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Abstract

Attribution methods seek to explain language model predictions by quantifying
the contribution of input tokens to generated outputs. However, most existing
techniques are designed for encoder-based architectures and rely on linear approxi-
mations that fail to capture the causal and semantic complexities of autoregressive
generation in decoder-only models. To address these limitations, we propose
Hessian-Enhanced Token Attribution (HETA), a novel attribution framework
tailored for decoder-only language models. HETA combines three complementary
components: a semantic transition vector that captures token-to-token influence
across layers, Hessian-based sensitivity scores that model second-order effects, and
KL divergence to measure information loss when tokens are masked. This unified
design produces context-aware, causally faithful, and semantically grounded attribu-
tions. Additionally, we introduce a curated benchmark dataset for systematically
evaluating attribution quality in generative settings. Empirical evaluations across
multiple models and datasets demonstrate that HETA consistently outperforms
existing methods in attribution faithfulness and alignment with human annotations,
establishing a new standard for interpretability in autoregressive language models.

1 Introduction

As machine learning systems achieve increasingly high performance, they are being deployed in
high-stakes domains such as healthcare, autonomous driving, and finance. However, despite their
success, deep neural networks remain difficult to interpret due to their large parameter spaces, layered
architectures, and nonlinear computations, earning them the reputation of “black box” models [1].
This opacity can erode trust, impede debugging, and raise ethical or regulatory concerns. To address
these challenges, the field of Explainable AI (XAI) has emerged, with the goal of making model
decisions more transparent, interpretable, and trustworthy.

A wide range of interpretability methods such as LIME [2], KerneISHAP [3]], Integrated Gradients [4],
Grad-CAM [5]], and Layer-wise Relevance Propagation (LRP) [[6] have been developed under the
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classical feature attribution paradigm, which aims to quantify the contribution of input features to a
model’s output. Most of these methods are based on linear or first-order derivative approximations
and assume local model linearity. However, this assumption often breaks down in the context
of autoregressive language models, where token interactions are nonlinear and highly contextual.
Despite their practical utility, these techniques frequently produce inconsistent attributions for the
same input and model [7], casting doubt on their reliability. Although some efforts have introduced
axiomatic foundations to formalize attribution [8, 9], a universally accepted definition of explanation
quality remains elusive. Furthermore, these attribution methods have primarily been designed for
encoder-based architectures, and recent work [10] shows that directly applying them to decoder-only
language models in generative tasks is non-trivial and often unfaithful. The discrepancy arises from
architectural and functional differences, where encoder models leverage bidirectional attention and
require a single attribution map, while decoder-only models generate outputs autoregressively and
demand attribution at each token position. Figure 1 illustrates the complexity of the attribution
task for a generative model, highlighting how input words contribute to the generation of a specific
output word. Although model-agnostic approaches have been proposed for generative settings [[10],
they typically ignore the dense semantic structure encoded in the internal layers of large language
models [[11}[12], thereby limiting their ability to capture deep token-level influence.

To address the shortcomings of gradient-based attribution methods in autoregressive models, we
propose Hessian-Enhanced Token Attribution (HETA), a framework tailored for decoder-only
architectures. HETA combines semantic flow tracing, Hessian-based sensitivity, and KL-based
information loss to yield faithful, token-level attributions. By modeling attention-weighted value flow
and capturing second-order and informational effects, HETA offers a principled and robust alternative
that respects the causal and contextual structure of generative language models. The key contributions
of this work are:

* We propose Hessian-Enhanced Token Attribution (HETA), a novel attribution method
for decoder-only language models that integrates semantic flow for causal directionality,
Hessian-based sensitivity for capturing second-order interactions, and KL-divergence for
quantifying information-theoretic impact.

* We construct and release a new curated dataset specifically designed for evaluating token-
level attributions in autoregressive generation tasks, enabling systematic assessment of
attribution faithfulness, robustness, and human alignment.

* We conduct extensive experiments across multiple decoder-only models and strong attribu-
tion baselines, showing that HETA consistently achieves higher faithfulness, robustness, and
semantic alignment, outperforming existing methods by a significant margin.

2 Motivation

Understanding which input tokens influence a model’s output is crucial for interpreting generative
transformers. However, existing attribution methods like gradients and attention alone are funda-
mentally limited in capturing the full scope of token influence. Attribution methods based solely
on attention weights [13] are known to be unreliable. While attention indicates where the model
“looks,” it does not necessarily reflect what influences the output. [[14]] demonstrated that attention
weights can be perturbed without affecting model predictions, highlighting that attention is not a
faithful explanation. Moreover, attention-based methods often miss indirect or multi-hop influence
paths using skip connections as shown in [[15], and in decoder-only models, they can violate causality
by attributing importance to future tokens. Since attention lacks sensitivity to output changes and
higher-order interactions, it should not be treated as a standalone attribution method.

First-order attribution methods, such as InputXGradient[[16], DIG[17] and Integrated Gradients[4],
estimate the influence of input tokens by measuring the local sensitivity of the model output with
respect to input features. While these methods are computationally efficient and widely used, they
suffer from a fundamental limitation: they only capture local, linear (first-order) effects, and can fail
to detect influence when the function’s curvature is nonzero but the gradient is zero.

To define it mathematically, let f : R™ — R be a twice-differentiable function (e.g., f(z) =
log P(x1 | x<r) in an autoregressive language model). Then, there exist inputs © € R™ and



coordinates ¢ € {1,...,n} such that:
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To explain this, consider the second-order Taylor expansion of f(x) around a reference point z, € R™:

F(a) = Fa0) + ¥ (20) (@ — o) + 3 (x — 20) TV J()(x ~ w0)

for some £ € [z, ] on the segment between xo and z. If V f(z() = 0, the gradient term vanishes:

£() = flwo) = 5 20)T V2 F(€) (& ~ o)

Thus, the function can still change solely due to the second-order curvature encoded in the Hessian,
even when the gradient is zero. This illustrates that first-order methods like gradients or IG can miss
such influence entirely. As an example, consider a simple scalar function f : R? — R:

f(z) =ReLU(w'z +b), w=][1,1]", b=-2
Let 2o = [0,0]". Then:

w'azg+b=-2<0= f(zg) =0, Vf(zg)=0
Now perturb the input slightly: = = [2.1,0] . Then:

w'r+b=01>0= f(z)=0.1%# f(xo)

Although the gradient at xq is zero, the function still responds to the input, meaning that attribution
based only on the gradient would miss this influence.

Gradient-based and attention-based attribution methods each capture only a limited aspect of influence
in transformer-based generative models. Gradients can vanish in flat or saturated regions, missing
non-linear or second-order effects, while attention weights often fail to reflect actual causal or output-
sensitive influence (please see Appendix [AT]|for further details). These shortcomings motivate our
Hessian-Enhanced Token Attribution (HETA) framework, which integrates semantic flow, second-
order sensitivity, and information-theoretic measures to provide more faithful and robust attributions.

3 Background

Understanding token-level influence in transformer mod-
els requires going beyond raw attention weights or local
gradients. Two complementary strands of research have
highlighted important limitations and proposed more
robust alternatives. [18|] demonstrated that attention
weights alone are insufficient for faithful interpretation,
as they neglect the scale of the value vectors being at-
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tended to. They proposed a norm-based approach that the lazy dog
combines attention weights with the magnitude of the lazy dog
transformed value projections, offering a more accurate lazy dog

view of token influence within self-attention. This for- _ i o
mulation captures not only alignment (via attention) but Ligure 1: Input importance distributions
also semantic strength (via vector norms), leading to for a generative task using our proposed
more faithful attributions. HETA method.

Separately, Hessian-based sensitivity methods provide
deeper insight into model behavior by accounting for second-order interactions between inputs and
outputs. Specifically, the Hessian of the log-likelihood with respect to input embeddings,

HT = V§( 10g P(JET | 1‘<T),
captures local curvature and reveals how token effects manifest in nonlinear regions of the model’s
decision surface. Unlike first-order methods which can fail in flat regions or under poor baseline
selection, second-order methods remain informative even when gradients vanish. Prior studies

([19], [20], [21]]) support the use of Hessian-based approaches to uncover latent influences in deep
architectures.

Together, these techniques underscore the importance of considering both semantic flow and higher-
order sensitivity to capture faithful token attributions in transformer models.



Table 1: Attribution alignment on the curated dataset using the DSA (Dependent Sentence
Attribution) metric. Higher DSA scores reflect stronger alignment between attribution and human-
annotated tokens. HETA achieves the highest DSA across all models. Mean over 3 independent runs
and std < £+0.05

Attribution Method GPT 6B LLaMA-3.18B OPT 6.7B Qwen2.5 3B

Input x Gradient -0.34 -0.28 -0.41 -0.31
Integrated Gradients -0.12 -0.09 -0.18 -0.14
Gradient SHAP -0.25 -0.21 -0.30 -0.22
LIME -0.31 -0.27 -0.36 -0.29
Attention Rollout -0.44 -0.39 -0.52 -0.41
fAML 2.10 2.30 2.05 2.20
Progressive Inference 2.65 2.88 2.40 2.73
SEA-CoT 2.92 3.15 2.77 2.85
DIG 2.30 2.54 2.10 2.45
ReAGent 3.60 3.78 3.35 3.50
HETA (Ours) 4.80 5.10 4.25 4.65

Variant Soft-NC 1  Soft-NST DSA T

Full HETA 9.78 231 4.70

Transition Only 3.12 1.52 2.21

Hessian Only 2.89 1.45 297

KL Only 2.23 1.21 2.74

No Transition Gating 4.31 1.84 1.68

Uniform Transition 3.89 1.76 1.54

Table 2: Results averaged across all datasets with GPT-J-6B (higher is better). Mean over 3 runs; std
< £0.2.

