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ABSTRACT

Real-world tasks are universally associated with training samples that exhibit a
long-tailed class distribution, and traditional deep learning models are not suitable
for fitting this distribution, thus resulting in a biased trained model. To surmount
this dilemma, massive deep long-tailed learning studies have been proposed to
achieve inter-class fairness models by designing sophisticated sampling strate-
gies or improving existing model structures and loss functions. Habitually, these
studies tend to apply data augmentation strategies to improve the generalization
performance of their models. However, this augmentation strategy applied to
balanced distributions may not be the best option for long-tailed distributions. For
a profound understanding of data augmentation, we first theoretically analyze the
gains of traditional augmentation strategies in long-tailed learning, and observe
that augmentation methods cause the long-tailed distribution to be imbalanced
again, resulting in an intertwined imbalance: inherent data-wise imbalance and
extrinsic augmentation-wise imbalance, i.e., two ‘birds’ co-exist in long-tailed
learning. Motivated by this observation, we propose an adaptive Dynamic Op-
tional Data Augmentation (DODA) to address this intertwined imbalance, i.e.,
one ‘stone’ simultaneously ‘kills’ two ‘birds’, which allows each class to choose
appropriate augmentation methods by maintaining a corresponding augmentation
probability distribution for each class during training. Extensive experiments across
mainstream long-tailed recognition benchmarks (e.g., CIFAR-100-LT, ImageNet-
LT, and iNaturalist 2018) prove the effectiveness and flexibility of the DODA in
overcoming the intertwined imbalance.

1 INTRODUCTION

With the maturity of deep learning LeCun et al. (2015), massive deep models show extraordinary
performance on large-scale curated datasets (e.g., ImageNet Russakovsky et al. (2015) and CIFAR-
100 Cao et al. (2019)). However, balanced artificial datasets do not conform to the data distribution
(e.g., class imbalance) of real-world applications. Once facing imbalanced datasets, the performance
of the deep models trained by the common practice of empirical risk minimization Vapnik (1991)
will decrease significantly, e.g., the model can be easily biased towards majority classes.

Recently, massive deep long-tailed learning studies have been proposed to surmount the class
imbalance problem. The most intuitive and mainstream paradigm is class re-balancing, which
balances the training sample numbers or weights of different classes during model training by re-
sampling Kang et al. (2020); Ren et al. (2020); Wang et al. (2020); Jia et al. (2023) or cost-sensitive
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learning Lin et al. (2017); Cui et al. (2019); Tan et al. (2020); Guo et al. (2022); Guo & Li (2022).
Although the average performance is improved, class rebalancing methods cannot essentially handle
the issue of lacking information, particularly on tail classes due to limited data amount Zhang et al.
(2021b). To break through this restraint, some studies seek to transfer the knowledge from head
classes to enhance model training on tail classes Yin et al. (2019); Kim et al. (2020b).

Another flexible line of research is to directly apply data augmentation methods to enhance the
quantity and quality of training samples from the perspectives of data and representation. For example,
FASA Zang et al. (2021) proposed to generate class-wise representations based on a Gaussian prior
to augment the under-represented tail classes. Remix Chou et al. (2020) and VideoLT Zhang et al.
(2021a) introduced a re-balanced mixup method to particularly enhance tail classes. However,
simply using existing class-independent augmentation strategies for improving long-tailed learning is
unfavorable, since they may further increase imbalance considering head classes have more samples
and would be augmented more Zhang et al. (2021b). Considering this, as a pioneer, FSR Wang et al.
(2023) first proposed an adaptive augmentation to rebalance the potential temporal feature space from
the data perspective. CUDA Ahn et al. (2023) further proposed a simple algorithm to find the proper
class-wise augmentation strength through curriculum learning Hacohen & Weinshall (2019). Despite
extensive recent studies, an unresolved problem is whether it is optimal to utilize the same kind of
augmentation strategy on all classes for long-tailed learning.
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Figure 1: Motivation of DODA. In deep long-tailed learning,
traditional data augmentation can significantly improve the
average performance of the model, but it will potentially
sacrifice certain classes (i.e., red box), especially tail classes.

With this question, we first theoreti-
cally analyze the gains of traditional
augmentation strategies in long-tailed
learning. Inspired by Balestriero et al.
(2022), as shown in Figure 1, we ex-
plain that data augmentation (DA) is
not always beneficial to long-tailed
learning, i.e., DA will potentially sac-
rifice certain classes (especially tail
classes) while improving the model
performance. This means that two
‘birds’ co-exist in long-tailed learning:
inherent data-wise imbalance and ex-
trinsic augmentation-wise imbalance.
The former is the inherent property
of real-world data distributions, while
the latter is the side effect caused by
DA when improving model general-
ization. We also conduct extensive
experiments on CIFAR-100-LT with
imbalance ratios (IR) of 50 and 100
to confirm the explanation. From the results shown in Figure 2, we can observe that DA caused a
significant reduction in performance for some classes (e.g., most tail classes), which runs counter to
the purpose of long-tailed learning.

To this end, we propose an adaptive ‘stone’ called Dynamic Optional Data Augmentation (DODA) to
‘kill’ this intertwined imbalance, which allows each class to choose appropriate augmentation methods
during training. Specifically, to avoid the sacrifice caused by class-independent DA, we maintain a
‘preference list’ for each class (i.e., a probability distribution of DAs being selected) during training,
which is the basis for each class to choose applied augmentation methods. Then, to make this ‘list’
more precise, we adjust the corresponding probability distribution according to the positive sample
size of each class. In this way, this ‘list’ will be dynamically corrected during training, thus each class
will choose the most beneficial augmentation method to avoid being sacrificed, thereby reducing the
overall sacrifice probability. We integrate DODA with various long-tailed learning methods and prove
that DODA can significantly improve the model performance and have high flexibility. Furthermore,
we conduct several experiments to compare DODA with existing DAs for long-tailed learning and
show that DODA achieves state-of-the-art performance.

Our contributions in this paper are summarized as follows:
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• New problem and insight: for the first time, we theoretically analyze the gains of traditional
augmentation strategies in long-tailed learning: DA will potentially sacrifice certain classes
(especially tail classes) while improving the model performance, thus we need to discreetly
handle the inherent data-wise imbalance and extrinsic augmentation-wise imbalance.

• New advisable augmentation: to ‘kill’ these two ‘birds’, we propose an adaptive ‘stone’ called
Dynamic Optional Data Augmentation (DODA) to allow each class to choose appropriate
augmentation methods during training.

• Compelling empirical results: DODA achieves the state-of-the-art performance across main-
stream long-tailed benchmarks including CIFAR-100-LT, ImageNet-LT, and iNaturalist 2018.

2 RETHINKING DA: IS DA ALWAYS BENEFICIAL TO LONG-TAILED
LEARNING?

Applying DA in long-tailed learning has been empirically proven to significantly improve the average
accuracy of the deep model. This overall improvement is encouraging, but it also prompts us to think
about how DA brings gains to the problem. In this section, we will analyze this further.

2.1 MOTIVATION: DA IN LONG-TAILED LEARNING IS ‘HYPOCRITICAL’

Preliminary. Class-independent DA is the mainstream strategy in long-tailed learning, which is
simple but effective (i.e., average improvement). However, recent work has found that DA can
result in unfair model complexity control across different classes, leading to the deep model that
achieve an overall accuracy improvement but perform poorly on some classes. This phenomenon
reflects the fact that DA actually produces a hypocritical improvement. In a class-balanced setting,
Balestriero et al. (2022) explains this from the perspective of level-set. Formally, given a training
dataset D = {(xi, yi)|yi ≜ f∗(xi)}Ni=1, our goal is to learn a deep model fθ to approximate the ideal
model f∗ as closely as possible. To improve the generalization performance of the model, a DA
strategy O(·) will be habitually applied to x, which is a combination of one or more augmentation
methods. During this approximation, the model that we intuitively consider to be ideal may already
be biased.

