

000 001 DISTILLING TO HYBRID ATTENTION MODELS VIA 002 KL-GUIDED LAYER SELECTION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

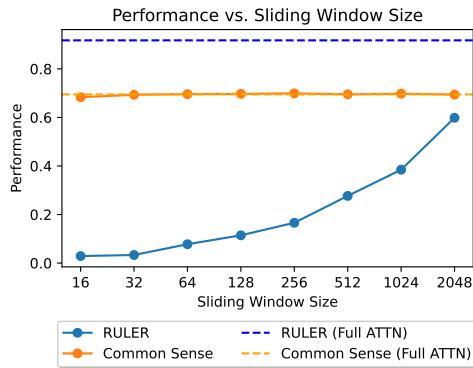
007 008 ABSTRACT 009

011 Distilling pretrained softmax attention Transformers into more efficient hybrid
012 architectures that interleave softmax and linear attention layers is a promising
013 approach for improving the inference efficiency of LLMs without requiring ex-
014 pensive pretraining from scratch. A critical factor in the conversion process is
015 layer selection, i.e., deciding on which layers to convert to linear attention vari-
016 ants. This paper describes a simple and efficient recipe for layer selection that uses
017 layer importance scores derived from a small amount of training on generic text
018 data. Once the layers have been selected we use a recent pipeline for the distilla-
019 tion process itself (RADLADS; Goldstein et al., 2025), which consists of attention
020 weight transfer, hidden state alignment, KL-based distribution matching, followed
021 by a small amount of finetuning. We find that this approach is more effective than
022 existing approaches for layer selection, including heuristics that uniformly inter-
023 leave linear attentions based on a fixed ratio, as well as more involved approaches
024 that rely on specialized diagnostic datasets.

025 1 INTRODUCTION 026

027 Linear attention (Katharopoulos et al., 2020; Peng et al., 2021; Yang et al., 2023, *i.a.*) and state-
028 space models (Gu et al., 2022; Gu & Dao, 2024; Dao & Gu, 2024, *i.a.*) have gained significant trac-
029 tion recently due to their high inference speed and competitive performance. However, most existing
030 pretrained models are still purely based on softmax attention, and pretraining such linear attention
031 models from scratch is resource-intensive. This has motivated the approaches for *cross-architecture*
032 distillation, a process that converts pretrained Transformer checkpoints into more efficient linear
033 attention counterparts (Kasai et al., 2021; Wang et al., 2024; Bick et al., 2025, *i.a.*).

034 This distillation process involves two key deci-
035 sions: (1) the student architecture, and (2) the
036 optimal distillation recipe once the architecture
037 has been selected. For the second question,
038 recent work has shown the effectiveness of a
039 multi-stage pipeline over pure continued fine-
040 tuning approaches (Bick et al., 2025; Goldstein
041 et al., 2025). This pipeline involves an initial
042 stage of per-layer output alignment with an L_2
043 loss, followed by a second stage of end-to-end
044 knowledge distillation. What student architec-
045 ture to distill to, however, remains open. Prior
046 efforts to distill Transformers into purely sub-
047 quadratic models have often resulted in perfor-
048 mance degradation (Zhang et al., 2024a;b; Mer-
049 cat et al., 2024). More recently, models in-
050 corporating a sliding window attention (SWA)
051 mechanism have shown surprisingly strong re-
052 sults across various benchmarks (Lan et al.,
053 2025; Zhang et al., 2025). However, these eval-
054 uations have primarily focused on knowledge-
055 intensive common-sense reasoning tasks, where in-context recall plays a lesser role. Our empirical



056 Figure 1: Performance of a sliding-window atten-
057 tion model (distilled from Qwen2.5-3B-Instruct)
058 across different window sizes on RULER and
059 commonsense tasks.

054 findings show that even a small sliding window of size 16 is sufficient for a distilled SWA model to
 055 recover strong performance on such tasks.

056 In contrast, performance on in-context recall benchmarks like RULER (Hsieh et al., 2024) is highly
 057 dependent on the sliding window size (Figure 1). This is perhaps unsurprising, as it reflects the
 058 well-documented limitations of fixed-state models in in-context recall (Wen et al., 2025; Arora et al.,
 059 2024a;b).

060 A simple yet effective solution is to incorporate a few global (softmax) attention layers, resulting
 061 in a hybrid architecture. This approach has been successfully adopted in recent models pretrained
 062 from scratch, such as Jamba (Lenz et al., 2025), MiniMax-01 (MiniMax et al., 2025), Falcon-H1
 063 (Zuo et al., 2025), and Qwen3-Next. These models typically interleave global and linear attention
 064 layers at a fixed ratio (e.g., one global layer for every three or seven linear layers) (Wang et al.,
 065 2025a). Following this trend, some distillation works have also adopted a fixed interleaving strategy
 066 (Wang et al., 2024). However, our preliminary experiments show this uniform approach remains
 067 suboptimal for in-context recall, presumably due to the fundamental difference between pretraining
 068 and distillation. This observation has been recognized in recent work (Gu et al., 2025; Yang et al.,
 069 2025; Hoshino et al., 2025), which also explore various criteria for selectively assigning global
 070 attention.

071 In this work, we adopt a simple global attention selection criterion based on the distillation KL diver-
 072 gence loss: intuitively, the more critical a global attention layer is, the more it reduces the resulting
 073 distillation KL loss. Our experiments demonstrate the effectiveness of our selective hybrid distilla-
 074 tion, which achieves strong in-context retrieval performance while maintaining efficiency. Our work
 075 paves the way for future research on test-time compute scaling for distilled hybrid models (Paliotta
 076 et al., 2025; Wang et al., 2025b), where in-context retrieval remains a key bottleneck (Chaudhry
 077 et al., 2025).

