
Under review as a conference paper at ICLR 2024

TEST LIKE YOU TRAIN IN IMPLICIT DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Implicit deep learning has recently gained popularity with applications ranging from
meta-learning to Deep Equilibrium Networks (DEQs). In its general formulation,
it relies on expressing some components of deep learning pipelines implicitly,
typically via a root equation called the inner problem. In practice, the solution
of the inner problem is approximated during training with an iterative procedure,
usually with a fixed number of inner iterations. During inference, the inner problem
needs to be solved with new data. A popular belief is that increasing the number of
inner iterations compared to the one used during training yields better performance.
In this paper, we question such an assumption and provide a detailed theoretical
analysis in a simple affine setting. We demonstrate that overparametrization
plays a key role: increasing the number of iterations at test time cannot improve
performance for overparametrized networks. We validate our theory on an array
of implicit deep-learning problems. DEQs, which are typically overparametrized,
do not benefit from increasing the number of iterations at inference while meta-
learning, which is typically not overparametrized, benefits from it.

1 INTRODUCTION

Implicit deep learning has seen a surge in recent years with various instances such as Deep Equilibrium
Networks (DEQs; Bai et al. 2019), OptNets (Amos & Kolter, 2017), Neural ODEs (Chen et al., 2018),
or meta-learning (Finn et al., 2017; Rajeswaran et al., 2019). Here, we define implicit deep learning
as the setting where intermediary outputs or task-adapted parameters z⋆ ∈ Rdz are defined implicitly
as the solution of a root-finding problem involving the parameters θ ∈ Rdθ and the training set Dtrain,
that is, f(z⋆, θ,Dtrain) = 0. Changing θ or Dtrain changes the landscape of f , thus z⋆ depends on θ
and Dtrain. The optimal parameters θ are found by minimizing a loss function ℓ(z⋆,Dtrain), which
depends on θ implicitly through z⋆. Hence, the learning problem has the following bilevel structure:

argmin
θ

ℓ(z⋆(θ,Dtrain),Dtrain) s.t. f(z⋆(θ,Dtrain), θ,Dtrain) = 0. (1)

We explain in detail how this formulation covers different cases such as Implicit Meta-
learning (iMAML; Rajeswaran et al. 2019) and Deep Equilibrium Models (DEQs; Bai et al. 2019) in
Section 2. The gradient of the loss ℓ relative to θ –called hypergradient– can be computed using the
implicit function theorem (IFT; Krantz & Parks 2013; Blondel et al. 2022), and then used to learn
the optimal θ⋆ by gradient descent. Once the optimal θ⋆ is learned, the model is used at inference
with a new dataset Dtest, and we need to find a new root z⋆(θ⋆,Dtest).
In the ideal formulation of (1), the output of the model is independent of the root-finding procedure
used to solve the inner problem. In other words, there is "a decoupling between representational
capacity and inference-time efficiency" as explained by Bai (2022) for DEQs.
However, in most cases z⋆(θ) can only be approximated using an iterative procedure –note that
for conciseness, we omit Dtrain in quantities that depend on it, but remain explicit for dependency
on other datasets. For example, DEQs rely on Broyden’s method (Broyden, 1965) or Anderson
Acceleration (Anderson, 1965), while meta-learning uses gradient-based methods. Although some
works have tried to tackle the question of how to speed up this iterative procedure by using a
learned procedure (Bai et al., 2022b), warm starting (Micaelli et al., 2023; Bai et al., 2022a), or
accelerating the hypergradient computation (Fung et al., 2022; Ramzi et al., 2022), in most cases, the
number of iterations N used for this procedure is fixed during training in order to keep a reasonable
computational budget.1 We denote the resulting approximation zN (θ). The practical problem solved

1See the original implementations for DEQs or implicit meta-learning.

1

https://github.com/locuslab/deq
https://github.com/aravindr93/imaml_dev

Under review as a conference paper at ICLR 2024

in implicit deep learning then becomes:

θ⋆,N ∈ argmin
θ

ℓ(zN (θ)) s.t. zN (θ) is the N -th iterate of a procedure solving f(z, θ) = 0. (P)

Here, we highlight the dependency of the solution θ⋆,N on the number of inner iterations N . At
inference, one should decide how many iterations are used to solve the inner problem. We ask:

Question

Is there a performance benefit in changing the number of inner iterations N once the model is
fitted for implicit deep learning?

Because of the decoupling in the ideal case, many papers hypothesize that, when the model is
fixed, a better approximation of the solution of the inner problem –i.e. increasing N– could bring
performance benefits (Bai, 2022; Pal et al., 2022). For instance, Gilton et al. (2021) state that “the
computational budget can be selected at test time to optimize context-dependent trade-offs between
accuracy and computation”. However, they only show that performance deteriorates when the number
of test-time inner iterations is lower than in training. They also suggest that networks trained with IFT
are more robust to changes in the number of inner iterations than their unrolled counterparts, where
the hypergradient is computed via backpropagation through the inner solver steps. Anil et al. (2022)
ask whether more test-time iterations can help tackle "harder" problems – for example increasing
the dimension in a maze resolution problem. They empirically show that if a DEQ has a property
termed path-independence, it can benefit from more test-time iterations to improve the performance
out-of-distribution. However, there is little evidence that increasing the number of iterations at
test-time can improve the performance for DEQs on the same data distribution. Conversely, in
the meta-learning setup, the number of inner iterations can be greater during inference than during
training, for example in the text-to-speech experiment of Chen et al. (2020) –100 iterations during
training vs 10 000 iterations at test-time. Finn et al. (2017) also showed that the performance increases
when the number of inner iterations increases at test-time.
Formally, we would like to know if changing the number of iterations to approximate the root
from N to N + ∆N with ∆N > −N –i.e., using zN+∆N (θ⋆,N) instead of zN (θ⋆,N)– can yield
better performance. In this paper, we answer that question first with a theoretical analysis in
a simple affine case and then with extensive empirical results. In our theoretical analysis, we
study D(N,∆N)

def
= ℓ(zN+∆N (θ⋆,N))− ℓ(zN (θ⋆,N)), the training loss increase when changing the

number of inner iterations by ∆N for a fixed learned θ⋆,N . This quantity is a proxy for the increase
in test loss, provided we have access to enough training data. On the other hand, we consider changes
in test-set metrics in our experiments.
Theoretically, we uncover for overparametrized models a phenomenon we term Inner Iterations
Overfitting (I2O), in which there is no benefit in changing the number of inner iterations. We
empirically find that DEQs suffer from I2O, while we confirm the benefit of increasing the number of
inner iterations for the meta-learning setup. Our contributions are the following:

• The theoretical demonstration of I2O for the case where f is affine. In Theorem 1, we derive
a lower bound on D(N,∆N) and characterize two regimes in subsequent corollaries: over-
parametrization in θ which leads to I2O and no overparametrization. We also characterize the
implications of this result for non-affine f in Theorem I.10, and for the generalization setting in
Corollary D.1. This provides a practical guideline for DEQs that fall close to the overparametriza-
tion regime: in order to achieve the best performance at test time, one should use the same number
of inner iterations as in training.

• The empirical demonstration of I2O for DEQs on diverse tasks such as image classification,
image segmentation, natural language modeling, and optical flow estimation. This validates the
practical guideline established above in a generalization setting, and also the current practice. We
also show that I2O is much less prevalent in meta-learning cases.

• The comparison of robustness to changes in inner iterations number between IFT and unrolling.
Theorem 2 shows that the choice of hypergradient computation does not impact whether implicit
deep learning suffers from I2O or not. We highlight this phenomenon empirically for DEQs.

2

Under review as a conference paper at ICLR 2024

2 BACKGROUND ON IMPLICIT DEEP LEARNING

DEQs DEQs were introduced by Bai et al. (2019) for NLP and have since then been used for a
variety of tasks including computer vision (Bai et al., 2020; Micaelli et al., 2023), inverse prob-
lems (Gilton et al., 2021; Zou et al., 2023) or optical flow estimation (Bai et al., 2022a). On optical
flow estimation (Bai et al., 2022a) and landmark detection (Micaelli et al., 2023), they have even
managed to achieve a new state of the art. In their ideal formulation, DEQs are trained by minimizing
a task-specific loss on a dataset, where the output of the model is obtained by computing the fixed
point of a nonlinear function (Bai et al., 2019):

argmin
θ

∑
i

ℓ(z⋆i (xi, θ), yi) s.t. z⋆i (xi, θ) = g(z⋆i (xi, θ), xi, θ) (2)

They can be fitted in the framework introduced in Eq. (1) by lifting the inner variables zi to a
stacked version z = [z1, . . . , zn]

⊤ and similarly for the inner functions and the outer losses. The
inner problem can also be cast as a root finding problem rather than a fixed point problem, by
simply considering f(z, xi, θ) = z − g(z, xi, θ). The gradient of the outer losses with respect to the
parameters θ is then computed using the IFT, which yields:

∇Li = −
(
∂zf (z

⋆, xi, θ)
−1
∂θf (z

⋆, xi, θ)
)⊤

∇zℓ (z
⋆, yi) , (3)

with Li(θ) = ℓ(z⋆i (xi, θ), yi). Importantly, this gradient computation does not depend on the
procedure used to compute z⋆. Therefore, the intermediary outputs (activations) used to compute it
do not need to be saved in order to compute the gradient, leading to a memory-efficient scheme.

(i)MAML Model-agnostic Meta-learning (MAML) was introduced by Finn et al. (2017) as a
technique to train neural networks that can quickly adapt to new tasks. The idea is to learn a meta-
model, such that its parameters when trained on a new task yield good generalization performance.
Formally, MAML has the following formulation:

argmin
θ(meta)

∑
i

ℓ
(
θi,X (val)

i

)
s.t. θi = θ(meta) − α∇θℓ(θ

(meta),X (train)
i), (4)

where we omitted the dependence of θi on θ(meta) and X (train)
i for conciseness. The right-hand-side

corresponds to the training on a new task: a single gradient descent step with step size α to minimize
a task-specific training loss, the task i being defined by its training and validation datasets X (train)

i

and X (val)
i . The task-adapted parameters θi are then used to compute the loss on the validation set

to measure how well these parameters generalize. In follow-up work, Rajeswaran et al. (2019)
introduced the implicit MAML (iMAML) formulation, where the gradient descent step is replaced by
the minimization of a regularized task-specific loss. Formally, the problem is:

argmin
θ(meta)

∑
i

ℓ
(
θi,X (val)

i

)
s.t. θi ∈ argmin

θ
ℓ(θ,X (train)

i) +
λ

2
∥θ − θ(meta)∥22︸ ︷︷ ︸

F (θ,θ(meta))

(5)

This formulation can easily be cast into the form of Eq. (1) by replacing the inner optimization
problem with the associated root problem on the gradient ∇θF (θ, θ

(meta)) = 0. Then, similarly to the
DEQ setting, the task-adapted parameters θi can be stacked together to form a single inner variable
z = [θ1, . . . , θn]

⊤.

3 THEORY OF AFFINE IMPLICIT DEEP LEARNING

In order to study the I2O phenomenon, we will make some simplifying assumptions on the nature
of the inner procedure of problem (P) as well as the functions studied. First, we consider that the
procedure to solve the inner problem is a fixed-point iteration method with fixed step sizes. Second,
we restrict ourselves to the case where the inner problem is affine. Third, we consider only cases
where the outer loss is quadratic.
Before we proceed to the formal demonstration of I2O, let us give some intuition. When the inner
problem is overparametrized in the outer variable, it means that we can tune the approximate output
of the procedure zN to minimize exactly the outer loss. But this tuning is highly dependent on the
procedure, and therefore on the number of inner iterations N used. If it is changed while keeping the
same learned outer variable, the outer loss cannot decrease because it is already minimized.

3

Under review as a conference paper at ICLR 2024

Main result and corollaries Let us formalize the assumptions used to prove our main result.
Assumption 3.1 (Fixed-point iteration). The procedure to solve the inner problem f(z, θ) = 0 is a
fixed-point iteration method with fixed step size η > 0 and initialization z0 ∈ Rdz . This means that:

zN+1(θ) = zN (θ)− ηf(zN (θ), θ) . (6)

For iMAML, this corresponds to gradient descent to solve the task adaptation, with f = ∇zF with F
the regularized task-specific loss. Note that it does not perfectly match the practice for DEQs which
are usually trained with Broyden’s method (Broyden, 1965) or Anderson acceleration (Anderson,
1965). Also, since z0 does not depend on θ, this does not cover the MAML setting.
Assumption 3.2 (Affine inner problem). f : Rdz×dθ → Rdz is an affine function:

f(z, θ) = K⊤
in (Bz + Uθ + c), (7)

with Kin, B ∈ Rdx×dz , U ∈ Rdx×dθ , c ∈ Rdx , with Kin surjective, i.e. dx ≤ dθ. Moreover, BK⊤
in

has eigenvalues with positive real part.