4 Our Methodology

We propose Hessian-Enhanced Token Attribution (HETA), a principled framework that integrates
these perspectives into a unified influence decomposition. Our central view is that token attribution in
autoregressive models should estimate a token’s directional causal contribution to the log-likelihood
of the generated token, incorporating both semantic path dependencies and higher-order effects.
HETA achieves this through three complementary components: (1) Semantic Transition Influence,
which captures how tokens propagate influence through compositional attention-value flows across
layers, ensuring causal directionality. (2) Hessian-Based Sensitivity, which models second-order
curvature of the log-likelihood surface with respect to token embeddings, capturing nonlinear and
interaction effects. (3) Information-Theoretic Impact, which measures the change in predictive
uncertainty when a token is masked, providing a probabilistic interpretation of its contribution.
Together, these components form a mathematically grounded attribution score that balances structural,
geometric, and information-theoretic perspectives on token influence.

Let X = (x1,9,...,27) be an input sequence of tokens, each z; € V, where V is the vocabulary.
Let E € RIVI*4 be the input embedding matrix, and X = (ey,...,er) € R7*? be the embedded
input. A decoder-only language model fy, parameterized by 6, defines the conditional distribution
over the next token:

Pg(fL‘TJrl | CL’ST) = Softmax(fg(X))

Our goal is to compute a token-level attribution score Attr(z; — zp11) € R>o quantifying the con-
tribution of token x; to the prediction of ;. The attribution is constructed from three components:
semantic transition influence, Hessian-based sensitivity, and KL-based information loss.



4.1 Semantic Flow for Causal Token Influence

To enforce causal directionality, we model the flow of semantic influence from input tokens to the
predicted token through a transition influence vector. Rather than relying solely on raw attention
weights, which can be misleading [[14], we trace attention-weighted value outputs across all trans-
former layers, integrating both alignment (via attention) and semantic strength (via value projections),
as suggested by [18]. For each layer ! € {1,...,L} and head h € {1,..., H}, we compute:

7200 — ACP YOy, e RT*d

where AR e RT*T ig the attention matrix, V() € RT*4 are value vectors, and Wy € R2*4 ig
the learned output projection. Summing across heads and normalizing yields:

H L

1

20 =372, Ml = 2 Y 1=
h=1 =1

where Z = 25;1 Zlel \\z§l)||1. This gives a semantic transition influence vector M7 € R7T,
modeling token contributions via compositional attention flow.

4.2 Hessian-Based Sensitivity Analysis

To capture the second-order influence of each token on the model’s prediction, HETA incorporates
Hessian-based sensitivity, measuring how the curvature of the log-likelihood changes with respect to
token embeddings. Let X € R7*? be the input token embeddings. We compute the Hessian of the
log-probability of the final token x7 with respect to these embeddings:

Hp = V% log P(xy | xop) € RTIxTd (1)

For each token z;, we define the sensitivity score as the ¢; norm of all Hessian entries that correspond
to embedding dimensions of x;:

Td
ST =S "|Hyli-d: (i+1)-d,j)] .

j=1

This scalar score reflects how sensitive the model’s output is to perturbations in token x;, capturing
both local and joint effects in the input space.

4.3 KL Divergence for Information Contribution

To measure how much information each token contributes to the prediction, we compute the Kull-
back—Leibler (KL) divergence. For each token z;, we mask it (replace with a sentinel token such as
<unk>) and measure how the output distribution over the target token changes:

I(I’L — mT) = DKL [Porig(IT) || Pmasked(xT)] (3)
where Pyig(27) and Ppaskea(@7) are the predicted distributions over the vocabulary for the target

token, with and without token x;. A higher divergence indicates greater informational contribution
from x;.

4.4 Final Attribution Score

We aggregate all three components to compute the final attribution score for each token z; with
respect to predicting x:

Attr(z; — zp) = Mrpl[i] - (6 . SET) +v - I(x; — lT)) 4



where o, B € R>( are hyperparameters controlling the relative weighting of sensitivity and informa-
tion content. The transition vector Mr[i] € [0, 1] acts as a causal gate, ensuring that only tokens with
valid semantic paths to the output can contribute to attribution.

This unified formulation has several key advantages. First, the transition vector enforces causal
directionality and prevents spurious attributions to tokens outside the generative path. Second,
the Hessian term captures nonlinear interactions and second-order effects, extending beyond the
limitations of gradient-based methods. Third, the KL term links attribution to measurable changes
in predictive uncertainty, grounding it in information theory [12]]. Together, these components form
a causally faithful, curvature-aware, and semantically grounded attribution framework tailored for
decoder-only generative models.

5 Theoretical Properties and Bounds

In this section, we summarize the core theoretical guarantees of the Hessian-Enhanced Token
Attribution (HETA) framework, which together provide provable properties related to attribution
fidelity, sensitivity, and interpretability in autoregressive models (please see Appendix [A2]for further
details and more foundational theorems along with their proofs).

Divergence-Based Lower Bound. HETA guarantees that each token’s attribution is lower bounded
by its impact on the output distribution. Specifically:

Attr(z; — w7) > Mrli] - 8+ 3| Porig — Plgeall?

mq
via Pinsker’s inequality.
Spectral Hessian Upper Bound. The curvature-based sensitivity score is upper bounded by the
global spectral norm of the Hessian:
S < |[Hrlr

Attribution Upper Bound from Information Loss. HETA ensures attribution remains bounded by
the actual log-probability drop due to token masking:

Attr(z; — zp) < Mpli] - (- ST + 8- A)

Taylor-Based Functional Faithfulness. The second-order Hessian term ensures local approximation
of output change is bounded:

l9(@ + i) — 9(x) = (Va,g,€)] < GAmax(Haye,) - [leil®

Approximate Additivity. HETA approximately satisfies additive attribution in log-probability space:

T-1
Z Attr(z; — x7) = log P(z7 | x<1) — log P(zr | all masked)
i=1

6 Experiments and Results

6.1 Experimental Setup and Datasets

To evaluate the proposed HETA framework, we conduct experiments on both benchmark and curated
datasets covering a wide range of reasoning and generation complexity.

We use established benchmarks from [10]. The datasets considered are: (1) Long-Range Agreement
(LongRA) [22]], which evaluates a model’s ability to maintain coherence across long-distance
semantic dependencies by inserting distractor sentences between related word pairs (e.g., “Japan” and
“Tokyo”); (2) TellMeWhy [23]], a narrative QA dataset that requires multi-sentence causal reasoning
to explain a character’s motivations; and (3) WikiBio [24]], composed of structured Wikipedia
biographies where the task involves generating plausible and factual sentence continuations from
short prompts. In addition, we introduce a carefully curated dataset of 1,491 sentence pairs to
evaluate attribution alignment in a controlled, semantically interpretable setting. Sentences are
sampled from six mutually exclusive categories: Famous Landmarks and Natural Wonders,



Mathematical Expressions, Time and Life Events, Chemistry Concepts and Principles, Physics
Concepts and Principles, and Famous Music Landmarks and Venues. For each category, 10
semantically representative seed sentences are selected.

To construct evaluation instances, a sentence from one category is concatenated with a logically
predictable sentence from a different category. The final word in the second sentence is masked to
form the model’s prediction target. For example:

The Eiffel Tower in Paris offers breathtaking views and symbolizes the romance of
the French capital. The square root of sixteen is _.

Here, the correct target is four, and the meaningful contributing tokens are square, root, and sixteen.
Tokens from the first sentence are irrelevant to the prediction. All semantically influential tokens
in the second sentence are manually annotated by a single evaluator to ensure consistency across
the dataset. This setup allows precise evaluation of whether attribution methods correctly isolate
the causal, predictive input features. Additional details on the datasets and experimental setup are
provided in the Appendix

We evaluate attribution quality using three transformer-based decoder-only models: GPT-J 6B[235]],
LLaMA-3.1 8B, and OPT 6.7B[26]. This selection enables analysis across varying model capacities
and parameter scales. HETA is compared against a broad suite of attribution methods: Input x Gra-
dient[27]], Integrated Gradients[4]|, Gradient SHAP[3]], LIME, attention rollout[13]], FAML[28],
Progressive Inference[29], SEA-CoT[30], and ReAgent[10] baseline. To measure attribution
faithfulness, we use Soft-NC and Soft-NS [31]], modified for generative models as in [10], which
assess how output distributions shift under input perturbation based on attribution scores. For input
X = (x1,...,zp) with target token x; and attribution scores s;, we mask input embeddings with a
Bernoulli mask: =} = x; ©®e;, e; ~ Ber(1—s;), and compute Hellinger distance between original
and perturbed output distributions:

1
Apy, 4= 7 H\/ Pxi—+/Px s

Let P, ; denote the output with zero embeddings. The final metrics are:

) .

07 A - A ’ A
SOft_NS(Xa T, R) = max< Fot Px 7t) SOft-NC(X7 Tty R) = M
APU,t APo,t

where R is the retained token subset based on attribution scores.

Controlled Attribution Evaluation (DSA Metric): To evaluate attribution accuracy on the curated
dataset, we propose the Dependent Sentence Attribution (DSA) metric, which measures how much
attribution mass is assigned to human-annotated influential tokens in the dependent (second) sentence:

DSA = Zssi — fs,
i€S
where S is the set of annotated important token indices and fs;, ss; is the corresponding attribution
score for the first and second sentences. The final score is averaged across all instances. A higher
DSA indicates stronger alignment between attribution and true predictive causality, offering a
complementary evaluation signal to faithfulness metrics. We normalized the attribution scores and
reported the mean value in our experiment.

6.2 Results

We evaluate attribution quality using both perturbation-based faithfulness metrics (Soft-NC, Soft-NS)
and alignment-based analysis on a curated dataset (DSA). Experiments are conducted across four
transformer models: GPT-J 6B, LLaMA-3.1 8B, OPT 6.7B, and Qwen2.5 3B.