079 2 PRELIMINARIES

080 **Notation.** Let $\mathbf{X} = [\mathbf{x}_1; \dots; \mathbf{x}_T] \in \mathbb{R}^{T \times d}$ be a sequence of T token embeddings with model width
 081 d . We use L pre-norm Transformer blocks indexed by $\ell \in \{1, \dots, L\}$, and h attention heads with
 082 per-head width d_h so $d = h d_h$. A Transformer block then given by

$$083 \mathbf{U}^{(\ell)} = \mathbf{X}^{(\ell)} + \text{Mix}^{(\ell)}(\text{LN}(\mathbf{X}^{(\ell)})), \quad \mathbf{X}^{(\ell+1)} = \mathbf{U}^{(\ell)} + \text{FFN}^{(\ell)}(\text{LN}(\mathbf{U}^{(\ell)})).$$

084 where $\text{Mix}^{(\ell)}(\cdot)$ is a sequence mixing operation (i.e., softmax or linear attention) for layer ℓ . When
 085 not essential, we omit LN and residuals for readability. We write \mathbf{M} for the (additive) attention
 086 mask, which encodes causality and any positional encoding (e.g., RoPE/Alibi) as standard.

087 **Softmax attention.** For a single head (we suppress head indices) softmax attention proceeds by
 088 computing the query, key and value matrices

$$089 \mathbf{Q} = \mathbf{X} \mathbf{W}_Q, \quad \mathbf{K} = \mathbf{X} \mathbf{W}_K, \quad \mathbf{V} = \mathbf{X} \mathbf{W}_V,$$

090 where $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d_h}$ are learnable parameters. The output is given by (with mask \mathbf{M})

$$091 \mathbf{O} = \text{Softmax}\left(\frac{1}{\sqrt{d_h}} \mathbf{Q} \mathbf{K}^\top + \mathbf{M}\right) \mathbf{V}, \quad (1)$$

092 and multi-head concatenates per-head outputs which is transformed by a linear layer $\mathbf{W}_O \in$
 093 $\mathbb{R}^{(h d_h) \times d}$. During autoregressive inference, the same operation admits a recurrent view:

$$094 \mathbf{o}_t = \sum_{i \leq t} \alpha_{t,i} \mathbf{v}_i, \quad \alpha_{t,i} \propto \exp\left(\frac{1}{\sqrt{d_h}} \mathbf{q}_t^\top \mathbf{k}_i\right), \quad \sum_{i \leq t} \alpha_{t,i} = 1. \quad (2)$$

095 The memory cost of softmax attention grows linearly with respect to sequence length due to the KV
 096 cache, which can result in substantial slowdowns as generation length grows due to increasing data
 097 movement across the memory hierarchy.

098 **Linear attention.** Linear attention layers have been proposed to address the above inefficiencies
 099 of softmax attention during decoding. While many variants exist, they generally adopt the following
 100 recurrent form:

$$101 \mathbf{o}_t = \mathbf{q}_t^\top \mathbf{S}_t, \quad \mathbf{S}_t = \mathbf{M}_t \mathbf{S}_{t-1} + \mathbf{k}_t \mathbf{v}_t^\top, \quad (3)$$

108 where \mathbf{M}_t is a data-dependent and time-varying transition matrix that is a function of \mathbf{x}_t . Setting
 109 $\mathbf{M}_t = \text{diag}(\boldsymbol{\alpha}_t)$ where $\boldsymbol{\alpha}_t \in \mathbb{R}^d$ is a function of \mathbf{x}_t recovers recent gated linear attention (GLA)
 110 variants (Yang et al., 2023; Katsch, 2023; Qin et al., 2024; Peng et al., 2024). Alternatively, using
 111 $\mathbf{M}_t = \boldsymbol{\alpha}_t(\mathbf{I} - \beta_t \mathbf{k}_t \mathbf{k}_t^\top)$ recovers the (gated) DeltaNet family of models (Schlag et al., 2021; Yang
 112 et al., 2024b;a).¹ The structure of \mathbf{M}_t enables efficient parallel training via a chunking mechanism.

113 Linear attention compresses the entire history into the hidden state matrix \mathbf{S}_t and thus the memory
 114 cost is constant with respect to generation length, leading to much more efficient decoding compared
 115 to softmax attention. However, this hidden state bottleneck is a fundamental limitation when it
 116 comes to crucial capabilities such as performing associative recall over a given context.
 117

118 **Hybrid attention.** A common strategy for maintaining the capabilities of softmax attention while
 119 realizing some of the efficiency benefits of linear attention is to use a hybrid model. This approach
 120 partitions the set of layer indices into $\mathcal{S}_{\text{softmax}}$ and $\mathcal{S}_{\text{linear}}$ such that $\mathcal{S}_{\text{softmax}} \cup \mathcal{S}_{\text{linear}} = \{1, \dots, L\}$.
 121 Then the sequence-mixing layer is given by

$$\text{Mix}^{(\ell)} = \begin{cases} \text{SoftmaxAttn}^{(\ell)}, & \ell \in \mathcal{S}_{\text{softmax}}, \\ \text{LinearAttn}^{(\ell)}, & \ell \in \mathcal{S}_{\text{linear}}. \end{cases}$$

122 Recent works have shown that architectures that use a fixed ratio of linear to softmax attention layers
 123 performs well when pretrained from scratch (Lenz et al., 2025; MiniMax et al., 2025). However,
 124 such a uniform strategy may be suboptimal for distilling hybrid attention models from pretrained
 125 softmax attention models, motivating our present work on layer selection for distillation.
 126

130 3 LAYER SELECTION FOR DISTILLING HYBRID ATTENTION

132 For distilling a pretrained softmax attention LLM into a hybrid attention model, we seek to find a
 133 set $\mathcal{L}_{\text{soft}}$ for a given budget $|\mathcal{L}_{\text{soft}}| = K$ such that converting all the other layers into linear attention
 134 has minimal performance degradation. Solving this exactly would require a combinatorial search
 135 over all possible K -sized subsets of $[L]$, which would be intractable. Our key idea is to measure a
 136 layer’s *marginal utility* by restoring exactly that layer (and only that layer) to softmax in an otherwise
 137 all-linear student, then distilling briefly and scoring how much the teacher–student KL improves.
 138