Assumption 3.2 corresponds to considering a DEQ with an affine layer, i.e. for each sample
xi we would have f(z, θ, xi) = Kin(xi)

⊤(B(xi)z + U(xi)θ + c(xi)) which is then stacked for
the whole dataset Dtrain (more on this in Appendix B). This setting is commonly used to study
DEQs (Kawaguchi, 2021), although in practice f is nonlinear. Note however that it is different from
the parametrization of Winston & Kolter (2020) (discussed in Appendix B). This class of function
corresponds to affine functions for which the fixed point iterations (6) converge (see Appendix B).
In particular, it is more general than the simple case of Kin = I with B whose eigenvalues have a
positive real part. For iMAML, this corresponds to meta-learning a linear model with a quadratic
regression loss. We show these two correspondences in Appendix B. More generally, it includes cases
where f is the gradient of a convex lower-bounded quadratic function F (z, θ) = 1

2∥Kinz+Uθ+ c∥22,
with B = Kin, a setting studied by Vicol et al. (2022). We provide an extended review of this work
in Appendix E. While this affine assumption departs from practice, we show in Theorem I.10 (in
Appendix I) that if one wants to consider a non-affine function f as is customary in practical implicit
models, it is possible to use its Taylor expansion close to the optimum values (θ⋆, z⋆(θ⋆)) to fit in
in this assumption. In this case, the difference between the solutions of (P) for f and its linearized
version is controlled by the difference between the initialization z0 and z⋆(θ⋆).
Assumption 3.3 (Quadratic outer loss). ℓ is a convex quadratic function bounded from below:

ℓ(z) =
1

2
∥Koutz − ω∥22, (8)

with ω ∈ Rdω and Kout ∈ Rdz×dω .

Assumption 3.3 is meaningful, typically in inverse problems (Zou et al., 2023) or meta-learning
regression (Finn et al., 2017; Rajeswaran et al., 2019) where the output of the inner problem is
compared to a ground truth signal. It does not include different types of problems such as image
classification (Bai et al., 2020) that would require more complex losses such as cross-entropy.
Before stating our main result, we recall that our objective is to control
D(N,∆N)

def
= ℓ(zN+∆N (θ⋆,N))− ℓ(zN (θ⋆,N)), the loss increase when the number of inner

iterations changes by ∆N .

Main result
Theorem 1 (Inner Iterations Overfitting for affine inner problems). Under Assumption 3.1,
Assumption 3.2 and Assumption 3.3, we have:

D(N,∆N) ≥ −1

2
∥
(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22, (9)

where P(X) is the orthogonal projection on range(X),
EN =

(
(I − ηBK⊤

in)
N − I

)
(BK⊤

in)
−1 and rN = K⊤

inEN (Bz0 + c) + z0.

The detailed proof is in Appendix A where we also cover bilevel optimization settings. We give
closed-form expressions for zN (θ) = K⊤

inENUθ + rN ,2 ℓ(zN+∆N (θ⋆,N)) and D(N,∆N).

2 Note that the overall model is therefore affine in the parameters.

4

Under review as a conference paper at ICLR 2024

0 200 400

∆N

10−4

10−2

100

D
(N
,∆
N

)

N = 10

N = 100

10 20

dim(θ)

10−1

100

101

-
L

o
w

er
b

o
u

n
d

0 1000

N

10−6

10−3

100

103

-
L

o
w

er
b

o
u

n
d

1

3

5

7

9

11

13

15

17

19

d
im

(θ
)

Figure 1: Illustrations of the corollaries. The left-hand side figure illustrates Corollary 1, i.e., the
overparametrization regime. The black dashed line is at ∆N = 0. We consider z of dimension 5, θ
of dimension 4, F whose gradient is f and ℓ convex but not strongly convex quadratic functions. The
right-hand side figure illustrates Corollary 2, i.e. the average case. We report the Negative Lower
bound, i.e. 1

2∥
(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22, from Theorem 1. The inner and

outer problems are strongly convex, and the dimension of z is 20. The inner problem would be
overparametrized in θ on average for dimension 20. We compute the lower bound for different inner
optimization times and 20 seeds. In the left panel, we show the negative lower bound for N = 100
averaged over all the seeds for each dimension of θ. In the right panel, we show the negative lower
bounds for all seeds and for all N for different dimensions of θ.

This result states that it is possible to improve the loss by changing the number of iterations only up
to a “point”, and gives a quantitative result for this “point” (i.e. the lower bound).
The lower bound of D(N,∆N) is independent of ∆N which means that for every N the
maximum decrease in loss achievable by changing the number of inner iterations at test
time is bounded from below. This lower bound is the negative squared norm of a vector(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω). Let us describe each component of this expres-

sion. (KoutrN − ω) is a vector that encompasses elements from the inner problem and procedure
(rN) and from the outer problem (ω, Kout).

(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
is a difference of

projectors which measures how much U is "not surjective relative to KoutK
⊤
inEN ", and this is high-

lighted by the next two corollaries which explain in more details the role the surjectivity –i.e. the
column rank– of U in this lower bound. In appendix, Theorem I.11 explains how Theorem 1 can be
transferred to non-affine functions f , provided that the initialization z0 is close to the solution z∗(θ∗).

Corollary 1 (Overparametrization in θ). Under Assumption 3.1, Assumption 3.2 and Assumption 3.3,
if U is surjective, we have for all ∆N :

ℓ(zN+∆N (θ⋆,N)) ≥ ℓ(zN (θ⋆,N)), (10)

Proof. When U is surjective, P(KoutK
⊤
inENU) = P(KoutK

⊤
inEN). Further, ∀N ≥ N0, EN is

invertible. Therefore, P(KoutK
⊤
inEN) = P(KoutK

⊤
in). We can conclude using Theorem 1.

In other words, when the inner model is sufficiently expressive, a regime called overparametrization,
the inner variable is simply reparametrized with the outer variable, allowing the overall procedure to
find the global minimum.
We numerically validate Corollary 1 with small-scale experiments on a quadratic bilevel optimization
problem, and show the results in Figure 1 (left).
However, one can wonder what can be said when we are not in the overparametrized regime. The
next corollary shows an example of what happens when the matrix U is not overparametrized, and its
entries are drawn i.i.d. from a Gaussian distribution. This last assumption is strong and this is why
the next result cannot be considered as general but rather illustrative.

Corollary 2 (Average case). Under Assumption 3.1, Assumption 3.2 and Assumption 3.3, if Kin is
invertible and ℓ is strongly convex, we have:

EU∼N (0,I) [D(N,∆N)] ≥ −1

2
(1− min(dx, dθ)

dx
)(ρ(Kout)∥rmax∥22 + ∥ω∥22), (11)

with ρ(Kout) the spectral radius of Kout and ∥rmax∥22 ∈ maxN ∥rN∥22.

5

Under review as a conference paper at ICLR 2024

Proof. The proof relies on the computation of the expected value of the norm of the projection on the
image of a matrix for a matrix with random coefficients. It is given in full in Appendix A

An edge case of Corollary 2 is the situation where dx ≤ dθ, because the left term cancels. But
this situation is on average equivalent to the overparametrization regime because we go from a
dθ-dimensional space to a dx-dimensional space. What Corollary 2 tells us is that as we get closer to
overparametrization by increasing the dimension of the outer variable θ, the expected loss decrease
we could get by changing the number of inner iterations gets closer to 0.
We ran an experiment to illustrate Corollary 2 whose results are shown in Figure 1 (right). As
expected, the lower bound of Theorem 1 does not vary significantly for different numbers of inner
iterations. Moreover, we observe that the lower bound decreases in magnitude as the inner problem is
more and more overparametrized in θ. In cases where the inner or outer problems are not strongly
convex, the lower bound can be 0 even before U is surjective. We show such cases in Appendix H.
In order to understand in which regime fall DEQs and meta-learning we need to understand to which
extent the inner problem is close to overparametrization in the outer variable θ. If one wants to
be close to overparametrization on average, this requires an outer variable θ of dimension dz × n,
where n is the number of samples. While this number is usually prohibitively large, it is a common
assumption in deep learning setups to assume that one can overfit the training data (Li & Liang, 2018;
Du et al., 2018; Arora et al., 2019). However, in the case of meta-learning, since we are learning on
multiple tasks at the same time, it is impossible a priori to overfit all the tasks at the same time since
they might have contradicting objectives. Therefore, we expect DEQs to have a hard time benefiting
from more iterations, while there is room for meta-learning to do so.
We stress that these results do not cover the generalization to a test dataset Dtest. Indeed, the quantity
D(N,∆N) only monitors the change in training loss achieved by changing the number of inner
iterations. However, D(N,∆N) is a good proxy for the change in test loss provided a large enough
training data set. We provide a generalization result in Corollary D.1 (in Appendix D) for DEQs
stacked sample-wise with some additional smoothness assumptions.

Implicit differentiation for affine inner problems It can be noted that Theorem 1 considers θ⋆,N
as one of the solutions to (P). However, most of the time in practice (Bai et al., 2019; Rajeswaran
et al., 2019), the optimization is actually performed using the approximate implicit differentiation
gradients, rather than the true unrolled gradients in order to have a memory-efficient training. For an
inner function f , this descent, with constant step size αN (i.e. independent of T), would typically be
written as the following:

θT+1,N
IFT = θT,N

IFT − αNpN (θT,N
IFT)

where pN (θ) = −(∂zf(zN , θ)
†∂θf(zN , θ))

⊤∇ℓ(zN),
(12)

where † stands for the pseudo-inverse. This equation is a practical implementation of (3) in the case
where the Jacobian is not necessarily invertible, and we use an approximate inner solution zN . This
formula is heuristic and does not necessarily provide a descent direction for arbitrary N . We defer
the proofs of the following results to Appendix C.
Lemma 1 (Convergence of the practical IFT gradient descent). Under Assumption 3.1, Assumption 3.2
and Assumption 3.3, with ℓ strongly convex, ∃N0 such that ∀N > N0, ∃αN > 0 such that the
sequences θT,N

IFT converge to a value denoted θ⋆,NIFT , dependent only on the initialization.

Therefore, practical optimal solutions, denoted θ⋆,NIFT , are solutions to the following root problem:

(∂zf(zN (θ), θ)†∂θf(zN (θ), θ))⊤∇ℓ(zN (θ)) = 0 (13)

Theorem 2 (Equivalence of IFT and unrolled solutions for affine inner problems). Under Assump-
tion 3.1, Assumption 3.2 and Assumption 3.3, with ℓ strongly convex and U surjective, we have:

θ⋆,NIFT = θ⋆,N (14)

For overparametrized cases, where U is surjective, this means that Corollary 1 is valid for IFT-based
implicit deep learning. Therefore, this shows that Implicit Deep Learning trained with IFT is not
less prone to I2O than if it is trained through unrolling in this case. We confirm this empirically in
Section 5 for practical cases with DEQs.

6

Under review as a conference paper at ICLR 2024

10 20 30 40

−100

0

100

101

P
er

fo
rm

a
n

ce
g
a
p

ImageNet
(Image classification)

20 40
-0.01

0.17

Cityscapes
(Image segmentation)

0 10 20
-0.05

0.38

WFLW-V
(Landmark Detection)

20 40 60

N + ∆N

−101

−100
0

100

101

102

P
er

fo
rm

a
n

ce
g
a
p

Wikitext
(Language modeling)

50 100 150

N + ∆N

-0.04

0.26

Sintel
(Optical flow estimation)

100 200

N + ∆N

-0.14

1.41

CBSD68
(Super Resolution)

0.2

0.4

0.6

0.2

0.3

0.4

0.1

0.2

0.3

0.000

0.002

0.004

0.006

0.01

1.00

C
o
n
v
er

g
en

ce

640

660

C
o
n
v
er

g
en

ce

Figure 2: I2O for DEQs: Test performance gap (lower is better) using N + ∆N inner iterations
at inference compared to using N inner iterations. This performance gap reaches 0 after reaching
N the number of iterations used during training. The black dashed line is at ∆N = 0, i.e. the
training number of inner iterations. The red dashed line is at 0. For ImageNet, the performance
is measured using the top-1 error rate (%), for Cityscapes it is measured using the negative mean
IoU, for WikiText it is measured using the perplexity and for optical flow it is measured using the
average EPE. Note that afterN iterations, getting closer to convergence (plotted as ∥zN+∆N (θ⋆,N)−
f(zN+∆N (θ⋆,N), θ⋆,N)∥) does not bring a performance benefit.

4 THE EMPIRICAL PHENOMENON OF INNER ITERATIONS OVERFITTING

In order to validate the results from our theoretical analysis in realistic cases, we explore the I2O
phenomenon for DEQs and (i)MAML experiments, two settings that highlight the different regimes
from our theoretical results.