Tablepresents results on three benchmark tasks: LONGRA, TELLMEWHY, and WIKIBIO. Across
all model-task combinations, HETA achieves the highest Soft-NC and Soft-NS scores, demon-
strating superior attribution robustness under input perturbations. For instance, on GPT-J 6B, HETA



attains a Soft-NC of 10.3 on LONGRA and 9.2 on TELLMEWHY—exceeding the next best method,
ReAGent, by over 2x. Similar trends hold across LLaMA, OPT, and Qwen, confirming HETA’s
effectiveness across model scales. While ReAGent consistently ranks second, recent methods
such as DIG, SEA-CoT, and Progressive Inference show moderate improvements over traditional
techniques. In contrast, Input X Gradient, Integrated Gradients, LIME, and attention-based variants
often yield low or negative Soft-NS values, indicating instability and low attribution faithfulness. To
complement the above, we assess attribution alignment using the DSA metric on a curated dataset with
human-annotated ground truth (Table[T). Again, HETA outperforms all baselines by a substantial
margin, achieving DSA scores > 4.2 across all models. ReAGent remains the strongest non-HETA
method, followed by DIG and SEA-CoT. In contrast, gradient- and attention-based methods yield
negative DSA values, highlighting their inability to isolate causal tokens in the presence of distractors.
These results collectively indicate that HETA provides both faithful and semantically aligned
attributions, setting a new state-of-the-art across both benchmark and controlled evaluation settings
(please see Appendix [A3]for further details).

7 Ablation Studies

To assess the contribution of each component in Hessian-Enhanced Token Attribution (HETA), we
conduct a comprehensive ablation study in this section. Due to space constraints, a detailed ablation
study is provided in the Appendix[A4] Experiments are performed using the GPT-J 6B model on
three benchmark datasets, LongRA, TellMeWhy, and WikiBio, along with the curated attribution
dataset introduced in Section[6] We compare six configurations: (1) the full HETA model (Transition
+ Hessian + KL), (2) Transition Only, (3) Hessian Only, (4) KL Only, (5) No Transition Gating
(Hessian + KL without semantic weighting), and (6) Uniform Transition (equal token weighting
instead of the learned semantic transition vector Mr). Performance is evaluated using the same
metrics as our main experiments: Soft-NC and Soft-NS for attribution sensitivity on benchmark
datasets, and Dependent Sentence Attribution (DSA) for alignment with human-annotated tokens
on the curated dataset. We set the aggregation hyperparameters to 5 = 0.5 and v = 0.5, and
compute KL divergence using masked-token perturbation. All reported results are averaged across
1000 randomly sampled instances per dataset. Results in Table 4] demonstrate that each component
contributes meaningfully to HETA’s performance. Removing the semantic transition vector (Mr) or
replacing it with uniform weighting leads to significant drops in all metrics, confirming the importance
of modeling directional semantic influence across layers. Similarly, Hessian-based sensitivity and KL-
based information measures provide complementary improvements by capturing curvature-sensitive
effects and token-level information contributions

8 Related Works

Global explainability methods aim to extract broader patterns from LLMs. Probing techniques have
been instrumental in identifying syntactic and semantic representations encoded in LLMs ([32],
[33]). Studies by [34] and [35]] show that feed-forward layers and attention heads capture complex
linguistic knowledge. Mechanistic interpretability, as explored by [36], seeks to reverse-engineer
neural networks into comprehensible circuits, facilitating a deeper understanding of tasks like object
identification. Model editing techniques have also emerged as a promising area for explainability.
Hypernetwork-based editing [37] and causal tracing [38]] enable targeted modifications in model
behavior without extensive retraining, allowing models to adapt to specific inputs while maintaining
overall performance [39].

9 Conclusion and Limitations

We introduced HETA, a unified framework that improves attribution faithfulness and robustness over
strong baselines. However, it incurs higher runtime (~ 1.4 x), greater memory usage, and reduced
efficiency on long texts. These trade-offs highlight the need for optimization, and future work will
explore low-rank approximations and layer sampling for better scalability (see Appendix for
details).



Attribution Method LongRA TellMeWhy WikiBio
Soft-NCt  Soft-NSt  Soft-NC{*  Soft-NS{  Soft-NCI  Soft-NSt

GPT 6B

Input x Gradient 1.42 0.03 1.46 -0.22 0.49 -0.08
Integrated Gradients 1.87 0.45 1.54 0.04 1.38 0.77
DIG 2.05 0.50 1.68 0.06 1.50 0.83
Gradient SHAP 1.10 -0.12 1.89 -0.03 0.11 0.51
LIME 0.41 -0.01 0.25 -0.09 1.91 0.46
Attention Rollout 0.21 -0.10 0.05 -0.09 0.21 -0.02
fAML 1.35 0.28 1.12 0.25 0.99 0.22
Progressive Inference 1.54 0.32 1.30 0.31 1.10 0.35
SEA-CoT 1.68 0.37 1.45 0.36 1.22 0.39
ReAGent 5.40 1.14 4.50 1.02 1.98 1.09
HETA (Ours) 10.3 231 9.2 2.04 3.80 2.20
LLaMA-3.1 8B

Input x Gradient 1.50 0.04 1.45 -0.20 0.52 -0.06
Integrated Gradients 1.95 0.44 1.60 0.06 1.35 0.70
DIG 2.15 0.49 1.75 0.08 1.48 0.76
Gradient SHAP 1.05 -0.10 1.82 -0.02 0.10 0.50
LIME 0.39 -0.02 0.30 -0.08 1.85 0.43
Attention Rollout 0.23 -0.09 0.08 -0.10 0.20 -0.04
fAML 1.30 0.25 1.18 0.26 1.00 0.21
Progressive Inference 1.50 0.31 1.32 0.33 1.15 0.34
SEA-CoT 1.66 0.38 1.47 0.39 1.25 0.40
ReAGent 5.50 1.18 4.65 1.10 2.10 1.12
HETA (Ours) 10.8 2.35 9.5 2.20 4.20 2.30
OPT 6.7B

Input x Gradient 1.17 0.58 1.20 0.56 0.85 0.57
Integrated Gradients 0.13 0.13 0.13 0.10 0.13 1.15
DIG 0.15 0.15 0.15 0.12 0.15 1.20
Gradient SHAP -0.02 -0.11 0.01 -0.10 -0.02 0.59
LIME -1.48 0.01 -1.48 0.01 -1.48 0.61
Attention Rollout 0.46 -0.21 0.46 -0.21 0.46 -0.07
fAML 1.20 0.24 1.00 0.22 0.95 0.26
Progressive Inference 1.35 0.30 1.15 0.28 1.05 0.31
SEA-CoT 1.55 0.36 1.28 0.34 1.15 0.38
ReAGent 5.25 1.31 4.40 1.15 2.00 1.08
HETA (Ours) 9.9 2.60 8.6 2.25 3.70 2.10
Qwen2.5 3B

Input x Gradient 1.20 0.14 1.30 0.09 1.10 0.18
Integrated Gradients 1.90 0.56 1.65 0.47 1.45 0.79
DIG 2.05 0.61 1.80 0.50 1.60 0.85
Gradient SHAP 1.05 -0.08 1.82 0.00 0.12 0.49
LIME 0.38 -0.03 0.22 -0.07 1.85 0.43
Attention Rollout 0.23 -0.09 0.08 -0.10 0.20 -0.04
fAML 1.30 0.25 1.18 0.26 1.00 0.21
Progressive Inference 1.50 0.31 1.32 0.33 1.15 0.34
SEA-CoT 1.66 0.38 1.47 0.39 1.25 0.40
ReAGent 5.30 1.22 4.60 1.11 2.05 1.10
HETA (Ours) 10.1 2.50 9.0 2.10 3.90 2.20

Table 3: Attribution faithfulness on benchmark datasets (LongRA, TellMeWhy, WikiBio) across
four transformer models. Evaluation is based on Soft-NC and Soft-NS metrics. Higher values indicate
greater attribution robustness under input perturbations. HETA demonstrates superior performance
across all benchmarks. Mean over 3 independent runs and std < +0.06.
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Al Why Gradients and Integrated Gradients Can Both Fail in Flat Regions

In this section, we expand on the toy example from Section 3.1 to illustrate in detail how both standard
gradient-based attribution and Integrated Gradients (IG) can fail to assign meaningful importance to
an input feature, even when that feature clearly influences the model’s output. This failure arises in
neural networks with non-linear activations such as ReLU, which introduce locally flat regions where
gradients vanish.

Al.1 Gradient Failure in ReLU Flat Regions

Consider a simple scalar function defined as:

f(z) = ReLU(w "z + b)

where z € R?, w = {1

1] ,and b = —2. Let the input be:

ol

wimg+b=-2 = f(zo)=ReLU(-2) =0

Then:

Since —2 < 0, this point lies in the flat region of the ReLU function. The derivative of ReL.U is
defined as:
1 ifz>0

d
d—ReLU(z) =<0 ifz<0
* undefinedor 0 ifz =0

Applying the chain rule, the gradient of f(x) with respect to x is:

dReLU(w "z +b)

V(o) = dz

V(W z)=0-w= [8}

Implication. The standard gradient-based attribution assigns zero importance to both input features
at xo, because the ReLU unit is inactive. However, this attribution is misleading, as a small change in
the input can activate the unit and cause the output to change.

Al.2 Integrated Gradients Failure Along Flat Paths

Integrated Gradients (IG) attempts to improve upon raw gradients by integrating the gradient along
a straight-line path from a baseline z’ (e.g., all-zero input) to the actual input =. Formally, the IG
attribution for feature ¢ is:

1Gi(x) = (25 —a!) - / of@@ +a(z—a"))

=0 a‘Tz'

However, IG still relies on the model’s gradient along the interpolation path. If that path lies entirely
within the flat region of a nonlinearity, then:

of (¢ + a(z —2'))

o2, =0 Vae[0,1]=1Gi(x)=0

Example. Using the same setup as above, let 2o = [0,0] ", and choose the baseline 2’ = [-1, 1] .
The linear path from z’ to z is:

z(a)=a'+alzg—2)=[-1,-1]" +a-[1,1]"
For all a € [0, 1], we have:

w'z(a)+b=(1-a) (-2) < 0= f(z(a)) =0 = Vf(z(a)) =0
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Thus:
IG(Z‘()) =0

Even though perturbing o to z = [2.1,0] T causes a jump in the output:

f(x) = ReLU(w 'z +b) = ReLU(2.1 —2) = 0.1 # 0

Conclusion. Integrated Gradients fails in this example because the entire interpolation path lies
within the flat region of the ReLU activation. As a result, all gradients along the path are zero, and IG
assigns zero attribution to both input features—despite their clear influence on the model’s behavior
just outside that region.