Theorem 1. Augmented samples produced by O(·) do not respect the level-set of f∗. When we
approximate the ideal model f∗ by minimizing the training loss (i.e., 0 training error), the latter tends
to zero, while the former is greater than zero due to the augmented samples deviate from the level set
of f∗. In this case, the trained model fθ is biased compared to the ideal model f∗.∑

(x,y)∈D

E[||y − f∗(O(x))||22] > 0 ∧
∑

(x,y)∈D

E[||y − fθ(O(x))||22] = 0 =⇒ bias (1)

Furthermore, we rethink the problem from the perspective of long-tailed learning. For each class
in the long-tailed distribution dataset, such as class c, we also hope that the trained model fθ can
successfully predict the labels of all samples of this class. Therefore, fθ also has the above bias in the
class dimension. This explanation is formalized by the following theorem.

Theorem 2. Under the long-tailed distribution, minimizing the training loss (i.e., 0 training error)
is equivalent to minimizing the training loss for each class. For class c and augmented samples
{(O(x), y)|y = c, (O(x), y) ∈ D}, the ideal trained model can minimize the training loss of class c,
but when O(x) deviates from the level-set of f∗, DA will cause irreducible class-wise bias in fθ.∑
(x,y)∈D|y=c

E[||y − f∗(O(x))||22] > 0 ∧
∑

(x,y)∈D|y=c

E[||y − fθ(O(x))||22] = 0 =⇒ class-wise bias

(2)

Theorem 2 states that for long-tailed distributions, a DA cannot guarantee that it is label-preserving
on all classes, which leads to some classes being sacrificed (i.e., seriously deviating from the level-set)
after DA, resulting in irreducible class-wise bias. The detailed proof is in Appendix A. Based on this
theorem, we observed the class-wise bias caused by various DAs under two imbalance rate settings
(IR = {50, 100}) of CIFAR-100-LT, including simple augmentation (Cutout), flexible augmentation
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Figure 2: Impact of class-independent long-tailed DAs on classification accuracy on CIFAR-100-LT.

(CUDA), and hybrid augmentation (Cutout with CUDA). From the experimental results shown in
Figure 2, we analyze the sacrifice rate (SR) under each setting and make the following findings: (1)
All three types of DA can improve the average model performance (i.e., average accuracy); (2) The
improvement in average performance inevitably sacrifices some classes, whether they are head or tail
classes; (3) The phenomenon of sacrificing classes is especially evident on tail classes.

The experimental results are consistent with the statement of Theorem 2, which proves that the tradi-
tional class-independent DA is ‘hypocritical’ and will potentially sacrifice some classes (especially
tail classes) when improving the average performance of the long-tailed learning model, which runs
counter to the purpose of long-tailed learning.

2.2 DA FAVORS LONG-TAILED LEARNING THROUGH ‘BULLYING’

As mentioned in Section 2.1, class-independent DA is hypocritical, and it shows its effectiveness
by pleasing the ‘strong’, while tail classes are more likely to be regarded as the bullied ‘weak’. To
explain this phenomenon, we analyze the data distribution shift of different classes before and after
DA from the perspective of feature space. In high-dimensional space, samples of the same class are
usually closer to each other and form approximate clusters due to their inherent similarities. When
applying the same data augmentation, the features in high-dimensional space undergo shifts that are
consistent across different classes. To intuitively understand the impact of data augmentation on
features of different classes, we approximate the high-dimensional space as a regular hyperspace and
use the variation in the distribution span to represent the diversity improvement and high-dimensional
space expansion caused by data augmentation. Intuitively, we approximate the feature space of
classes to two-dimensional space to illustrate this. And we also provide a theoretical explanation in
high-dimensional feature space in Appendix A.
Definition 1 (Distribution Span). Approximating the distribution of each class in the training set as a
circle in a two-dimensional feature space, the distribution center of class c is defined as (Xc,Yc) and
the distribution radius is Rc. The distribution span Sc can be expressed as follows:

Sc ⇒ (X− Xc)
2 − (Y− Yc)

2 = Rc
2 (3)

For intuitive understanding, we assume that the data distribution of head class ch and tail class ct
are Sch and Sct , respectively. We uniformly apply the same DA O(·) to the whole training set.
Furthermore, the distribution span after DA can be defined as follows:

S̄ch ⇒ (X− Xch)
2 − (Y− Ych)

2 = (Rch +∆ch)
2 (4)

S̄ct ⇒ (X− Xct)
2 − (Y− Yct)

2 = (Rct +∆ct)
2 (5)

Here, ∆ch and ∆ct represent the increase in distribution radius within each class after DA. For the
same augmentation method, ∆ch = ∆ct . Based on the increase in distribution radius, we analyze the
sensitivity of each class to this augmentation.
Theorem 3. The augmented data distribution is a combination of the original data distribution (base
space) and the expanded data distribution (marginal space). The augmentation sensitivity ψ can be
defined as the ratio of the marginal space to the base space. Under the same DA, tail classes have a
higher augmentation sensitivity, indicating that tail classes are more sensitive to the marginal space.

ψct − ψch = 2∆ch · Rch − Rct

RchRct

+∆ch
2 · Rch

2 − Rct
2

Rch
2Rct

2 > 0 (6)
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The main idea of the proof, provided in Appendix A, is to demonstrate that tail classes are more likely
to have label non-preservation compared to head classes after DA, resulting in a greater deviation
between the level-set learned by fθ and the level-set of f∗ on tail classes.

In summary, DA in long-tailed learning is hypocritical and bullying, as it potentially sacrifices certain
classes, especially tail classes, while boosting the average performance. Therefore, we not only need
to deal with the inherent data-wise imbalance caused by the traditional sample distribution but also
pay attention to the side effects of DA, the extrinsic augmentation-wise imbalance. It is frustrating
that the existing ‘stones’ cannot kill both ‘birds’, so we need to consider how to achieve a simple and
effective DA to address this intertwined imbalance.

3 DYNAMIC OPTIONAL DATA AUGMENTATION: AN ADVISABLE STRATEGY

In this section, based on the aforementioned theoretical analysis, we propose an advisable ‘stone’
called Dynamic Optional Data Augmentation (DODA) to address the intertwined imbalance. The
core philosophy of DODA is to allow each class to choose appropriate augmentation methods during
training by maintaining a ‘preference list’ for each class. The detailed algorithm overview of DODA
is shown in Figure 3.

3.1 CLASS-WISE PREFERENCE LIST CONSTRUCTION

Validation

𝒙𝒊

Sampling DA

Training

Update the 
Preference List

after each epoch

𝒇𝜽

𝓞𝒄
𝒌(∙)

 𝒙𝒊 = 𝓞𝒄
𝒌(𝒙𝒊)

Result

List Maintenance
𝓠𝒄

𝓟𝓞𝒄𝒌(∙)

Figure 3: Overview of DODA. DODA allows each class to choose
appropriate augmentation methods during training by maintaining a
‘preference list’ for each class.

Firstly, we assume the exis-
tence of K optional DAs and
define the index of each DA as
k ∈ {1, 2, ...,K}. These DAs
are task-specific, such as Gaus-
sian blur, rotation, and hori-
zontal flip. Each DA Ok(·) :
Rd → Rd has its prede-
fined augmentation function
and strength. For traditional
strategies, we pre-determine
the selected DAs and use them
for all classes during train-
ing. However, this class-
independent DA may sacrifice certain classes. Therefore, we maintain an augmentation preference
list Qc ∀c ∈ {1, ..., C} for each class during training. This list records the optional DAs for each
class c and the probability of each DA being selected.
Definition 2 (Probability of Each DA Being Selected). The augmentation preference list Qc for class
c records the selection hierarchy Qk

c ∀k ∈ {1, ...,K} of the K optional DAs. Based on the selection
hierarchy, we define the probability of each DA Ok(·) being selected as follows:

POk
c (·) =

|Qk
c |∑

j∈Qc
|j|
, where Qc = {Q1

c ,Q2
c , ...,QK

c } (7)

Based on this preference list, we perform DA on the original dataset D and define the augmented
dataset as D̄ = {(x̄i, yi)|(xi, yi) ∈ D}. To preserve the knowledge of the original dataset D, we
define the augmentation probability as paug < 1, so each sample has a probability of paug of being
augmented. When performing DA, we randomly decide whether to augment the current sample with
paug . Therefore, the augmented sample can be represented as follows:

x̄i =

{
Ok

c (xi), with prob. paug
xi, otherwise

(8)