DEQs We conduct experiments on pre-trained DEQs in various successful applications. The
evaluation is unchanged except for the number of inner iterations, which is the same for training and
inference in the typical deq3 library (Bai et al., 2019). The settings we cover are text completion on
Wikitext (Bai et al., 2019; Merity et al., 2017), large-scale image classification on ImageNet (Bai
et al., 2020; Deng et al., 2009), image segmentation on Cityscapes (Bai et al., 2020; Cordts et al.,
2016), optical flow estimation on Sintel (Bai et al., 2022a; Butler et al., 2012), single image super
resolution (×3) on CBSD68 (Zou et al., 2023; Martin et al., 2001), and landmark detection on
WFLW-V (Micaelli et al., 2023). We report the test performance gap in Figure 2, i.e. the difference
between the test performance for N + ∆N inner iterations and the test performance for N inner
iterations and give more details on the experiments in Appendix G. The test performance is always
cast as lower is better.
The figure shows that for all four cases, the performance of the model does not improve when
increasing the number of iterations at test time (blue lines) and therefore improving convergence
(orange lines). Once ∆N becomes positive, the performance plateaus and in the worst cases such
as landmark detection or super resolution, it deteriorates. This highlights I2O for DEQs, which are
overparametrized (e.g. reaching 90% training accuracy on ImageNet compared to 80% test accuracy).
Similar observations can be made on the training performance and on training and test losses, as
demonstrated in Figure H.2 and Figure H.1 in the appendix. This shows that while our theoretical
results uncover this phenomenon in simple cases for the training loss only, it is observable for more
complex setups, even for the test performance gap, further validating our result in Theorem I.10.

(i)MAML Unlike DEQs, (i)MAML is less prone to I2O. For example, Chen et al. (2020) meta-train
a network with N = 100 inner steps, and meta-test it with N +∆N = 10000 inner steps. We run

3github.com/locuslab/deq

7

https://github.com/locuslab/deq

Under review as a conference paper at ICLR 2024

101 103 105 107

N + ∆N

0.1

0.2

0.3

M
S

E
↓

MAML

101 103 105

N + ∆N

0.0

0.2

0.4

0.6

0.8

M
S

E
↓

iMAML

10−4

10−2

C
o
n
v
er

g
en

ce

10−3

10−2

10−1

C
o
n
v
er

g
en

ce

Figure 3: (i)MAML is less prone to I2O: Test MSE using N +∆N inner iterations at inference.
The black dashed line is at ∆N = 0, i.e. the training number of inner iterations. Note the log-scale
for the x-axis. Note that the best MSE is reached before convergence.

0.05 0.10 0.15 0.20

`
(
zN (θ?,N)

)

−0.4

−0.2

m
in
D

(N
,∆
N

)

`
(z
N

(θ
?
,N

))

101 102 103 104

N + ∆N

−0.10

−0.05

0.00

0.05

D
(N
,∆
N

)
lo

ss
d

ec
re

a
se

0.1

0.2

` (z
N

(θ
?
,N

))

MAML

0.00 0.05 0.10 0.15 0.20 0.25

`
(
zN (θ?,N)

)

−0.4

−0.2

0.0

m
in
D

(N
,∆
N

)

`
(z
N

(θ
?
,N

))

101 102 103 104

N + ∆N

−0.1

0.0

0.1

D
(N
,∆
N

)
lo

ss
d

ec
re

a
se

0.1

0.2

` (z
N

(θ
?
,N

))

iMAML

Figure 4: The impact of overparametrization for (i)MAML: Normalized training loss increase
D(N,∆N)/ℓ(zN (θ⋆,N)) for different levels of overparametrization. This level of overparametriza-
tion is measured by the loss on the training set for N inner iterations, ℓ(zN (θ⋆,N)). Generally, the
more meta-batches there are in the training set, the higher this loss. The black dashed line is at
∆N = 0, i.e. the training number of inner iterations.The red dashed line is at D = 0, i.e. no increase.
Note that the more overparametrized the model, the higher D(N,∆N)/ℓ(zN (θ⋆,N)) is. The Pearson
correlation coefficient for the top left plot is −0.4 with a p-value of 0.03, while for the bottom left
plot it is −0.6 with a p-value of 0.007.

experiments on the synthetic sinusoids regression task introduced by Finn et al. (2017) and confirm
that I2O is much less prevalent in (i)MAML. Figure 3 shows the variation in test performance for the
meta-learning task when changing the number of inner iterations. More details on this experiment are
given in Appendix G.
We see that while the best performance at test time is achieved for a number of inner iterations much
larger than the one used during training, this improvement is bounded from below as predicted by
Theorem 1: the best MSE is reached before convergence. As for DEQs, reaching convergence does
not provide the best performance.
Further, we highlight the effect of overparametrization in the iMAML case. As the overparametriza-
tion is not easy to measure, we use overfitting as a proxy: the better the model is at overfitting, the
more overparametrized it is. Figure 4 shows the normalized training loss increase for various training
set sizes for meta-learning, from 1 meta-batch –easy to overfit– to 25 meta-batches –harder to overfit.
We observe that the better the model is at overfitting the training dataset –i.e. low ℓ(zN (θ⋆,N))– the
less it benefits from more iterations at inference –i.e. higher D(N,∆N), even if normalized. We
conduct this experiment on the training loss, as the test data is too different from the training one
with so few meta-batches.

Upwards generalization and path-independence Our results might seem to be in contradiction
with the empirical findings reported by Anil et al. (2022). They study how the test-time performance

8

Under review as a conference paper at ICLR 2024

5 10 15 20 25 30 35

N + ∆N

75

80

85

T
o
p

-1
A

cc
u

ra
cy

IFT

Unrolled

Figure 5: Stability of unrolled/IFT trained networks: We compare how stable networks trained
with either unrolling or IFT are to the choice of the number of inner iterations at inference. The task
is image classification on CIFAR-10. The networks were trained with 18 iterations. Note that the
IFT-trained network does not appear more stable than its unrolled counterpart.

is affected by an increase in the number of inner iterations at inference, but unlike us consider harder
problems. They correlate the capacity of DEQs to benefit from more test-time inner iterations with a
property termed path-independence. A DEQ is said to be path-independent if for a given couple θ, xi,
there exists only one root of f(z, θ, xi).
We highlight that our theoretical analysis is also valid for path-independent DEQs, which also suffer
from I2O in-distribution. Typically, when K⊤

in = I and we have a fully invertible affine DEQ layer,
there is only a single root z⋆(θ) = −B−1(Uθ + c) (see Assumption 3.2) and this is covered by
Theorem 1. However, in our experiments, we consider in-distribution generalization, rather than
upwards generalization, i.e., an out-of-distribution setting where an explicit difficulty parameter is set
higher at test-time than during training, which explains why our results and those of Anil et al. (2022)
are not in contradiction.

5 ROBUSTNESS OF THE NETWORKS OBTAINED WITH IFT GRADIENT DESCENT
TO I2O

Theorem 2 shows that the way the hypergradient is computed for implicit deep learning, IFT or
unrolling, does not impact whether it suffers from I2O in our simplified setting. Still, one might
wonder whether the effect of I2O is stronger for one or the other in practical cases. Gilton et al. (2021)
suggest that I2O is much more prevalent for unrolling, highlighting a huge drop in performance
when more iterations are used during inference. However, in their experiment, the network trained
with unrolling has an effective depth much smaller than its IFT-trained counterpart –10 fixed-point
iterations vs 50 Anderson acceleration iterations. Indeed, because IFT gradient descent enables
memory-free training, it is possible to train networks with a very large effective depth, while it is
harder for unrolled networks.
We tried to test whether this conclusion still holds when training networks with unrolling and IFT
with the same depth. In our experiment, both networks use Broyden’s method to solve the inner
problem. Therefore, for the unrolled network, we backpropagate through the Broyden iterates which
has a high memory requirement. For this reason, we can only train relatively small networks for
image classification on CIFAR-10 (Krizhevsky, 2009). In Figure 5 we compare the stability of the
two networks for different numbers of inner iterations averaging performance over 10 seeds. We
observe that there is no gain of stability when using IFT gradient descent over unrolling.

6 CONCLUSION

In this work, we challenge one common assumption about DEQs: the possibility to select their
computational budget at inference. We showed that not only do DEQs exhibit a phenomenon we
termed inner iterations overfitting (I2O), that we proved to be grounded in theory for simple models,
they also do not appear to have more stability than unrolled networks. We highlight that this does not
mean that DEQs should not be used: the O(1) memory requirement during training is a strong point
that enables the training of very deep networks not trainable with unrolling.

9

Under review as a conference paper at ICLR 2024

Since we noted that eventually, one wants to use DEQs with a fixed number of iterations, a question
that remains is: can we bias the hypergradient so that it does take into account the number of iterations
made in a more direct way, somehow making it more similar to the unrolled gradient?

REFERENCES

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning (ICML), 2017.

Donald G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547–560,
oct 1965. ISSN 0004-5411.

Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J Zico Kolter,
and Roger B Grosse. Path independent equilibrium models can better exploit test-time computation.
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Shaojie Bai. Equilibrium Approaches to Modern Deep Learning. PhD thesis, Carnegie Mellon
University, 2022.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Neural Information
Processing Systems (NeurIPS), 2019.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale deep equilibrium models. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Shaojie Bai, Zhengyang Geng, Yash Savani, and J. Zico Kolter. Deep equilibrium optical flow
estimation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022a.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Neural deep equilibrium solvers. In International
Conference on Learning Representations (ICLR), 2022b. URL https://openreview.net/
forum?id=B0oHOwT5ENL.

Peter Bartlett. Theoretical statistics. lecture 12, 2013.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. In
Advances in neural information processing systems (NeurIPS), 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics
of computation, 19(92):577–593, 1965.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
flow evaluation. In European Conf. on Computer Vision (ECCV), 2012.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems (NeurIPS), 2018.

Yutian Chen, Abram L Friesen, Feryal Behbahani, Arnaud Doucet, David Budden, Matthew Hoffman,
and Nando de Freitas. Modular meta-learning with shrinkage. Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

10

https://openreview.net/forum?id=B0oHOwT5ENL
https://openreview.net/forum?id=B0oHOwT5ENL
http://github.com/google/jax

Under review as a conference paper at ICLR 2024

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

SS Du, JD Lee, H Li, L Wang, and X Zhai. Gradient descent finds global minima of deep 774 neural
networks. In International Conference on Learning Representations (ICLR), 2018.

Zhili Feng, Ezra Winston, and J Zico Kolter. Monotone deep boltzmann machines. Transactions on
Machine Learning Research, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning (ICML), 2017.

Bernd Fischer. Polynomial based iteration methods for symmetric linear systems. SIAM, 2011.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. Jfb:
Jacobian-free backpropagation for implicit networks. In AAAI Conference on Artificial Intelligence
(AAAI), 2022.

Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep equilibrium architectures for inverse
problems in imaging. IEEE Transactions on Computational Imaging, 7:1123–1133, 2021.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409–436, 1952.

zhm1995. How to compute the expectation of the 2-norm of an orthogonally projected vector? Math-
ematics Stack Exchange, 2019. URL https://math.stackexchange.com/q/3248980.
URL:https://math.stackexchange.com/q/3248980 (version: 2019-06-03).

Kenji Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers.
In International Conference on Learning Representations (ICLR), 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Steven G. Krantz and Harold R. Parks. The Implicit Function Theorem: History, Theory, and
Applications. Springer New York, 1 2013.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in Neural Information Processing Systems (NeurIPS), 2018.

Zenan Ling, Xingyu Xie, Qiuhao Wang, Zongpeng Zhang, and Zhouchen Lin. Global convergence of
over-parameterized deep equilibrium models. In International Conference on Artificial Intelligence
and Statistics, pp. 767–787. PMLR, 2023.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. (ICCV),
2001.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations (ICLR), 2017.

Paul Micaelli, Arash Vahdat, Hongxu Yin, Jan Kautz, and Pavlo Molchanov. Recurrence without
recurrence: Stable video landmark detection with deep equilibrium models. 2023.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Avik Pal, Alan Edelman, and Christopher Rackauckas. Continuous deep equilibrium models: Training
neural odes faster by integrating them to infinity. arXiv preprint arXiv:2201.12240, 2022.

11

https://math.stackexchange.com/users/601630/zhm1995
https://math.stackexchange.com/q/3248980

Under review as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems (NeurIPS),
2019.

Fabian Pedregosa. Residual polynomials and the chebyshev method, 2020. URL http://fa.
bianp.net/blog/2020/polyopt/. URL: http://fa.bianp.net/blog/2020/polyopt/.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in Neural Information Processing Systems (NeurIPS), 2019.

Zaccharie Ramzi, Florian Mannel, Shaojie Bai, Jean-Luc Starck, Philippe Ciuciu, and Thomas
Moreau. SHINE: SHaring the INverse estimate from the forward pass for bi-level optimization
and implicit models. In International Conference on Learning Representations (ICLR), 2022.

Paul Vicol, Jonathan P Lorraine, Fabian Pedregosa, David Duvenaud, and Roger B Grosse. On
implicit bias in overparameterized bilevel optimization. In International Conference on Machine
Learning (ICML), 2022.

Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in neural
information processing systems, 33:10718–10728, 2020.

Zihao Zou, Jiaming Liu, Brendt Wohlberg, and Ulugbek S Kamilov. Deep equilibrium learning of
explicit regularizers for imaging inverse problems. arXiv preprint arXiv:2303.05386, 2023.

