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ABSTRACT

The mainstream learning paradigm behind continual learning has been to adapt
the model parameters to non-stationary data distributions, where catastrophic for-
getting is the central challenge. This work explores a new paradigm for continual
learning — learning to dynamically prompt the model to learn tasks sequentially
under different task transitions. Specifically, our method, Learning to Prompt
for Continual Learning (L2P), prepends a subset of learnable parameters (called
Prompts) from a larger set (called Prompt Pool) to the input embeddings. The
training objective is designed to dynamically select and update prompts from the
prompt pool to learn tasks sequentially given a pretrained backbone model. Un-
der our new framework, instead of mitigating catastrophic forgetting via adapting
large model parameters as in the previous continual learning paradigm, we tackle
the problem of learning better small prompt parameters. In this framework, the
prompt pool explicitly manages task-invariant and task-specific knowledge while
maintaining model plasticity. The proposed L2P outperforms previous work in
terms of forgetting on all datasets, including rehearsal-based methods on certain
benchmarks, with privacy benefits from not requiring access to the data of previ-
ous tasks. Moreover, when L2P is additionally equipped with a rehearsal buffer, it
matches the performance of training all tasks together, which is often regarded as
an upper bound in continual learning. Source code will be released.

1 INTRODUCTION

Contrary to ordinary supervised learning that trains on independent and identically distributed (i.i.d.)
data, continual learning tackles the problem of training a single model on non-stationary data distri-
butions where different classification tasks are presented sequentially. Mainstream continual learn-
ing methods (Parisi et al., 2019; Mai et al., 2021) follow a natural learning paradigm: adapting the
entire model continually as the data distribution shifts. However, since the model only has access to
the data in an individual phase of the learning cycle, it is prone to overfit on the currently available
data and suffers from performance deterioration on the previously trained data. This is commonly
known as catastrophic forgetting (McCloskey & Cohen, 1989).

In addition to the catastrophic forgetting problem, other challenges in continual learning have re-
cently been receiving increasing attention (Hadsell et al., 2020): (1) knowledge transfer: the model
should be able to transfer knowledge between tasks by identifying shared knowledge among tasks;
(2) model plasticity: the model should be able to keep learning new tasks effectively by capturing
task-specific knowledge; and (3) task-agnosticity: it is desirable that a continual learning algorithm
can handle the case where distribution shifts gradually without clear task boundaries.

On the other hand, prompt-based learning, or prompting, has recently achieved great success in the
field of natural language processing (NLP) as a new transfer learning technique (Liu et al., 2021).
Prompting techniques design model inputs with textual prompt tokens containing additional task-
specific information, such that the pretrained language model can process parameterized inputs in
order to perform prompt-specific prediction. Several methods (Lester et al., 2021; Shin et al., 2020;
Li & Liang, 2021) further make prompts learnable to allow the overall backbone model to extract
task-specific information automatically. Intuitively, prompt-based learning reformulates learning
downstream tasks from directly adapting model weights to designing prompts that enable the model
perform tasks conditionally. A prompt encodes task-specific knowledge and has the ability to utilize
pre-trained frozen models more effectively than ordinary fine-tuning (Lester et al., 2021; Raffel
et al., 2020). Inspired by these recent advances in prompt learning, we revisit continual learning
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Figure 1: Overview of the L2P framework. Compared with typical continual learning methods (left)
that adapt model weights to tasks sequentially, L2P (right) uses a single backbone model and learns
a prompt pool to adapt tasks.

from a different perspective: Can we encode task-specific information of continual tasks into a
shared parameterized prompt space in order to allow a pre-trained model to perform conditional
prediction during the continual learning process?

