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ABSTRACT

Looped Transformers have emerged as an efficient and powerful class of mod-
els for reasoning in the language domain. Recent studies show that these mod-
els achieve strong performance on algorithmic and reasoning tasks, suggesting
that looped architectures possess an inductive bias toward latent reasoning. How-
ever, prior approaches fix the number of loop iterations during training and in-
ference, leaving open the question of whether these models can flexibly adapt
their computational depth under variable compute budgets. We introduce Loop-
Former, a looped Transformer trained on variable-length trajectories to enable
budget-conditioned reasoning. Our core contribution is a shortcut-consistency
training scheme that aligns trajectories of different lengths, ensuring that shorter
loops yield informative representations while longer loops continue to refine them.
LoopFormer conditions each loop on the current time and step size, enabling rep-
resentations to evolve consistently across trajectories of varying length rather than
drifting or stagnating. Empirically, LoopFormer demonstrates robust performance
on language modeling and reasoning benchmarks even under aggressive compute
constraints, while scaling gracefully with additional budget. These results show
that looped Transformers are inherently suited for adaptive latent reasoning, open-
ing a path toward controllable and budget-aware large language models.

1 INTRODUCTION

Transformers with parameter sharing, often called looped or recurrent Transformers, have emerged
as an efficient and capable alternative to deep non–shared stacks across vision and natural language
Dehghani et al. (2018); Lan et al. (2019); Jaegle et al. (2021); Dutta et al. (2021); Geiping et al.
(2025). In particular, looped Transformers in the language modeling setting have shown promising
performance on a variety of algorithmic and reasoning tasks Geiping et al. (2025); Saunshi et al.
(2024; 2025); Gatmiry et al. (2024). These models appear to possess an inductive bias toward rea-
soning: a property sometimes referred to as latent reasoning, where they internalize reasoning skills
akin to explicit chain-of-thought prompting in large language models. Moreover, studies indicate
that such abilities scale gracefully with effective computational depth and number of loops, yielding
improved results on reasoning benchmarks Xu & Sato (2024); Saunshi et al. (2025); Geiping et al.
(2025). However, existing approaches almost always train and evaluate with a fixed number of un-
rolls. This raises a fundamental question: do looped Transformers truly exploit their computational
depth flexibly, and can they be trained to operate effectively under variable compute budgets?

Despite their promise, current looped models remain tied to a single trajectory length. Once trained,
their representations collapse when evaluated at shorter or longer depths, since those settings are
off-distribution Bae et al. (2024); Fan et al. (2024). In practice, this means looped models spend
the same budget as non-looped iso-FLOP baselines, forfeiting one of their key motivations: flexible
compute. We instead consider budget-conditioned language modeling: at inference, a user specifies
a compute budget M , and the model should produce high-quality representations without retraining.
While early exiting, routing, and layer dropping have made non-looped Transformers more dynamic
Schuster et al. (2022); Fan et al. (2019); Elhoushi et al. (2024); Shazeer et al. (2017); Raposo et al.
(2024), little has been explored for looped models. Naively transplanting these techniques into
looped architectures is fragile Bae et al. (2025); Geiping et al. (2025): repeated passes of the shared
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block often converge to similar, stagnant states. We aim for elastic depth: a single looped model
that performs well across user-chosen budgets without retraining or late-step degeneracy. The core
challenge is to train looped models whose internal trajectories remain stable across depths, so that
shorter routes do not degrade and longer routes continue to refine rather than collapse.

We present LoopFormer, a shortcut-modulated looped language model that supports elastic depth,
maintaining strong performance across a range of inference budgets. Inspired by diffusion models
Frans et al. (2024); Lu & Song (2024) and neural ODEs Chen et al. (2018), we cast iterative rep-
resentation refinement as a trajectory in representation space: token states evolve from an initial h0

toward a target h1 over a normalized unit-time horizon. Our key insight is to explicitly condition
each loop step on the current time t and a step size ∆t (a “jump”), allowing coarser trajectories to
approximate fine-grained ones with fewer steps. Training employs a shortcut-consistency objective
that aligns the final representations of shorter routes with those of the full route via a stop-gradient
target, effectively performing self-distillation within the loop. At inference, this conditioning yields
elastic depth without retraining: the user selects a budget M ≤ L (maximum loops) and a step
schedule, and performance scales smoothly with compute, rather than collapsing at shorter depths.