Al1.3 Broader Implications

This behavior is not restricted to toy models. In transformer-based language models, the same issue
arises when attention dynamics, activation functions (e.g., ReLU, GELU), and residual pathways
suppress gradients for certain tokens. While the model output may remain sensitive to these tokens
through non-linear or delayed interactions, both gradient-based and IG-based methods may incorrectly
assign them zero importance.

This analysis motivates the inclusion of second-order curvature (via Hessians), semantic flow tracing
(via attention value routing), and information-based measures (e.g., KL divergence) in our attribution
framework.

A2 Theoretical Foundations and Properties of HETA

In this section, we provide a mathematically rigorous foundation for the Hessian-Enhanced Token
Attribution (HETA) framework. We formalize attribution as a decomposition problem for the
log-likelihood function, establish faithfulness error bounds, and prove that combining semantic
flow, Hessian curvature, and KL-based information contributions strictly improves faithfulness and
robustness compared to single-view attribution methods.

A2.1 Preliminaries

Consider a decoder-only language model fy with parameters 6, input tokens X = (x1,...,x7),
embeddings X € RT*4 and next-token conditional distribution:

P@(Q?T+1 ‘ ng) = Softmax(fg(X)).
We define the log-likelihood of the next token:
9(X) =log Pp(z741 | T<7T)-

Let X\  denote the embeddings when a subset R C {1,...,T} of tokens is replaced with a sentinel
token (e.g., <unk>).

An attribution method produces scores Attr(z;) > 0 such that:

T
Z Attr(xi) ~ g(X) - g(Xall masked)a
=1

where X1l masked 18 the input with all tokens masked.

We define the faithfulness error:

L(Attr) = |9(X) = g(X \ B) = > Attr(a)

iI€ER

A smaller £(Attr) indicates a more faithful attribution.

Divergence-Based Attribution Lower Bound. HETA incorporates Kullback—Leibler divergence
to quantify the information contribution of each token z; to the final output token z7. Let Poig =
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P(zr | z<T) be the original predictive distribution, and let P, nﬁa)gked = P(x7 | Top\(s,)) be the

distribution when token x; is replaced by a sentinel (e.g., <unk>). Define the total variation in output
distribution as:

— (@)
61 — HPOﬂg Pmdsked‘ll
Using Pinsker’s inequality, we obtain:

DKL( orig || Pm?sked) Z 2612

Since HETA defines the final attribution as:

Attr(z; = wr) = Mrli] - (- S+ 8- Dt (Pog | Piiea) ) -

it immediately follows that HETA satisfies a divergence-based lower bound:

) 1
Attr(x; — xp) > Mypli]- B - 553
This result guarantees that any token whose removal substantially perturbs the output distribution
receives nontrivial attribution, modulated by its transition score M [i].

Spectral Bounds on Hessian Sensitivity. To model the second-order curvature of the model’s
response surface, HETA computes the Hessian Hy = V% log P(zr | z<7) € RT4*T4 where

X € RT*4 denotes the input embeddings. The sensitivity score of token x; is defined as the #1-norm
of the block of rows in the Hessian corresponding to that token:

ST = Z|HT +1)-d,j].

Using standard norm inequalities for matrices, we obtain the bound:

ST <d-|Hrly < ||Hr|lp,

where || - ||1 is the entrywise matrix norm and || - || 7 is the Frobenius norm. These bounds ensure that
no token’s curvature-based attribution can exceed the global spectral curvature of the log-likelihood
function.

Attribution Upper Bound from Information Loss. We further observe that HETA satisfies a
pointwise attribution upper bound tied to information degradation. Let A; be the drop in log-
probability due to removing token x;:

Aj=log P(xr | z<7) — log P(x7 | T\ {2,})-

Since log-probability is non-increasing under masking and Mr[é] € [0, 1], the final attribution score
satisfies:

Attr(z; — o7) < Mrli] - (a 8T 4 5. Ai> .

This upper bound ensures interpretability by constraining attribution magnitudes within the envelope
of semantic perturbation to the model’s likelihood function.

Functional Faithfulness via Taylor Remainder Bound. The second-order Hessian term in HETA
ensures robustness to nonlinear dependencies between input tokens. Consider a Taylor expansion of
the log-probability function g(z) = log P(xr | <) under a perturbation ¢; € R? to the embedding
of token z;:
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1
9(@ + ) = g(2) + (Va,g, ) + € Hopni6i

Then the second-order remainder is bounded by:

)\max(Hxi:I:i) . ||E’i||27

DO =

9(x + €) = g(x) = (Va,9,€)] <

where Ap.x denotes the largest eigenvalue of the token-specific Hessian block. This bound shows
that HETA’s inclusion of curvature information offers a provable upper bound on local functional
deviation, which attention- or gradient-only methods cannot capture.

Additive Attribution Approximation. Lastly, HETA satisfies an approximate additive property
under linear perturbation:

T-1
Z Atte(z; — x7) =~ log P(xr | x<1) — log P(xr | all masked),
i=1

where the right-hand side reflects the total information gain from observing the input context. Though
exact equality does not hold due to nonlinear dependencies among tokens, this approximation is valid
under the assumption that token contributions are approximately additive in log-space—a property
empirically supported by autoregressive language models.

A2.2 Faithfulness Limitations of Gradient-Only and KL-Only Methods

While gradient-based and KL-based attribution methods are popular for token-level interpretability,
they both suffer from fundamental faithfulness limitations: gradients fail to capture higher-order
curvature effects, and KL-based measures neglect token interactions. In this section, we formally
characterize these limitations and establish lower bounds on their faithfulness error. These results are
essential for motivating our proposed HETA framework, which explicitly addresses these deficiencies
by combining semantic path tracing, second-order curvature (Hessian-based) information, and
information-theoretic impact.

By presenting these proofs, we aim to (1) clarify the mathematical shortcomings of existing ap-
proaches, (2) formally quantify their deviation from faithful attribution, and (3) demonstrate how
HETA overcomes these issues, making it a more principled and theoretically grounded attribution
method.

[Faithfulness Error of Gradient-Only Attribution] Suppose attribution is defined by first-order gradi-
ents:
Attrgaa(z;) = ing(X)Ta:i.

Then for any region where the log-likelihood function has nonzero curvature, the faithfulness error
satisfies:

1
,C(Attrgrad) 2 5)\min ||AX||27

where Ay, is the smallest eigenvalue of the Hessian of g along the path between X and X\ g, and
AX =X — X\p.

Proof. Consider the log-likelihood function g(X) expanded around a perturbed input X, . Using
the second-order Taylor expansion:

9(X) = (X 1) + Vo(Xy ) TAX + L AXTH(E)AX,

for some ¢ on the line segment between X and X\ , where H (§) denotes the Hessian of g at .

The gradient-only attribution corresponds to approximating this difference using only the first-order

term:
E Attrgrad(z;) = Vg(X\R)TAX
i€R
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Subtracting the gradient-based approximation from the full expansion yields the faithfulness error:
1
L(Attrgraq) = ‘2AXTH(§)AX’ .

By the Rayleigh quotient,

AXTH(6)AX > Auin | AX %,
implying

1
L(Attrgraq) > iAminHAXHQ.

This proves that gradient-only methods cannot faithfully approximate token influence in regions of
nonzero curvature, as they systematically neglect second-order effects. [

[Faithfulness Error of KL-Only Attribution] If attribution is defined only by the KL divergence
between original and masked predictive distributions:

Attrgr (2:) = Dxr (Porig || P o)
then the faithfulness error lower bound is:
E(AttrKL) Z Z ‘}I”|7
i#]

where H;; are the off-diagonal entries of the Hessian of g.

Proof. The KL divergence between original and masked distributions approximates the drop in
log-likelihood caused by independently removing token x;:

Dkt (Posi | Priasiea) = 9(X) = 9(X\43))-
Expanding g via a Hessian-based decomposition over the removed set R:
1
9(X) — g(X\r) = Z Vg Az + 3 Z Z Az HijAx;.
i€R i€RjER

KL-only attributions capture the diagonal terms (i.e., individual token contributions) but neglect the
off-diagonal interaction terms H;; for i # j. Thus, the faithfulness error is at least the sum of these
neglected interactions:

E(AttrKL) 2 Z ‘H1]|

i#j
This formally shows that KL-based attributions systematically underrepresent the joint effects between
tokens, making them incomplete in capturing true influence. O

Why These Proofs Matter. These lemmas directly support our core claim: HETA outperforms
gradient-only and KL-only attribution by explicitly addressing the faithfulness errors these
methods introduce.

* Gradient-only methods ignore second-order curvature, underestimating token influence in
nonlinear regions.

* KL-only methods fail to capture inter-token interactions, discarding essential co-
dependencies.

* HETA explicitly incorporates curvature (via Hessian sensitivity), semantic flow (via
causal transition vectors), and uncertainty change (via KL divergence), closing these

gaps.

Thus, these proofs provide a formal justification for our method’s superiority over existing attribution
techniques — not just empirically, but theoretically.

19



A2.3 HETA as an Optimal Multi-View Attribution

We now prove that HETA reduces the faithfulness error by incorporating second-order curvature
(Hessian terms), information-theoretic contributions (KL), and causal gating (semantic flow).

[HETA Improves Faithfulness] Define HETA attribution as:
AttrHETA(xi) = MT[Z] . (OZSl + ﬁ[z)7

where M [i] is the semantic transition influence, S; is the Hessian-based sensitivity, and I; is the KL
divergence-based information contribution. Then:

L(Attrapra) < min {£(Attrgaa), L(Attrge) } — v Y [Hyl,
i#j
for some «y > 0 determined by «, (3.

Proof. Expanding g(X) — g(X\ r) using the second-order Taylor series:
1
9(X) —g(X\r) = D_ Vol Azi+ 5y > Aul HijAx;.
i€R i€R jER

The gradient-based term approximates the first-order contributions, while the Hessian-based term in
HETA explicitly includes curvature effects:

Td
j=1

Thus, HETA recovers second-order contributions missing in gradient-only and KL-only methods.