To this end, we propose a new continual learning method called Learning to Prompt for Continual
Learning (L2P). Figure 1 gives an overview of our method and demonstrates how it differs from
typical continual learning methods. L2P leverages the representative features from pretrained mod-
els; however, instead of tuning the parameters during the continual learning process, L2P keeps
the pretrained model untouched, and instead learns a set of prompts that dynamically help mod-
els solve corresponding tasks, thus mitigating catastrophic forgetting. The prompts are structured
in a key-value shared memory space called the prompt pool, and we design a query mechanism
to dynamically lookup a subset of task-relevant prompts based on the instance-wise input features.
The prompt pool, which is optimized jointly with the supervised loss, ensures that shared prompts
encode shared knowledge for knowledge transfer, and unshared prompts encode task-specific knowl-
edge that help maintain model plasticity. The instance-wise query mechanism removes the necessity
of knowing the task identity or boundaries, enabling task-agnostic continual learning. The selected
prompts are then prepended to the input embeddings (Figure 2), which implicitly add task-relevant
guidance to pretrained models, so that the model can use the most useful pretrained features to
conduct corresponding tasks. In summary, this work makes the following contributions:

1. We propose a novel method, called L2P, that addresses multiple challenges in continual learn-
ing: (1) we leverage pretrained models and prompting techniques to mitigate catastrophic for-
getting; (2) we design a novel key-value paired prompt pool to achieve knowledge sharing
and maintain model plasticity; and (3) we devise an instance-wise query mechanism to enable
task-agnostic learning.

2. We conduct comprehensive experiments to demonstrate the effectiveness of L2P on multi-
ple continual learning benchmarks, including class-incremental, task-agnostic, and domain-
incremental settings. The proposed L2P outperforms previous works in terms of forgetting on
all datasets, beating rehearsal based methods on certain benchmarks and providing practical
advantages over them by avoiding privacy issues of task data sharing present in some applica-
tions (Delange et al., 2021). Moreover, when equipped with a rehearsal buffer in applications
with less strict privacy constraints, L2P matches the performance of training all tasks together,
which is often regarded as an upper bound in continual learning.

3. To the best of our knowledge, we are the first to introduce the idea of prompting in the field of
continual learning to address some of the key challenges in continual learning.

2 RELATED WORK

Continual learning. There are three main categories of recent continual learning algorithms:
Regularization-based methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017;
Aljundi et al., 2018) limit the plasticity of the model by limiting the learning rate on important pa-
rameters for previous tasks. Although these methods address catastrophic forgetting to some extent,
they cannot get satisfactory performance under more challenging settings, e.g., class-incremental
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setting (Mai et al., 2021). Rehearsal-based methods (Chaudhry et al., 2018; 2019; Hayes et al.,
2019) construct a buffer to save samples from older tasks to train with data from the current task.
These methods are state-of-the-art on various benchmarks (Parisi et al., 2019; Mai et al., 2021).
However, rehearsal-based methods are not applicable to scenarios where data privacy should be
taken into account (Shokri & Shmatikov, 2015). Architecture-based methods either expand the net-
work (Rusu et al., 2016; Yoon et al., 2017) or prune the network (Mallya & Lazebnik, 2018; Wang
et al., 2020). The former suffers from scalability issue as parameters scale up linearly with the num-
ber of tasks, and the latter are sensitive to hyperparameters.

Prompting. Prompting, or prompt-based learning, has been widely explored in the field of natu-
ral language processing (Kumar et al., 2016; McCann et al., 2018; Radford et al., 2019; Schick &
Schiitze, 2020). The high-level idea of prompting is to apply a function to modify the input text,
so that the language model gets additional information about the task. However, the design of a
prompting function is challenging and requires heuristics. Recent work, including prompt tuning
(Lester et al., 2021) and prefix tuning (Li & Liang, 2021), seek to address this problem by applying
learnable prompts in a continuous space, achieving satisfactory performance on transfer learning for
pretrained language models. Nevertheless, to the best of our knowledge, the idea of prompting has
never been studied systematically in continual learning.

3 PREREQUISITES

3.1 CONTINUAL LEARNING PROTOCOLS

Continual learning is usually defined as training machine learning models on non-stationary data
from sequential tasks. We define a sequence of tasks D = {Dy,---,Dr}, where the ¢-th task
Dy = {(x}, yt)}, contains tuples of the input sample =} € X and its corresponding label y! € ).
The goal is to train a single model fy : X — ) parameterized by 6, such that it predicts the label
y = fo(x) € Y given an unseen test sample @ from arbitrary tasks. Data from the previous tasks
may not be seen anymore when training future tasks.