139 3.1 INITIAL DISTILLATION TO AN ALL-LINEAR STUDENT

140 We first distill to an all-linear student model, adopting the first two stages of the distillation pipeline
 141 from RADLADS (Goldstein et al., 2025). Let $\mathcal{M}_{\text{teacher}}$ be the original teacher model and $\mathcal{M}_{\text{all-linear}}$
 142 be an all-linear student model, where the linear attention parameters are initialized from the teacher’s
 143 parameters, i.e., $(\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V, \mathbf{W}_O)$. The other parameters of the linear attention layer (in
 144 particular the parameters of a linear layer for the data-dependent gating term $\boldsymbol{\alpha}_t$) are initialized
 145 randomly. Then distillation proceeds as follows:

146 **Stage 1: Hidden-state alignment.** For a given token sequence $\mathbf{x} = x_1 \dots x_T$, the attention hidden
 147 states from the all-linear student model $\{\mathbf{U}_{\text{all-linear}}^{(\ell)}\}_{\ell \in [l]}$ are trained to match the teacher’s hidden
 148 states $\{\mathbf{U}_{\text{teacher}}^{(\ell)}\}_{\ell \in [l]}$,

$$\mathcal{L}_{\text{hidden}}(\mathcal{M}_{\text{all-linear}}, \mathbf{x}) = \sum_{\ell \in [L]} \frac{1}{T} \|\mathbf{U}_{\text{teacher}}^{(\ell)} - \mathbf{U}_{\text{all-linear}}^{(\ell)}\|_2^2. \quad (4)$$

153 Here, we only train the parameters of the student’s linear attention layer while freezing FFN’s pa-
 154 rameters. The targets are produced by the teacher model and remain fixed.

155 **Stage 2: Distribution matching.** In stage 2 we minimize a temperature-scaled KL between teacher
 156 logits $\ell_{\text{teacher}, t} \in \mathbb{R}^V$ and student logits $\ell_{\text{all-linear}, t} \in \mathbb{R}^V$ with respect to all student parameters (i.e.,
 157 including the student’s FFN layers)

$$\mathcal{L}_{\text{KL}}(\mathcal{M}_{\text{all-linear}}, \mathbf{x}) = \frac{\tau^2}{T} \sum_{t=1}^T \text{KL}\left(\text{Softmax}\left(\frac{\ell_{\text{teacher}, t}}{\tau}\right) \parallel \text{Softmax}\left(\frac{\ell_{\text{all-linear}, t}}{\tau}\right)\right), \quad (5)$$

161 ¹DeltaNet also multiplies the additive term $\mathbf{k}_t \mathbf{v}_t^\top$ with β_t , which we omit for simplicity.

162 where τ smoothing term that provides stronger gradient signal on non-argmax tokens. (The functions $\mathcal{L}_{\text{hidden}}$ and \mathcal{L}_{KL} are obviously functions of $\mathcal{M}_{\text{teacher}}$ but we omit it from the argument for
163 readability.)
164

165 Stage 1 uses 100M tokens while stage 2 uses 600M tokens. All subsequent applications of the
166 stagewise pipeline (i.e., in §3.2 and §3.3) use the same number of tokens.²
167

168 3.2 DERIVING LAYERWISE IMPORTANCE SCORES

170 With the all-linear model $\mathcal{M}_{\text{all-linear}}$ derived from the above process in hand, we now describe our
171 layer selection strategy. Let $\mathcal{M}_{\text{all-linear}}^{(-\ell)}$ be a model derived from $\mathcal{M}_{\text{all-linear}}$ where the ℓ -th block has
172 been restored back into the ℓ -th layer of $\mathcal{M}_{\text{teacher}}$. We run stage 1 and stage 2 of the above process
173 again to finetune the student $\mathcal{M}_{\text{all-linear}}^{(-\ell)}$, which now has one softmax attention layer. We define $\mathcal{I}(\ell)$,
174 the layer importance for layer ℓ , as the KL divergence between and the teacher model, i.e.,
175

$$176 \mathcal{I}(\ell) = -\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\mathcal{L}_{\text{KD}}(\mathcal{M}_{\text{all-linear}}^{(-\ell)}, \mathbf{x})]. \quad (6)$$

178 Higher $\mathcal{I}(\ell)$ means larger KL reduction (i.e., greater marginal utility under our objective). Because
179 the baseline student and neighbors are fixed, $\mathcal{I}(\ell)$ is hybrid-aware and variant-aware.
180

181 3.3 LAYER SELECTION AND FINAL DISTILLATION

184 Algorithm 1 KL-guided Layer Selection for Hybrid Attention Distillation

185 **Require:** Teacher $\mathcal{M}_{\text{teacher}}$; dataset \mathcal{D} (DCLM); temperature τ ; target budget K
186 1: Distill into pure linear attention model $\mathcal{M}_{\text{all-linear}}$ (§3.1)
187 2: **for** $\ell = 1$ to L **in parallel do** (§3.2)
188 3: Obtain $\mathcal{M}_{\text{all-linear}}^{(-\ell)}$ by changing ℓ -th layer of $\mathcal{M}_{\text{all-linear}}$ to ℓ -th layer of $\mathcal{M}_{\text{teacher}}$
189 4: **Stage 1:** align all linear blocks by \mathcal{L}_{hid} on \mathcal{D} .
190 5: **Stage 2:** distill by \mathcal{L}_{KL} on \mathcal{D} .
191 6: Compute $\mathcal{I}(\ell) = -\mathbb{E}[\mathcal{L}_{\text{KL}}]$ on a held-out slice of \mathcal{D} .
192 7: **end for**
193 8: **Select:** $\mathcal{S}_{\text{softmax}} \leftarrow \text{top-}K$ layers by $\mathcal{I}(\ell)$ (§3.3)
194 9: **Final hybrid:** instantiate hybrid based on $\mathcal{S}_{\text{softmax}}$ and linear on layers $[L] \setminus \mathcal{S}_{\text{softmax}}$; train with
195 the two-stage distillation pipeline.