12

http://fa.bianp.net/blog/2020/polyopt/
http://fa.bianp.net/blog/2020/polyopt/

Under review as a conference paper at ICLR 2024

A PROOF OF MAIN RESULT AND COROLLARIES

In order to prove the main result, we will rely on the notion of time-invertible linear procedures.
Definition A.1. (Time-invertible linear procedure) A time-invertible linear procedure is a sequence
zN (θ) such that there exists N0 <∞,Kin ∈ Rdx×dz , U ∈ Rdx×dθ , EN ∈ Rdx×dx , rN ∈ Rdz such
that it can be written as:

zN (θ) = K⊤
inENUθ + rN , (15)

and ∀N ≥ N0, where EN is invertible.

Let us now move on to the main components of the proof. We need first to get an expression for the
iterates of the fixed-point iterations for an affine function.
Lemma A.2. Let us assume f(z) = K⊤(Bz + c), with K,B ∈ Rdx×dx and c ∈ Rdx. We further
assume that BK⊤ has eigenvalues with positive real part and that K is surjective. Then the iterates
of the fixed-point iteration method with fixed step size η have the following expression:

zN = K⊤
((
I − ηBK⊤)N − I

)
(BK⊤)−1(Bz0 + c) + z0, (16)

with z0 the initialization of the procedure.

Proof. We have:

zN+1 = zN − ηK⊤(BzN + c) (17)

= (I − ηK⊤B)zN − ηK⊤c (18)

First let us check that zN − z0 is in the range of K⊤ for all N . We proceed by recurrence starting
with N = 0, which is obviously true because z0 − z0 = 0 is the range of K⊤. If zN − z0 is in the
range of K⊤, there exists x such that zN − z0 = K⊤x. Then we have

zN+1 = zN − ηK⊤BzN − ηK⊤c (19)

zN+1 − z0 = zN − z0 − ηK⊤BzN − ηK⊤c (20)

zN+1 − z0 = K⊤x− ηK⊤BzN − ηK⊤c (21)

zN+1 − z0 = K⊤ (x− ηBzN − ηc) (22)

Therefore zN+1 − z0 is also in the range of K⊤ and we conclude that zN − z0 is in the range of K⊤

for all N . We then introduce yN such that zN − z0 = K⊤yN . The following recurrence then holds:

zN+1 − z0 = zN − z0 − ηK⊤BzN − ηK⊤c (23)

K⊤yN+1 = K⊤yN − ηK⊤BzN − ηK⊤c (24)

K⊤yN+1 = K⊤ (yN − ηBzN − ηc) (25)
yN+1 = yN − ηBzN − ηc (26)
yN+1 = yN − ηB(zN − z0)− ηBz0 − ηc (27)

yN+1 = yN − ηBK⊤yN − ηBz0 − ηc (28)

yN+1 =
(
I − ηBK⊤) yN − ηBz0 − ηc (29)

The expression of yN is then for y0 = 0:

yN =
(
I − ηBK⊤)N (BK⊤)−1(Bz0 + c)− (BK⊤)−1(Bz0 + c) (30)

=
((
I − ηBK⊤)N − I

)
(BK⊤)−1(Bz0 + c) (31)

Therefore the expression of zN is:

zN − z0 = K⊤
((
I − ηBK⊤)N − I

)
(BK⊤)−1(Bz0 + c) (32)

zN = K⊤
((
I − ηBK⊤)N − I

)
(BK⊤)−1(Bz0 + c) + z0 (33)

13

Under review as a conference paper at ICLR 2024

Lemma A.3. Under Assumption 3.1 and Assumption 3.2, the inner procedure (i.e. the fixed-point
iteration method) is a time-invertible linear procedure with EN =

(
(I − ηBK⊤

in)
N − I

)
(BK⊤

in)
−1

and rN = K⊤
inEN (Bz0 + c) + z0, with z0 the initialization of the procedure.

Proof. Using Lemma A.2, we have the expression of zN (θ):

zN (θ) = K⊤
in

(
(I − ηBK⊤

in)
N − I

)
(BK⊤

in)
−1(Uθ + c+Bz0) + z0 (34)

= K⊤
in

(
(I − ηBK⊤

in)
N − I

)
(BK⊤

in)
−1Uθ (35)

+K⊤
in

(
(I − ηBK⊤

in)
N − I

)
(BK⊤

in)
−1(c+Bz0) + z0 (36)

= K⊤
inENUθ + rN , (37)

with EN =
(
(I − ηBK⊤

in)
N − I

)
(BK⊤

in)
−1 and rN = K⊤

inEN (c + Bz0) + z0. We now need
to prove that EN is invertible for N sufficiently large. Since the fixed-point iterations converge,
(I − ηBK⊤

in)
N goes to 0, and therefore

(
(I − ηBK⊤

in)
N − I

)
goes to −I which means that for N

sufficiently large the latter is invertible. We conclude by noticing that EN is invertible as the product
of two invertible matrices.

We restate the main theorem here for convenience, before proving it.
Theorem 1 (Inner Iterations Overfitting for affine inner problems). Under Assumption 3.1, Assump-
tion 3.2 and Assumption 3.3, we have:

D(N,∆N) ≥ −1

2
∥
(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22, (9)

where P(X) is the orthogonal projection on range(X), EN =
(
(I − ηBK⊤

in)
N − I

)
(BK⊤

in)
−1

and rN = K⊤
inEN (Bz0 + c) + z0.

Proof. We prove here the result directly for a time-invertible linear procedure thanks to Lemma A.3:

zN (θ) = K⊤
inENUθ + rN = ANθ + rN , with AN = K⊤

inENU (38)

We can then write:

ℓ(zN (θ)) =
1

2
∥KoutzN (θ)− ω∥22 (39)

=
1

2
∥KoutANθ +KoutrN − ω∥22 (40)

=
1

2
∥KoutANθ + P(KoutAN)(KoutrN − ω)∥22 +

1

2
∥P((KoutAN)

⊥
)(KoutrN − ω)∥22

(41)

(Kout, AN , rN , ω) 7→ lim
t→∞

θt+1 = θt − (KoutAN)⊤(KoutANθt +KoutrN − ω) (42)

where the last equation holds because the two terms are orthogonal. And we have:

KoutK
⊤
inENUθ

⋆,N = −P(KoutAN)(KoutrN − ω) (43)

ENUθ
⋆,N = −(KoutK

⊤
in)

†P(KoutAN)(KoutrN − ω) + θker(KoutK⊤
in) (44)

Uθ⋆,N = −E−1
N (KoutK

⊤
in)

†P(KoutAN)(KoutrN − ω) + E−1
N θker(KoutK⊤

in) (45)

Plugging that into the outer loss for a different inner iterations number N ′ = N +∆N and using
C = KoutK

⊤
in , M(N ′, N) = EN ′E−1

N and vN = (KoutrN − ω):

ℓ(zN ′(θ⋆,N)) =
1

2
∥CEN ′Uθ⋆,N +KoutrN ′ − ω∥22 (46)

=
1

2
∥ − CM(N ′, N)C†P(KoutAN)vN + vN ′ + CM(N ′, N)θker(C)∥22 (47)

=
1

2
∥ − CM(N ′, N)C†P(KoutAN)vN + P(C)vN ′ + CM(N ′, N)θker(C)∥22 (48)

+
1

2
∥P(C⊥)vN ′∥22

14

Under review as a conference paper at ICLR 2024

For N ′ = N , i.e. ∆N = 0, since M(N ′, N) = I , we have:

ℓ(zN (θ⋆,N)) =
1

2
∥ − CC†P(KoutAN)vN + P(C)vN + Cθker(C)∥22 +

1

2
∥P(C⊥)vN∥22 (49)

=
1

2
∥ − CC†P(KoutAN)vN + P(C)vN∥22 +

1

2
∥P(C⊥)vN∥22 (50)

=
1

2
∥ − P(C)P(CENU)vN + P(C)vN∥22 +

1

2
∥P(C⊥)vN∥22 (51)

=
1

2
∥ − P(CENU)vN + P(C)vN∥22 +

1

2
∥P(C⊥)vN∥22 (52)

=
1

2
∥ (P(C)− P(CENU)) vN∥22 +

1

2
∥P(C⊥)vN∥22 (53)

Finally, subtracting the two expressions, we have:

D(N,∆N) = ℓ(zN+∆N (θ⋆,N))− ℓ(zN (θ⋆,N)) (54)

≥ −1

2
∥ (P(C)− P(CENU)) vN∥22 (55)

= −1

2
∥
(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22 (56)

because P(C⊥)vN = P(C⊥)vN ′ = −P(C⊥)ω.

Lemma A.4. For v ∈ Rp, and P(X) the orthogonal projection onto range(X) for X ∈ Rp×d, we
have

EX|Xij∼N (0,1)∥P(X)v∥22 =
d

p
∥v∥22. (57)

Proof. The proof is taken from zhm1995 (2019). Let X = UDV ⊤ a SVD of X , with U ∈ Rd×d

orthogonal, D diagonal with positive entries, and V ∈ Rp×d orthogonal, i.e. such that V ⊤V =
Id. Since the entries of X are drawn i.i.d. from a normal distribution, the singular values of X
are non-zeros with probability 1, and we have P(X) = X⊤(XX⊤)−1X = V V ⊤. Since the
distribution of V is right invariant, the distribution of ∥P(X)v∥22 depends only on ∥v∥22.4 Thus,
EX|Xij∼N (0,1)∥P(X)v∥22 = ∥v∥22EX|Xij∼N (0,1)P(X)11, taking v = (∥v∥, 0, . . . , 0) (i.e. we chose
a basis where the first vector is 0, and if v is 0 the problem is trivial). By symmetry, we have
EX|Xij∼N (0,1)P(X)11 = EX|Xij∼N (0,1) tr(P(X))/p. And we have tr(P(X)) = tr(V V ⊤) =

tr(V ⊤V) = d.

Corollary 2 (Average case). Under Assumption 3.1, Assumption 3.2 and Assumption 3.3, if Kin is
invertible and ℓ is strongly convex, we have:

EU∼N (0,I) [D(N,∆N)] ≥ −1

2
(1− min(dx, dθ)

dx
)(ρ(Kout)∥rmax∥22 + ∥ω∥22), (11)

with ρ(Kout) the spectral radius of Kout and ∥rmax∥22 ∈ maxN ∥rN∥22.

Proof. From Theorem 1, we have for N ≥ N0:

D(N,∆N) ≥ −1

2
∥
(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22 (58)

When the outer problem is strongly convex, we have Kout is an invertible matrix. Therefore,
P(KoutK

⊤
in) = I , and KoutK

⊤
inEN = BN is invertible for N ≥ N0. Using the notation

4Right invariance means, for each fixed p× p orthogonal matrix B, the matrix V B is distributed the same
way V is. It is a consequence of the rotational symmetry of the original normal distribution.

15

https://math.stackexchange.com/users/601630/zhm1995

Under review as a conference paper at ICLR 2024

vN = (KoutrN − ω), if dx < dθ, we have:

EU∼N (0,I)D(N,∆N) ≥ −1

2
EU∼N (0,I)∥

(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22

(59)

≥ −1

2
EU∼N (0,I)∥ (I − P(BNU)) vN∥22 (60)

≥ −1

2
EU∼N (0,I)v

⊤
N (I − P(BNU))

⊤
(I − P(BNU)) vN (61)

= −1

2
EU∼N (0,I)v

⊤
N (I − P(BNU)) (I − P(BNU)) vN (62)

= −1

2
EU∼N (0,I)v

⊤
N (I − P(BNU)) vN (63)

= −1

2
EU∼N (0,I)v

⊤
NvN − v⊤NP(BNU)vN (64)

= −1

2
EU∼N (0,I)∥vN∥22 − v⊤NP(BNU)vN (65)

= −1

2
EU∼N (0,I)∥vN∥22 − v⊤NP(BNU)P(BNU)vN (66)

= −1

2
EU∼N (0,I)∥vN∥22 − v⊤NP(BNU)⊤P(BNU)vN (67)

= −1

2
EU∼N (0,I)∥vN∥22 − ∥P(BNU)vN∥22 (68)

= −1

2
EU ′∼N (0,I)∥vN∥22 − ∥P(U ′)vN∥22 (69)

= −1

2
∥vN∥22 − EU ′∼N (0,I)∥P(U ′)vN∥22 (70)

= −1

2
∥vN∥22 −

dθ
dx

∥vN∥22 (71)

= −1

2

(
1− dθ

dx

)
∥vN∥22 (72)

We can conclude using the triangular inequality and the definition of the spectral radius on ∥vN∥22,
and using Corollary 1 to go from dθ

dx
to min(dx,dθ)

dx
.

B HOW RELEVANT IS THE AFFINE INNER PROBLEM PARAMETERIZATION?

In order to derive our analysis, we assumed in Assumption 3.2 that the expression of the inner problem
root-defining function followed a certain factorization f(z, θ) = K⊤

in (Bz + Uθ + c). We show that
this form is satisfied by two classes of problems: affine DEQs and meta-learning a linear model.
We first tackle the case of affine DEQs. To do so, let us first establish the following lemma:
Lemma B.1. If f is an affine function of the form f(z) = Az+c, and the fixed-point iteration method
with fixed step size η to find its root converges for any initialization z0, then f can be factorized, i.e.
∃K,Γ, γ such that f(z) = K⊤Γz +K⊤γ and K is surjective. Moreover, ΓK⊤ has eigenvalues
with positive real part.