Departing from dynamic compute through routing or token halting Dehghani et al. (2018); Bae et al.
(2025), we instead introduce the notion of loop trajectories, which enable effective and efficient
latent reasoning. We refer to these as thought trajectories, reflecting the model’s ability to inter-
nalize and refine reasoning as compute increases. Empirically, LoopFormer not only preserves the
latent reasoning abilities reported in prior work, but also outperforms baseline looped models on
reasoning benchmarks and closes much of the gap with iso-FLOP non-looped models. This creates
an opportunity to study thought trajectories as a new lens on reasoning in looped models. Moreover,
unlike early-exit mechanisms that often collapse to degenerate states, LoopFormer maintains stable
refinement: both perplexity and reasoning scale gracefully with the compute budget.

The key contributions of this paper are summarized as follows:

– We formulate a class of shortcut-modulated looped Transformers for language modeling that con-
ditions each pass on internal time and step sizes.

– We introduce a shortcut-consistency training protocol over families of step schedules that enables
compute-budgeted inference (elastic depth) without retraining.

– We analyze representation dynamics across loop iterations using multiple geometric and
information-theoretic metrics (anisotropy, curvature, entropy, CKA), finding that adaptive early-
exit looped models exhibit representational collapse, while our shortcut-modulated models main-
tain evolving, non-degenerate states.

– We demonstrate consistent performance-per-compute gains in both perplexity and zero-shot rea-
soning across diverse language benchmarks; ablations isolate the roles of time/step conditioning
and offer practical guidance for choosing trajectories under fixed budgets.

2 RELATED WORKS

Recursive / Looped Transformers. Parameter sharing provides an orthogonal route to efficiency
and effective depth. The Universal Transformer demonstrated that repeatedly applying a single
block can match the representational capacity of deep non–shared stacks, while also introducing
adaptive computation time Dehghani et al. (2018). ALBERT further showed that extensive cross-
layer weight-tying yields substantial parameter savings during pretraining, without compromising
downstream performance Lan et al. (2019). Deep Equilibrium Models (DEQ) extend this paradigm
by defining an implicit infinitely deep, weight–tied transformation solved via fixed-point iteration
and implicit differentiation Bai et al. (2019), with related equilibrium and recurrent architectures also
explored in vision and multimodal contexts Jaegle et al. (2021); Yang et al. (2022). More recent work
has studied looping as programmable computation Giannou et al. (2023), iterative data-fitting or
optimization solvers Yang et al. (2023), mechanisms for algorithmic length generalization Fan et al.
(2024), and even the Turing-completeness of looped decoders for certain graph algorithms De Luca
& Fountoulakis (2024). Most relevant to our work, Time-Modulated Looped Transformers (TMLT)
Xu & Sato (2024) analyze the expressive power of looped Transformers in language modeling,
showing that conditioning on timestep (loop index) improves scaling and perplexity. Our approach
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builds on this insight but extends it by conditioning on both normalized time and step size, and by
training across families of trajectories rather than a single fixed schedule.

Dynamic compute. Dynamic compute allocation reduces inference cost by skipping or reallo-
cating computation where it is not needed Bengio et al. (2015); Huang et al. (2016); Panda et al.
(2016). Early exiting halts processing for “easy” inputs at intermediate layers, allowing deeper
computation only for harder cases Elbayad et al. (2019); Schuster et al. (2022); Elhoushi et al.
(2024). Other approaches include layer dropping and pruning strategies for BERT-style models Fan
et al. (2019); Hou et al. (2020). Mixture-of-Experts (MoE) increases capacity through sparse expert
routing Shazeer et al. (2017); Fedus et al. (2022), while Mixture-of-Depths (MoD) Raposo et al.
(2024) reframes adaptivity as token-wise routing across layers, enabling fine-grained dynamic allo-
cation of depth. Despite these advances, the adaptation of dynamic compute techniques to exploit
the looping capability of recursive models has received little attention. A concurrent line of work,
Mixture of Recursions Bae et al. (2025), extends routing to recursive stacks by varying the number
of shared-block applications per token. In contrast, our approach does not route or halt computation
at the token level; instead, we train looped models to be budget-conditioned, ensuring that the same
parameters operate robustly across user-specified loop budgets.