Depending on the task transition environment, continual learning can be categorized into multiple
settings with slightly different challenges. The common task, class, and domain incremental setting
assumes task data D; arrives in sequence ¢ = {1,...,T} in a discrete manner. Task-incremental
assumes task identity is known at test time while class-incremental does not. Different from the task
and class incremental settings where each task has different classes, domain-incremental learning
maintains the same set of classes for every task and only changes the distribution of « by task. In
the more challenging task-agnostic setting, task data in D changes smoothly, and the task identity ¢
is unknown. Our paper tackles the more challenging class-incremental, task-agnostic, and domain-
incremental settings.

3.2 PROMPT-BASED LEARNING AND BASELINES

Prompt-based learning is an emerging technique in NLP. In contrast to traditional supervised fine-
tuning, this type of methods design task-specific prompt functions to enable pre-trained models
perform corresponding tasks (Liu et al., 2021). One of recent techniques, Prompt Tuning (PT)
(Lester et al., 2021), proposes to simply condition frozen T5-like language models (Raffel et al.,
2020) to perform down-streaming NLP tasks by learning prompt parameters that are prepended to
the input tokens. While prompt-based learning has demonstrated success in NLP, to the best of our
knowledge, the related research in computer vision and its application to continual learning remains
under-investigated. Without loss of generality, here we introduce the definition of PT using the
image modality given vision transformer-based models (Dosovitskiy et al., 2021; Vaswani et al.,
2017). The definition is easy to generalize to other modalities and sequence-based models.

Given an input of 2D image € RH*WX*C and a pretrained ViT (excluding the classification

head) f = f, o fe, where f. is the input embedding layer, and f, represents a stack of self-
attention layers (Dosovitskiy et al., 2021). Images are reshaped to a sequence of flattened 2D
patches x,, € RLx(S Q'C), where L is the token length, i.e., the number of patches, S is the patch
size and C' is the original number of channels. To simplify notation, we assume the first token in
x, is the [class] token as part of pre-trained model (Dosovitskiy et al., 2021). The pretrained

embedding layer f, : REX(5*C) 5 RLXD projects the patched image to the embedding feature
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Figure 2: The illustration of L2P at test time. During training time, we follow the same procedure
and optimize the model as described in Section 4.3.

x. = f () € REXP where D is the embedding dimension. When solving multiple downstream-
ing tasks, we keep the large-scale pre-trained backbone frozen to maintain its generality following
PT. The direct application of PT is to prepend learnable parameters P, € RL» <P called a prompt,
to the embedding feature x,, = [P.;x.], and feed the extended sequences to the model function
fr(xp) for performing classification tasks. Different tasks have independent prompts and share one
copy of the large model.

Compared with ordinary fine-tuning classification heads with a fixed backbone, literature shows that
prompt-based learning results in a sequence-based model with higher capacity to learn features (Liu
etal., 2021; Lester et al., 2021). PT can be applied to task-incremental continual learning by learning
independent prompts for each task. However, in more challenging settings when no task identity is
available, choosing a prompt is more difficult.

4 LEARNING TO PROMPT

Our proposed method, Learning to Prompt for Continual Learning (L2P) is depicted in Figure 2.
First, we select a subset of prompts from a key-value pair prompt pool based on our proposed
instance-wise query mechanism. We then prepend the selected prompts to the input embedding.
Finally, we feed the extended input embedding to the model, and optimize the classification loss and
the prompt pool jointly. In the remainder of this section, we will introduce the critical designs of our
method in detail, and discuss how L2P mitigates catastrophic forgetting and addresses some of the
other challenges in continual learning (Hadsell et al., 2020), and describe the training procedure.