Proof. If the fixed-point iteration method converges, then it means that f has a root denoted z⋆.
This root verifies Az⋆ = −c, so it means that c is in the range of A. Furthermore, we can write the
low-rank factorization of A as K⊤Γ with K surjective. Because c is in the range of A it is also in the
range of K⊤. We can denote c = K⊤γ. Using Lemma A.2, we have the expression of zN :

zN = K⊤
((
I − ηΓK⊤)N − I

)
(ΓK⊤)−1(Γz0 + γ) + z0 (73)

Since zN converges for any z0, this means that the largest eigenvalue of (I − ηΓK⊤) is bounded
by 1 in magnitude. We can choose η as 1

λmax+ϵ to realize this if all the eigenvalues of ΓK⊤ have a
positive real part.

16

Under review as a conference paper at ICLR 2024

Similarly we have the following result:
Proposition 1. Let us assume that f is affine in z and θ. If the fixed-point iteration method with fixed
step size η converges for f , then it satisfies Assumption 3.2.

We now move on to meta-learning a linear model with quadratic loss which we show to be a special
case of the above.
Proposition 2. . If the task specific regularized loss for iMAML is a convex qudratic function and
can be written as:

F (z, θ) =
1

2
∥Xz − y∥22 + λ∥z − θ∥22, (74)

with Xtrain = (X, y) the task training set, and λ the meta regularization parameter, and gradient
descent with fixed step size η converges to minimize F in z, then ∇zF satisfies Assumption 3.2.

Proof. Since F is a quadratic function of z and θ, ∇F is an affine function and the gradient descent
on F with fixed step size η corresponds to the fixed-point iteration method for ∇F . We can conclude
using Proposition 1

Stacking DEQ sample-wise problems Our analysis is conducted for the problem obtained when
stacking all the independent sample-wise problems. Indeed, for DEQs, for each sample xi we have
f(z, θ, xi) = Kin(xi)

⊤(B(xi)z+U(xi)θ+c(xi)). However, Assumption 3.2 applies to the problem
from the dataset point of view. This can be related when stacking together the individual sample-wise
components as follows:

zN (θ) = [zN (θ, x1), . . . , zN (θ, xn)]
⊤ (75)

U = [U(x1), . . . , U(xn)] (76)

B =

B(x1)

. . .

B(xn)

 (77)

Kin =

Kin(x1)

. . .

Kin(xn)

 (78)

c = [c(x1), . . . , c(xn)]. (79)

A similar remark applies to Assumption 3.3.

Difference with the parametrization of Winston & Kolter (2020) As stated in Section 3, the
parametrization we chose is different from that of Winston & Kolter (2020). Indeed, they chose to
use:

f(z,W,U, b, xi) = σ(Wz + Ux+ b), (80)
where the parameters (W,U, b) are the equivalent of θ. In plain text, the difference with our param-
eterization, other than the pointwise nonlinearity σ, is that they allow multiplicative interactions
between the output z and part of the parameters W . This type of parametrization is well suited to
anlyzing convergence, however in our case, it would lead to a dyanmical system with an overly
complex trajectory not fit for our analysis. To illustrate this point, let us assume that σ = Id and that
b = 0. We then have for a single example x:

zN+1 =WzN + Ux (81)

zN =WN (z0 + (I −W)−1Ux)− (I −W)−1Ux (82)

With this trajectory, assuming ℓ(z) = 1
2∥z − ω∥22 the overall minimization problem then becomes:

argmin
W,U

1

2
∥WN (z0 + (I −W)−1Ux)− (I −W)−1Ux− ω∥22. (83)

This problem is in general not even necessarily convex in W and U .

17

Under review as a conference paper at ICLR 2024

C IMPLICIT DIFFERENTIATION PROOFS

Lemma 1 (Convergence of the practical IFT gradient descent). Under Assumption 3.1, Assumption 3.2
and Assumption 3.3, with ℓ strongly convex, ∃N0 such that ∀N > N0, ∃αN > 0 such that the
sequences θT,N

IFT converge to a value denoted θ⋆,NIFT , dependent only on the initialization.

Proof. Let us borrow the notations of Proposition 3. Let us denote H = K⊤
inB, H̄ = BK⊤

in and
G = K⊤

outKout. We have:

pN (θ) = −(H†K⊤
inU)⊤∇l(zN (θ)) (84)

= −(H†K⊤
inU)⊤(GzN (θ)−K⊤

outω) (85)

= −(H†K⊤
inU)⊤(G(K⊤

inENUθ + rN)−K⊤
outω) (86)

= −(H†K⊤
inU)⊤GK⊤

inENUθ − (H†K⊤
inU)⊤(GrN −K⊤

outω) (87)

= −(H̄−1U)⊤KinGK
⊤
inENUθ − (H†K⊤

inU)⊤(GrN −K⊤
outω) (88)

= XNθ − bN (89)

with XN = −(H̄−1U)⊤KinGK
⊤
inENU and bN = (H†K⊤

inU)⊤(GrN −K⊤
outω). The affine dynam-

ical system we need to study is therefore:

θT+1,N
IFT = (I − αNXN)θT,N

IFT − αNbN (90)

If XN has only nonnegative eigenvalues real part, then we can use αN = 1
λmax+ϵ where λmax is the

largest eigenvalue module of XN and ϵ > 0. In this case the largest real part of an eigenvalue of
(I − αNXN) is bounded in magnitude by 1 and the dynamical system converges.
We now need to show that XN has only nonnegative eigenvalues real part. To do so, let’s write XN

as the difference between a symmetric and a non-symmetric matrix, using PN (H̄) = (I − ηH̄):

XN = −(H̄−1U)⊤KinGK
⊤
inENU (91)

= −(H̄−1U)⊤KinGK
⊤
in (PN (H̄)− I)H̄−1U (92)

= (H̄−1U)⊤KinGK
⊤
in H̄

−1U − (H̄−1U)⊤KinGK
⊤
in PN (H̄)H̄−1U (93)

= Xsym −XN,non-sym (94)

If we take one unit eigenvector v of XN with associated eigenvalue λ we have:
λ = ∥v∥2λ (95)

= v⊤λv (96)

= v⊤(Xsym −XN,non-sym)v (97)

= v⊤Xsymv − v⊤XN,non-symv (98)

= ∥KoutK
⊤
in H̄

−1Uv∥22 − v⊤(H̄−1U)⊤KinGK
⊤
in PN (H̄)H̄−1Uv (99)

= ∥KoutK
⊤
in y∥22 − y⊤KinGK

⊤
in PN (H̄)y (100)

= ∥Koutγ∥22 − γ⊤K⊤
outKoutPN (H)γ (101)

with y = H̄−1U and γ = K⊤
in y.

We can first notice that for γ ∈ ker(Kout), λ = 0.
We now consider γ ̸∈ ker(Kout).

γ⊤K⊤
outKoutPN (H)γ = ⟨γ, PN (H)γ⟩Kout ≤ ∥PN (H)∥Kout∥Koutγ∥22 (102)

Therefore, we have:
λ ≥ (1− ∥PN (H)∥Kout)∥Koutγ∥22 (103)

Because the inner procedure is a converging fixed-point iteration method, |PN (λ)| can be made
arbitrarily small for all eigenvalues of H . In particular, ∃N0 such that ∀N > N0, ∥PN (H)∥Kout < 1.
Therefore, λ ≥ 0.
This proof generalizes to gradient-based methods by replacing PN with the associated residual
polynomial.

18

Under review as a conference paper at ICLR 2024

Theorem 2 (Equivalence of IFT and unrolled solutions for affine inner problems). Under Assump-
tion 3.1, Assumption 3.2 and Assumption 3.3, with ℓ strongly convex and U surjective, we have:

θ⋆,NIFT = θ⋆,N (14)

Proof. We borrow the notations from the proof of Proposition 3. Let us rewrite the root problem
satisfied by θ⋆,NIFT :

(H†K⊤
inU)⊤∇l(zN (θ)) = 0 (104)

⇔ (H†K⊤
inU)⊤(GzN (θ)−K⊤

outω) = 0 (105)

⇔ (H†K⊤
inU)⊤(G(K⊤

inENUθ + rN)−K⊤
outω) = 0 (106)

⇔ (H†K⊤
inU)⊤GK⊤

inENUθ + (H†K⊤
inU)⊤(GrN −K⊤

outω) = 0 (107)

⇔ (H†K⊤
inU)⊤GK⊤

inENUθ = −(H†K⊤
inU)⊤(GrN −K⊤

outω) (108)

⇔ (H†K⊤
inU)⊤GK⊤

inENUθ = −(H†K⊤
inU)⊤K⊤

out(KoutrN − ω) (109)

⇔ (H†K⊤
inU)⊤GK⊤

inENUθ = −(KoutH
†K⊤

inU)⊤(KoutrN − ω) (110)

⇔ (K⊤
in H̄

−1U)⊤GK⊤
inENUθ = −(KoutK

⊤
in H̄

−1U)⊤(KoutrN − ω) (111)

⇔ (KoutK
⊤
in H̄

−1U)⊤KoutK
⊤
inENUθ = −(KoutK

⊤
in H̄

−1U)⊤(KoutrN − ω) (112)

⇔ KoutK
⊤
inENUθ = −(KoutrN − ω) + θker((KoutK⊤

in H̄−1U)⊤) (113)

⇔ KoutK
⊤
inENUθ = −P(KoutAN)(KoutrN − ω) + P(KoutAN)θker((KoutK⊤

in H̄−1U)⊤) (114)

⇔ KoutK
⊤
inENUθ = −P(KoutAN)(KoutrN − ω) + P(KoutAN)θIm(KoutK⊤

in H̄−1U)⊥ (115)

⇔ KoutK
⊤
inENUθ = −P(KoutK

⊤
in)(KoutrN − ω) + P(KoutK

⊤
in)θIm(KoutK⊤

in)⊥ (116)

⇔ KoutK
⊤
inENUθ = −P(KoutK

⊤
in)(KoutrN − ω) (117)

⇔ Uθ = −E−1
N (KoutK

⊤
in)

†P(KoutAN)(KoutrN − ω) + E−1
N θker(KoutK⊤

in) (118)

And we end up with the same characterization as (43), which concludes the proof.

D GENERALIZATION

In order to get a more consistent result, we should make sure that it holds in a generalization setting,
i.e. on samples not included in Dtrain. To do so, we can assume that each sample in Dtrain has
its own separate inner procedure and that the outer loss is the sum of all separate outer losses.
Using the stacked notation, i.e. x = [x(1), . . . , x(n)]⊤, zN (θ,x) = [zN (θ, x(1)), . . . , zN (θ, x(n))]⊤,
f(z, θ,x) = [f(z(1), θ, x(1)), . . . , f(z(n), θ, x(n))]⊤ and ℓ(z,x) = 1

n

∑
i ℓ(z

(i), x(i)), we can write
the following optimization problem:

argminθ ℓ(z
⋆(θ,x),x) = 1

n

∑
i ℓ(z

⋆(θ, x(i)), x(i))

s.t. f(z, θ,x) =

f(z
⋆(θ, x(1)), θ, x(1))

...
f(z⋆(θ, x(n)), θ, x(n))

 = 0
(119)

with:

ℓ(z, x) = 1
2∥Kout(x)z − ω(x)∥22

f(z, θ, x) = Kin(x)
⊤(B(x)z + U(x)θ + c(x))

(120)

19

Under review as a conference paper at ICLR 2024

If we stack the individual matrices and vectors as follows, we get the same bound as Theorem 1:

U =

U(x(1))
...

U(x(n))

 (121)

B =

B(x(1))
. . .

B(x(n))

 (122)

c =

c(x
(1))
...

c(x(n))

 (123)

Kin =

Kin(x
(1))

. . .
Kin(x

(n))

 (124)

Kout =
1√
n

Kout(x
(1))

. . .
Kout(x

(n))

 (125)

ω =
1√
n

ω(x
(1))
...

ω(x(n))

 (126)

That is we have:
1

n

∑
i

ℓ(zN+∆N (θ, x(i)), x(i))− 1

n

∑
i

ℓ(zN (θ, x(i)), x(i)) (127)

≥ −1

2
∥
(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22 (128)

where:

EN =

EN (x(1))
. . .