Latent reasoning. An increasing body of work investigates reasoning carried out within hid-
den states rather than through explicit chain-of-thought prompting Goyal et al. (2023); Cheng &
Van Durme (2024); Pfau et al. (2024). Several approaches employ looped models to simulate multi-
step reasoning or to approximate chain-of-thought dynamics directly Hao et al. (2024); Saunshi et al.
(2025); Wang et al. (2025). In parallel, theoretical and empirical studies connect network depth and
algorithmic generalization to reasoning ability Merrill & Sabharwal (2023); Chen & Zou (2024);
Ye et al. (2024); Xu & Sato (2025). More recently, analyses suggest that looped Transformers pos-
sess an inductive bias for reasoning that strengthens with increasing effective computational depth
Saunshi et al. (2024; 2025). Collectively, this line of work frames such abilities as latent reason-
ing, wherein models perform iterative computations within their hidden-state space without explicit
verbalization. Our work leverages this inductive bias of looped models but emphasizes trajectory
robustness: ensuring that hidden-state computation remains informative even under shorter budgets,
while continuing to refine effectively at greater depths.

Time / shortcut modulation and conditioning. Conditioning networks on continuous time or re-
lated control variables has proven highly effective in generative diffusion modeling Ho et al. (2020);
Rombach et al. (2022); Lipman et al. (2022). Diffusion Transformers (DiT) Peebles & Xie (2023) in-
corporate timestep-conditioned adaptive normalization, while consistency-based training aligns so-
lutions across discretizations Song et al. (2023). Recent shortcut and one-step diffusion approaches
further distill long trajectories into a few steps by enforcing consistency between coarse and fine
solvers Frans et al. (2024); Lu & Song (2024). These ideas are increasingly migrating into language
modeling: for example, Time-Modulated Looped Transformers (TMLT) Xu & Sato (2024) adapt
DiT-style timestep conditioning to recursive language models, demonstrating improved scaling and
perplexity. LoopFormer extends this trend by conditioning each loop not only on normalized time t
but also on the step size ∆t, and by training across families of sampled trajectories with a shortcut-
consistency objective. This design enables robust performance under arbitrary user-specified com-
pute budgets, without relying on per-token halting or routing mechanisms.

3 SHORTCUT-MODULATED LOOPED MODELS FOR LATENT REASONING

3.1 NOTATION AND PROBLEM STATEMENT

We denote by X = (x1, . . . , xT ) a sequence of T tokens drawn from a vocabulary V . The token
embeddings are obtained via Etok(X) ∈ RT×d. Without loss of generality, positional embeddings
can be added in a one-shot manner or applied through alternatives such as RoPE; in this work, we
adopt the former for simplicity. The initial hidden states are therefore

h(0) = Etok(X) + Epos[1:T ] ∈ RT×d.

A range of looping mechanisms for looped Transformers has been studied in prior work Takase &
Kiyono (2021); Saunshi et al. (2025); Bae et al. (2025; 2024), including cycle, middle-cycle, and
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(b) Budget-conditioned trajectories

Figure 1: (a) LoopFormer conditions each loop on normalized time t and step size ∆t, modulat-
ing RMSNorm scales and gating the MHSA/FFN residuals. (b) During inference, shorter-budget
trajectories (M < L) approximate the full L-step route; more budget yields progressively refined
next-token distributions while preserving utility at low budget.

relaxed-cycle variants. Since our focus is on trajectories and their representation dynamics, we adopt
the simplest cycle design, where a stack of k Transformer blocks, denoted by Φk(·), is recursively
applied on the hidden state. Following Saunshi et al. (2025), we write (k ⊗ L) for a looped model
with k blocks repeated L times (approximate cost kL FLOPs), and (kL ⊗ 1) for a non-looped
Transformer of comparable depth.

LoopFormer applies Φk(·) for M iterations (1 ≤ M ≤ L), conditioning each loop i on the pair
(ti−1,∆i), where 0 = t0 < t1 < · · · < tM = 1 are cumulative normalized timesteps, and
∆i = ti − ti−1 is the step size of the i-th iteration. We refer to ∆M = (∆1, . . . ,∆M ) as a
trajectory, constrained by

∑M
i=1 ∆i = 1.

The maximum trajectory corresponds to L uniform steps with ∆i =
1
L for all i. At inference, a user

specifies a compute budget M and provides a step schedule ∆M such that
∑M

i=1 ∆i = 1.

3.2 ARCHITECTURE

We introduce LoopFormer, a looped language modeling architecture designed to remain faithful to
the standard Transformer while incorporating trajectory-based conditioning. Figure 1a provides an
overview. In this section we describe the forward pass and the core components of the model.