3.2 CLASS-WISE PREFERENCE LIST MAINTENANCE

On the augmented dataset D̄, we apply a long-tailed learning algorithm F to learn the desired deep
model fθ, i.e., F(fθ, D̄). It is worth mentioning that the choice of F is flexible, for example, we test
various long-tailed learning algorithms in subsequent experiments.
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During the early stages of training, the augmentation preference list set for one class may be inaccurate,
meaning that there is still a high probability to select DAs that are detrimental to this class. Therefore,
continually updating this list during training is necessary. The core philosophy of updating is to
up-weight the positive DAs and down-weight the negative DAs. After each training epoch, we count
the number of correctly predicted samples in each class, i.e., the positive sample size for each class.
Formally, for class c, its positive sample size is defined as follows:

∇pos
zk
c

=
∑

(x̄i,yi)∈D̄|yi=c

1{fθ(x̄i)=c} (9)

Definition 3 (Augmentation Dominance). For the dataset D and class c, DA Ok1 is said to dominate
DA Ok2 on class c if and only if ∇pos

z
k1
c

> ∇pos

z
k2
c

, where ∇pos

z
k1
c

=
∑

(xi,yi)∈D|yi=c 1{fθ(Ok1 (xi))=c}

and ∇pos

z
k2
c

=
∑

(xi,yi)∈D|yi=c 1{fθ(Ok2 (xi))=c}.

Theorem 4. The level-set bias δ(Q,P ) can be defined as the degree of distributional deviation
between the level-sets Q and P . Suppose the level-set of the model fθ trained on the original dataset
is P , and the level-sets of the models fk1

θ and fk2

θ learned using DA Ok1 and DA Ok2 , respectively,
are Qk1 and Qk2 . If the augmentation dominance of Ok1 is higher than that of Ok2 , then the bias of
Qk1 from P is smaller than that of Qk2 from P , i.e., δ(Qk1 , P ) < δ(Qk2 , P ).

Algorithm 1: DODA
Input: DatasetD = (xi, yi)

N
i=1, algorithm F , training epoch

E, number of optional aug. K, aug. probability paug .
Output: trained model fθ .
Initialize: Weight of each DA for each class
Qk

c = 1 ∀k ∈ {1, ..., K}, ∀c ∈ {1, ..., C}.
for e ≤ E do

for c ≤ C do
Randomly select a DAOk

c (·) for class c according to
the weight distributionQc.

POk
c (·) =

|Qk
c |∑

j∈Qc
|j|

whereQc = {Q1
c,Q

2
c, ...,Q

K
c }

end
Generate D̄ = {(x̄i, yi)|(xi, yi) ∈ D} where

x̄i =

{
Ok

c (xi), with prob. paug

xi, otherwise.

Run LTL algorithm F using D̄, i.e., F(fθ, D̄).
for c ≤ C do

Compute positive sample size∇pos

zkc
for class c

∇pos

zkc
=

∑
(x̄i,yi)∈D̄|yi=c 1{fθ(x̄i)=c}

if∇pos

zkc
> tempc thenQk

c ←− Q
k
c + 1

// Up-weight the positive DA

elif∇pos

zkc
= tempc thenQk

c ←− Q
k
c

else // Down-weight the negative DA

ifQk
c > 1 thenQk

c ←− Q
k
c − 1

elseQk
c ←− 1

tempc = ∇pos

zkc

end
end

Theorem 4 states that a more dominant DA tends
to avoid severe distribution bias. The detailed
proof is in Appendix A. Therefore, to explore
optional DA, we record the positive sample size
tempc from the previous epoch for class c to
facilitate observation of whether the DA used in
this epoch brings benefits to the class.

Based on the positive sample sizes from the
current epoch and the previous epoch, we up-
date the augmentation preference list for each
class. For class c and DA Ok

c used in the cur-
rent epoch, if the positive sample size from the
current epoch is greater than that from the previ-
ous epoch, we consider this DA is beneficial for
class c, and thus we up-weight this DA that has
a positive impact. Conversely, if this DA has a
negative impact on class c, we down-weight it.

By dynamically maintaining the augmentation
preference lists, DODA achieves adaptive class-
dependent augmentation, which is not ‘hypo-
critical’ and not ’bullying’, allowing each class
(especially the tail classes) to choose appropri-
ate augmentation methods and avoid being po-
tentially sacrificed during training. To better
illustrate the execution process of DODA, we
provide a detailed execution flow in Algorithm 1.
The code is available in https://github.
com/pongkun/Code-for-DODA.

4 EXPERIMENTS

In this section, we conduct empirical evaluations on multiple mainstream datasets to demonstrate the
superiority of the proposed DODA in long-tailed learning.

4.1 EXPERIMENTAL SETTINGS

Datasets. To ensure a fair comparison, we conducted experiments on three mainstream long-tailed
image recognition benchmarks including CIFAR-100-LT Cao et al. (2019), ImageNet-LT Liu et al.
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Table 1: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio={10, 50, 100}) wtih state-of-the-
art methods. Blod indicates the best performance while underline indicates the second best. (+) and
(-) indicate the the relative gain. We report the average results of three random trials.

Method IR=10 IR=50 IR=100

Head Medium Tail All Head Medium Tail All Head Medium Tail All

CE He et al. (2016) 63.2 40.3 - 56.5 (+0.0) 63.9 36.2 15.2 43.8 (+0.0) 65.6 36.2 8.2 38.1 (+0.0)
CE + CMO Park et al. (2022) 67.0 45.0 - 60.2 (+3.7) 68.6 37.8 18.7 47.0 (+3.2) 70.1 40.6 10.3 41.8 (+3.7)
CE + CUDA Ahn et al. (2023) 66.8 43.1 - 59.5 (+3.0) 68.3 38.4 13.7 46.2 (+2.4) 70.7 41.4 9.3 42.0 (+3.9)
CE + CMO + CUDA Ahn et al. (2023) 65.7 43.0 - 58.7 (+2.2) 67.6 39.2 17.6 47.0 (+3.2) 71.1 43.4 11.7 43.6 (+5.5)
CE + DODA 67.0 44.0 - 59.9 (+3.4) 71.2 40.3 12.6 48.0 (+4.2) 74.8 43.8 10.0 44.5 (+6.4)
CE + CMO + DODA 67.1 42.5 - 59.5 (+3.0) 70.4 41.2 19.7 49.3 (+5.5) 73.2 44.4 12.4 44.9 (+6.8)

CE-DRW Cao et al. (2019) 62.5 48.6 - 58.2 (+0.0) 60.6 39.0 22.9 45.0 (+0.0) 63.4 41.2 15.7 41.4 (+0.0)
CE-DRW + CUDA Ahn et al. (2023) 64.2 56.2 - 61.7 (+3.5) 63.8 48.0 37.0 52.5 (+7.5) 63.5 48.9 25.3 46.9 (+5.5)
CE-DRW + DODA 63.6 56.7 - 61.5 (+3.3) 63.4 47.4 38.9 52.5 (+7.5) 60.2 51.9 29.6 48.1 (+6.7)

LDAM-DRW Cao et al. (2019) 62.7 46.1 - 57.5 (+0.0) 63.0 41.2 25.1 47.2 (+0.0) 62.8 42.6 21.1 43.2 (+0.0)
LDAM-DRW + CUDA Ahn et al. (2023) 63.6 45.2 - 57.9 (+0.4) 66.2 46.2 26.4 50.8 (+3.6) 66.0 49.5 22.1 47.1 (+3.9)
LDAM-DRW + DODA 63.3 45.8 - 57.9 (+0.4) 64.7 46.3 27.5 50.5 (+3.3) 65.4 50.8 25.5 48.3 (+5.1)

BS Ren et al. (2020) 61.5 50.6 - 58.1 (+0.0) 60.3 41.3 34.3 47.9 (+0.0) 59.6 42.3 23.7 42.8 (+0.0)
BS + CUDA Ahn et al. (2023) 64.2 55.5 - 61.5 (+3.4) 63.6 48.4 37.3 52.7 (+4.8) 62.5 49.1 29.4 47.9 (+5.1)
BS + DODA 64.0 56.8 - 61.8 (+3.7) 62.2 51.2 41.5 54.0 (+6.1) 63.1 49.3 31.2 48.7 (+5.9)