EN (x(n))

 (129)

EN (x(i)) =
(
(I − ηB(x(i))Kin(x

(i))⊤)N − I
)
(B(x(i))Kin(x

(i))⊤)−1 (130)

rN = K⊤
inEN (c+Bz0) + z0 (131)

For simplicity, we denote the bound as:

BN (Dtrain) = −1

2
∥
(
P(KoutK

⊤
in)− P(KoutK

⊤
inENU)

)
(KoutrN − ω)∥22 (132)

One can wonder what is the impact increasing the size of the training dataset Dtrain on BN (Dtrain) for
a fixed model. If the different functions U,B,Kin, . . . are sufficiently smooth and the data support is
compact, then BN (Dtrain) is bounded, i.e. limn→+∞ −BN (Dtrain) < +∞.
This can be seen with the following rewriting of BN (Dtrain):

BN (Dtrain) = − 1

2n

∑
i

∥P(K
(i)
outK

(i),⊤
in)(K

(i)
outr

(i)
N − ω(i)) +K

(i)
outK

(i),⊤
in E

(i)
N U (i)θ⋆,N∥ (133)

where we replaced the evaluation on x(i) with a superscript (i) for conciseness.
Now, in the case where the different functions U,B,Kin, . . . are constant with U(x) surjective then
we find ourselves in the overparametrization case and it is BN (Dtrain) = 0. If we are sufficiently close
to constant functions, i.e. if they are sufficiently smooth, the lower bound remains meaningful. For
generalization, we have the following result:

20

Under review as a conference paper at ICLR 2024

Corollary D.1. Assuming that ℓ and f have expressions following (120) and are smooth, that the
inner procedure is a converging fixed-point iteration method, that θ⋆,N is obtained via gradient
descent, and that the distribution Π from which we sample Dtrain and x has a compact support X ,
then with probability 1− δ, we have:

Ex∼Π

[
ℓ(zN+∆N (θ⋆,N , x), x)− ℓ(zN (θ⋆,N , x), x)

]
≥ BN (Dtrain)−

Dδ(log(|Dtrain|)√
|Dtrain|

, (134)

where Dδ is a monotone increasing function depending on δ, the smoothness of f and ℓ w.r.t x and
the size of X .

The proof relies on expressing the problem as an estimation error problem and borrowing tools
from the probably approximately correct learning theory (McDiarmid’s inequality and Rademacher’s
complexity).

Proof. From Theorem 1, we have that:

1

n

∑
i

ℓ(zN+∆N (θ, x(i)), x(i))− 1

n

∑
i

ℓ(zN (θ, x(i)), x(i)) ≥ BN (Dtrain) (135)

We can then control the following difference, for P = N +∆N :∣∣∣ 1
n

∑
i

ℓ(zP (θ
⋆,N , x(i)), x(i)))− Ex

[
ℓ(zP (θ

⋆,N , x), x)
] ∣∣∣. (136)

In order to use the PAC framework, we need the quantity in the expectation to be independent of the
dataset Dtrain, which is not the case in (136) because of the dependency via θ⋆,N . In order to remove
this dependency we will introduce the following set:

ΘN,n = {GD(θ 7→ ℓ(zN (θ,Dn),Dn)) ∈ Rdθ |Dn ∈ Xn} (137)

In plain English, ΘN,n is the set of minimizers of (P) obtained via gradient descent for all possible
datasets Dn of size n drawn from the distribution Π. To define this set, we introduced GD the
function that computes the limit of the gradient descent for a given function. By definition of the
supremum, we have:∣∣∣ 1

n

∑
i

ℓ(zP (θ
⋆,N , x(i))), x(i)))− Ex

[
ℓ(zP (θ

⋆,N , x), x)
] ∣∣∣ (138)

≤ sup
θ∈ΘN,n

∣∣∣ 1
n

∑
i

ℓ(zP (θ, x
(i))), x(i)))− Ex [ℓ(zP (θ, x), x)]

∣∣∣. (139)

As classically termed in the PAC framework, we define ∆(Dtrain), the representativeness of Dtrain, as:

∆(Dtrain) = sup
θ∈ΘN,n

∣∣∣ 1
n

∑
i

ℓ(zP (θ, x
(i))), x(i)))− Ex [ℓ(zP (θ, x), x)]

∣∣∣. (140)

Using McDiarmid’s inequality we then have the following inequality with probability 1− δ:∣∣∣∆(D)− ED [∆(D)]
∣∣∣ ≤ Q

√
2 log(1/δ)

|D|
, (141)

with Q an upper bound on hP (θ, x) = ℓ(zP (θ, x), x) ∀θ ∈ ΘN,n and ∀x ∈ X .
We now turn to show that the upper bound Q exists. From (46), we have hP (θ, x) =
1
2∥C(x)EP (x)U(x)θ⋆,N +Kout(x)rP (x) − ω(x)∥22 extending the notations of the proof of Theo-
rem 1. Since X is a compact space and h is smooth in θ and x, we need to prove that ΘN,n is a
compact space to show that the upper bound exists.
ΘN,n is the image of Xn, a compact space, by the function ρ : Dn 7→ GD(θ 7→ ℓ(zN (θ,Dn),Dn)).
We first consider the function ϕ that maps from a dataset Dtrain to the sets of parameters of the quadratic
(C(x)EP (x)U(x))x∈Dtrain and (Kout(x)rP (x) − ω(x))x∈Dtrain . By hypothesis on the mapping for
these parameters, ϕ is smooth and ϕ(Dtrain is a compact. Then, we introduce λ : (Γ, α) 7→ GD(θ 7→
1
2∥Γθ + α∥22) = −(Γ⊤Γ)−1Γ⊤α which is smooth. Finally, we have that ρ = λ ◦ ϕ and so is smooth

21

Under review as a conference paper at ICLR 2024

as a composition of smooth functions. We can conclude that ΘN,n is compact and that Q indeed
exists.
We can then use Rademacher’s complexity R|D| (see Mohri et al. 2018 for a definition) to bound
ED [∆(D)]. First, we use the symmetrization lemma (Mohri et al., 2018, Theorem 3.3) to get:

ED [∆(D)] ≤ 2R|D|(H), (142)

with H = {hP (θ, ·), θ ∈ ΘN,n}. Since Π has a compact support X , there exists a max norm of
A(x) = Kout(x)K

⊤
in (x)EN (x)U(x) that we denote A∞. This means that we have the following

∀x ∈ X and ∀θ, θ′ ∈ ΘN,n:

|hP (x, θ)− hP (x
′, θ′)| ≤ 2TA2

∞∥θ − θ′∥2 (143)

where T is the minimum radius of a norm-2 ball that includes ΘN,n (possible because it is compact).
This means that the parametrization of H is 2TA2

∞-Lipschitz w.r.t the Euclidean distance on ΘN,n

and we can use the smoothly parametrized class theorem of Bartlett (2013, Lecture 13) and get:

Rn(H) ≤ 2κT 2A2
∞

√
dθ log(2T 2A2

∞n)

n
, (144)

where κ is a constant. To conclude, with L = 2T 2A2
∞, we have:

ED [∆(D)] ≤ 2κL

√
dθ log(Ln)

n
(145)

=⇒ ∆(D) ≤ 2κL

√
dθ log(Ln)

n
+Q

√
2 log(1/δ)

|D|
(146)

≡ ∆(D) ≤
2κL

√
dθ log(L|D|) +

√
2 log(1/δ)√

|D|
(147)

=⇒
∣∣∣ 1
n

∑
i

ℓ(zP (θ
⋆,N , xi), xi)− Ex

[
ℓ(zP (θ

⋆,N , x), x)
] ∣∣∣ ≤ 2κL

√
dθ log(L|D|) +

√
2 log(1/δ)√

|D|
(148)

=⇒ Ex∼Π

[
ℓ(zN+∆N (θ⋆,N , x), x)

]
− Ex∼Π

[
ℓ(zN (θ⋆,N , x), x)

]
≥ BN (Dtrain)−

Dδ(log |Dtrain|)√
|Dtrain|
(149)

≡ Ex∼Π

[
ℓ(zN+∆N (θ⋆,N , x), x)− ℓ(zN (θ⋆,N , x), x)

]
≥ BN (Dtrain)−

Dδ(log |Dtrain|)√
|Dtrain|

, (150)

with Dδ(log(n)) = 2
(
2κL

√
dθ
√
log(L) + log(n) +

√
2 log(1/δ)

)
.

E EXTENDED RELATED WORKS

Theoretical analysis of implicit deep learning practice Relatively few works have looked at how
practical implicit deep learning implementations affect the final solution. Most notable is the one of
Vicol et al. (2022). In this work, the authors looked at the implicit biases caused by warm-starting in
the inner optimization problem and the use of approximate hypergradients on the final solution. They
proved theoretical results in a quadratic bilevel optimization setting, and showed empirical results on
dataset distillation and data augmentation network learning. Their conclusion is that warm-starting
in the inner problem leads to overfitting and information leakage, and that using a higher quality
hypergradient leads to min-norm solutions for the outer problem. Our work is complementary to
theirs in that they have not considered non warm-start cases with a fixed number of iterations. We
also highlight that the notion of overparametrization later introduced in our work is different from
theirs. Their notion refers to the inner or outer problem having potentially more than one solution (a
setup we cover).

22

Under review as a conference paper at ICLR 2024

Convergence results in DEQs Some works have also tackled the notion of convergence in DEQs.
Winston & Kolter (2020) and Feng et al. (2023) tackled the problem of understanding what conditions
are needed for the inner problem of DEQs to be well-defined in the sense that it indeed converges
to a unique solution. Ling et al. (2023) looked at the convergence of gradient descent for the outer
problem with a quadratic outer loss. Interestingly, they also uncovered a link with overparametrization.
We want to highlight that these results differ from Lemma 1 in that we are really interested in a
non-asymptotic outer convergence, whereas the previously mentioned papers only tackle cases where
the inner problem is solved exactly.

F GRADIENT-BASED METHODS AND RESIDUAL POLYNOMIALS

Using the notations of Pedregosa (2020), a gradient-based method can be defined as having iterates
of the following form:

zN+1 = zN +

N−1∑
i=0

c
(N)
i (zi+1 − zi) + c

(N)
i ∇f(zN), (151)

The residual polynomials of this gradient-based method are then defined recursively as:

PN+1(λ) = (1 + c
(N)
N λ)PN (λ) +

∑N−1
i=0 c

(N)
i (Pi+1(λ)− Pi(λ))

P0(λ) = 1
(152)

Lemma F.1. Let F : Rdz → R, F (z) = 1
2∥Kz + c∥22. We define zN as the N -th iterate of a

gradient-based method with associated residual polynomial PN (Hestenes et al., 1952; Fischer,
2011) and initial condition z0. Then the closed form expression of zN is:

zN = PN (K⊤K)z0 + (PN (K⊤K)− I)(K⊤K)†c (153)

Proof. Writing H = K⊤K the hessian of F and z⋆ ∈ argminz F (z), we have the following
equality (Hestenes et al., 1952; Fischer, 2011; Pedregosa, 2020):

zN − z⋆ = PN (H)(z0 − z⋆) (154)
Rewriting it, leads to:

zN = PN (H)z0 − (PN (H)− I)z⋆ (155)
And we have that z⋆ is such that ∇F (z⋆) = Hz⋆ + K⊤c = 0. We can take for example z⋆ =
−H†K⊤c. Therefore:

zN = PN (H)z0 + (PN (H)− I)H†K⊤c (156)

Proposition 3. Let us assume that f is the gradient in z of a function F quadratic in z and linear in
θ, convex and bounded from below. Then any converging gradient-based method minimizing F is a
time-invertible linear procedure.

Proof. Let us give the expression of F :

F (z, θ) =
1

2
∥Kinz + Uθ + c∥22, (157)

withKin ∈ Rdx×dz surjective (if not we can always reformulate F to have it surjective), U ∈ Rdx×dθ ,
c ∈ Rdz . From Lemma F.1, writing K⊤

inKin = H , we know that zN = PN (H)z0 + (PN (H) −
I)H†(K⊤

in (Uθ + c)). Rewriting this, with H̄ = KinK
⊤
in :

zN = PN (H)z0 + (PN (H)− I)H†K⊤
in (Uθ + c) (158)

= (PN (H)− I)H†K⊤
inUθ + PN (H)z0 + (PN (H)− I)H†K⊤

in c (159)

= K⊤
in (PN (H̄)− I)H̄†Uθ + PN (H)z0 + (PN (H)− I)H†K⊤

in c (160)

= K⊤
inENUθ + rN (161)

withEN = (PN (H̄)−I)H̄† and rN = PN (H)z0+(PN (H)−I)H†K⊤
in c. BecauseKin is surjective

H̄ is invertible and H̄† = H̄−1 is as well. Because PN is associated with a converging gradient-
based method (see more in Appendix F), ∃N0 such that ∀N > N0, PN (λ) ̸= 1,∀λ ∈ [λmin;λmax],
(PN (H̄)− I) is invertible. Therefore, EN is invertible as the product of 2 invertible matrices. This
concludes the proof.

23

Under review as a conference paper at ICLR 2024

Table 1: Number of iterations for fixed point resolution during training for pretrained DEQs for the
different tasks covered.