The KL component I; measures the log-likelihood drop caused by masking token ¢, aligning with the
first-order log-probability change.

Weighting by My [i] ensures that only tokens on valid causal paths contribute, eliminating spurious
influence from future or disconnected tokens.

Hence, the combined attribution reduces the error by at least the sum of the magnitudes of previously
neglected cross-token Hessian terms (off-diagonal interactions), resulting in the stated inequality. [

A2.4 Stability and Causality Guarantees

[Stability] For any perturbation € with ||e|| < 4,
|[AttragTa (v, + €) — Attraera (v;)| < 8| Hrl F,

where || Hr || F is the Frobenius norm of the Hessian.

Proof. Hessian sensitivity is Lipschitz continuous with constant ||Hr|| . Small perturbations in
embeddings change the Hessian block contributions by at most §||Hr||r. KL divergence is also
locally Lipschitz in the embedding space. Combining these yields the stated bound. O

[Directional Causality] If My [i] = 0 for token x;, then Attrygra (z;) = 0.

Proof. By definition, M [i] multiplies all attribution terms. If no semantic path connects x; to z741,
its transition influence is zero, forcing its final attribution to zero. O

A2.5 Interpretation
These results establish that:

1. HETA strictly improves faithfulness compared to gradient-only and KL-only methods by
recovering neglected second-order and cross-token effects.

2. HETA is stable under small embedding perturbations, ensuring robustness.
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3. HETA enforces causal sparsity, giving zero attribution to tokens without generative
influence.

This provides a nontrivial theoretical foundation for HETA as a provably more faithful, robust, and
causally grounded attribution mechanism than single-view methods.

We now provide a formal interpretation of Hessian-Enhanced Token Attribution (HETA) as the
solution to a constrained optimization problem. This view establishes that HETA is not merely a
heuristic combination of components, but rather the projection of an unconstrained faithfulness-
optimal attribution onto a set of causal and information-theoretic constraints.

A2.6 Faithfulness as Reconstruction Error

Let g(X) = log Py(xr4+1 | z<7). When a subset R of tokens is masked, the change in log-likelihood
is:
Ag(R) = g(X) —g(X\ R).
We seek attributions a; € Rx>( such that:
Z a; = Ag(R),
i€R
for all subsets R C {1,...,T}. Thus, the faithfulness objective becomes:
2
minEN[A R) — ai},
aE]Rgo P ’ g( ) ;g |
where D is a distribution over subsets (e.g., singletons, contiguous spans). This objective measures the

reconstruction error between observed log-likelihood drops and the sum of token-level attributions.

A2.7 Second-Order Decomposition of Ag(R)
Using a second-order Taylor expansion of g around X \ R, we write:
1
i€ER ,JER

where H;; are the block entries of the Hessian H = V2g(X). This decomposition reveals three
essential components:

1. First-order marginal effects (gradients): V., g Ax;.
2. Second-order interactions (Hessian): % Z” Aac;rHiijj.

3. Residual higher-order effects (neglected by the Taylor approximation).

Any faithful attribution must therefore account for both marginal contributions and interaction terms.

A2.8 Causal and Information-Theoretic Constraints
We impose two additional constraints to ensure interpretable and principled attribution:

1. Causal constraint: Only tokens with nonzero semantic influence on x4 can receive
attribution. Let M [i] denote the transition flow score. Then:

a; =0 if Mrli] = 0.

2. Information-theoretic constraint: Marginal attributions must align with the log-likelihood
degradation caused by masking each token:

a; < Dy, (Porig || Prglia)tsked)’

where P(i)

maske
<unk>).

4 1s the output distribution with token ¢ replaced by a sentinel token (e.g.,
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A2.9 HETA as the Solution

‘We thus solve:
min Egp [‘AQ(R) — Z ai’ﬂ

a€RL, i€R
subject to:
a; = MT[Z} : (0431' + ﬁii)a
where:
S; = Z|HU" 77, = DKL(Porig ||Pr(rfa)4$ked)’
J

and «, S > 0 are trade-off parameters. This parametrization decomposes attribution into causal paths
(M), curvature-aware sensitivity (s;), and distributional relevance (i;).

[Optimality of HETA Under Constraints] Let a* denote the solution to the unconstrained least-squares
faithfulness problem. Then the HETA solution

alBTA — Mopli] - (as; + Bis)
is the closest feasible attribution to a* in ¢ norm under the causal and information-theoretic con-

straints:

HETA __ : w2
a = argmitl [la — a”|l3,

where C is the set of attributions satisfying the causal gating and KL-alignment constraints.

Proof. Let a* denote the unconstrained minimizer of the least-squares faithfulness loss. The feasible
set C is convex: it is the intersection of a hyperplane (enforcing KL-alignment proportionality) and a
nonnegative orthant with masking-induced zeros (causal gating). The orthogonal projection of a*
onto C in £3 norm is unique by the Pythagorean theorem for convex projections. The decomposition
a; = Mrl[i](as; + Bi;) corresponds exactly to this projection:

1. The Hessian sensitivity term s; captures second-order curvature, aligning with the second-
order Taylor approximation of Ag(R).

2. The KL term ¢, enforces proportionality to the log-likelihood drop, satisfying the information-
theoretic constraint.

3. The semantic gate M [i] imposes sparsity by zeroing infeasible attributions.

Thus, HETA is the closest feasible solution to ¢* under the constraints. ]

A2.10 Interpretation
This formulation demonstrates that HETA is the projection of the unconstrained faithfulness-optimal
attribution onto a constrained feasible set that enforces causal sparsity and information-theoretic

relevance. It integrates semantic (causal), geometric (Hessian), and probabilistic (KL) components
into a single optimization-derived solution, providing a theoretically grounded attribution method.

A3 Experiments and Results

A3.1 Experimental Setup and Datasets
To comprehensively assess the proposed Hessian-Enhanced Token Attribution (HETA) framework,

we run experiments on both benchmark and controlled datasets designed to test long-range reasoning
and attribution fidelity. The algorithm of HETA has been given herdT]
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Benchmark Datasets. We evaluate HETA on three established benchmarks from prior work [10]:

* Long-Range Agreement (LongRA) [22]] is designed to test language models’ ability to
resolve semantic relationships across distractor context. It uses templated prompts such as
country—capital analogies with intervening distractor sentences.

* TellMeWhy [23] is a crowdsourced narrative QA dataset with over 30K “why”” questions
and free-form answers requiring commonsense or external inference beyond the text.

» WikiBio comprises over 728K Wikipedia biography articles, each paired with an infobox; it
targets factual sentence continuation tasks from short structured prompts.

Curated Attribution Dataset. We also introduce a controlled dataset of 1,491 sentence pairs
crafted across six unrelated semantic categories (e.g., “Mathematical Expressions” vs. “Landmarks”).
Each pair concatenates a distractor sentence with a logically predictable predictive sentence; the
final target token is masked and manual annotations identify the ground-truth contributing tokens,
allowing stringent evaluation of attribution precision.

Motivation. This curated dataset enables:

* Evaluation against ground-truth causative tokens,
* Detection of attribution spillover onto irrelevant distractors,

* Robust tests across semantically distinct contexts.

A3.2 Model Attribution Configuration

We rely on a frozen, decoder-only autoregressive language model setup consistent with the base
configurations in [10], ensuring comparability. The attribution methods (HETA, gradient-based,
KL-based) are applied post-hoc without fine-tuning the model for attribution.

HETA computes attribution using a mixture of:

» Semantic transition influence via attention-weighted value tracking across layers,

» Hessian-based sensitivity, quantifying second-order curvature with respect to the masked
token’s log-likelihood,

* KL divergence impact, measuring predictive uncertainty changes upon token masking.

Hyperparameters (e.g., Hessian and KL weights) are held constant across benchmark and curated
datasets.

A3.3 Evaluation Metrics
We assess attribution quality using:

* Token-level precision/recall/F1, comparing top-ranked tokens to annotated ground-truth
contributors.

* Faithfulness error, computed as the discrepancy between predicted log-likelihood change
via attribution scores and the actual log-likelihood shift when ground-truth tokens are
removed.

* Qualitative alignment, visual inspection of attribution heatmaps versus human labels.

Experiments are conducted using multiple fixed random seeds, and detailed implementation and
evaluation scripts are included for reproducibility in the supplementary material.

A3.4 Curated Dataset for Evaluation

In this section we will discuss the gold-standard dataset that we used for comparing the attribution
methods. We categorized sentences into 6 groups, each representing a distinct and mutually exclusive
topic. For each topic, we selected 10 sentences that exemplify key concepts, landmarks, or principles
relevant to that category. The examples below highlight one representative sentence from each group.
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* Famous Landmarks and Natural Wonders
The Eiffel Tower in Paris offers breathtaking views and symbolizes the romance of the
French capital.

* Mathematical Expressions
The square root of sixteen is four.

* Time and Life Events
Sunrise marks the beginning of a new day, filling the sky with hues of orange and gold.

* Chemistry Concepts and Principles
Water is a polar molecule, crucial for life, composed of two hydrogen atoms and one oxygen
atom.

* Physics Concepts and Principles
Newton’s laws of motion explain how objects move under the influence of forces.

* Famous Music Landmarks and Venues
Abbey Road Studios in London stands as a legendary recording site where The Beatles
crafted some of their most iconic albums.

To investigate the predictive capabilities of language models and evaluate the effectiveness of various
attribution methods, we construct paired sentence examples by selecting one sentence from one
category and concatenating it with a sentence from another category. For instance, consider the
following combination:

The Eiffel Tower in Paris offers breathtaking views and symbolizes the romance of
the French capital. The square root of sixteen is four.

In this paired sequence, the second sentence represents a mathematical expression. To facilitate the
prediction task, we deliberately remove the final word from the second sentence, as shown below:

The Eiffel Tower in Paris offers breathtaking views and symbolizes the romance of
the French capital. The square root of sixteen is _.

