of Clusters

(d) Number of Dimensions (e) Imbalance Ratio (f) Number of Instances

(g) Radius

Figure 4: Feature distribution of the 100 clustering datasets used for evaluating AutoML frameworks.
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