198 Given a budget of K softmax attention layers that we can keep, we now take the top- K most important
199 layers and convert the result into linear attention i.e.,
200

$$201 \mathcal{S}_{\text{softmax}} = \text{top-}K(\mathcal{I}(\ell)), \quad \mathcal{S}_{\text{linear}} = \{1, \dots, L\} \setminus \mathcal{S}_{\text{softmax}}.$$

202 Denoting the above hybrid model with K softmax attention layers as $\mathcal{M}_{\text{hybrid-}K}$ we run a final
203 distillation pipeline by rerunning stages 1 and 2 with this hybrid model. Our full algorithm is given
204 in Algorithm 1.
205

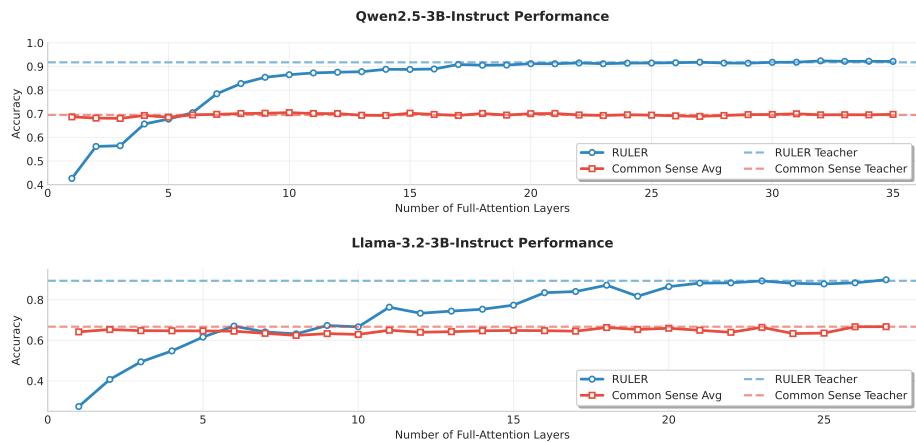
206 4 EXPERIMENTS

209 Having introduced our method, we now present a series of experiments designed to build a comprehensive
210 case for its effectiveness. We begin by establishing why hybrid models are essential for
211 maintaining long-context capabilities (§4.1). We then demonstrate that our KL-guided approach
212 outperforms a wide range of baselines (§4.3).
213

214 ²For our main GA-S2 selector, the final hybrid model reuses the Stage 1-aligned linear attention layers
215 from $\mathcal{M}_{\text{all-linear}}$ and therefore only runs Stage 2 in the last distillation step. For heuristic baselines that are not
initialized from $\mathcal{M}_{\text{all-linear}}$, we run both Stage 1 and Stage 2 in the final distillation for fairness.

216 4.1 THE CASE FOR HYBRID MODELS
217

218 There has been a flurry of recent work on distilling to pure linear attention models (Chen et al.,
219 2024; Mercat et al., 2024; Zhang et al., 2025; Goldstein et al., 2025; Wang et al., 2024; Yueyu
220 et al., 2025; Lan et al., 2025; Bick et al., 2025). These works generally report that pure linear
221 attention can maintain the performance of pretrained softmax attention baselines with the right dis-
222 tillation process. However, this conclusion is often based on comparing performance on tasks such
223 as MMLU and Commonsense Reasoning, whose context lengths are short; it is unclear the extent
224 to which such pure linear attention models can maintain performance on benchmarks which require
225 understanding and performing recall over longer contexts. To analyze this, we construct a series of
226 hybrid models based on our approach where the number of softmax layers ranges from 1 to $L - 1$.
227 We then evaluate these models on RULER (Hsieh et al., 2024), a diagnostic benchmark designed
228 to probe the long-context capabilities of LLMs. We also evaluate these models on short-context
229 commonsense reasoning benchmarks evaluated by previous methods, including PIQA, ARC-Easy,
230 ARC-Challenge, HellaSwag and WinoGrande (we report the average).
231



240 Figure 2: Performance on recall-intensive vs. commonsense tasks as the number of full-attention
241 layers is varied for Qwen2.5-3B-Instruct (top) and Llama-3.2-3B-Instruct (bottom). Recall ability is
242 highly sensitive to the softmax budget, while commonsense reasoning is not.
243

244 The results in Figure 2 reveal a stark dichotomy. Performance on the long-context RULER bench-
245 mark is highly sensitive to the number of softmax layers (K), growing monotonically and confirming
246 that global context aggregation is critical for in-context retrieval. In contrast, commonsense reason-
247 ing performance is almost entirely insensitive to K ; models with even a single softmax layer achieve
248 near-teacher-level performance, suggesting these local tasks are well-handled by linear attention.
249 Ironically, the efficiency benefits of linear attention are minimal on precisely these short-context
250 tasks. This dichotomy motivates our work: the central challenge in distilling hybrid models is to
251 preserve long-context recall. This requires a method that can judiciously allocate a limited budget
252 of expensive softmax layers to the positions where they are most impactful.
253

254 4.2 EXPERIMENTAL SETUP
255

256 Having established the importance of selection, we now evaluate our KL-guided method against the
257 a suite of baselines.
258

259 **Model and data.** We evaluate two 3B-class decoder-only teachers: **Qwen2.5-3B-Instruct** and
260 **Llama-3.2-3B-Instruct**. For each architecture we take the checkpoint’s native depth L and re-
261 port K to match the target softmax:linear ratio. We target four ratios 1:8, 1:3, 1:2, 1:1 (thus
262 $K \in \{4, 9, 12, 18\}$ when $L=36$; if L differs, we use the nearest integer K). All selection and distil-
263 lation runs use the **DCLM** (Li et al., 2025) generic-text mixture. As noted in § 3.1, each instance of
264 stage 1 uses 100M tokens while stage 2 uses 600M tokens.
265