LoopFormer is a looped decoder-only Transformer in which a single shared stack is applied iter-
atively; the key novelty is how each loop is conditioned. At iteration i, the model conditions on
the pair (ti−1,∆i), where ti−1 ∈ [0, 1] is the cumulative normalized time and ∆i ∈ (0, 1] is the
step size. Both scalars are encoded with sine–cosine frequency embeddings and projected by small
MLPs to obtain et and e∆, which are summed to form ei = et + e∆. This signal modulates the
LoopFormer Block: an MLP maps ei to scaling (γ1, γ2) for the two RMSNorm layers and to gating
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Algorithm 1 LoopFormer Training

while not converged do
Sample batch (X,Y )
Construct max trajectory ∆L

Sample shortcut length S ∼ Unif{1, . . . , L− 1}
Sample trajectory ∆S of length S
h(L) ← Φk(h

(0);∆L) ; h(S) ← Φk(h
(0);∆S)

LL ← CE(LMHead(h(M)), Y )
LS ← CE(LMHead(h(S)), Y )
Lcons ← ∥ stopgrad(h(L))− h(S)∥2
Update θ using ∇θ

(
LL + λ1LS + λ2Lcons

)

Algorithm 2 LoopFormer Inference

Given input X
Choose budget M ≤ L
Sample schedule ∆M

Initialize h(0) ← Etok(X) + Epos

for i = 1 to M do
h(i) ← Φk

(
h(i−1); ti−1,∆i

)
return LMHead(h(M)[:,−1])

(α1, α2) applied immediately before the residual connections of MHSA and FFN. As a result, each
loop is explicitly aware of its location and granularity in the trajectory, enabling consistent behavior
across coarse- and fine-grained schedules.

Relation to prior work. For the design of our architecture, we follow the overall approach of
looped models such as ALBERT and recent looped decoders Lan et al. (2019); Saunshi et al. (2025),
and focus our novelty on trajectory conditioning. Our modulation mechanism is inspired by Diffu-
sion Transformers (DiT) Peebles & Xie (2023) and shortcut/one-step diffusion Frans et al. (2024),
which condition blocks on a timestep via adaptive normalization (adaLN), regressing scale/shift and
gates from a time embedding. In the looped language model setting, TMLT Xu & Sato (2024)
adopts this DiT-style idea by using the loop index as time (with RMSNorm). LoopFormer extends
this conditioning by using both normalized time t and step size ∆t, and by training over families
of trajectories with a shortcut-consistency objective, yielding trajectory-consistent representations
suitable for budget-conditioned inference.

3.3 TRAINING & INFERENCE WITH LOOPFORMER

A key goal of LoopFormer is to train models that perform well even with fewer than L loops,
thereby enabling elastic depth at inference time. Unlike prior adaptive-compute approaches that
rely on per-token halting or early exits, our framework uses a user-defined compute budget, similar
in spirit to diffusion models. Empirically, we find that naive early exiting in looped architectures
leads to stagnant representations in later iterations, under-utilizing depth. To address this, Loop-
Former leverages shortcut conditioning together with a consistency loss that encourages trajectories
of different lengths to converge toward the full trajectory of length L. The overall objective is:

L = LL + λ1 LS + λ2 Lcons,

where LL and LS denote next-token prediction losses for the longest and sampled shortcut trajecto-
ries, respectively, and Lcons is a stop-gradient consistency loss aligning per-token logits of shorter
trajectories to those of the longest trajectory. We set λ1 = λ2 = 0.1 in all experiments. Algorithm 1
formalizes the training procedure.

Shortcut trajectory sampling. Given a LoopFormer (k ⊗ L) and the maximum trajectory ∆L,
during training, we additionally sample a shortcut trajectory ∆S with budget 1 ≤ S < L. For
simplicity, at each batch we first sample a shortcut length S ∼ U{1, . . . , L − 1}, then uniformly
draw the discrete step schedule ∆S over [0, 1] such that

∑S
i=1 ∆i = 1. This ensures exposure to

both long and short trajectories during training.