The objective of this study is to enable the language model to accurately predict the missing token,
which, in this instance, is four. Following this, we manually identify the tokens that are both logically
and semantically responsible for predicting the omitted word. For example, in the provided sentence,
the critical contributing tokens are square, root, and sixteen, as these tokens directly influence the final
prediction. In contrast, tokens from the first sentence are not anticipated to have a significant impact
on the output. For evaluation purposes, we manually identify key tokens from the first sentence that
will be analyzed. To ensure consistency in the selection of contributing tokens, a single evaluator
carried out this process. A dataset comprising 1491 such sentences was curated for the evaluation of
the proposed methods.

A3.5 Examples

We present qualitative examples of outputs generated by HETA, highlighting context words with
attribution scores > 0.5 for the predicted target token (figure 23|and[d] These visualizations illustrate
how HETA effectively identifies semantically and causally relevant tokens (e.g., “pizza,” “cut,” “knife”
for predicting “slice”; “shared,” “pictures,” “zoo” for predicting “friends”), while down-weighting
less informative words. The target words are shown without bounding boxes for clarity, emphasizing
their contextual dependencies.

A4 Ablation Studies

A4.1 Ablation Study of HETA: Component-wise Contribution

To quantify the contribution of each module in Hessian-Enhanced Token Attribution (HETA), we
perform a controlled ablation on the GPT-J 6B backbone using three public benchmarks—LongRA,
TellMeWhy, and WikiBio—together with the curated attribution dataset introduced in Section @ We
evaluate six configurations: (1) HETA (Full) = Transition + Hessian + KL, (2) Transition Only, (3)
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Hessian Only, (4) KL Only, (5) No Transition Gating (Hessian + KL without the learned semantic
transition vector M), and (6) Uniform Transition (equal token weights instead of Mr). All results
are averaged over 1,000 randomly sampled instances per dataset. We use the same evaluation metrics
as in the main experiments: Soft-NC and Soft-NS for attribution sensitivity on the benchmarks, and
Dependent Sentence Attribution (DSA) for human-aligned token importance on the curated set.
Aggregation hyperparameters are fixed at 5 = 0.5 and v = 0.5, and KL divergence is computed via
masked-token perturbation.

Table 4: Ablation study of HETA components. Reported values are averaged across all datasets for
GPT-J 6B. Mean over independent 3 runs and std < £0.2

Configuration Soft-NC  Soft-NS DSA

HETA (Full) 9.78 2.31 4.70
Transition Only 3.12 1.52 2.21
Hessian Only 2.89 1.45 2.97
KL Only 2.23 1.21 2.74
No Transition Gating 4.31 1.84 1.68
Uniform Transition 3.89 1.76 1.54

Configuration-by-configuration analysis. HETA (Full) integrates directional semantic flow
(Transition), curvature-aware sensitivity (Hessian), and token-level information gain (KL), yielding
the strongest overall performance (Soft-NC = 9.78, Soft-NS = 2.31, DSA = 4.70). Transition
Only retains semantic routing but omits curvature and information terms; frequent yet low-impact
tokens are overweighted, depressing all metrics (3.12/1.52 /2.21). Hessian Only measures second-
order curvature without semantic guidance or informativeness; high-curvature but semantically
peripheral tokens are amplified, producing noisy, less aligned attributions (2.89 / 1.45/2.97). KL
Only focuses on surprisal, but rarity is not causality: without Transition or Hessian cues, rare yet
inconsequential tokens dominate, hurting causal fidelity and human alignment (2.23 / 1.21 / 2.74).
No Transition Gating (Hessian + KL without the learned gate) aggregates curvature and information
indiscriminately, allowing spurious semantic paths and reducing robustness/alignment (4.31/1.84 /
1.68). Uniform Transition flattens transition weights, blurring pivotal versus ancillary tokens and
further degrading robustness and F1 (3.89/1.76 / 1.54). Overall, every ablated variant drops at least
one of the three orthogonal pillars—semantic flow, curvature sensitivity, or information gain—and
the metrics degrade accordingly. The full HETA stack excels precisely because it balances all three,
delivering robust, semantically grounded, and causally faithful attributions.

A4.2 Weighting Analysis of « and [ in Final Attribution

To evaluate how the weighting parameters « and 3 affect the behavior and reliability of HETA, we
conduct a controlled ablation study over their values in the final attribution formulation:

Attr(z; — z7) = Mypli] - (a 8D 4 B T(w; — xT)) .

This formulation allows a trade-off between two complementary signals: Si(T), the Hessian-based
sensitivity score capturing curvature in the embedding space, and Z(x; — xr), the KL divergence-
based measure capturing semantic impact. The transition influence term Mr|[i] acts as a causal filter
in all cases.

We evaluate HETA across a grid of («, 3) values where (« + 8 = 1) for normalization, specifically
a € {0.0,0.2,0.5,0.8,1.0}. We assess four metrics: faithfulness, sensitivity, syntactic robustness,
and F1 alignment.
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@ £ Faithfulness | Sensitivity | Robustness T F1 (Alignment) 1

00 1.0 0.179 0.022 0.70 0.82
02 0.8 0.143 0.027 0.78 0.84
05 05 0.108 0.025 0.91 0.89
0.8 02 0.124 0.041 0.86 0.81
1.0 0.0 0.254 0.087 0.54 0.68

Table 5: Performance of HETA for different values of « and S under the constraint a + 8 = 1.
Faithfulness and sensitivity are better when lower; robustness and alignment improve when higher.
Mean over independent 3 runs and std < £0.05

As shown in Table [5] setting « = 0.5 and 5 = 0.5 achieves the best overall trade-off, with the
lowest faithfulness loss (0.108), high syntactic robustness (p = 0.91), and top F1 alignment (0.89).
When 8 = 1.0 and o = 0.0, the attribution becomes highly sensitive to semantic perturbations (low
sensitivity), but at the cost of causal faithfulness and syntactic consistency. Conversely, when o = 1.0
and 8 = 0.0, the attribution becomes unstable and poorly aligned with semantic importance, as it
depends solely on local second-order sensitivity without accounting for informational impact.

These results confirm that both the Hessian and KL. components contribute non-redundant, orthog-
onal attribution signals. The best performance arises when both curvature and semantic shifts are
considered equally, justifying the full HETA objective as a balanced composition of geometric and
probabilistic influence.

A4.3 Robustness of HETA

To further demonstrate the robustness of our methodology, we performed a stress test and reported
three attribution metrics,Sensitivity, Active/Passive Robustness, and F1 (Alignment), evaluated across
the six configurations described above.

Sensitivity measures stability under small input perturbations. Given Gaussian noise ¢ ~ A/ (0, 61)
added to each token embedding X;, we compute attribution scores across multiple perturbations and
take the average standard deviation:

T
1
Sensitivity = T Z o, (5
i=1

where o; is the standard deviation of the attribution score for token ¢. 7" is the sequence length over
which you average the per-token standard deviations.

Active/Passive Robustness captures syntactic invariance. For an original sentence and its ac-
tive/passive rephrasing, we align corresponding tokens and compute the Spearman rank correlation
between their attribution rankings:

Robustness = p(Attr(z; —zr), Attr(z; — 7)) . (6)

F1 (Alignment) evaluates semantic agreement with human annotations. Let A;,qe1 be the set of
top-attributed tokens and Apyman the annotated set:

_ 2 |Amodel N Ahuman‘

F1 = .
|Amodel‘ + |~Ahuman‘

(N

Table [6] shows that the full HETA consistently yields the lowest sensitivity and the highest robustness
and F1, indicating stable, syntax-invariant, and human-aligned attributions. Removing transition gat-
ing or using uniform transitions degrades robustness and alignment, while dropping the Hessian term
notably increases sensitivity. The KL-only variant attains the best raw sensitivity but underperforms
on robustness and F1, highlighting the complementary nature of all three components. Overall, these
results validate that semantic flow (transition), curvature information (Hessian), and information gain
(KL) are jointly necessary for reliable token-level attribution.
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Variant Sensitivity | Act./Pass. Robustness T F1 (Alignment)

Full HETA 0.025 0.91 0.89
Transition Only 0.031 0.72 0.76
Hessian Only 0.087 0.54 0.68
KL Only 0.022 0.70 0.82
No Transition Gating 0.049 0.68 0.79
Uniform Transition 0.038 0.61 0.74

Table 6: Ablation of the HETA framework. Lower sensitivity and higher robustness/F1 indicate better
attribution quality. Mean over 3 runs and std < +0.04

We also address key limitations identified in our method through targeted ablation studies.
Specifically, we examine (i) the computational feasibility of HETA with various Hessian ap-
proximations, (ii) scalability to long input contexts, (iii) the theoretical contributions of each
multi-view component, and (iv) performance relative to stronger recent attribution baselines.
These experiments validate our design choices and provide a roadmap for practical deployment
of HETA in large-scale language modeling settings.

A4.4 Computational Feasibility: Approximating the Hessian

One primary concern with HETA is its computational overhead: computing full Hessian blocks
across all layers introduces a runtime penalty of approximately 1.4x compared to gradient-based
or purely perturbation-based attribution methods. To quantify this trade-off, we evaluate several
efficiency-oriented variants of HETA on 1,000 examples (sequence length = 512) using GPT-6B.

As shown in Table[7] low-rank Hessian approximation (HETA-LR) reduces runtime by nearly 27%
while maintaining most of the attribution quality, with only a slight drop in AOPC (0.61 — 0.59).
Layer sampling (HETA-LS), which computes second-order information only for a subset of layers,
achieves an even greater runtime reduction (33%) with moderate degradation in faithfulness. In
contrast, replacing Hessian information with gradient-squared sensitivity (HETA-GS) achieves the
fastest runtime (240s) but sacrifices a considerable amount of attribution quality, confirming that
full second-order curvature information contributes substantially to both faithfulness and human
alignment. These findings validate that Hessian approximations offer a practical path to efficiency
without entirely compromising interpretability quality.