4.1 FROM PROMPT TO PROMPT POOL

The motivations of introducing prompt pool are threefold. First, the task index at test time is un-
known so training task-independent prompts is not feasible. Second, even if the task-independent
prompt can be known at test time, it prevents possible knowledge sharing between similar tasks
(Hadsell et al., 2020). Third, while the simple way of learning a single shared prompt for all tasks
enables knowledge sharing, it is challenging when tasks are diverse (see Section 5.3). Ideally one
would learn a model that is able to share knowledge when tasks are similar, while maintaining
knowledge independence otherwise. Thus, we propose using a prompt pool to store encoded knowl-
edge, which can be flexibly grouped as an input to the model. The prompt pool is defined as

P={P,P, - ,Py}, M = total number of prompts, (1)

where P; € RE»*D s a single prompt with token length L,, and the same embedding size D as x..
Following the notations in Section 3.2, we let  and . = f. () be the input and its corresponding
embedding feature, respectively. Note that we omit the task index ¢ of = in our notation as our
method is general enough to the task-agnostic setting. Denoting {s;}¥; as a subset of N indices
from [1, M], we can then adapt the input embedding as follows:

mp:[P5177PSN7we]7 1§N§M7 (2)

where ; represents concatenation along the token length dimension. P are free to compose, so they
can jointly encode knowledge (e.g. visual features or tasks) for the model to process. Ideally, we
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want to achieve a more fine-grained knowledge sharing scheme via prompt combinations at the
instance-wise level: similar inputs tend to share more common prompts, and vice versa. We next
elaborate our prompt selection strategy and training in the following sections.

4.2 INSTANCE-WISE PROMPT QUERY

We design a key-value pair based query strategy to dynamically select suitable prompts for differ-
ent inputs. This key-valued memory query mechanism shares some design principles with meth-
ods in other fields, such as Differentiable Neural Computer (Graves et al., 2016) and VQ-VAE
(Oord et al., 2017), which have external memory to maintain, and employs them for a different
purpose. With a slight abuse of notation, we associate each prompt as value to a learnable key:
P = {(k1, P1), (k2, P2),- -, (ku, P}, where k € RPx. Ideally, we would like to let the input
instance itself decide which prompts to choose through query-key matching. To this end, we intro-
duce a query function ¢ : R¥*W*C _, RDx that encodes input 2 to the same dimension as the key.
Moreover, ¢ should be a deterministic function with respect to different tasks and has no learnable
parameters. We directly use the whole pretrained model as a frozen feature extractor to get the query
features: ¢(x) = f(x)[0,:] (we use the feature vector corresponding to [class]). Other feature
extractors like ConvNet are feasible.

Denote v : RP+ x RP* — R as a function to score the match between the query and prompt key
(we find cosine distance works well). Given an input &, we use g(x) to lookup the top-N keys by
simply solving the objective:

P, = argmin Z Y (q(w)7 k&) : (3)
{siHL, LM 5
Note that the design of this key-value strategy decouples the query mechanism learning and prompt
learning processes, which has been experimentally shown to be critical (see Section 5.3). Further-
more, querying prompts is done in an instance-wise fashion, which makes the whole framework
task-agnostic, meaning that the method works without needing clear task boundaries during train-
ing, nor task identifications at test time.

Optionally diversifying prompt-selection. Although our method does not need task boundary
information, in real-world scenarios and experimental datasets, it is quite common that the task
transition is discrete and so task boundaries are known at train time. We find that adding such a prior
into our framework can help the model learn better task-specific prompts, especially when tasks have
high diversity. To this end, we propose an additional technique for adding task boundaries which is
optional for the L2P framework.

During training of task ¢, we maintain a prompt frequency table H; = [hy, ho, - , hps], where
each entry represents the normalized frequency of prompt P; being selected up until task ¢ — 1. To
encourage the query mechanism select diverse prompts, we modify equation 3 to

N

Pw = argmin Z ’Y (q($)7 ksl) . hSi7 (4)
{si}}l ClLM] 5o

where h,, penalizes the frequently-used prompts being selected to encourage diversified selection.
Equation 4 is only applicable during training; at test time, only equation 3 is needed.