Inference with elastic depth. At inference time, LoopFormer can be deployed flexibly at any
budget M ≤ L. A user specifies M and ∆M , and the model produces outputs that scale smoothly
with compute, without retraining. Figure 1b provides a conceptual illustration of budget-conditioned
refinement: for any chosen budget, shorter routes are trained to approximate the t=1 endpoint, with
quality improving as steps increase. Algorithm 2 outlines the inference procedure.
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Table 1: Perplexity and zero-shot reasoning for (3⊗ 8) looped models under three compute budgets
(24×, 12×, 6×). At 24× we also report fixed-depth baselines; at 12×/6× we compare against Base
(12 ⊗ 1) and (6 ⊗ 1). While depth-elastic, LoopFormer narrows the perplexity gap to Base and is
competitive on reasoning, outperforming other looped variants, especially at higher budgets.

Perplexity ↓ Language Tasks (Accuracy) ↑
Params / FLOPs

Pile FineWeb-Edu OpenWebText COPA HS LB OBQA PIQA Race SciQ ARC SIQA WG Avg Acc

Budget: 24x

Base (24⊗ 1) 24x / 24x 9.49 20.7 20.08 61 35.04 41.96 27.6 66 29 70.1 33.43 38.18 50.4 45.27

Base-Loop (3⊗ 8) 3x / 24x 10.91 24.53 24.53 61 30.46 34.68 27 63.22 28.8 63.7 31.71 38.43 49.8 42.88

TMLT (3⊗ 8) 3x / 24x 10.38 22.87 21.99 65 32.34 39.06 27.8 63.11 29.67 69.8 31.67 36.95 51.54 44.69

Naive-Loop-EE (38) 3x / 24x 11.6 26.55 25.64 66 29.68 31.52 27 62.24 28.33 65.5 31.64 36.64 50.59 42.91

Base-Loop-EE-Cons (3⊗ 8) 3x / 24x 11.56 25.33 24.41 66 30.54 32.19 26.8 62.13 28.23 64.9 31.45 37.4 52.88 43.25

TMLT-EE (3⊗ 8) 3x / 24x 10.7 24.07 23.17 65 31.03 35.14 28.4 63.11 28.8 68.8 31.74 37.41 50.83 44.03

LoopFormer - Ours (3⊗ 8) 3x / 24x 10.28 22.87 21.98 66 32.3 38.27 26.8 63.33 30.81 68 32.71 37.97 51.94 44.81

Budget: 12x

Base (12x1) 12x / 12x 11.13 25.28 24.28 67 32.72 37.78 26.2 64.69 29.86 69.1 32.29 38.38 51.3 44.93

Naive-Loop-EE (34) 3x / 12x 11.66 26.74 25.81 65 29.35 31.28 26 61.75 28.32 64.4 31.15 36.8 51.85 42.59

Base-Loop-EE-Cons (3⊗ 4) 3x / 12x 12.0 27.72 26.68 63 29.72 25.6 27 61.26 28.04 58.4 30.06 36.23 51.7 41.1

TMLT-EE (3⊗ 4) 3x / 12x 12.18 28.28 27.11 60 29.88 27.73 26.4 62.02 28.8 61.4 30.59 36.69 51.54 41.5

LoopFormer - Ours (3⊗ 4) 3x / 12x 11.12 25.02 24.21 68 31 32.35 25.4 63.06 28.23 66.3 31.78 37.77 53.43 43.73

Budget: 6x

Base (6x1) 6x / 6x 11.13 25.28 24.28 64 30.45 33.45 25.6 62.51 28.04 67.5 31.07 36.18 48.54 42.73

Naive-Loop-EE (32) 3x / 6x 12.61 29.36 28.38 63 28.64 27.28 24.6 61.48 26.41 62.3 29.91 35.41 50.67 40.97

Base-Loop-EE-Cons (3⊗ 2) 3x / 6x 15.07 35.95 34.88 59 28.28 18.49 25.6 59.52 25.16 53.8 28.94 34.65 52.72 38.62

TMLT-EE (3⊗ 2) 3x / 6x 15.79 37.83 37.84 57 28.18 17.09 25.08 58.68 26.41 50.01 28.26 34.9 50.27 37.59

LoopFormer - Ours (3⊗ 2) 3x / 6x 14.3 33.45 32.46 63 28.69 26.14 26.6 60.1 25.74 58.6 29.29 35.26 50.2 40.36

4 EXPERIMENTS

We evaluate latent reasoning, scalability, efficiency, and representation dynamics of our shortcut-
modulated looped language models. Following Tay et al. (2022); Saunshi et al. (2025), we compare a
24-layer, ∼1B-parameter non-looped Transformer with FLOP-matched looped variants. All models
use a GPT-style decoder Radford et al. (2019) with NanoGPT configurations. Training is performed
on a deduplicated subset of The Pile Gao et al. (2020) for 25B tokens in accordance with Chinchilla
scaling Hoffmann et al. (2022). See Appendix A for details. Unless otherwise specified, all reported
results use uniform step sizes at inference: for a compute budget M , ∆i = 1/M for all i.