A4.5 Scalability: Long-Context Attribution

Another weakness of HETA is its limited scalability to long sequences, which are typical in large
decoder-only language models. To address this, we evaluate several scalability-oriented adapta-
tions: windowed attribution (splitting long sequences into overlapping chunks) and combinations of
windowing with low-rank and layer-sampled Hessian approximations.

Table |8 shows that full HETA attribution becomes computationally expensive for 2,048-token inputs
(1,230s per 1,000 examples). Windowed attribution (HETA-WIN) cuts runtime nearly in half (690s)
with a modest reduction in AOPC (0.58 — 0.54). Combining windowing with low-rank Hessians
(HETA-LR+WIN) yields an additional efficiency gain (runtime 580s) while recovering some lost
attribution quality. Layer-sampled windowing (HETA-LS+WIN) is the fastest configuration but
comes at the highest cost in faithfulness. These results suggest that hybrid approximations (low-rank
+ windowing) strike the best balance between efficiency and interpretability, making HETA viable for
very long contexts.

A4.6 Theoretical Depth: Component-Level Analysis

To assess the contribution of each multi-view component—semantic flow (causal attention), Hessian-
based sensitivity, and KL-divergence—we perform a component ablation analysis.

Table[9]reveals that each component contributes uniquely to attribution quality. Removing the Hessian
term leads to a significant drop in faithfulness (AOPC decreases by 0.06) and alignment, emphasizing
the importance of capturing second-order curvature. Excluding KL-divergence affects robustness
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(0.91 — 0.87), demonstrating its role in quantifying information-theoretic influence. Most notably,
removing semantic flow causes the largest decline in robustness and F1, underscoring that causal
attention pathways are critical for maintaining meaningful token-level attributions. This analysis
confirms the complementary nature of all three components, justifying their joint inclusion in HETA.

A4.7 Expanded Baseline Comparisons

The final limitation we address is the lack of comparison with recent high-performing attribution
techniques. To fill this gap, we include Causal Mediation Attribution (CMA) and Path-Shapley, both
of which are tailored for decoder-only models and represent state-of-the-art multi-view attribution
approaches.

As shown in Table HETA outperforms all baselines, including CMA and Path-Shapley, by a
notable margin in both AOPC (0.61 vs. 0.53) and F1 (0.89 vs. 0.82). This extended comparison
strengthens our claim that HETA achieves state-of-the-art attribution faithfulness for decoder-only
architectures.

A4.8 Causal Evaluation Protocols

The first set of ablations focuses on explicitly causal evaluation. For each input sequence and target
token, token-level attributions are first computed using each attribution method under comparison.
In the mid-layer value swapping protocol, the top-ranked tokens according to each method are
selected, and their hidden representations at an intermediate layer are replaced with the corresponding
representations from a control input that is similar in surface form but differs in the causal cue for
the target prediction. The effect of this intervention is measured by the difference in log-probability
assigned to the original target before and after swapping. This quantity, averaged over the evaluation
set, defines a causal comprehensiveness score denoted Swap-NC. A higher Swap-NC indicates
that changing the intermediate representations of high-attribution tokens causes a larger and more
systematic drop in the target’s log-probability, suggesting that these tokens genuinely mediate the
model’s prediction through the affected layer.

A complementary protocol is based on controlled counterfactual masking. Here, the same top-ranked
tokens are modified directly in the input space by replacing them with minimally invasive paraphrases
that preserve local grammaticality but remove the specific causal content, such as turning an exact year
into a vague temporal reference. The log-probability of the original target token is then recomputed
for this counterfactual input. The average difference between the original and counterfactual log-
probabilities defines CF-NC. Again, larger values of CF-NC indicate that removing the causal content
of high-attribution tokens substantially weakens the model’s confidence in the original prediction.

The results of these two protocols are summarized in Table Attention-based attributions display
relatively low Swap-NC and CF-NC scores, indicating that altering the representations or semantics
of their top-ranked tokens has only a modest effect on the prediction. Gradient-based attributions
perform somewhat better, but the effect of intervening on their selected tokens remains limited.
ReAGent achieves higher values for both Swap-NC and CF-NC, suggesting that it does a better job
of identifying causally important tokens. The proposed HETA method attains the highest scores on
both metrics, with a particularly pronounced improvement in Swap-NC. This pattern indicates that
the tokens singled out by HETA are precisely those whose intermediate representations and semantic
content bear the strongest causal responsibility for the model’s output. In other words, when those
tokens are altered—either deep inside the network or directly in the input—the model’s prediction for
the target token changes the most, providing a causal validation of the attribution scores.

A4.9 Downstream Applications

The second set of ablations examines whether improved attribution quality translates into tangible
gains on downstream tasks that naturally depend on identifying important tokens. The first application
is fact-checking and hallucination detection. In this setting, attributions over questions and retrieved
passages are used to identify evidence tokens and to calibrate a detector that distinguishes grounded
answers from hallucinated ones. High-attribution tokens guide the selection of evidence spans and
influence the confidence scores of the hallucination detector. The left block of Table [2] reports
evidence F1 and AUROC for hallucination detection. Attention-based attributions achieve the lowest
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scores, indicating that their highlighted tokens are only loosely aligned with true evidence. Gradient-
based attributions bring moderate improvements, while ReAGent yields stronger alignment with
evidence spans and better hallucination discrimination. The proposed HETA method achieves the
highest F1 and AUROC, demonstrating that its attributions not only reflect internal model behavior
but also lead to more accurate evidence extraction and more reliable identification of unsupported
answers.

A second application concerns tool-augmented reasoning, where the language model may optionally
call external tools such as calculators or knowledge retrieval systems. Here, token attributions over the
input prompt are used to decide when a tool call is warranted and, when multiple tools are available,
which one to select. Attributions that correctly identify numerically or factually salient tokens enable
better tool-selection policies. The middle block of Table [T2] reports tool-selection accuracy and
overall task success rate. Attention-based and gradient-based methods produce less reliable tool
usage, reflected in lower accuracy and success. ReAGent improves both metrics, indicating that more
faithful attributions help the model invoke tools more judiciously. The proposed HETA method again
leads to the best performance, suggesting that its attribution scores more precisely isolate the parts of
the input that genuinely require external computation or lookup.

The third application aggregates token-level attributions into contiguous spans and evaluates them
against human-annotated causal spans. This multi-token span attribution view is closer to how
explanations are consumed by humans, since it assesses whether the method highlights coherent
phrases rather than scattered tokens. The right block of Table [[2]reports token-level span F1. Methods
based on attention or gradients tend to produce fragmented or overly diffuse highlighted regions,
resulting in lower F1 scores. ReAGent provides more focused spans and improves alignment with
annotated causal segments. The proposed HETA method achieves the highest span F1, indicating
that its attributions support more coherent and human-interpretable explanations. Taken together, the
three blocks of Table|[12[show that the advantages of HETA in intrinsic causal metrics also manifest
in practical downstream tasks, including fact-checking, hallucination detection, tool-augmented
reasoning, and multi-token span explanation.

A4.10 Sensitivity to Decoding Strategies

The final ablation investigates how stable attribution patterns are under different decoding strategies.
Autoregressive language models are often deployed with stochastic sampling rather than purely
greedy decoding, and it is important that explanations remain robust when the same input yields
slightly different continuations. To study this, multiple outputs are generated for each input using
greedy decoding, nucleus sampling with a fixed probability threshold, and temperature sampling with
a moderate temperature. Token-level attributions are computed for each generated continuation under
each attribution method.

Attribution stability is quantified in two complementary ways. First, the Kendall rank correlation is
computed between token-importance rankings obtained under different decoding strategies. High
correlation indicates that the relative ordering of token importances is preserved even when the
generated text changes. Second, the Jensen—Shannon divergence is computed between the normalized
attribution distributions, providing a symmetric measure of how much the overall attribution mass
shifts. Lower divergence corresponds to more similar distributions and thus greater stability.

The results in Table[I3]reveal systematic differences between methods. Attention-based attributions
show relatively low rank correlation and relatively high JS divergence, indicating that their highlighted
tokens change considerably when switching from greedy decoding to sampling-based strategies.
Gradient-based attributions are somewhat more stable but still exhibit noticeable variation. ReAGent
improves both stability metrics, suggesting that more faithful attributions intrinsically respond less to
the superficial variability introduced by sampling. The proposed HETA method yields the highest
average rank correlation and the lowest JS divergence among all compared methods. This means
that, even when the specific words produced by the model vary across decoding strategies, HETA
consistently assigns importance to a core subset of tokens that remain causally central to the prediction.
As a result, explanations derived from HETA are less sensitive to the particular decoding scheme and
therefore more dependable across realistic deployment settings.

Overall, the paragraph-style ablations in this appendix show that the proposed HETA method identifies
tokens that are causally important under mid-layer value swapping and controlled counterfactual
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Algorithm 1 Hessian-Enhanced Token Attribution (HETA)

Require: Decoder-only model fy, input tokens X = (z1,...,xr), target token x 1, embedding
matrix E, hyperparameters 3,y
Ensure: Attribution scores Attr(z; — xpyq) foralli € {1,...,T}
1: Embed tokens: X <+ (ey,...,er) € RT*d
2: Compute output distribution: Py(zr11 | 2<1) + Softmax(fe(X))

> Step 1: Semantic Transition Influence

3: forle{l,...,L}do

4: forh e {1,...,H} do

5: 20D ALY Oy, > Attention-weighted value projections
6: enld for . L

7: ZZ( ) Y et ZZ(- ) > Aggregate heads
8: end for

9: Mpli] + % Zlel ||zi(l) Iy for all ¢ > Normalize semantic flow

> Step 2: Hessian-Based Sensitivity
10: Hp + V%c log PQ(IT+1 | ng)
11: fori e {1,...,T} do
12: SZ-(T) — Z;Ffl |Hpli-d: (i+1)-d,j]| > Token-level Hessian sensitivity
13: end for
> Step 3: Information-Theoretic Contribution
14: fori € {1,...,T} do

15: Replace x; with <unk> to get masked input X \*

16: Pmasked(xT«i»l) — Softmax(fg (X\l))

17: Z(x; = x141) < DKL [Porig(2741) || Pmasked (T141)]
18: end for

> Step 4: Final Attribution Score
19: fori e {1,...,T} do
20: Attr(z; — xp41) « Mrp[i] - (8- Si(T) + - Z(x; = r41))
21: end for
22: return Attr(x; — x74q) forall ¢

interventions, improves performance on a range of downstream applications that rely on attribution,
and maintains stable attribution patterns across different decoding strategies. These properties
reinforce its suitability as a practical tool for interpreting autoregressive language models.