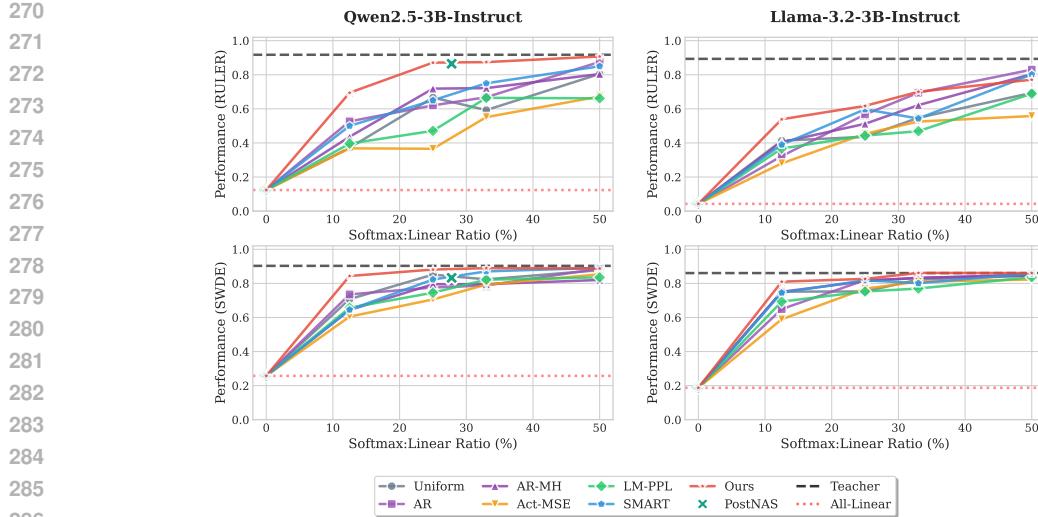


Figure 3: Performance comparison of various layer selection methods on RULER (top) and SWDE (bottom) for distilling Qwen2.5-3B (left) and Llama-3.2-3B (right) into hybrid GDN-based models. Performance is plotted against the percentage of softmax layers retained. The dashed line indicates the performance of the all-softmax teacher model.

Baselines. We compare our one-swap selector to the baselines below. Each returns a set of K softmax layers and is trained with the same two-stage distillation and token budget as ours (§3.1): (1) **Uniform interleave (UNIFORM).** Pick K layers by evenly spacing them across depth (one roughly every $\lfloor L/K \rfloor$ blocks), as adopted by Wang et al. (2024). (2) **Task-guided selectors.** AR (Associative Recall): bypass each layer and measure the drop on a synthetic key–value recall task and then rank layer importance by drop in performance (Chaudhry et al., 2025). AR-MH (Associative Recall - Multihop): same as AR but with multi-hop alias chains, which makes the task more difficult. (3) **Model-signal selectors.** ACT-MSE: layer importance is derived from zero-ing out a layer and measuring increase in activation MSE vs. the baseline. LM-PPL: same as Act-MSE, but derived from measuring an increase in LM perplexity on held-out data. (4) **SMART** (Yang et al., 2025). A sensitivity-aware strategy: (i) score each layer by the reduction in teacher–student KL when swapping an global layer into an otherwise linear baseline; (ii) preserve high-score layers near input/output (so-called “terminal preservation”); (iii) choose the rest from near-uniform candidates to maximize total sensitivity. We also compare against **PostNAS** (Gu et al., 2025), a contemporaneous work that uses a more complex search procedure. Their method involves training a once-for-all SuperNet and then using beam search to find the optimal K softmax layers for a specific downstream task. This process is computationally intensive, requiring 50B training tokens, whereas our selection pipeline uses only 5-6B tokens. Fortunately, PostNAS released their selected layers for the Qwen2.5 model. To ensure a fair comparison, we take their publicly released layer set and distill it using our own pipeline and token budget. More baselines descriptions are included in Table 3 in the Appendix A.

4.3 MAIN RESULTS

We use gated DeltaNet (GDN) for our linear attention layer and evaluate our proposed layer selection method against the baselines for Qwen2.5-3B-Instruct and Llama-3.2-3B-Instruct teachers. The results on two long-context, recall-intensive benchmarks, RULER and SWDE, are presented in Figure 3. Our central finding is that our selection method consistently and substantially outperforms all other baselines across both models and tasks. This demonstrates the effectiveness of using a brief, KL-divergence-guided distillation to derive model-intrinsic layer importance scores for creating hybrid architectures.

A key advantage of our approach is particularly evident in the low-budget regime, where only a small fraction of layers are kept as full softmax attention. For instance, on the RULER benchmark with the Qwen2.5 model at a 12.5% ratio (corresponding to 5 attention layers), our method achieves a score of nearly 0.70, whereas the next best baseline, AR, scores around 0.53, and the common UNIFORM

324 interleaving strategy scores below 0.40. This pronounced gap at low softmax ratios highlights our
 325 method’s efficiency in identifying the most critical layers for preserving long-context recall, enabling
 326 significant performance gains with minimal computational overhead from expensive attention layers.
 327

328 As the budget for softmax layers increases, our method continues to maintain a performance advantage,
 329 approaching the teacher model’s performance more rapidly than competing approaches. For
 330 both models, a hybrid with 50% of its layers selected by our method recovers a vast majority of the
 331 teacher’s performance on these challenging recall tasks. Similar performance trends were observed
 332 on other benchmarks, including FDA and SQuADv2; these results are detailed in the Appendix A.
 333

334 5 ANALYSIS

335 In this section, we conduct a series of ablation studies to deconstruct our method (§5.1), understand
 336 its architectural sensitivities (§5.2), and validate its practical efficiency (§5.3).
 337

338 5.1 THE IMPORTANCE OF KL AND GREEDY ADDITION STRATEGY

340 Our proposed layer selection method involves two key design choices: (1) we use the stage-2 (S2)
 341 knowledge distillation (KL-based) loss as the importance metric for each layer in the one-swap
 342 setting of §3.2, and (2) given these layerwise scores, we select the top- K softmax layers in a greedy
 343 addition fashion (GA), i.e., we keep the K layers that yield the largest marginal KL reduction relative
 344 to the all-linear baseline. There are natural alternatives: we could use the stage-1 (S1) hidden-state
 345 alignment (MSE-based) metric as our layer importance; we could also use a greedy removal (GR)
 346 search strategy, which starts from an all-softmax model and greedily converts the least important
 347 layer to a linear attention layer. It is also possible to average the layer importance rankings from both
 348 GA and GR (AVG). Note that our main proposed method corresponds to GA-S2.
 349

350 The ablation results, presented in Table 1, show that the Stage-2 (KL-based) methods consistently
 351 and dramatically outperform their Stage-1 (MSE-based) counterparts, and our greedy addition strat-
 352 egy (GA-S2) is more effective than greedy removal (GR-S2). This suggests that identifying the
 353 single most impactful layer to add from an all-linear base is a more robust signal than identifying
 354 the least harmful layer to remove.