4.1 LATENT REASONING AND PERPLEXITY

We train looped models under different parameter and compute budgets. Using the notation (k⊗L)
for a k-block Φk unrolled L times, we consider k ∈ {1, 2, 3} and train with maximum loops L ∈
{8, 12, 24}. Fixed-loop models are trained and evaluated with the same L, whereas depth-elastic
models support inference at any M ≤ L. In this section we use kL as a proxy for FLOPs when
comparing baselines, ignoring embedding/unembedding costs; Table 1 summarizes the results for
k = 3.

Evaluation metrics and benchmarks. Following Saunshi et al. (2025); Geiping et al. (2025); Bae
et al. (2025), we report perplexity and downstream zero-shot accuracy. Perplexity is measured on
FineWeb-Edu Penedo et al. (2024), OpenWebText Gokaslan & Cohen (2019), and The Pile. For
latent reasoning, we report zero-shot accuracy on ten established benchmarks spanning a range of
reasoning difficulty: COPA Roemmele et al. (2011), HellaSwag (HS) Zellers et al. (2019), LAM-
BADA (LB) Paperno et al. (2016), OpenBookQA (OBQA) Mihaylov et al. (2018), PIQA Bisk et al.
(2020), RACE Lai et al. (2017), Social IQA (SIQA) Sap et al. (2019), ARC Clark et al. (2018),
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Figure 2: Scaling with layers and loops. (a) Perplexity on The Pile across (k, L) and inference
budgets M ≤ L; larger k lowers perplexity at fixed M , and additional loops further reduce it.
(b) Average zero-shot reasoning accuracy on 10 tasks for the same settings; more loops improve
reasoning at fixed k. Across budgets, LoopFormer scales smoothly without collapse and consistently
outperforms other looped baselines.

SciQ Welbl et al. (2017), and WinoGrande (WG) Sakaguchi et al. (2021). Where available, we use
normalized accuracy; for ARC we report the average over Easy and Challenge.

Baselines. We compare LoopFormer against two groups of baselines.

Fixed-depth models: (a) Base: a non-looped Transformer; (b) Base-Loop: a standard looped model
as in Saunshi et al. (2025); (c) TMLT: a looped model with timestep conditioning Xu & Sato (2024).

Depth-elastic models: (i) Base-Loop-EE: naive early exiting applied to the basic looped model;1
(ii) Base-Loop-EE-Cons: (i) augmented with our consistency loss during training; (iii) TMLT-EE:
early exiting and consistency training applied to TMLT to enable depth elasticity.

Findings. Table 1 highlights three trends:

– Consistent with Mohtashami et al. (2023); Saunshi et al. (2025), looped models trail non-looped
baselines on perplexity, reflecting the role of parameters in memorization. However, LoopFormer
closes much of this gap, surpassing even fixed-depth looped variants.

– In zero-shot reasoning, looped models benefit from iterative refinement and can approach iso-
FLOP non-looped baselines; especially at higher budgets, LoopFormer is the most competitive
among looped models.

– Under reduced budgets, LoopFormer maintains high utility: at 12× it remains close to Base
(12⊗1) on both perplexity and reasoning, indicating that budget-conditioned trajectories preserve
informative representations rather than collapsing.

We next examine the effect of the number of layers k and the number of loops L, and compare
against depth-elastic alternatives under more compute configurations.

4.2 NUMBER OF LAYERS VS. NUMBER OF LOOPS

We study how perplexity and reasoning change as the number of Transformer layers per block (k)
varies. We train k ∈ {1, 2, 3} with maximum loops L ∈ {8, 12, 24}, then evaluate across multiple
inference budgets (M ≤ L). Figure 2a reports perplexity and Figure 2b reports average zero-shot
reasoning accuracy across benchmarks.