RIDE (3 experts) Wang et al. (2021) 66.4 49.4 - 61.1 (+0.0) 65.7 47.7 31.8 52.2 (+0.0) 65.7 48.6 25.0 47.5 (+0.0)
RIDE + CMO Park et al. (2022) 65.3 48.5 - 60.1 (-1.0) 67.8 47.0 33.4 53.1 (+0.9) 67.9 51.2 27.6 50.0 (+2.5)
RIDE (3 experts) + CUDA Ahn et al. (2023) 65.6 47.2 - 59.9 (-1.2) 68.2 46.1 29.3 52.1 (-0.1) 68.7 50.9 25.7 49.6 (+2.1)
RIDE (3 experts) + DODA 65.7 49.9 - 60.8 (-0.3) 67.0 46.5 33.6 52.6 (+0.4) 68.4 51.1 27.8 50.2 (+2.7)

BCL Zhu et al. (2022) 62.2 51.8 - 58.9 (+0.0) 61.6 43.1 34.3 49.1 (+0.0) 63.1 42.9 23.9 44.2 (+0.0)
BCL + CUDA Ahn et al. (2023) 65.3 56.6 - 62.6 (+3.7) 64.0 47.4 39.4 52.7 (+3.6) 64.7 49.7 29.1 48.8 (+4.6)
BCL + DODA 65.6 56.1 - 62.7 (+3.8) 64.9 48.0 40.6 53.6 (+4.5) 66.0 50.7 33.8 51.0 (+6.8)

(2019), and iNaturalist 2018 Van Horn et al. (2018). CIFAR-100-LT and ImageNet-LT are long-
tailed versions artificially truncated from the original balanced datasets, while iNaturalist 2018 is a
real-world, naturally long-tailed dataset. CIFAR-100-LT has three imbalance ratio settings {10, 50,
100}, where the imbalance ratio is defined as Nmax/Nmin. For each dataset, we employ the officially
provided version. The detailed descriptions for datasets are in Appendix C.

Evaluation Metrics. Model performance is mainly measured by the overall Top-1 accuracy (All).
Following Ahn et al. (2023), we also statistically measure the accuracy on three disjoint subsets of the
long-tailed datasets: head classes (Head), medium classes (Medium), and tail classes (Tail). Accuracy
is reported as a percentage.

Comparison Baselines. We select a variety of long-tailed recognition methods as baselines, which
are based on different theoretical ideas, including cross-entropy loss (CE) He et al. (2016), class
re-balancing methods: CE-DRW Cao et al. (2019), LWS Kang et al. (2020), cRT Kang et al. (2020),
LDAM-DRW Cao et al. (2019), Balanced Softmax (BS) Ren et al. (2020), information augmentation
methods: CMO Park et al. (2022), CUDA Ahn et al. (2023), and module improvement methods:
RIDE with three experts Wang et al. (2021), BCL Zhu et al. (2022). Thanks to the high flexibility
of DODA, we integrate it with the aforementioned baseline to observe the gains DODA brings to
existing methods. The detailed discussions and descriptions for baselines are in Appendix B and
Appendix C.

Implementation. We use Pytorch Paszke et al. (2017) to implement all neural networks and train
the model on 8 NVIDIA Tesla V100 GPUs. For CIFAR-100-LT dataset, we follow the general
experimental setup from Cao et al. (2019) and utilize ResNet-32 He et al. (2016) as a backbone
network. The networks are trained for 200 epochs by the SGD optimizer with an initial learning rate
of 10−4, a momentum of 0.9, and a weight decay of 2× 10−4. We use a random strategy (up-weight
and down-weight operations aren’t active) for the first 50 epochs to avoid cold-boot issues and then
switch to the proposed strategy for the remaining epochs. For ImageNet-LT and iNaturalist 2018
datasets, we use ResNet-50 as a backbone network. We train the network for 100 epochs using an
initial learning rate of 0.1, and decay the learning rate at epochs 60 and 80 by 0.1. For all experiments,
we set the hyperparameter values paug as 0.5.

4.2 BENCHMARK RESULTS

CIFAR-100-LT. Table 1 displays the overall classification accuracies on CIFAR-100-LT dataset.
It can be observed that DODA achieves comprehensive and stable improvements over the original
long-tailed learning baselines: CE He et al. (2016), CE-DRW Cao et al. (2019), LDAM-DRW Cao
et al. (2019), BS Ren et al. (2020), RIDE with three experts Wang et al. (2021), BCL Zhu et al.
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Table 2: Accuracy (%) on ImageNet-LT and iNaturalist 2018 datasets wtih state-of-the-art methods.

Method ImageNet-LT iNaturalist 2018

Head Medium Tail All Head Medium Tail All

CE He et al. (2016) 64.0 33.8 5.8 41.6 (+0.0) 73.9 63.5 55.5 61.0 (+0.0)
CE + CUDA Ahn et al. (2023) 67.1 47.1 13.4 47.2 (+5.6) 74.6 65.0 57.2 62.5 (+1.5)
CE + DODA 67.4 47.5 13.9 48.1 (+6.5) 74.9 66.0 58.4 63.6 (+2.6)

CE-DRW Cao et al. (2019) 61.7 47.3 28.8 50.1 (+0.0) 68.2 67.3 66.4 67.0 (+0.0)
CE-DRW + CUDA Ahn et al. (2023) 61.7 48.4 30.5 51.1 (+1.0) 68.8 67.9 66.5 67.4 (+0.4)
CE-DRW + DODA 62.4 48.5 31.3 52.2 (+2.1) 69.0 68.2 67.8 68.2 (+1.2)

LWS Kang et al. (2020) 57.1 45.2 29.3 47.7 (+0.0) 65.0 66.3 65.5 65.9 (+0.0)
cRT Kang et al. (2020) 58.8 44.0 26.1 47.3 (+0.0) 69.0 66.0 63.2 65.2 (+0.0)
cRT + CUDA Ahn et al. (2023) 62.3 47.2 28.1 50.2 (+2.9) 68.2 67.9 66.4 67.3 (+2.1)
cRT + DODA 62.8 47.7 28.9 51.3 (+3.6) 69.2 68.3 67.6 68.5 (+3.3)

LDAM-DRW Cao et al. (2019) 60.4 46.9 30.7 49.8 (+0.0) - - - 66.1 (+0.0)
LDAM-DRW + CUDA Ahn et al. (2023) 63.2 48.2 31.2 51.5 (+1.7) 68.0 67.5 66.8 67.3 (+1.2)
LDAM-DRW + DODA 63.7 48.6 31.9 52.4 (+2.6) 68.6 68.1 67.9 68.7 (+2.6)

BS Ren et al. (2020) 60.9 48.8 32.1 51.0 (+0.0) 65.7 67.4 67.5 67.3 (+0.0)
BS + CUDA Ahn et al. (2023) 61.8 49.1 31.8 51.5 (+0.5) 67.6 68.2 68.3 68.2 (+0.9)
BS + DODA 61.9 49.5 32.4 52.0 (+1.0) 68.1 68.9 69.5 69.4 (+2.1)

RIDE (3 experts) Wang et al. (2021) 64.9 50.4 34.4 53.6 (+0.0) 70.4 71.8 71.8 71.6 (+0.0)
RIDE + CMO Park et al. (2022) 65.6 50.6 34.8 54.0 (+0.4) 68.0 70.6 72.0 70.9 (-0.7)
RIDE (3 experts) + CUDA Ahn et al. (2023) 66.0 51.7 34.7 54.7 (+1.1) 70.6 72.6 72.7 72.4 (+1.4)
RIDE (3 experts) + DODA 66.6 51.9 35.9 55.8 (+2.2) 70.9 72.4 73.9 73.7 (+2.8)

BCL Zhu et al. (2022) 65.3 53.5 36.3 55.6 (+0.0) 69.4 72.4 71.8 71.8 (+0.0)
BCL + CUDA Ahn et al. (2023) 66.8 53.9 36.6 56.3 (+0.7) 70.8 72.7 72.0 72.2 (+0.4)
BCL + DODA 66.9 54.1 37.4 56.9 (+1.3) 71.2 73.2 73.4 73.7 (+1.9)

(2022). The outstanding performance on tail classes also demonstrates that DODA alleviates severe
class sacrifice issues. Moreover, compared to existing class-independent long-tailed augmentation
baselines: CMO Park et al. (2022) and CUDA Ahn et al. (2023), DODA achieves superior perfor-
mance, especially on tail classes. Essentially, this improvement is due to the special ‘care’ given to
the sacrificed classes in class-independent augmentation.