A4.11 Key Takeaways

Our extended ablations provide several important insights: (1) Hessian approximations (low-rank
and layer-sampled) offer a practical trade-off between runtime and attribution quality. (2) Windowed
attribution enables HETA to scale to very long sequences with manageable performance loss. (3) All
three HETA components (semantic flow, Hessian, KL) are complementary and jointly essential for
high-quality attributions. (4) Expanded comparisons demonstrate that HETA outperforms even recent
state-of-the-art attribution methods, validating its broader utility.

AS Limitation: Computational Overhead and Scalability

While HETA achieves higher attribution faithfulness than prior methods, the incorporation of Hessian-
based sensitivity introduces nontrivial computational overhead. Computing Hessian blocks for all
token embeddings in large decoder-only models increases runtime and memory cost compared to
gradient-only or masking-based techniques.

Experimental Setup. We benchmarked runtime on the LongRA dataset (10k samples with token-
level rationales) using a decoder-only Transformer model with 1.3B parameters (12 layers, hidden
size 2048, 16 attention heads) implemented in PyTorch. All experiments were conducted on a single
NVIDIA A100 40GB GPU. For the baseline runtime comparison, we used a batch size of 16 and
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Table 7: Runtime and attribution quality for Hessian approximations on 1,000 examples (sequence
length = 512). AOPC and F1 represent attribution faithfulness and human alignment, respectively.

Variant Runtime (s) AOPC t F171
HETA (Full) 455 0.61 0.89
HETA-LR (rank=64) 330 0.59 0.86
HETA-LS (6 layers) 305 0.57 0.84
HETA-GS (grad-squared only) 240 0.52 0.81

Cam ordered a-and took it home. He opened
the box to take out a slice. Cam discovered that the
store did not icut the-for him. He looked for
his-cutter but did not find it. He had to use
his chef lknife! to

Ut a slice.

Figure 2: Word-level attribution visualization for predicting the final word “slice.” Each word is
shaded based on its importance score for predicting “slice.” Darker red indicates higher attribution.

Sandra got a job at the'zoo. She loved coming to
work and seeing all of the animals. Sandra went to
look at the polar bears during her lunch break. She
watched them eat fish and jump in and out of the
water. She took pictures and shared them with her
friends.

Figure 3: Word-level attribution visualization for predicting the final word “friends.” Bounding boxes
highlight influential context words (e.g., “shared,” “pictures,” “z00”) contributing to the prediction of
“friends.” Darker red denotes higher importance.
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Table 8: Faithfulness and runtime for long-context attribution (sequence length = 2,048). Windowed
methods use 512-token chunks with 50% overlap. Mean over 3 runs and std < £0.04

Variant AOPC 1 Runtime (s)
HETA (Full) 0.58 1,230
HETA-WIN (512-window) 0.54 690
HETA-LR+WIN 0.55 580
HETA-LS+WIN 0.52 525

Table 9: Impact of removing individual components on attribution quality. Metrics are averaged
across all datasets. Mean over 3 runs and std < £0.03

Variant AOPC 1 Robustness T F11
Full HETA 0.61 0.91 0.89
No Hessian 0.55 0.83 0.82
No KL 0.57 0.87 0.85
No Semantic Flow 0.52 0.71 0.77

Table 10: Comparison with additional strong attribution baselines (sequence length = 512). Mean
over 3 runs and std < £0.06

Method AOPCT F11
Integrated Gradients 0.41 0.74
Path-1G 0.46 0.77
Causal Tracing 0.48 0.79
Causal Mediation Attribution 0.50 0.80
Path-Shapley 0.53 0.82
HETA (Full) 0.61 0.89

sequence length of 256 per input. For the efficiency ablations on long text, we used batch size 8
and sequence length 1024. Metrics reported are Faithfulness (AOPC) and Runtime per 1,000
examples.

As shown in Table[T4] HETA is approximately 1.4 x slower than the top two competitors, primarily
due to the Hessian computation step. While this trade-off brings improved attribution quality, it may
limit feasibility in real-time or large-scale applications.

AS.1 Improving Scalability for Long Texts
To improve HETA’s scalability for long inputs and large models (e.g., GPT-J-4 class), we propose:

1. Low-Rank Hessian Approximation: Use Hutchinson’s stochastic trace estimators or
Kronecker-factored approximations to estimate the Hessian blocks at reduced cost.

2. Layer Sampling: Compute semantic flow and Hessian contributions only on a subset of
layers (e.g., top and middle), reducing cost while retaining most attribution fidelity.

3. Windowed Attribution: For very long sequences, process text in overlapping windows to
avoid quadratic growth in attention flow computations.

4. Hybrid Approximation: Use gradient-squared sensitivity for low-impact tokens and full
Hessians for high-impact tokens.

AS.2 Efficiency-Accuracy Trade-off

To evaluate these optimizations, we compare three efficiency-optimized variants of HETA on LongRA
with sequence length 1,024 (batch size 8): HETA-LR (low-rank Hessian, rank & = 64), HETA-LS
(layer sampling, 6 layers), and HETA-WIN (windowed attribution with 512-token overlap). Metrics:
Faithfulness (AOPC) and runtime per 1,000 examples.
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Table 11: Causal evaluation of attribution methods using mid-layer value swapping (Swap-NC, higher
is better) and controlled counterfactual masking (CF-NC, higher is better).

Method Swap-NC 1 CF-NC1
Attention weights 0.42 0.37
Integrated Gradients 0.55 0.49
ReAGent 0.81 0.76
HETA (proposed) 1.07 0.93

Table 12: Impact of attribution methods on downstream applications. Left: fact-checking and
hallucination detection (evidence F1 and hallucination AUROC). Middle: tool-augmented reasoning
(tool selection accuracy and task success rate). Right: multi-token span attribution (token-level span
F1).

Fact-checking Tool reasoning Span attribution
Method F11 AUROC1T Tool-Acct Task-Succt Span-F1 1
Attention weights 63.4 71.2 78.1 69.7 58.9
Integrated Gradients  67.8 74.5 80.3 72.1 61.3
ReAGent 72.6 79.8 83.9 75.4 66.5
HETA (proposed) 76.9 82.7 87.2 79.6 70.8

As shown in Table[I3] low-rank approximations and layer sampling reduce runtime by up to 35%
with only minor performance degradation. Windowed attribution offers the largest speedup but at a
greater cost to faithfulness, making it most suitable for extremely long contexts.

33



Table 13: Attribution stability across decoding strategies. Average Kendall rank correlation (higher is
better) and JS divergence (lower is better) between token-level attributions obtained under greedy,
nucleus, and temperature sampling.

Method Rank corr. T JS div. |
Attention weights 0.41 0.27
Integrated Gradients 0.49 0.23
ReAGent 0.62 0.18
HETA (proposed) 0.71 0.14
Method Runtime (s) Relative Cost
Integrated Gradients 320 1.0x
Causal Tracing 355 1.1x
HETA (Full) 455 1.4x

Table 14: Runtime comparison for 1,000 examples on LongRA using a 1.3B-parameter decoder-only
model (batch size 16, sequence length 256). HETA is ~1.4 x slower than the top two competitors
due to Hessian computation.

| thought | lost my [hat at the park today. | spent a
lot of time looking for it. | was just about to give
up when | saw something far away. It was my hat,
stuck in a bush!

Figure 4: Word-level attribution visualization for predicting the final word “bush.” Attribution scores
emphasize context words such as “hat,” “stuck,” and “park,” which strongly influence the prediction
of “bush.”

Method Faithfulness (AOPC) Runtime (s) Relative Cost
HETA (Full) 0.61 455 1.0x
HETA-LR 0.59 330 0.73x
HETA-LS 0.57 305 0.67x
HETA-WIN 0.55 295 0.65x

Table 15: Ablation study: Efficiency-accuracy trade-offs for HETA variants on LongRA (sequence
length 1,024, batch size 8). Low-rank and layer sampling reduce runtime significantly with minor
drops in faithfulness.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state the contributions: Shapley NEAR
for entropy-based hallucination detection, distinguishing hallucination types, and test-time
head clipping. These are supported by theory and experiments in the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Appendix A10 discusses limitations, including high computation due to
Shapley estimation and permutation sampling, and the use of fixed models without fine-
tuning.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical properties and assumptions of NEAR are formally defined in
Section 4 and Appendix Al. This includes entropy bounds, Shapley value formulation, and
estimation error analysis using Hoeffding’s inequality.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Section 5.1 and Appendix A3 provide detailed experimental settings, including
datasets used, model names, data splits, evaluation metrics, Monte Carlo sampling details
(M=50), and approximation bounds, enabling reproducibility even without public code
release.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code has been submitted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

37


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5.1 and Appendix A3 describe the datasets used (CoQA, QuAC,
SQuAD, TriviaQA), model variants (Qwen2.5-3B, LLaMA3.1-8B, OPT-6.7B), data splits,
evaluation protocols, number of Monte Carlo samples (M=50), and other relevant details.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports standard deviations (+0.04) over three independent runs
in Section 5.1. Appendix A1.2 also derives theoretical estimation error bounds for NEAR
using Hoeffding’s inequality.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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9.

10.

Answer: [Yes]
Justification: They are explained in their respective section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All sources used are opensource.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper does include a discussion of broader societal impacts, although
the method is directly relevant to improving safety and reliability of LLMs in real-world
applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: All used material is opensource
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the works have been done by the authors and properly referenced and will
be provided on acceptance.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Everything is properly referenced.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects or crowdsourcing, and therefore
no IRB approval is required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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