As the plots show, both perplexity and reasoning improve with larger k and more iterations. Loop-
Former preserves these trends under budgets (M ≤ L): shorter trajectories remain informative

1Akin to Recurrent Depth Geiping et al. (2025) without sandwich normalizations or a randomly initialized
recurrent state. We trained both variants; the simpler one performs better.
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(b) Anisotropy
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Figure 3: Representation metrics over normalized depth. Panels show (a) curvature, (b) anisotropy,
and (c) normalized prompt entropy. Early-exit baselines remain flat, indicating minimal change
with additional loop steps, whereas LoopFormer exhibits sustained evolution that rises through mid-
depths and tapers near the end, suggesting useful depth-elastic dynamics.
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(c) TMLT-EE

Figure 4: CKA similarity across loop steps. Each heatmap reports cross-step CKA within a model
family. Depth-elastic baselines show high CKA (indicating little change across loops), suggesting
stagnation. LoopFormer exhibits progressive drift, especially toward the later steps.

and added loops yield smooth gains without collapse. Our consistency-augmented training also
improves the scaling of Base-Loop and TMLT in the depth-elastic regime.

4.3 ANALYZING REPRESENTATION COLLAPSE IN LOOPED TRANSFORMERS

The role of depth in Transformers has been widely examined through scaling laws and theory Ka-
plan et al. (2020); Csordás et al. (2025), with a recurring observation that very deep stacks can
exhibit representation degeneration (or collapse), where hidden states change little across layers
Ethayarajh (2019); Dong et al. (2021); Godey et al. (2024). Several works attribute this to an induc-
tive bias of self-attention toward uniformity, including rank decay in attention maps with depth Dong
et al. (2021). Related studies of anisotropy Razzhigaev et al. (2023); Godey et al. (2024) report pro-
nounced effects in language modeling, and these effects could be amplified in looped architectures
where a single block is repeatedly applied Dong et al. (2021).

We analyze token dynamics along the computation depth using four complementary metrics: (i)
anisotropy Godey et al. (2024) within a layer, measured as average pairwise cosine similarity among
tokens in the prompt; higher values indicate more aligned (less diverse) directions. (ii) Curva-
ture Hosseini & Fedorenko (2023), a local geometric measure of how rapidly token representations
change direction across neighboring positions. (iii) Prompt entropy Skean et al. (2025), a matrix-
based estimate of how spread-out token embeddings are across feature dimensions; higher entropy
suggests greater diversity and lower redundancy. (iv) CKA similarity Kornblith et al. (2019) across
loop steps, quantifying representational similarity between different iterations of the shared block.
While prior work studies these metrics in various architectures and their correlation with downstream
performance Garrido et al. (2023); Skean et al. (2025), here we use them primarily as diagnostics to
assess whether looped models use additional computation (iterative depth) or stagnate.
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(c) Perplexity (2⊗ 12; M = 6)

Figure 5: Performance across length-M trajectories. (a,b) enumerate all M=4 schedules for Loop-
Former (3⊗ 8), reporting perplexity and average zero-shot accuracy; (c) shows perplexity for M=6
schedules of (2 ⊗ 12). Even at fixed budget, trajectory choice matters: spreads are large, and top
schedules allocate coarser steps early and finer steps late.

Figure 3 summarizes curvature, anisotropy, and prompt entropy across loop steps; Figure 4 reports
cross-step CKA. Early-exit looped baselines show flat trajectories on all three metrics and high CKA,
indicating stagnation. In contrast, LoopFormer evolves: early steps have lower curvature, weaker
angular alignment, and lower entropy; as steps progress, curvature and entropy rise and alignment
increases, then all three taper near the final step as the model prepares for unembedding.

Overall, these patterns suggest that LoopFormer maintains useful representational dynamics across
loops, with shorter trajectories remaining informative and longer trajectories providing additional
refinement, rather than converging prematurely to a static state. We view this as evidence that
shortcut conditioning and consistency training help avert collapse in depth-elastic looped models.

4.4 HOW TO CHOOSE TRAJECTORIES UNDER A FIXED BUDGET

A practical question for our depth-elastic models is: given a budget M ≤ L, how should we choose
∆M? Beyond average gains, we ask which trajectories work best and which parts of time contribute
most. The representation analyses in Figure 3 and Figure 4 suggest a pattern: early steps produce
more similar states, activity rises mid/late, then tapers near the end.

To probe this directly, we run a toy yet exhaustive study. For LoopFormer (3 ⊗ 8) with budget
M = 4, we enumerate all trajectories with step sizes summing to 1 (aligned to training granularity)
and measure perplexity and average zero-shot accuracy (Figure 5a, Figure 5b). Despite identical
compute, performance varies across schedules (spread ∼1.4 perplexity and ∼1.3 accuracy points).
Repeating for (2⊗ 12) with M = 6, the perplexity spread grows to nearly 3 (Figure 5c).