4.3  OPTIMIZATION OBJECTIVE FOR L2P

At every training step, after selecting N prompts following the aforementioned query strategy, the
adapted embedding feature x,, is fed into the rest of the pretrained model f, and the final classifier
g4 parametrized by ¢. Overall, we seek to minimize the end-to-end training loss function:

rgi(? L(gs(f28(xp)),y) + A 27 (¢(x),ks;), s.t., Pgisobtained with equation 3, (5)
: o

avg

where fr'° = AvgPool(f,(x,)[N - Ly,:]), ie., the output hidden vectors corresponding to the
N - L, prompt locations are averaged before the classification head. The first term is the softmax
cross-entropy loss, the second term is a surrogate loss to pull selected keys closer to corresponding
query features. A is a scalar to weight the loss.
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5 EXPERIMENTS

To evaluate the proposed L2P, we closely follow the settings proposed in prior works (Lopez-Paz
& Ranzato, 2017; Zeno et al., 2018; Van de Ven & Tolias, 2019), and conduct comprehensive ex-
periments. In particular, we consider (1) the class-incremental setting, where the task identity is
unknown during inference; (2) the domain-incremental setting, where the input domain shifts over
time; (3) the task-agnostic setting, where there is no clear task boundary. Moreover, we conduct
extensive ablation studies to provide a deeper understanding of our method.

Evaluation metrics. For settings with task boundaries and where each task has an associated test
set, we use two metrics, Average accuracy (A) and Forgetting (F'), which are widely used in previous
works (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018; Mai et al., 2021). Denoting by a; ; the
accuracy of the i-th task after finishing training on task ¢, we can compute the corresponding average
accuracy A; and forgetting F} up until the current task ¢ as follows:

t—1

¢

! 1
A=y o o=y i — Qi) - 6
ET ;at, t (1% i'e{{?a}ft—l} (ayi—ai;) 6)

We report the final performance Ap and Frp after training on all 7" tasks. For settings without task
boundary or where there is only a single test set available, we only report the final test accuracy
following the protocol in previous work (Lomonaco & Maltoni, 2017; Shanahan et al., 2021).

Comparing methods. We compare L2P against several baselines and state-of-the-art continual
learning methods. Note that we used the same pretrained ViT-B/16 model (Dosovitskiy et al., 2021)
as a starting point for every method to ensure fair comparison. (1) FT-iid is the usual supervised
finetuning under the i.i.d. setting, which is the possible upper bound performance a continual learn-
ing method could achieve. (2) FT-seq-frozen is the naive sequential fine-tuning approach with the
pretrained model frozen. (3) FT-seq is the naive sequential fine-tuning approach (model weights
are updated). (4) EWC (Kirkpatrick et al., 2017) is a regularization-based approach aiming at lim-
iting the learning rate of parameters that are important for previous tasks. (5) LwF (Li & Hoiem,
2017) applies the idea of knowledge distillation (Hinton et al., 2015) to preserve knowledge from
past tasks. To further demonstrate the effectiveness of our method, we introduce two state-of-the-art
rehearsal-based methods, which require additional memory buffer to save samples from past tasks:
(6) ER (Chaudhry et al., 2019; Hayes et al., 2019) mixes samples from buffer with samples the
from current task in the training process. (7) GDumb (Prabhu et al., 2020) simply constructs the
buffer from the sequence of tasks and trains on the buffered samples jointly, so forgetting metric is
not applicable to this method. GDumb can outperform many state-of-the-art methods under various
settings (Prabhu et al., 2020; Mai et al., 2021). Following the experiment setting in Prabhu et al.
(2020), we store an average of 50 samples per class, e.g., a buffer size of 5,000 for CIFAR100, as
this is a relatively large choice of buffer size that guarantees SOTA performance.