355 Model	356 Stage 1 (MSE-based)			357 Stage 2 (KL-based)		
	358 GR-S1	359 GA-S1	360 AVG-S1	361 GR-S2	362 GA-S2 (OURS)	363 AVG-S2
Llama-3.2-3B-Instruct	0.4508	0.4193	0.4233	0.4950	0.6174	0.5580
Qwen2.5-3B-Instruct	0.4827	0.5408	0.4933	0.8259	0.8713	0.8205

364 Table 1: Ablation on layer selection strategies for a fixed 25% softmax ratio. We compare Greedy
 365 Addition (GA), Greedy Removal (GR), and Averaged (AVG) search using either a Stage-1 (MSE)
 366 or Stage-2 (KL) importance metric.
 367

368 5.2 THE IMPORTANCE OF ARCHITECTURE CONSISTENCY

369 Our layer selection approach is sensitive to
 370 the type of linear attention layer employed.
 371 To what extent is this selection approach
 372 architecture-agnostic—i.e., is our method sim-
 373 plly finding a fixed set of “important layers” in
 374 the teacher, or is it adapting its selection to the
 375 specific architecture of the student’s linear lay-
 376 ers? To test this, we run the selection process
 377 independently for both GDN and GLA students
 378 and analyze the results.
 379

380 The results in Figure 5 and Table 4 reveal an in-
 381 teresting architectural dependence. For **Llama-3.2-3B-Instruct**, the layer selections for GDN

382 Ratio	383 Llama-3.2-3B		384 Qwen2.5-3B	
	385 GDN	386 GLA	387 GDN	388 GLA
12.5%	0.5389	0.4918	0.6946	0.5903
25%	0.6174	0.6379	0.8713	0.6921
33%	0.7003	0.7108	0.8743	0.8811
50%	0.7712	0.7644	0.9074	0.8950

389 Figure 4: Final RULER performance using
 390 architecture-specific selections.
 391

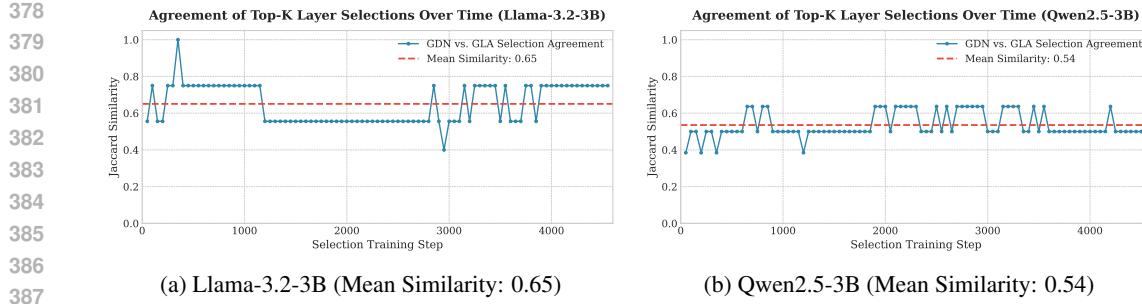


Figure 5: Jaccard similarity of top-K layer selections between GDN and GLA variants over the selection pass. Llama shows higher agreement, suggesting its layer importance is less student-dependent.

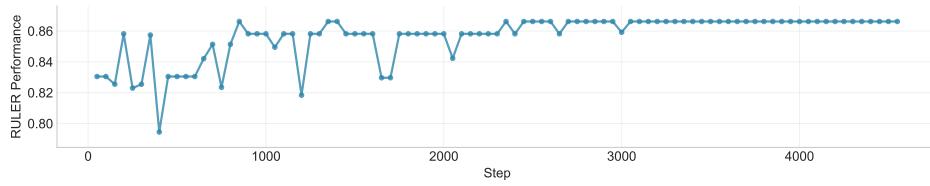


Figure 6: The evolution of RULER performance during the Stage-2 selection process for Qwen2.5-3B-Instruct.

and GLA show high agreement (mean Jaccard similarity of 0.65), and the final models perform almost identically. This suggests that for the Llama architecture, our method identifies a robust, largely student-agnostic set of important layers. For **Qwen2.5-3B-Instruct**, however, the story is more nuanced. The agreement between selections is much lower (mean similarity of 0.54), indicating that the two student variants favor different layers. This divergence has a dramatic impact on performance: the specialized GDN-GDN model (0.8713 on RULER) is vastly superior to the specialized GLA-GLA model (0.6921).

Model	Student	UNIFORM	AR	AR-MH	MSE	PPL	SMART	Ours
Llama	GDN	0.4359	0.5671	0.5123	0.4534	0.4432	0.5974	0.6174
	GLA	0.4050	0.5671	0.5115	0.3983	0.3866	0.5767	0.6014
Qwen	GDN	0.6663	0.6203	0.7187	0.3658	0.4712	0.6103	0.8713
	GLA	0.6334	0.5689	0.6628	0.3435	0.4296	0.5771	0.8613

Table 2: Performance on RULER for GDN- and GLA-based hybrid students at a fixed 25% softmax ratio. For both student variants, the layer set for our method (**Ours**) was selected using a GDN-based process to test for transferability. Note that Llama refers to Llama-3.2-3B-Instruct and Qwen refers to Qwen2.5-3B-Instruct.

Most surprisingly, when we test the transferability by using the GDN-selected layers to distill a **GLA student**, we achieve a RULER score of 0.8613 (Table 2). This result is not only far better than all baselines, but is also significantly better than the score from the specialized GLA-GLA process (0.6921). This reveals a key finding: the choice of linear attention variant used during the selection pass acts as a “probe”, and some probes are better than others at identifying a truly robust set of important layers for a given teacher architecture. For the Qwen model, using **GDN as the probe** in our selection algorithm yields a universally superior set of layers that benefits both GDN and GLA students. For the Llama model, both probes are equally effective. This demonstrates that our method’s strength is not just in specialization, but in its ability to leverage different student architectures to find the most fundamentally important layers in the teacher.