ImageNet-LT and iNaturalist 2018. We also compared DODA with state-of-the-art long-tailed
recognition methods on large-scale datasets, and the experimental results are shown in Table 2.
Applying DODA to the basic CE loss significantly improves the model performance and can be
comparable to the performance of existing long-tailed learning methods. It is worth noting that
ImageNet-LT and iNaturalist 2018 have higher imbalance ratios (i.e., 256 and 500) than CIFAR-100-
LT (i.e., 10, 50, and 100), so the results also demonstrate that DODA can improve model performance
in scenarios with varying degrees of imbalance.

4.3 FURTHER ANALYSIS

IR
=5

0

SR=7%
CE + DODA

IR
=1

00

SR=5%

Acc@CE Acc@CE+DODA

Figure 4: Visualization of the accuracy of
each class between CE and CE with CUDA.

In this section, we conduct a detailed analysis of the
mechanism of DODA and discuss the following four
issues. All the analysis experiments are conducted on
CIFAR-100-LT (IR=100). More empirical results are
reported in Appendix D.

Does DODA make fewer classes be ‘sacrificed’?
In Section 2, we analyze and validate that class-
independent DA is ‘hypocritical’, as it achieves the
improvement of average performance by sacrificing cer-
tain classes (especially tail classes), which runs counter
to the purpose of long-tailed learning. The goal of
DODA is to pursue inter-class fairness while alleviat-
ing both inherent data-wise imbalance and extrinsic
augmentation-wise imbalance. By allowing each class
to choose appropriate DAs, DODA can effectively alle-
viate the problem of sacrificing ‘weak’ classes while achieving generalization performance. From the
visualization of the accuracy of each class in Figure 4, it can be found that compared with CUDA,
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DODA reduces the sacrifice rate by 31% and 24%, respectively, indicating that DODA makes fewer
classes be ‘sacrificed’.

Why DODA can alleviate the long-tailed problem? Long-tailed learning aims to learn an accurate
and robust deep model that can achieve generalized performance on long-tailed distribution tasks.
DODA addresses the common problem of unfair DA in existing long-tailed methods from the
perspective of DA. Our method is orthogonal to existing methods. By maintaining a preference list
for each class, DODA provides each class with the right to choose DA fairly. As shown in Figure 5,
we observe the trend of the selection hierarchies on two baselines (BS and CE). We randomly selected
four classes (Index = {0, 10, 40, 80}) and 10 common DAs. It can be observed that, as the epoch
increases, the preferred DA for specific classes gradually becomes apparent, indicating that each class
can choose positive DAs to avoid being sacrificed, thereby alleviating the long-tailed problem.
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Figure 5: Trend of the selection hierarchies during training.

Figure 6: Class and ’its’ preferred DA
on BS and CIFAR-100-LT (IR=100).

What are the trends in DAs favored by classes? As
illustrated in Figure 6, we visualized the preferred aug-
mentation methods for different classes, and it can be
observed that certain augmentation methods are highly
favored because some DAs tend to distort some decisive
information in the data, while other DAs prefer to preserve
label-related information.

Would other augmentation methods be better? We also
compared DODA with existing DAs to demonstrate its
superiority in long-tailed learning. Following the setting
of Ahn et al. (2023), we select six augmentation methods,
including AutoAugment (AA) Cubuk et al. (2019), Fast
AutoAugment (FAA) Lim et al. (2019), DADA Li et al.
(2020a), RandAugment (RA) Cubuk et al. (2020), and CUDA Ahn et al. (2023). Except for CUDA,
other methods require additional computational resources to search for suitable DAs for datasets.
Although CUDA implements class-wise strength adjustment, it still struggles to avoid class sacrifice
issues. As shown in Figure 7, DODA outperforms other search-based and strength-based DAs,
achieving fair augmentation while being computationally efficient.
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Figure 7: DA analysis on various algorithms, CE, CE-DRW, LDAM-DRW, BS, and RIDE.

5 CONCLUSION

In this study, we first theoretically analyzed the gains of traditional DAs in long-tailed learning and
then proposed a ‘stone’ called Dynamic Optional Data Augmentation (DODA) to kill two ‘birds’:
inherent data-wise imbalance and extrinsic augmentation-wise imbalance. DODA allows each class
to choose appropriate DAs by maintaining a corresponding DA probability distribution for each class.
Extensive experiments across long-tailed benchmarks verify the effectiveness of the DODA.
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Appendix
Kill Two Birds with One Stone:

Rethinking Data Augmentation for Deep Long-tailed Learning
The content of the Appendix is summarized as follows:

1) in Sec. A, we state the proofs of Theorem 2 (Sec. 2.1), Theorem 3 (Sec. 2.2), and Theorem
4 (Sec. 3.2).

2) in Sec. B, we summarize existing long-tailed learning (LTL) and data augmentation (DA)
methods and explicitly illustrate the novelty of DODA.

3) in Sec. C, we demonstrate the details of datasets and baselines we use in experiments of
DODA.

4) in Sec. D, we illustrate more detailed empirical results and analyses of DODA.

A DETAILED PROOFS

A.1 PROOF OF THEOREM 2

Proof. In Sec. 2.1, Theorem 1 states that when we approximate the ideal model f∗ by minimizing
the training loss (i.e., 0 training error), the latter tends to zero, while the former is greater than zero
due to the augmented samples deviate from the level set of f∗. Therefore, the trained model fθ will
be biased compared to the ideal model f∗.∑

(x,y)∈D

E[||y − f∗(O(x))||22] > 0 ∧
∑

(x,y)∈D

E[||y − fθ(O(x))||22] = 0 =⇒ bias (10)

From the perspective of the dataset, the reason for the bias is that the semantic information of some
samples does not match their original labels after DA, which means that DA cannot guarantee that it
is label-preserving. We reconsider this problem from the perspective of long-tailed learning. First of
all, for the whole dataset D, minimizing the training loss essentially means that the trained model fθ
should achieve 0 training error on each class, i.e.,∑

(x,y)∈D

E[||y − fθ(O(x))||22] = 0 =⇒
∑

(x,y)∈D|y=c

E[||y − fθ(O(x))||22] = 0 ∀c ∈ C (11)

Similarly, for class c and augmented samples {(O(x), y)|y = c, (O(x), y) ∈ D}, when we achieve
or approximately achieve the minimization of the training loss on class c, DA inevitably makes some
samples of class c mismatch with their original labels, i.e., the augmented samples deviate from the
level set of the ideal model f∗. Therefore, when we use the augmented samples of class c as inputs to
f∗, f∗ cannot predict the labels completely correctly.∑

(x,y)∈D

E[||y − f∗(O(x))||22] > 0 =⇒
∑

(x,y)∈D|y=c

E[||y − f∗(O(x))||22] > 0 ∀c ∈ C (12)

Although we achieve a seemingly optimal (ideal) training model fθ, its fitting process on class c has
actually deviated from the ideal optimization process. Therefore, the deviation between the trained
model fθ and the ideal model f∗ on class c is inevitable, i.e., fθ has class-wise bias.∑
(x,y)∈D|y=c

E[||y − f∗(O(x))||22] > 0 ∧
∑

(x,y)∈D|y=c

E[||y − fθ(O(x))||22] = 0 =⇒ class-wise bias

(13)

A.2 PROOF OF THEOREM 3

Proof. According Definition 1, the distribution of each class in the training set can be approximate
as a circle in a two-dimensional feature space, and the distribution center of class c can be defined as
(Xc,Yc) and the distribution radius is Rc. So, the distribution span Sc can be expressed as follows:

Sc ⇒ (X− Xc)
2 − (Y− Yc)

2 = Rc
2 (14)
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For the data distribution Sch and Sct of head class ch and tail class ct, the new distribution span
after using uniform DA O(·) can be defined as S̄ch ⇒ (Rch +∆ch)

2 and S̄ct ⇒ (Rct +∆ct)
2, and

∆ch and ∆ct represent the increase in distribution radius within each class after DA. For the same
augmentation method, ∆ch = ∆ct .