Experiment details. For L2P, we train all models using Adam (Kingma & Ba, 2014) with 5; = 0.9
and B2 = 0.999, a batch size of 128, and a constant learning rate of 0.03 for all settings. Input
images are resized to 224 x 224 and normalized to the range of [0, 1] to match the pretraining
setting. As pointed out by Buzzega et al. (2020), training multiple epochs for each task disentangles
the effects of possible underfitting from forgetting. Thus, we train every task for 5 epochs in the
class- and domain-incremental settings. However, in the task-agnostic setting where we don’t have
the concept of a task, we follow Shanahan et al. (2021) to train every batch only once. We set
M = 10,N = 5,L, = 5 for all CIFAR-100 based datasets and CORe50. For 5-datasets, we
use M = 20, N = 4, L, = 5. Prompts only add 46,080 and 92, 160 parameters to the original
pretrained model for these two settings, leading to a small 0.05% and 0.11% total parameter increase,
respectively. We find \ in equation 5 is not sensitive and works well in a large range, so we set
A = 0.5 consistently for all datasets.

5.1 RESULTS ON CLASS-INCREMENTAL LEARNING

Split CIFAR-100. This dataset randomly splits the original CIFAR-100 dataset (Krizhevsky et al.,
2009) into 10 tasks, where each task consist of 10 disjoint classes. Since the tasks are from a single
original dataset, they share some similarities and some classes are even from the same superclass.

S-datasets. This dataset (Ebrahimi et al., 2020) consists of five image classification datasets:
CIFAR-10, MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011),
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Table 1: Results on class-incremental learning. Accuracy and forgetting are reported. All methods
start from the same pre-trained ViTB/16 model and train on each task for 5 epochs. Methods are
separated based on whether rehearsal is applied. All results are shown in percentage (%) and are
averaged over 3 runs.

Method Split CIFAR-100 5-datasets

Average Acc (1) Forgetting () | Average Acc (1)  Forgetting ({.)
Upper bound:
FT-iid | 90.85+0.12 - | 93.93+0.18 -
Non-rehearsal based methods:
FT-seq-frozen 17.7240.34 59.09+0.25 39.49+0.12 42.624-0.20
FT-seq 33.61+0.85 86.87+0.20 20.12+0.42 94.63+0.68
EWC 47.01+0.29 33.2741.17 50.9340.09 34.94+0.07
LwF 60.69+0.63 27.77+2.17 47.9140.33 38.0140.28
L2P (ours) | 83.83+0.04 7.63+030 |  81.14 +0.93 4.64 +0.52
Rehearsal based methods:
ER 82.5340.17 16.4640.25 89.30+0.94 8.0840.53
GDumb 81.6740.02 - 70.7640.12 -
L2P-R (ours) |  86.31+0.59 5.83+061 |  91.92+078 3.34+071

Table 2: Results on task-agnostic continual Table 3: Results on domain-incremental learn-
learning, in terms of test accuracy. We use ing, in terms of test accuracy. We use CORe50
Gaussian scheduled CIFAR-100 as the evalua- as the evaluation benchmark. All results are
tion benchmark. All results are shown in per- shown in percentage (%) and are averaged

centage (%) and are averaged across 3 runs. across 3 runs.

Category | Method | Test Acc (1) Category | Method | Test Acc (1)
Upper bound | FT-iid | 90.85+0.12 Upper bound | FT-iid | 82.15 +0.37
82.53+0.17 ER 80.10+0.56

Rehearsal ‘ GDumb ‘ 81.67-40.02 Rehearsal ‘ GDumb ‘ 74.9240.25
EWC 63.0440.42 EWC 74.8240.60

Non-rehearsal | LwF 69.46+0.35 Non-rehearsal | LwF 75.45+0.40
L2P (ours) | 88.34-0.14 L2P (ours) | 78.33+0.06

and notMNIST (Bulatov, 2011). Although each dataset alone is not hard, the sequential training of
them is fairly challenging to even ImageNet pre-trained models, since models are more suscepti-
ble to forgetting when the tasks are diverse (Mehta et al., 2021). We apply the optional strategy
introduced in 4.2 to enhance prompt selection diversity.

Table | summarizes the results on these two class-incremental benchmarks. Similar to what Mehta
et al. (2021) have shown: in the simpler task-incremental setting, pre-trained models can overall
improve these benchmarks when integrated with existing methods. However, the forgetting rate
remains prominent in the class-incremental setting as we shown, suggesting the importance of inno-
vating technologies in pre-trained models beyond applying existing methods.