Task N
Image classification 26
Image segmentation 27
Language modeling 30
Optical Flow estimation 36
Single-image super-resolution 100
Landmark detection 5

Remark F.2. Gradient-based methods have a rate of convergence proportional to
maxλ∈[0,λmax] |PN (λ)| (Pedregosa, 2020) where PN is their associated residual polynomial. There-
fore, for any converging gradient-based method, ∃N0 s.t. ∀N > N0,∀λ ∈ [λmin;λmax]|PN (λ)| < 1.
Remark F.3. For gradient descent with step size 1+ϵ

λmax
with −1 < ϵ < 1, we have PN (λ) =

(1− 1+ϵ
λmax

λ)N (Pedregosa, 2020) ∀N > 0, which means that PN (λ) ̸= 1 if λ ∈ [λmin;λmax]. In the
case of gradient descent with an appropriate step size, the inequality (9) is therefore always true for
all optimization steps.
Remark F.4. For gradient descent with momentum with admissible parameters as defined by Pe-
dregosa (2020)[Blog 2], we can reuse computations made to check the convergence to get N0 from
Remark F.3. For momentum m, N0 is such that:

m
N0
2 (1 +

1−m

1 +mN0
) < 1 (162)

G EXPERIMENTAL DETAILS

G.1 DEQS

In all DEQs experiments, except the stability experiment, we reuse the data, architecture, code (in
PyTorch (Paszke et al., 2019)) and weights of the original works. The only difference with the
original works is that we use a different number of inner steps for the fixed point resolution, and
set the tolerance to a value sufficiently low, so that the maximum number of inner steps is always
reached (10−7 generally). We list here the links to the original works public GitHub repositories
which contain information on how to download the data, the weights and how to perform inference:

• Image classification on ImageNet (Deng et al., 2009) and CIFAR (Krizhevsky, 2009) and
Image segmentation on Cityscapes (Cordts et al., 2016): locuslab/deq/MDEQ-Vision (Bai
et al., 2020)

• Language modeling on WikiText (Merity et al., 2017): locuslab/deq/DEQ-Sequence (Bai
et al., 2019)

• Optical Flow Estimation on Sintel (Butler et al., 2012): locuslab/deq-flow (Bai et al., 2022a)
• Single-image Super resolution on CBSD68 (Martin et al., 2001): wustl-cig/ELDER (Zou

et al., 2023)
• Landmark detection on WFLW-V (Micaelli et al., 2023): polo5/LDEQ_RwR (Micaelli et al.,

2023)

How do we know that the maximum number of iterations is always reached rather than
the tolerance? While the original DEQ implementation (github.com/locuslab/deq) does
feature a mechanism to stop the fixed point resolution (generally done via the Broyden method) when
a tolerance is reached, it is never used in practice. We can observe this via 2 different methods:

• Logging of the iteration count: it is always the maximum number of iterations specified.
• Comparison of the specified tolerance and the actual error reached: as can be seen in Figure 2

the error reached for ImageNet for example is about 0.2 while the tolerance set in training is
of the order of 10−3.

Finally, Bai et al. (2020, Section B.2.) mention this aspect in their Multiscale DEQ work: “In practice,
we stop the Broyden iterations at some threshold limit (e.g., 22 iterations)“.

24

https://github.com/locuslab/deq/tree/master/MDEQ-Vision
https://github.com/locuslab/deq/tree/master/DEQ-Sequence
https://github.com/locuslab/deq-flow
https://github.com/wustl-cig/ELDER
https://github.com/polo5/LDEQ_RwR
github.com/locuslab/deq

Under review as a conference paper at ICLR 2024

G.2 DEQS STABILITY

In order to evaluate the stability of DEQs trained with unrolling (i.e. backpropagating through the
iterates of Broyden’s method), we needed to implement a differentiable version of Broyden’s method.
Except for this, the training code and data pipelines are taken from the original work (Bai et al., 2020)
for image classification on CIFAR-10 (Krizhevsky, 2009). We simply vary the number of inner steps
used for the fixed point resolution and the tolerance of the fixed point resolution at test-time. The
networks used were those following the TINY configuration (see the original configuration file for
more details).
One might notice that Broyden’s method is usually not differentiable because of the use of a line
search. As for the typical DEQ setting, we did not use a line search to train DEQs, whether unrolled
or not, and just kept a fixed step size of 1, making it differentiable.

G.3 (I)MAML

We recall the main difference between MAML and iMAML. In MAML, the meta parameters are
used as an initialization to a gradient descent for task adapted networks, while in iMAML, the meta
parameters are used as an anchor point for the task adapted weights. Formally, for iMAML, the inner
loss is modified to include a regularization term that penalizes the ℓ2-norm of the difference between
the task adapted parameters and the meta-parameters. Thanks to this formulation, iMAML can use
implicit differentiation to compute the hypergradient, while MAML has to rely on unrolling.
We reimplemented the (i)MAML framework in Jax (Bradbury et al., 2018) using the recently
developed Jaxopt library (Blondel et al., 2022). The reason for this was that we wanted a faster
implementation, made possible by the machinery of Jax and Jaxopt together.
For the sinusoid regression task, we used the same architecture and hyperparameters as the one
introduced by Finn et al. (2017) (respectively the same hyperparameters as the one of Rajeswaran
et al. (2019), including the use of line search for gradient descent). Each sinusoid was generated on
the fly, both for test and train data.
The architecture was a 2-hidden-layer MLP with 40 hidden units per layer, transductive batch
normalization (i.e. the batch statistics are not stored) and ReLU activations. For MAML, the inner
gradient descent had a step size of 0.01. For iMAML, the inner gradient descent use line search for a
maximum of 16 iterations. The outer optimization was carried out for 70k steps using Adam (Kingma
& Ba, 2015) with a learning rate of 10−3 and all other hyperparameters set to their default values, the
meta batch size was 25 and 10 samples were used for validation (outer) loss computation and for the
inner loss definition. The samples are generated on-the-fly.

G.4 COMPUTE

All the experiments except the theorem illustrations were run on a public HPC cluster, providing
NVIDIA V100 GPUs. According to the numbers provided by this public HPC cluster, a maximum of
220 GPU days (5291 GPU hours) were used for the experiments (conservative upper bound), which
includes all the reruns due to bugs, the experiments not reported in this paper and potential other
projects worked on at the same time.

H ADDITIONAL RESULTS

H.1 INNER ITERATIONS OVERFITTING FOR DEQS ON TRAINING DATA

While in Figure 2 the reported performance is the test set performance, the theory developed in
Section 3 concerns only the training set performance. In order to make sure that the behavior we are
noticing on the test set performance is not due to some effect of lack of generalization we also report
the same figure for ImageNet on training data in Figure H.1.

H.2 INNER ITERATIONS OVERFITTING FOR DEQS ON TRAINING LOSS

While in Figure 2 the reported performance is not the training loss but for example for image
classification the error, the theory developed in Section 3 concerns only the training loss. In order to
make sure that the behavior we are noticing is not due to a discrepancy between the optimized loss
and the performance we also report the same figure for ImageNet on training loss in Figure H.2.

25

https://github.com/locuslab/deq/blob/master/MDEQ-Vision/experiments/cifar/cls_mdeq_TINY.yaml

Under review as a conference paper at ICLR 2024

5 10 15 20 25 30 35 40

N + ∆N

−100

0

100

101

P
er

fo
rm

a
n

ce
g
a
p
↓

ImageNet (Image classification)

0.2

0.3

0.4

0.5

0.6

0.7

C
o
n
v
er

g
en

ce

Figure H.1: Inner iterations overfitting for DEQs on train data. We report the training set error
for different inner optimization times.

5 10 15 20 25 30 35 40

N + ∆N

0

100

L
o
ss

d
ec

re
a
se
↓

ImageNet (Image classification) - Test set

5 10 15 20 25 30 35 40

N + ∆N

0

100

L
o
ss

d
ec

re
a
se
↓

ImageNet (Image classification) - Train set

0.2

0.4

0.6
C

o
n
v
er

g
en

ce

0.2

0.4

0.6

C
o
n
v
er

g
en

ce

Figure H.2: Inner iterations overfitting for DEQs on the training loss. We report the training set
error for different inner optimization times.

26

Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000

t

10−27

10−23

10−19

10−15

10−11

10−7

10−3

101

-
L

o
w

er
b

o
u

n
d

1

2

3

4

5

6

7

8

9

d
im

(θ
)

Figure H.3: Impact of inner problem underparametrization for non strongly convex cases.
Negative Lower bound, i.e. 1

2∥ (P(KoutKin)− P(KoutKinENU)) (KoutrN −z⋆)∥22, from Theorem 1.
The inner and outer problem are not strongly convex, and the dimension of z is 10. Roughly speaking,
the inner problem would therefore be fully parameterized in θ if it was in dimension 10. We compute
the lower bound for different inner optimization times and 20 seeds.

H.3 LOWER BOUND FOR NON OVERPARAMETRIZED INNER PROCEDURES BUT WITH NON
STRONGLY CONVEX INNER AND OUTER PROBLEMS

We see in Figure H.3 that the lower bound can reach 0 for a much smaller θ dimension when the
inner and outer problem are not strongly convex than when they are.

I LINK BETWEEN LINEAR AND NON-LINEAR IMPLICIT MODELS

We consider the implicit problem

min ℓ(z∗(θ)) such that f(z∗(θ), θ) = 0 , (163)

where ℓ and f are smooth functions, but contrary to the analysis in Section 3, ℓ is not assumed to
be a quadratic function, and f is not assumed to be affine. Hereafter, we derive an approximation
theory between the solutions to the problem (163) and the linear problem that corresponds to a linear
expansion of f around the solution.
More precisely, we let θ∗ the solution to (163), write for short z∗ = z∗(θ), and define a linearized
version of f around (z∗, θ∗) as the Taylor expansion

g(z, θ) = A(z − z∗) +B(θ − θ∗) with A =
∂f

∂z
(z∗, θ∗) and B =

∂f

∂θ
(z∗, θ∗) (164)

The function g is now an affine function, exactly like the functions we consider in Section 3, eq. (7).
We make the following assumption on the error.
Assumption I.1 (Quadratic error). We define R(z, θ) = f(z, θ) − g(z, θ). There exists α, β > 0
such that for all θ, z, it holds

∥R(z, θ)∥ ≤ α∥z − z∗∥2 + β∥θ − θ∗∥2 .

This assumption is very weak; it is, for instance, verified if f is twice differentiable and has at most
quadratic growth, or if the functions are defined over a compact. We define ϕf (z0, θ, n) the output of
n iterations of the power method on f with step-size 1 starting from z0, i.e. ϕf (z0, θ, n) = zn where
zn is defined recursively by

zn+1 = zn − f(zn, θ). (165)

We assume that these iterations converge to z∗(θ) as n goes to infinity:
Assumption I.2 (Convergence of the power method). ∥I −A∥2 = λ < 1.

27

Under review as a conference paper at ICLR 2024

We define similarly the function ϕg(z0, θ, n) the output of n iterations of the power method on g with
step-size 1 starting from z0, i.e. ϕg(z0, θ, n) = yn where yn is defined recursively by y0 = z0 and

yn+1 = yn − g(yn, θ). (166)

Finally, we define Θf (z0, n) = argminθ ℓ(ϕf (z0, θ, n)) and Θg(z0, n) = argminθ ℓ(ϕg(z0, θ, n)).
These are the solutions of the problem (163) where we use the approximation z∗(θ) = ϕf (z0, θ, n)
(resp. z∗(θ) = ϕg(z0, θ, n)).
The parameter Θf corresponds to the approximate solution to the implicit deep learning found in
practice with the true non-linear function f . The parameter Θg corresponds to the setting studied in
Section 3. We seek to answer:

Question How far are the true parameters Θf from those found with the linear approximation Θg?

I.1 CONTROL OF THE DISTANCE OF THE ITERATES OF THE POWER METHOD

In order to control this distance, we begin by controlling the distance between the iterates of the
power method with f and g. We have:
Lemma I.3 (Crude control of the norm of zn). Under Assumption I.1 and Assumption I.2, we have

that if ∥z0 − z∗∥ ≤ 1−λ
2α and ∥θ − θ∗∥ ≤

√
∥B∥2

2+
(1−λ)2β

α −∥B∥2

2β , then for all n, ∥zn − z∗∥ ≤ 1−λ
2α ;

in other words, ∥ϕf (z0, θ, n)− z∗∥ ≤ 1−λ
2α .

Proof. First, note that the condition on θ implies:

∥B(θ − θ∗)∥+ β∥θ − θ∗∥2 ≤ ∥B∥2∥θ − θ∗∥+ β∥θ − θ∗∥2 (167)

≤ (1− λ)2

4α
, (168)

since the upper bound of ∥θ − θ∗∥ is the positive root of the equation ∥B∥2x+ βx2 = (1−λ)2

4α .
Next, we can rewrite the recursion on zn as

zn+1 = zn −A(zn − z∗)−B(θ − θ∗)−R(zn, θ).

Subtracting z∗, taking norms, applying the triangular inequality, and using Assumption I.1 and
Assumption I.2 leads to

∥zn+1 − z∗∥ ≤ λ∥zn − z∗∥+ α∥zn − z∗∥2 + ∥B(θ − θ∗)∥+ β∥θ − θ∗∥2 (169)

and using the bound (167) we find the recursive inequality

∥zn+1 − z∗∥ ≤ λ∥zn − z∗∥+ α∥zn − z∗∥2 + (1− λ)2

4α
.

Hence, if ∥zn − z∗∥ ≤ 1−λ
2α , we find that

∥zn+1 − z∗∥ ≤ λ
1− λ

2α
+ α

(1− λ)2

4α2
+

(1− λ)2

4α
=

1− λ

2α
,

which demonstrates the result by induction.