Findings. (1) Even under uniform training over budgets and times, some schedules outperform
others by wide margins. (2) The best schedules for perplexity and for downstream reasoning are
close but not identical; both favor allocating larger steps early and finer steps late.

5 DISCUSSION AND FUTURE DIRECTIONS

We introduced LoopFormer, a looped Transformer that conditions each iteration on normalized time
t and step size ∆t, trained across trajectories with a shortcut–consistency loss. This framing induces
thought trajectories in hidden space: under a fixed budget, shorter routes yield useful intermedi-
ate states, and additional steps refine them toward a shared t=1 endpoint, realizing latent reason-
ing while supporting budget–conditioned (elastic) inference without retraining. Empirically, Loop-
Former delivers strong performance–per–compute on perplexity and consistently improves down-
stream zero-shot reasoning, while avoiding the representational stagnation seen in naive early-exit
baselines. Limitations include global (sequence-level) rather than instance/token-adaptive budget-
ing, added training overhead from multi-trajectory consistency, and correlational (not causal) repre-
sentation analyses. Promising directions include instance-conditioned schedule policies and deeper
theory/diagnostics of the representation space.
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APPENDIX

A TRAINING AND IMPLEMENTATION DETAILS

Hardware and framework. All models are trained on 4×H100 (80 GB) GPUs using the open-
source NanoGPT training stack as a reference implementation.

Data and tokens. Unless otherwise specified, we run each experiment for 50,000 optimizer steps
with a global batch size of 48 sequences and block size 1024 (context length). This corresponds to
approximately ∼25B training tokens in total.

Optimization. We use AdamW with weight decay 2 × 10−1, cosine learning-rate decay (per
NanoGPT), peak learning rate lr = 6 × 10−4, minimum learning rate min lr = 6 × 10−5,
and 4,000 warmup steps, which we found important for stability. Similar to observations in Geip-
ing et al. (2025), we occasionally observe training instabilities at depth; warmup and cosine decay
mitigate these in practice. Unless noted, other optimizer and training defaults follow NanoGPT.

Model hyperparameters. Following Saunshi et al. (2025), we use hidden size d = 2048 and
nheads = 32 for all (k⊗L) configurations. The feed-forward dimension is dff = 5120 with a standard
two-layer GELU MLP. All normalizations are RMSNorm. We use learned positional embeddings
added to token embeddings (NanoGPT default). We also tested RoPE Su et al. (2024) and observed
slightly better small-scale performance, but we use learned positions for simplicity and efficiency.
We tie input and output embeddings (weight tying).

LoopFormer conditioning. We use two embedding modules, one for normalized time t ∈ [0, 1]
and one for step size ∆t ∈ (0, 1]. Each maps a scalar input to a d-dimensional conditioning vector
via (i) fixed sinusoidal Fourier features of width Df = 256 and max period 10,000, followed by (ii)
a 2-layer MLP with hidden size d and SiLU nonlinearity:

ϕ(τ) = MLP
(
[cos(τω1), sin(τω1), . . . , cos(τωDf/2), sin(τωDf/2)]

)
∈ Rd,

where ωk = exp
(
− k−1

Df/2
log 10,000

)
for k = 1, . . . , Df/2. Given batchwise scalars t and ∆t, we

compute et = ϕ(t) and e∆ = ϕ(∆t) and sum them to obtain the per-iteration conditioning signal
c = et + e∆ ∈ Rd.

Conditioning is applied inside each LoopFormer block via an AdaLN-style modulator: a small
MLP takes c and outputs 4d parameters, which we split into (αmsa, αmlp, γmsa, γmlp). We use
RMSNorm (with no learned affinity) before MHSA and FFN, and apply multiplicative scaling and
residual gating as

x← x+ αmsa ⊙MHSA
(
RMSNorm(x)⊙ (1 + γmsa)

)
,

x← x+ αmlp ⊙ FFN
(
RMSNorm(x)⊙ (1 + γmlp)

)
,

broadcast over the sequence length. The modulator is a SiLU followed by a linear layer with
output size 4d, and is zero-initialized (weights and bias), ensuring the initial behavior matches the
unmodulated backbone and that conditioning is learned stably.

TMLT baseline. For Time-Modulated Looped Transformers, we follow the authors’ setup and
condition each iteration on the loop index, implementing the timestep modulation as described in
their paper.
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