Our method, L2P, achieves superior performance in terms of both average accuracy and forgetting.
In particular, our method: (1) outperforms all non-rehearsal based methods by a large margin, in-
cluding beating rehearsal-based methods on split CIFAR-100 without rehearsal; and (2) our method
improves upon state-of-the-art rehearsal-based methods when incorporating the rehearsal strategy,
closing a significant part of the gap to the upper bound performance when doing finetuning under
the i.i.d. setting; and (3) compared to the performance of FT-seq-frozen with our method, we can
see that naive sequential training is not able to fully take advantage of the pretrained features, further
demonstrating the advantages of introducing the prompting strategy.
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Table 4: Ablation study on 5-datasets. All results are shown in percentage (%).

S-datasets
Method ‘ Average Acc (1)  Forgetting ({)
L2P without prompt pool 51.96 26.60
L2P without key-value pair 58.33 20.45
L2P without diversified prompt selection 62.26 17.84
L2P 81.14 4.64
\|"W' :ggjg =~0.05 %
:oonn% 1] ~0.000)
0 - » - 2 3\o 0 ) 2 3\Q
P ! /\75« N . 1 &@Q\L
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Figure 3: Prompt selection histograms for (left) Split CIFAR-100 and (right) 5-datasets. Note that
we only show the first 5 tasks for Split CIFAR-100 for better readability.

5.2 RESULTS ON TASK-AGNOSTIC AND DOMAIN INCREMENTAL SETTINGS

Gaussian scheduled CIFAR-100. In this task-agnostic setting, the distribution of data shifts gradu-
ally throughout the learning process (Shanahan et al., 2021), the probability that a class is present in
a batch follows a Gaussian distribution centered at some time step. There is no explicit task bound-
aries between batches, thus requiring methods to be able to implicitly adapt to non-stationary data
distribution without utilizing any task-specific information during training and inference.

Table 2 summarizes the results. L2P achieves the best performance among all methods, including
rehearsal based ones. The task-agnostic setting is usually considered more challenging than the
class-incremental setting. Since these two benchmarks have the same test test, we can compare them
deeper. Interestingly, EWC and LwF both achieve higher accuracy than that on split CIFAR-100,
indicating that a well-pretrained model itself may serve as a better starting point for task-agnostic
continual learning. Similar observations has been reported on a simpler task-incremental setting in
Mehta et al. (2021). Moreover, L2P achieves a test accuracy 88.34%, which is very close to the
upper bound performance 90.85% shown in Table 1, suggesting strongly reduced forgetting rate.

CORe50. This is a dataset specifically designed for continual object recognition (Lomonaco &
Maltoni, 2017). It is a collection of 50 objects collected in 11 distinct domains, where 8 of them
(120,000 samples) are used for training, and the rest are considered as a single test set (45,000
examples). Methods are trained on each domain sequentially.

Table 3 summarizes the results on the domain-incremental setting. Although L2P still achieves better
performance than most methods, surprisingly, all methods are quite close to the upper bound perfor-
mance FT-iid. This indicates that a well pretrained model has the potential to accumulate knowledge
from different domains without much interference. However, more comprehensive experiments are
required to further confirm this observation, which we leave to future work.

5.3 EFFECTIVENESS OF CORE DESIGNS

We further conduct ablation studies to demonstrate the effectiveness of the core designs of L2P.

Prompt pool. To further confirm the importance of the prompt pool, we design a counterpart of
our method with only a single prompt instead of the prompt pool. This variation of our method
keeps the same prompt capacity as L2P in equation 2. From Table 4 (row 1 and 4), we can see that
L2P significantly outperforms its counterpart with a single prompt, suggesting that the prompt pool
encodes task-relevant and task-specific knowledge well.
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Figure 4: Left-Middle: Average accuracy w.r.t prompt length L,, and prompt selection size N for
Split CIFAR-100 and 5-datasets, respectively, given M = 20. Right: Average accuracy (%) w.r.t.
prompt pool size M, given L,, = 5, N = 5 for Split CIFAR-100 and L, = 5, N = 4 for 5-datasets.