5.3 HOW MANY TOKENS ARE REALLY NECESSARY FOR LAYER SELECTION?

We used 100M tokens for stage 1 and 600M tokens for stage 2 following the recipe recommended in Goldstein et al. (2025). However, it is possible that the layer selection process could be even more

432 token-efficient. To investigate this, we tracked the top- K layer set chosen by our selector throughout
 433 the Stage-2 training process (at a 1:3 softmax ratio for both models). We measured stability over
 434 time using rolling-window Jaccard similarity and the size of the intersection between consecutive
 435 sets (the "backbone"). For both teacher models, we find that the set of selected layers stabilizes
 436 long before the full training budget is consumed. A nearly complete "backbone" of $K - 1$ layers
 437 is typically identified within the first 25–40% of training. Continuing training beyond this point
 438 only refines the choice for the final one or two slots, with a negligible impact on the final model's
 439 RULER performance (a difference of less than 0.01 absolute points). This observation suggests that
 440 a simple stability-based rule can dramatically improve efficiency. For instance, a conservative early
 441 stopping point for our runs would have reduced the token budget for the selection pass by 58–74%.
 442 The effectiveness of this early stopping rule is backed by our empirical observation: for Qwen, the
 443 RULER performance during Stage-2 stabilizes around step 1500, as shown in Figure 6. For more
 444 details, please refer to Appendix B.

445 6 RELATED WORK

446 In-context recall presents a significant challenge for subquadratic models, a difficulty often attributed
 447 to the perplexity gap between them and standard transformers (Arora et al., 2024a). One promising
 448 approach to address this is the development of linear attention variants with superior recall capa-
 449 bilities. The seminal work on DeltaNet (Schlag et al., 2021; Yang et al., 2024b) and its successors
 450 (Yang et al., 2024a; Siems et al., 2025; Grazzi et al., 2025) has demonstrated great success in this
 451 area. Nevertheless, these recurrent approaches are fundamentally limited in associative recall by
 452 their fixed-size state (Wen et al., 2025; Arora et al., 2024a). Highlighting the importance of this
 453 problem, recent work reveals a connection between in-context recall and test-time scaling perfor-
 454 mance, arguably making it one of the most critical research directions in efficient sequence model
 455 design (Chaudhry et al., 2025). Other notable efforts to improve recall include reading inputs twice
 456 (Arora et al., 2024c), dynamic state allocation (Ben-Kish et al., 2025), and dynamic caching for
 457 hard-to-memorize items (Nguyen et al., 2025).

458 Hybrid attention architectures, which combine the complementary strengths of global attention (for
 459 accurate retrieval) and linear attention (for fast local processing), can theoretically overcome these
 460 state-size limitations (Wen et al., 2025; Arora et al., 2024b). While most hybrid models adopt an
 461 inter-layer strategy, interleaving global and linear attention layers (Ren et al., 2025; MiniMax et al.,
 462 2025; Lenz et al., 2025), we also note the potential of intra-layer hybridization schemes for efficient
 463 time mixing (Irie et al., 2025; Dong et al., 2024; Zuo et al., 2025; Zancato et al., 2024). However,
 464 pretraining these linear and hybrid models from scratch is computationally expensive. An effective
 465 alternative is to distill a pretrained softmax attention model into a linear attention-based one. This
 466 concept was first proposed by Kasai et al. (2021). Subsequent work has emphasized preserving or
 467 mimicking the softmax operator during distillation to maintain performance while achieving linear
 468 complexity Peng et al. (2022); Zhang et al. (2024b;a). Research work shows that sliding window
 469 attention with window size 64 works well in many benchmarks Lan et al. (2025); Zhang et al. (2025),
 470 though we show in this work that such strategies still perform poorly on in-context recall.

471 In the context of distilling into a hybrid of global and linear attention, a key question has emerged:
 472 how to select which global attention patterns to preserve. Some methods rely on downstream bench-
 473 mark performance to determine importance Gu et al. (2025), while others use speculative decoding
 474 as a diagnostic tool to identify redundant attention layers Hoshino et al. (2025). In contrast, our work
 475 focuses on a simple strategy using an unsupervised learning loss and provides extensive analysis that
 476 goes beyond prior research (Yang et al., 2025).

477 7 CONCLUSION

481 In this work, we introduced a simple and effective method for selecting which softmax attention lay-
 482 ers to retain when distilling a pretrained Transformer into a more efficient hybrid architecture. While
 483 our selection process is more efficient than complex search-based alternatives, future work could
 484 explore even cheaper proxies for layer importance, potentially derived directly from the teacher
 485 model's activations or gradients. Other promising directions include extending this selection frame-
 486 work from the layer level to a more fine-grained, head-level hybridization.

486 STATEMENT ON LLM USAGE
487

488 We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
489 manuscript. Specifically, LLMs were utilized to improve grammar and clarity, aid in literature
490 discovery, and generate boilerplate code snippets for our experiments and testing scripts. The authors
491 have carefully reviewed and edited all LLM-generated outputs and take full responsibility for the
492 final content and scientific integrity of this work.

494 REFERENCES
495

496 Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
497 Rudra, and Christopher Re. Zoology: Measuring and improving recall in efficient language
498 models. In *The Twelfth International Conference on Learning Representations*, 2024a. URL
499 <https://openreview.net/forum?id=LY3ukUANKo>.

500 Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
501 Rudra, and Christopher Re. Simple linear attention language models balance the recall-throughput
502 tradeoff. In *Forty-first International Conference on Machine Learning*, 2024b. URL <https://openreview.net/forum?id=e93ffDcpH3>.

505 Simran Arora, Aman Timalsina, Aaryan Singhal, Benjamin Spector, Sabri Eyuboglu, Xinyi Zhao,
506 Ashish Rao, Atri Rudra, and Christopher Ré. Just read twice: closing the recall gap for recurrent
507 language models, 2024c. URL <https://arxiv.org/abs/2407.05483>.