Here, we define the original data distributions of head class ch and tail class ct as the base spaces
Rct

2 and Rch
2, and define the expanded data distributions of head class ch and tail class ct as the

marginal spaces (Rct +∆ct)
2 − Rct

2 and (Rch +∆ch)
2 − Rch

2

Then, the augmentation sensitivity of head class ch and tail class ct can be defined as ψch and ψct .

ψch =
(Rch +∆ch)

2 − Rch
2

Rch
2 (15)

ψct =
(Rct +∆ct)

2 − Rct
2

Rct
2 (16)

Therefore, we can measure the augmentation sensitivity difference between head class ch and tail
class ct, i.e.,

ψct − ψch =
(Rct +∆ct)

2 − Rct
2

Rct
2 − (Rch +∆ch)

2 − Rch
2

Rch
2

=
Rct

2 + 2Rct∆ct +∆ct
2 − Rct

2

Rct
2 − Rch

2 + 2Rch∆ch +∆ch
2 − Rch

2

Rch
2

=
2Rct∆ct +∆ct

2

Rct
2 − 2Rch∆ch +∆ch

2

Rch
2

=
2RctRch

2∆ct + Rch
2∆ct

2 − 2R2
ctRch∆ch − Rct

2∆ch
2

Rct
2Rch

2

=
2RctRch(Rch∆ct − Rct∆ch)

Rct
2Rch

2 +
Rch

2∆ct
2 − Rct

2∆ch
2

Rct
2Rch

2

= 2∆ch · Rch − Rct

RchRct

+∆ch
2 · Rch

2 − Rct
2

Rch
2Rct

2

> 0

(17)

The above derivation indicating that tail classes are more sensitive to the marginal space.

For high-dimensional feature space,

Proof. Assuming that the dimension of high-dimensional features is n,the distribution center of class
c is defined as (X1

c ,X2
c , ...,Xn

c ) and the distribution radius is Rc. The distribution span Sc can be
expressed as

(X1 − X1
c)

2 − (X2 − X2
c)

2 − ...− (Xn − Xn
c )

2 = Rc
2 (18)

We assume that the data distribution of head class ch and tail class ct are Sch and Sct and the
distribution span after DA S̄ch and S̄ct . So the augmentation sensitivity ψ of class c can be expressed
as follows:

ψc =

πn/2(Rc+∆)
Γ(1+n/2) − πn/2Rc

Γ(1+n/2)

πn/2Rc

Γ(1+n/2)

, (19)

and further deduce:

ψct − ψch =
πn/2

Γ(1 + n/2)

(RctRch +∆Rch)
n − (RctRch +∆Rct)

n

Rct
nRch

n > 0 (20)

This indicates that this theoretical explanation is equally applicable to higher-dimensional spaces.
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A.3 PROOF OF THEOREM 4

Proof. We want to show that for a more dominant DA Ok1 , the bias of Ok1 from P is smaller than
that of Ok2 from P , where Qk1 and Qk2 are the level-sets of the models fk1

θ and fk2

θ learned using
DA Ok1 and DA Ok2 , respectively, and P is the level-set of the model fθ trained on the original
dataset.

Herr, we use Chebyshev’s inequality to bound the probability that a random variable deviates from
its expected value by a certain amount. Let X be a random variable that represents the deviation of
fθ(x) from y for a sample (x, y) in the original dataset. Let Y be a random variable that represents
the deviation of fkθ (Ok(x)) from y for a sample (x, y) in the augmented dataset using DA Ok. Then
we have:

P (|X − E(X)| > t) ≤ V ar(X)/t2 (21)

P (|Y − E(Y )| > t) ≤ V ar(Y )/t2 (22)

The level-set bias δ(Qk, P ) can be defined as the degree of distributional deviation between the
level-sets Qk and P . Intuitively, this can be measured by the difference between E(Y ) and E(X),
or the difference between V ar(Y ) and V ar(X). We assume that E(X) = 0, since fθ is trained to
minimize the training loss on the original dataset. Then we have:

δ(Qk, P ) = |E(Y )|+ |V ar(Y )− V ar(X)| (23)

Now, suppose that Ok1 dominates Ok2 on class c, i.e., ∇pos

z
k1
c

> ∇pos

z
k2
c

. This means that fθ(Ok1(x)) is

more likely to be equal to y than fθ(Ok2(x)) for samples (x, y) in class c. Therefore, we have:

E(Y |y = c,Ok1) < E(Y |y = c,Ok2) (24)

V ar(Y |y = c,Ok1) < V ar(Y |y = c,Ok2) (25)

By taking the weighted average over all classes, we obtain,

E(Y |Ok1) < E(Y |Ok2) (26)

V ar(Y |Ok1) < V ar(Y |Ok2) (27)

Hence, we conclude that:
δ(Qk1 , P ) < δ(Qk2 , P ) (28)

This completes the proof.

B RELATED WORK

B.1 LONG-TAILED LEARNING (LTL)

Real-world training datasets typically exhibit a long-tailed class distribution, where a small fraction
of classes have massive samples and the rest classes are associated with only a few samples. Un-
fortunately, the deep models trained by the common practice of empirical risk minimization cannot
handle this distribution, resulting in a significant decrease in model performance Zhang et al. (2021b).
Recently, missive novel longt-tailed learning methods have been proposed to learn a more generalized
model from imbalanced training datasets, which can be divide into three main categories: class
re-balancing Kang et al. (2020); Ren et al. (2020); Wang et al. (2020); Lin et al. (2017); Cui et al.
(2019); Tan et al. (2020), module improvement Zhang et al. (2017b); Ouyang et al. (2016); Tang et al.
(2020); Kang et al. (2020); Zhou et al. (2020); Zhang et al. (2022), and information augmentation Chu
et al. (2020); Kim et al. (2020b); Hu et al. (2020); Zang et al. (2021); Park et al. (2022); Ahn et al.
(2023).

Class re-balancing is the most typical strategy, which balances inter-class sample numbers or weights
by re-sampling or cost-sensitive learning. On the one hand, traditional re-sampling methods, e.g.,
random over-sampling (ROS) and random under-sampling (RUS), achieve re-balancing by repeating
the samples from tail classes and discarding the samples from head classes, but they tend to overfit
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to tail classes when datasets are extremely unbalanced. To this end, recent studies propose class-
balanced re-sampling strategies, e.g., bi-level class-balanced sampling Wang et al. (2020) and meta
learning based sampling Ren et al. (2020). Besides from the perspective of classes, scheme-oriented
sampling strategies try to re-balance classes by designing some specific learning schemes, such as
quintuplet sampling Huang et al. (2016) and replay based sampling Kim et al. (2020a). On the other
hand, some studies, called cost-sensitive learning, re-balance classes by adjusting the loss values of
different classes. For example, CB Cui et al. (2019) proposed a effective number to approximate
the expected sample number of each class, and Focal loss Lin et al. (2017) used the prediction
probabilities to inversely re-weight classes.

In addition to class re-balancing, researchers also explored enhancing model performance by improv-
ing network modules. A intuitive method is decoupled training, which decouples the learning proce-
dure into representation learning and classifier training. As a pioneering work, Decoupling Kang et al.
(2020) proposed a two-stage training scheme and showed some refreshing observations. KCL Kang
et al. (2021) and FRS Wang et al. (2023) believed that a balanced feature space is beneficial to LTL, so
they designed contrastive learning based losses to learn a more class-balanced and class-discriminative
feature space. Furthermore, as a classic theory, ensemble learning is also applied to LTL by designing
and combining multiple expert networks. For instance, BBN Zhou et al. (2020) proposed to use two
network branches to handle LTL. Following BBN, BAGS Li et al. (2020b) explored a multi-head
scheme. Not restricted to a balanced test set, SADE Zhang et al. (2022) explored the multi-expert
scheme to handle test distribution-agnostic LTL.