Key-value pair design. We remove the learnable key associated with prompts and directly use
mean of prompts as keys and the mean of input embedding as query features, as they reside in the
same space. From Table 4 (row 2), we can see this results in a significant drop, demonstrating the
importance of introducing learnable keys to decouple the query and prompt learning process.

Diversified prompt selection. This technique is used by default on 5-dataset only. When we remove
it, (Table 4 row 3), we basically allow instances from different tasks to choose prompts freely. The
decrease in performance demonstrates that when tasks are diverse, adding the diversified prompt
selection strategy can indeed reduce unnecessary knowledge sharing and thus mitigating interference
between unrelated tasks.

To better understand the prompt selection mechanism, we plot the prompt selection histograms for
each task in both split CIFAR-100 and 5-datasets in Figure 3 under the best-performing parameters
settings, respectively. From the plot of Split CIFAR-100 (left), the tasks largely share all prompts,
meaning that our prompt selection mechanism encourages more knowledge sharing between similar
tasks. In contrast, in the plot of 5-datasets (right), diverse tasks tends to choose more task-specific
prompts and share less.

Effect of hyperparameters for L2P. Recall that there are three key hyperparameters, including the
size of the prompt pool M, length of a single prompt L,,, and the selection size N used as model
input. Intuitively, M decides the total capacity of learnable prompt parameters. L,, decides capacity
of a singe prompt (which jointly encodes certain knowledge), and L, x IV decides the total size used
to prepend the input. From the results on both datasets (Figure 4 (left-middle)), a smaller L,, always
negatively affects results. We hypothesize that a reasonable capacity of a single prompt is critical to
encode a certain aspect of shared knowledge. Increasing the prompt pool size shows positive effect
for performance as shown in Figure 4 (right), especially on 5-datasets, suggesting a large enough
pool size is needed to encode task-specific knowledge when tasks are diverse.

6 CONCLUSION

This paper presents a novel method to address some of the key challenges in continual learning with
a method that can achieve strong performance without a need for rehearsal and task identity. L2P
introduces prompt-based learning to continual learning and proposes a novel technique to enable a
single pre-trained model to adapt to sequential tasks via a shared prompt pool, successfully mitigat-
ing the catastrophic forgetting problem. The resulting method achieves good results on challenging
continual learning problems, including class-incremental, domain-incremental, and task-agnostic
settings, demonstrating the effectiveness of the method, as well as its advantages to satisfy the prac-
tical data privacy requirement when storing data as rehearsal buffer is prohibited.

Although our method is demonstrated on vision models, it does not make any assumption of modal-
ities. We leave exploration on other modalities as future work. Additionally, L2P assumes there are
pre-trained sequence-based models. While they have become common assets in advanced commu-
nities, how to generalize our framework to ConvNets could another appealing research direction.
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7 ETHICS STATEMENT

L2P is a strong continual learning method and has great potential to be applied in various fields.
However, there are some ways it could be misused. Our method takes a well-pretrained model as
a backbone, thus any bias and fairness issues (Mehrabi et al., 2021) in the original model may be
carried over during the continual learning process. We encourage any users to thoroughly check the
pretrained model to mitigate any bias and fairness issues. Moreover, the method could be deployed
in safety-critical applications, such as autonomous driving systems (Grigorescu et al., 2020), which
may present potential security issues in terms of adversarial attacks (Madry et al., 2017). We would
recommend testing the robustness of our method in future work and design corresponding defense
techniques to deal with potential security concerns.

8 REPRODUCIBILITY

To make the results presented in our work reproducible, we include all experiment setups and details,
evaluation metrics, and comparing methods in Section 5. We test our method on multiple publicly
available datasets and under different settings. We report the average and corresponding standard
deviations over multiple runs using different randoms seeds for our main results (Table 1, 2 and 3).
Our results are also verified on different hardwares, including TPU and GPU. We plan to make the
code publicly available upon acceptance.
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