We now use the previous bound to “remove” the challenging quadratic term in the recursive inequality
followed by ∥zn − z∗∥ and then obtain a far better control.
Lemma I.4 (Tighter control of the norm of zn). We assume the same hypotheses as in Lemma I.3. We
also assume that ∥θ−θ∗∥ ≤ ∥B∥2

β . Then, for all n, we have ∥zn−z∗∥ ≤ ∥z0−z∗∥+ 4∥B∥2

1−λ ∥θ−θ∗∥.

Proof. The new assumption on θ and the bound from the previous lemma plugged in Eq. (169) give
the simple recursion

∥zn+1 − z∗∥ ≤ 1 + λ

2
∥zn − z∗∥+ 2∥B∥2∥θ − θ∗∥

Unrolling it leads to

28

Under review as a conference paper at ICLR 2024

∥zn − z∗∥ ≤
(
1 + λ

2

)n

∥z0 − z∗∥+
1−

(
1+λ
2

)n
1− 1+λ

2

2∥B∥2∥θ − θ∗∥

Crudely upper-bounding
(
1+λ
2

)n ≤ 1 and 1−
(
1+λ
2

)n ≤ 1 leads to the advertized bound.

This bound shows that the distance between zn and the solution z∗ is linear in the distance between
(z0, θ) and (z∗, θ∗); which is quite expected: indeed, starting from (z0, θ) = (z∗, θ∗) in the procedure
leads to zn = z∗ for all n; it is only natural that zn does not depart too much from z∗ as (z0, θ)
moves away from (z∗, θ∗).
We now turn to controlling the distance between the iterates produced by f and those produced by g.
Lemma I.5 (Control of the distance between zn and yn). We assume the same hypotheses as in
Lemma I.4. Define the constants µ = 2α

1−λ and ν =
(

β
1−λ +

32α∥B∥2
2

(1−λ)3

)
. Then, for all n, it holds

∥zn − yn∥ ≤ µ∥z0 − z∗∥2 + ν∥θ − θ∗∥2.

In other words, ∥ϕf (z0, θ, n)− ϕg(z0, θ, n)∥ ≤ µ∥z0 − z∗∥2 + ν∥θ − θ∗∥2.

Proof. We define rn = zn − yn. This sequence verifies the recursion

rn+1 = rn −Arn +R(zn, θ)

starting from r0 = 0. Taking norms and upper-bounding, we get

∥rn+1∥ ≤ λ∥rn∥+ α∥zn − z∗∥2 + β∥θ − θ∗∥2.
Squaring the bound of Lemma I.4 and using (a + b)2 ≤ 2a2 + 2b2 gives ∥zn − z∗∥2 ≤ 2∥z0 −
z∗∥2 + 32∥B∥2

2

(1−λ)2 ∥θ − θ∗∥2, so we get the recursion

∥rn+1∥ ≤ λ∥rn∥+ 2α∥z0 − z∗∥2 +
(
β +

32α∥B∥22
(1− λ)2

)
∥θ − θ∗∥2.

Unrolling this recursion gives

∥rn∥ ≤ 2α

1− λ
∥z0 − z∗∥2 +

(
β

1− λ
+

32α∥B∥22
(1− λ)3

)
∥θ − θ∗∥2.

This result is central for the rest of our analysis: it shows that the distance between the iterates of the
two power methods is quadratic in the distance of (z0, θ) to (z∗, θ∗).

I.2 CONTROL OF THE DISTANCE OF THE OPTIMAL PARAMETERS

The previous analysis (Lemma I.5) demonstrates that if θ is close to θ∗ and z0 is close to z∗, then
the iterates of power method using f and those of the power method using g, the linearization of f ,
are extremely close. This, in turn, implies that the optimal parameters to the corresponding bilevel
problems are close.
Assumption I.6. The function ℓ has z∗ as a unique minimizer.
Assumption I.7. The matrix B is invertible.

Under this assumption, we can derive the expression of the optimal parameters θ found with the
power method applied on g
Lemma I.8 (Optimal parameters for g). Under Assumption I.2, Assumption I.6, and Assumption I.7,
we have that

Θg(z0, n) := argmin
θ
ℓ(ϕg(z0, θ, n)) = θ∗ +B−1(I − (I −A)n)−1A(I −A)n(z0 − z∗)

Proof. Unrolling the affine recursion for g yields

ϕg(z0, θ, n) = z∗ + (I −A)n(z0 − z∗)− (I − (I −A)n)A−1B(θ − θ∗)

By assumption, the function ℓ(ϕg(z0, θ, n)) is minimized for when ϕg(z0, θ, n) = z∗, which gives
the advertized result.

29

Under review as a conference paper at ICLR 2024

In order to control the error induced by using f , we need the following technical lemma:

Lemma I.9. Let ψ : Rd → Rd a continuous function such that for some δ, γ > 0 with δγ ≤ 1
4 , we

have
∀u ∈ Rd, ∥ψ(u)∥ ≤ δ + γ∥u∥2.

Then, there exists u∗ such that ψ(u∗) = u∗ with ∥u∗∥ ≤ 2δ.

Proof. Let u such that ∥u∥ ≤ 2δ. Then, ∥ψ(u)∥ ≤ δ + γ∥u∥2 ≤ δ + 4γδ2 ≤ 2δ. In other words,
the ball centered in 0 of radius 2δ is stable by ψ. As a consequence, Brouwer’s fixed point theorem
implies that ψ has a fixed point in that ball.

We are now ready for the main result:

Theorem I.10. We assume the same hypotheses as in Lemma I.5 and Lemma I.8. Define the constant
∆0 = ∥B−1∥2(µ+ 2ν∥B−1∥2), and assume that z0 is such that ∥z0 − z∗∥ ≤ (8∥B−1∥2ν∆0)

− 1
2 .

Then, the problem minθ ℓ(ϕf (z0, θ, n)) has a solution Θf (z0, n) such that

∥Θf (z0, n)−Θg(z0, n)∥ ≤ 2∆0∥z0 − z∗∥2.

Proof. We let R′(z0, θ, n) = ϕf (z0, θ, n)− ϕg(z0, θ, n) the distance between the iterates of the two
power methods, which is upper-bounded following Lemma I.5. A minimizer of ℓ(ϕf (z0, θ, n)) is
found by solving ϕf (z0, θ, n) = z∗, i.e. by finding a solution to the equation

ϕg(z0, θ, n) = z∗ +R′(z0, θ, n).

Using the previous closed-form expression for ϕg , this is equivalent to finding θ such that

θ = Θg(z0, n)−B−1R′(z0, θ, n)

We define the new variable u = θ −Θg(z0, n), and define ψ(u) = −B−1R′(z0, u+Θg(z0, n), n).
The solutions of the previous equations are exactly the fixed points of ψ.
We have, using Lemma I.5:

∥ψ(u)∥ ≤ ∥B−1∥2(µ∥z0 − z∗∥2 + ν∥u+Θg(z0, n)− θ∗∥2 (170)

≤ ∥B−1∥2(µ∥z0 − z∗∥2 + ν∥u+B−1(I − (I −A)n)−1A(I −A)n(z0 − z∗)∥2 (171)

≤ δ + γ∥u∥2 (172)

with δ = ∥B−1∥2(µ + 2ν∥B−1(I − (I − A)n)−1A(I − A)n∥2)∥z0 − z∗∥2 and γ = 2∥B−1∥2ν.
Using ∥(I − (I −A)n)−1A(I −A)n∥2 ≤ 1 further simplifies the formula of δ to δ = ∆0∥z0 − z∗∥2

Hence, following the previous lemma, if 2∥B−1∥2ν ×∆0∥z0 − z∗∥2 ≤ 1
4 , ψ has a fixed point of

norm less than 2δ, in other words there is a solution Θf (z0, n) to minθ ℓ(ϕf (z0, θ, n)) such that
∥Θf (z0, n)−Θg(z0, n)∥ ≤ 2∆0∥z0 − z∗∥2

This theorem shows that the solutions of the non-linear practical bilevel problem and those of the
linear approximation are very close when the initialization is close to the solution.

I.3 I2O FOR NON-LINEAR IMPLICIT MODELS

We are now ready to bound the quantity Df (N,∆N) = ℓ(zN+∆N (θ∗f,N)) − ℓ(zN (θ∗f,N)), where
θ∗f,N = Θf (z0, N) as defined in the previous section and zN is obtained with a power method
on f . Our affine theory from Theorem 1 allows us to control Dg(N,∆N) = ℓ(yN+∆N (θ∗g,N)) −
ℓ(yN (θ∗g,N)) where θ∗g,N = Θg(z0, N) and yN is obtained with a power method on g.
We have the following control:

Theorem I.11. We assume that the cost function ℓ is L-Lipschitz, and the hypotheses of Theorem I.10.
Then:

|Df (N,∆N)−Dg(N,∆N)| ≤ κ∥z0 − z∗∥2,

with κ = 2L(2∥B∥2∆0

1−λ + µ+ ν(∆0(∥B−1∥2ν)−1 + 2∥B−1∥22))

30

Under review as a conference paper at ICLR 2024

Proof. We control:

|ℓ(yN+∆N (θ∗g,N))− ℓ(zN+∆N (θ∗f,N))| ≤ L∥yN+∆N (θ∗g,N)− zN+∆N (θ∗f,N)∥
≤ L(∥yN+∆N (θ∗g,N)− yN+∆N (θ∗f,N)∥+ ∥yN+∆N (θ∗f,N)− zN+∆N (θ∗f,N)∥)

The first term is controlled by regularity of yN+∆N :

∥yN+∆N (θ∗g,N)− yN+∆N (θ∗f,N)∥ ≤ ∥B∥2
1− λ

∥θ∗g,N − θ∗f,N∥

and then using Theorem I.10, we get

∥yN+∆N (θ∗g,N)− yN+∆N (θ∗f,N)∥ ≤ 2∥B∥2∆0

1− λ
∥z0 − z∗∥2.

The second term is controlled using Lemma I.5, which gives

∥yN+∆N (θ∗f,N)− zN+∆N (θ∗f,N)∥ ≤ µ∥z0 − z∗∥2 + ν∥θ∗f,N − θ∗∥2.

Next, we bound crudely:

∥θ∗f,N − θ∗∥2 ≤ 2∥θ∗f,N − θ∗g,N∥2 + 2∥θ∗g,N − θ∗∥2.

The first term is upper bounded using Theorem I.10:

∥θ∗f,N − θ∗g,N∥2 ≤ 4∆2
0∥z0 − z∗∥4 ≤ ∆0(2∥B−1∥2ν)−1∥z0 − z∗∥2

while the second is upper-bounded by Lemma I.8: ∥θ∗g,N − θ∗∥2 ≤ ∥B−1∥22∥z0 − z∗∥2, giving:

∥θ∗f,N − θ∗∥2 ≤ (∆0(∥B−1∥2ν)−1 + 2∥B−1∥22)∥z0 − z∗∥2.

We then get

∥yN+∆N (θ∗f,N)− zN+∆N (θ∗f,N)∥ ≤ (µ+ ν(∆0(∥B−1∥2ν)−1 + 2∥B−1∥22))∥z0 − z∗∥2.

Overall, we obtain

|ℓ(yN+∆N (θ∗g,N))−ℓ(zN+∆N (θ∗f,N))| ≤ L(
2∥B∥2∆0

1− λ
+µ+ν(∆0(∥B−1∥2ν)−1+2∥B−1∥22))∥z0−z∗∥2.

Finally, we get the advertised result by doing

|Df (N,∆N)−Dg(N,∆N)| ≤ |ℓ(yN+∆N (θ∗g,N))− ℓ(zN+∆N (θ∗f,N))|+ |ℓ(yN (θ∗g,N))− ℓ(zN (θ∗f,N))|

≤ 2L(
2∥B∥2∆0

1− λ
+ µ+ ν(∆0(∥B−1∥2ν)−1 + 2∥B−1∥22))∥z0 − z∗∥2.

This result shows that the practical gap ∆f (N,∆N) is very well approximated by ∆g(N,∆N), the
gap of the linear approximation of f , provided that the initiliazation of the model z0 is not too far
from the solutions z∗.

31

	Introduction
	Background on Implicit Deep Learning
	Theory of affine implicit deep learning
	The empirical phenomenon of inner iterations overfitting
	Robustness of the networks obtained with IFT gradient descent to I2O
	Conclusion
	Proof of main result and corollaries
	How relevant is the affine inner problem parameterization?
	Implicit Differentiation proofs
	Generalization
	Extended related works
	Gradient-based methods and Residual Polynomials
	Experimental details
	DEQs
	DEQs stability
	(i)MAML
	Compute

	Additional results
	Inner iterations Overfitting for DEQs on training data
	Inner iterations Overfitting for DEQs on training loss
	Lower bound for non overparametrized inner procedures but with non strongly convex inner and outer problems

	Link between linear and non-linear implicit models
	Control of the distance of the iterates of the power method
	Control of the distance of the optimal parameters
	I2O for non-linear implicit models