Although the overall performance is improved, these methods cannot essentially handle the issue
of lacking information, particularly on tail classes due to limited data amount. Orthogonally, some
information augmentation studies seek to introduce additional information into model training,
such as FTL Yin et al. (2019) and M2m Kim et al. (2020b) transferred the knowledge from head
classes to enhance model training on tail classes considering the inter-class knowledge imbalance.
To solve information restrictions in essence, another line of research is to apply representation
augmentation or data augmentation to LTL. For example, CMO Park et al. (2022) augmented
diversified minority samples by leveraging the rich context of the majority classes as background
images. Considering fairness, FSR Wang et al. (2023) and CUDA Ahn et al. (2023) advocate to find
appropriate augmentation strength for each class. However, although these methods enrich the overall
information to a certain extent and improve model performance, they ignored the sacrifice of some
classes behind this improvement. For this reason, we jointly pay attention to the inherent data-
wise imbalance and extrinsic augmentation-wise imbalance, thereby minimizing the sacrifice.

B.2 DATA AUGMENTATION

DA has been applied in many fields because it can effectively alleviate overfitting and improve model
generalization performance. DA is simple in design, and various DAs can be achieved through
image manipulation, e.g., filp, crop, and rotate Robbins & Monro (1951). Recently, mixup based
DA methods are proposed to improve model robustness by fusing two images and their labels Zhang
et al. (2017a); Tokozume et al. (2018). Considering the diversity of DA, some studies try to combine
them randomly or in order, such as AutoAugment Cubuk et al. (2019), Fast AutoAugment Lim et al.
(2019), DADA Li et al. (2020a), and RandAugment Cubuk et al. (2020). In addition, researchers are
improving DAs to make them suitable for LTL, however, they ignore that DA is class-independent,
and thus may cause a mismatch between augmented data and actual labels Park et al. (2022); Wang
et al. (2023); Ahn et al. (2023). Therefore, it is necessary to design a class-dependent long-tailed
DA to allow each class to choose an appropriate augmentation method.

C DATASET AND BASELINE DETAILS

C.1 DATASET

CIFAR-100-LT Cao et al. (2019): is a long-tailed version of artificially truncated from the original
balanced dataset CIFAR-100, which includes 100 different categories, 50,000 training images and
10,000 test images. The 100 categories in CIFAR-100 form 20 superclasses, each with 5 classes.
CIFAR-100-LT has three imbalance ratio settings 10, 50, 100, where the imbalance ratio ρ is defined
as the ratio of the sample sizes of the most frequent and least frequent classes, i.e., ρ = Nmax/Nmin.
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Table 3: Statistics of the long-tailed datasets.

Dataset # of Classes # of Training set # of Test set Imbalance ratio

CIFAR-100-LT 100 50,000 10,000 {10, 50, 100}
ImageNet-LT 1,000 115,846 50,000 256

iNaturalist 2018 8,142 437,513 24,426 500

ImageNet-LT Liu et al. (2019): is a long-tailed version of artificially truncated from the original
balanced dataset ImageNet, which includes 1,000 different categories, 115,846 training images and
50,000 test images. The most frequent or least frequent class has 1,280 or 5 images, so the imbalance
ratio ρ = 256.

iNaturalist 2018 Van Horn et al. (2018): is a real-world, naturally long-tailed dataset, which includes
8,142 different categories, 437,513 training images and 24,426 test images. Each image has one
ground truth label. The iNat dataset is highly imbalanced with dramatically different number of
images per category and the imbalance ratio ρ is 500.

C.2 AUGMENTATION

we incorporated ten commonly used DA methods in our experiments, and descriptions are shown in
Table 4. The specific code implementation can be found in ’/aug/doda.py’.

Table 4: Description of DAs utilized in DODA.

DA Parameter Description

Flip 0/1 Flip top and bottom

Mirror 0/1 Flip left and right

EdgeEnhance 0/1 Increasing the contrast of the pixels around the targeted edges

Detail 0/1 Utilize convolutional kernel [[0,-1, 0], [-1, 10,-1], [0,-1, 0]]

Smooth 0/1 Utilize convolutional kernel [[1, 1, 1], [1, 5, 1], [1, 1, 1]]

AutoContrast 0/1 Remove a specific percent of the lightest and darkest pixels

Equalize 0/1 Apply non-linear mapping to make uniform distribution

Invert 0/1 Negate the image

GaussianBlur [0, 2] Blurring an image using Gaussian function

Rotate [0, 30] Rotate the image

C.3 BASELINES

To ensure a fair comparison, we select a large number of long-tailed learning methods as baselines in
our experiments, and integrate DODA with these baselines to evaluate the effectiveness and flexibility
of DODA. In addition, we also select the state-of-the-art data augmentation methods as comparison
baselines to prove the superiority of DODA in long-tailde learning.

Long-tailed methods:

• CE He et al. (2016): is a cross-entropy loss based model, which is one of the most classic
methods in the field of deep long-tailed learning.

• CE-DRW Cao et al. (2019): is a two-stage fine-tuning strategy based on cross-entropy loss.
• LWS Kang et al. (2020): is a two-stage training strategy, which keeps both the representations

and classifier weights fixed and only learn the scaling factors.
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• cRT Kang et al. (2020): is a two-stage training strategy, which keeps the representations fixed
and randomly re-initialize and optimize the classifier weights using class-balanced sampling.

• LDAM-DRW Cao et al. (2019): extends the existing soft margin loss by enforcing class-
dependent margins based on label frequencies and further introduces a deferred re-balancing
optimization schedule.

• BS Ren et al. (2020): proposes to use the label frequencies to adjust mode predictions during
training, so that the bias of class imbalance can be alleviated by the prior knowledge.

• RIDE (3 experts) Wang et al. (2021): introduces a knowledge distillation multi-expert framework
to reduce the parameters by learning a student network with fewer experts.

• BCL Zhu et al. (2022): proposes a balanced contrastive learning loss and learns stronger feature
representations through a dual-branch framework.

• CMO Park et al. (2022): focuses on utilizing the rich context of majority samples to improve
the diversity of minority samples and mixes minority and majority images by using CutMix to
enhance balancing and robustness simultaneously.

• CUDA Ahn et al. (2023): is a simple and efficient curriculum, which is designed to find the
appropriate per-class strength of data augmentation.

Data augmentation methods:

• AutoAugment Cubuk et al. (2019): describes a simple procedure to automatically search for
improved data augmentation policies by designing a search space where a policy consists of
many sub-policies, one of which is randomly chosen for each image in each mini-batch.

• Fast AutoAugment Lim et al. (2019): finds effective augmentation policies via a more efficient
search strategy based on density matching.

• DADA Li et al. (2020a): relaxes the discrete DA policy selection to a differentiable optimization
problem via Gumbel-Softmax and introduces an unbiased gradient estimator to learn an efficient
and accurate DA policy.

• RandAugment Cubuk et al. (2020): proposes a simplified search space that vastly reduces the
computational expense of automated augmentation, and permits the removal of a separate proxy
task.

D MORE EMPIRICAL RESULTS

D.1 PARAMETER SENSITIVITY ANALYSIS OF paug
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Figure 8: Parameter sensitivity analysis of augmentation probability paug on CE, BS, and BCL.

To preserve the knowledge of the original dataset, we define the augmentation probability paug . For
further analyze the impact of paug, we conduct a sensitivity analysis of hyperparameter paug. As
shown in Figure 8, we test 8 different hyperparameter settings on three baselines, and the experimental
results showed that a too small augmentation probability cannot sufficiently improve the model’s
generalization, while a too large augmentation probability cannot retain the knowledge in the original
dataset, resulting in a decrease in model performance.
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Figure 9: Parameter sensitivity analysis of number of DAs be selected t.

D.2 PARAMETER SENSITIVITY ANALYSIS OF t

In previous analyses, we select the optimal DA for each class. However, we find that in some
baselines, multiple DAs can be beneficial. Therefore, we further conduct a parameter sensitivity
analysis on the number of DAs be selected t. As shown in Figure 9, we test three hyperparameter
settings (t = 1, 2, 3) on three baselines. It can be observed that on CE and BCL, the model tends to
select the optimal DA, while on BS, it tends to select both the optimal and suboptimal DAs. This
phenomenon is consistent with the trend of selection hierarchies during training mentioned in the
main text.

D.3 PARAMETER SENSITIVITY ANALYSIS OF NUM. OF DAS

4 6 8 10

Num. of DAs

43.5

44.0

44.5

A
cc

ur
ac

y
(%

)

CE

4 6 8 10

Num. of DAs

47.5

48.0

48.5

BS

Figure 10: Impact of different numbers of DAs CIFAR-100-LT (IR=100).

As shown in Figure 10, we gradually reduced the number of DAs based on the degree of preference.
The results indicate that reducing the number of augmentations leads to a loss of diversity. However,
when the ’neglected’ augmentations are removed, the model performance does not significantly
degrade.

D.4 NETWORK ARCHITECTURE ANALYSIS

As shown in Figure 11, following Ahn et al. (2023), we also utilize ResNet-10 Liu et al. (2019) and
ResNeXt-50 Xie et al. (2017) as our backbone network on ImageNet-LT. We conduct comparative
experiments on three baselines (e.g., CE, BS, and BCL), and the results show that no matter what kind
of backbone is used, DODA can always bring stable improvement to long-tailed learning algorithms.

D.5 TRAINING TIME ANALYSIS

In DODA’s augmentation pipeline, we require additional computations to update and maintain the
augmentation preference list for each class. Therefore, compared to the original baselines, using
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Figure 11: Network architecture analysis.

DODA incurs additional training time. As shown in Table 5, using DODA inevitably brings varying
degrees of computational cost, but these costs are acceptable. For example, BS w/o DODA achieves
better model performance and avoids serious sacrifices with only × 0.09 additional cost.

Table 5: Training time (min.) analysis on various algorithms.

Method CE BS BCL

w/o DODA 60 68 94

w/ DODA 68 74 102
(× 1.13) (× 1.09) (× 1.09)

D.6 MORE ANALYSIS ON SACRIFICE RATES

SR on Different Long-tailed Baselines: We provided the sacrifice rates of different data augmenta-
tions on CE in Figure 2, indicating that DA can lead to sacrifice problems for the original baseline.
Similarly, long-tailed learning baselines also face this issue. Based on your comments, we have
conducted further experiments on cRT and CIFAR-100-LT dataset (IR = 100). The results in Table 6
show that CUDA improved accuracy while sacrificing performance for certain classes, while DODA
mitigated this sacrifice issue by preserving performance across classes.

Table 6: Accuracy (%) on CIFAR-100-LT dataset (IR = 100) wtih cRT. SR (%) indicates the sacrifice
rate.

Method Head Medium Tail All SR

CE 65.6 36.2 8.2 38.1 -
CE + CUDA 70.7 41.4 9.3 42.0 29
CE + DODA 74.8 43.8 10.0 44.5 5

cRT Kang et al. (2020) 64.4 49.1 25.8 47.5 -
cRT + CUDA 63.2 50.9 26.6 47.9 22
cRT + DODA 64.4 51.2 27.5 48.7 6

In general, just like focusing on tail classes when improving the average accuracy, when applying
DAs in long-tailed learning, focusing on vulnerable classes that are easy to be sacrificed is also in
line with the purpose of long-tailed learning.
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SR on Different DA Baselines: We also tested different class-independent techniques (e.g., Au-
toAugment, CutOut) to demonstrate the superiority of our method. The specific experimental results
are shown in Table 8.

AutoAugment improves the average accuracy on cRT and takes effect on each shot. However,
we further analyze the sacrifice problem caused by DAs, and we find that despite achieving good
performance, AutoAugment still cannot avoid the sacrifice problem, which means,

• The performance improvement of AutoAugment is hypocritical, for example, in the tail
classes, the model achieves performance gains on some classes, while performing badly on
others (i.e., pleasing the ’strong’ and bullying the ’weak’). This sacrifice goes against the
purpose of long-tailed learning despite the average performance improvement of the model
on the tail classes.

• Both class-independent techniques lead to the sacrifice problem of sacrifice. From the
sacrifice rate of different shots, it can be found that compared with the head classes, more
classes in the tail classes are sacrificed, indicating that the tail classes are more likely to be
regarded as the bullied ’weak’ mentioned above.

Table 7: Accuracy (%) on CIFAR-100-LT dataset (IR = 100) wtih cRT. (·) indicates the sacrifice rate
of different shots.

Method Head Medium Tail All

cRT Kang et al. (2020) 64.4(-) 49.1(-) 25.8(-) 47.5(-)
cRT + AutoAugment 64.8(5) 49.9(6) 25.9(13) 47.9(24)
cRT + CutOut 61.3(12) 44.5(15) 21.7(23) 43.6(50)
cRT + DODA 64.4(2) 51.2(1) 27.5(3) 48.7(6)

SR on Different Epochs: Here, we analyzed the changes in the sacrifice rate. The results shown in
Table 2 show that the sacrifice problem caused by previous DAs cannot be eliminated during training,
while DODA significantly improves this.

Table 8: Sacrifice rate (%) on Various Epochs.

Epoch 100 200 400

CE + RandAugment 328 315 309
CE + DODA 73 59 55

D.7 MORE COMPARISONS WITH MODIFIED TWO-STAGE MODEL

Here, we compare DODA with CC-SAM Zhou et al. (2023), which is a two-stage model improvement
method that trains the model in a decoupled manner and introduces class-conditional sharpness-aware
minimization in the first stage. We have improved the existing open-source implementation and
incorporated DODA’s augmentation strategy. The quantitative experimental results are shown in
Table 9.

Table 9: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio = 100) wtih CC-SAM. SR (%)
indicates the sacrifice rate.

Method Head Medium Tail All SR

CC-SAM Zhou et al. (2023) 67.6 51.2 30.5 50.7 (+ 0.0) -
CC-SAM + CUDA Ahn et al. (2023) 67.5 52.0 30.7 51.0 (+ 0.3) 31
CC-SAM + DODA 68.4 53.7 33.6 52.8 (+ 3.1) 6
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D.8 MORE COMPARISONS WITH AUTO DA IN OTHER FIELDS

In this section, we compare DODA with Auto DA selection algorithms in other fields. Here we choose
the most advanced method Zaiem et al. (2022) in the speech field as a comparison. However, directly
applying the complete method from it in long-tailed learning does not lead to fair comparisons.
So we partially implemented the augmentation strategies proposed in Zaiem et al. (2022). Firstly,
since Zaiem et al. (2022) relies on a carefully designed pretext task, we replaced it with contrastive
learning using cropping and augmentation, where pretext labels for each augmented view of a sample
corresponding to the ID of the sample it originated from. Then, we replaced the downstream task
related to speech with a long-tailed classification task. The experimental results of this modified
implementation are shown in Table 10.

It can be observed that using the automatic augmentation strategy from Zaiem et al. (2022) results
in limited performance improvement, while our method outperforms it significantly. The reasons
for this are as follows: (1) Zaiem et al. (2022) relies on a carefully designed pretext task, so the
improvement it brings may come from diversified data augmentation. (2) Zaiem et al. (2022) lacks
the necessary focus on the tail classes, while our method pays more attention to inter-class fairness,
resulting in better performance.

Table 10: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio = 100) wtih Zaiem et al. (2022).

Method Head Medium Tail All

CE 65.6 36.2 8.2 38.1 (+ 0.0)
CE + Zaiem et al. (2022) 68.9 38.7 8.4 40.2 (+ 2.1)
CE + DODA 74.8 43.8 10.0 44.5 (+ 6.4)

D.9 EXPLORATION OF COMBINATIONS WITH SOTA LONG-TAILED DA

From the macro perspective of long-tailed learning, both DODA and CUDA belong to dynamic DA.
However, at the methodology level, the two are different. A simple comparison is as Table 11:

Table 11: Comparison at the methodology level.

Method Adaptive Strength Adaptive Function Inter-class Fairness Cold-boot Issues

CUDA ✓
DODA ✓ ✓ ✓

It can be seen that to ensure fairness between classes while improving accuracy, we have made some
methodology-level improvements. More interestingly, we find that CUDA and DODA are orthogonal,
and we can find the optimal DA function and strength at the same time. The exploratory results are as
follows:

Table 12: Exploratory results (%) on CIFAR-100-LT dataset (IR = 100).

Method Head Medium Tail All

CE + DODA 74.8 43.8 10.0 44.5
CE + DODA + CUDA 74.7 44.1 10.2 44.6

Although the performance gain is limited, continuing to explore this compositionality is beneficial
for long-tailed learning.
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D.10 MORE TRENDS OF THE SELECTION HIERARCHIES ON DIFFERENT INDEXS
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Figure 12: Trends of the selection hierarchies on different indexs.
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