508 Assaf Ben-Kish, Itamar Zimerman, Muhammad Jehanzeb Mirza, Lior Wolf, James R. Glass, Leonid
509 Karlinsky, and Raja Giryes. Overflow prevention enhances long-context recurrent LLMs. In *Sec-
510 ond Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=h99hJ1U99U>.

512 Aviv Bick, Tobias Katsch, Nimit Sohoni, Arjun Desai, and Albert Gu. Llamba: Scaling distilled
513 recurrent models for efficient language processing, 2025. URL <https://arxiv.org/abs/2502.14458>.

516 Hamza Tahir Chaudhry, Mohit Kulkarni, and Cengiz Pehlevan. Test-time scaling meets associative
517 memory: Challenges in subquadratic models. In *New Frontiers in Associative Memories*, 2025.
518 URL <https://openreview.net/forum?id=QjRZNhfOVL>.

520 Hanting Chen, Zhicheng Liu, Xutao Wang, Yuchuan Tian, and Yunhe Wang. Dijiang: Efficient large
521 language models through compact kernelization. *arXiv preprint arXiv:2403.19928*, 2024.

522 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
523 structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.

525 Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
526 Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Lin, Jan Kautz,
527 and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language models, 2024.
528 URL <https://arxiv.org/abs/2411.13676>.

529 Daniel Goldstein, Eric Alcaide, Janna Lu, and Eugene Cheah. Radlads: Rapid attention distillation
530 to linear attention decoders at scale. *arXiv preprint arXiv:2505.03005*, 2025.

532 Riccardo Grazzi, Julien Siems, Jörg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano Pon-
533 til. Unlocking state-tracking in linear RNNs through negative eigenvalues. In *The Thirteenth
534 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=UvTo3tVBk2>.

536 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
537 *Proceedings of CoLM*, 2024.

538 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
539 state spaces. In *Proceedings of ICLR*, 2022.

540 Yuxian Gu, Qinghao Hu, Shang Yang, Haocheng Xi, Junyu Chen, Song Han, and Han Cai. Jet-
 541 nemotron: Efficient language model with post neural architecture search, 2025. URL <https://arxiv.org/abs/2508.15884>.

542

543 Yuichiro Hoshino, Hideyuki Tachibana, Muneyoshi Inahara, and Hiroto Takegawa. Rad:
 544 Redundancy-aware distillation for hybrid models via self-speculative decoding, 2025. URL
 545 <https://arxiv.org/abs/2505.22135>.

546

547 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
 548 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language
 549 models? *arXiv preprint arXiv:2404.06654*, 2024.

550

551 Kazuki Irie, Morris Yau, and Samuel J. Gershman. Blending complementary memory systems in hy-
 552 brid quadratic-linear transformers, 2025. URL <https://arxiv.org/abs/2506.00744>.

553

554 Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
 555 Weizhu Chen, and Noah A. Smith. Finetuning pretrained transformers into RNNs. In Marie-
 556 Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of*
 557 *the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 10630–10643,
 558 Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
 559 Linguistics. doi: 10.18653/v1/2021.emnlp-main.830. URL <https://aclanthology.org/2021.emnlp-main.830>.

560

561 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 562 rnns: Fast autoregressive transformers with linear attention. In *Proceedings of ICML*, 2020.

563

564 Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. *arXiv*
 565 *preprint arXiv:2311.01927*, 2023.

566

567 Disen Lan, Weigao Sun, Jiaxi Hu, Jusen Du, and Yu Cheng. Liger: Linearizing large language
 568 models to gated recurrent structures. *arXiv preprint arXiv:2503.01496*, 2025.

569

570 Barak Lenz, Opher Lieber, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben
 571 Aviram, Chen Almagor, Clara Fridman, Dan Padnos, Daniel Gissin, Daniel Jannai, Dor Muhl-
 572 gay, Dor Zimberg, Edden M. Gerber, Elad Dolev, Eran Krakovsky, Erez Safahi, Erez Schwartz,
 573 Gal Cohen, Gal Shachaf, Haim Rozenblum, Hofit Bata, Ido Blass, Inbal Magar, Itay Dalmedi-
 574 gos, Jhonathan Osin, Julie Fadlon, Maria Rozman, Matan Danos, Michael Gokhman, Mor Zus-
 575 man, Naama Gidron, Nir Ratner, Noam Gat, Noam Rozen, Oded Fried, Ohad Leshno, Omer
 576 Antverg, Omri Abend, Or Dagan, Orit Cohavi, Raz Alon, Ro'i Belson, Roi Cohen, Rom Gilad,
 577 Roman Glozman, Shahar Lev, Shai Shalev-Shwartz, Shaked Haim Meirom, Tal Delbari, Tal Ness,
 578 Tomer Asida, Tom Ben Gal, Tom Braude, Uriya Pumerantz, Josh Cohen, Yonatan Belinkov, Yuval
 579 Globerson, Yuval Peleg Levy, and Yoav Shoham. Jamba: Hybrid transformer-mamba language
 580 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 581 <https://openreview.net/forum?id=JFPaD71pBD>.

582

583 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,
 584 Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Rein-
 585 hard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Al-
 586 balak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh,
 587 Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Il-
 588 harco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao
 589 Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Se-
 590 woong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev,
 591 Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kol-
 592 ller, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar.
 593 Datacomp-lm: In search of the next generation of training sets for language models, 2025. URL
 594 <https://arxiv.org/abs/2406.11794>.

595

596 Jean Mercat, Igor Vasiljevic, Sedrick Scott Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and
 597 Thomas Kollar. Linearizing large language models. In *First Conference on Language Modeling*,
 598 2024. URL <https://openreview.net/forum?id=soGxskHGoX>.

594 MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
 595 Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
 596 Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
 597 Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lian-
 598 fei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi
 599 Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang
 600 Wang, Qin Wang, Qiuwei Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu,
 601 Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song,
 602 Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong,
 603 Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang,
 604 Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang
 605 Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang,
 606 and Zijia Wu. Minimax-01: Scaling foundation models with lightning attention, 2025. URL
 607 <https://arxiv.org/abs/2501.08313>.

608 Chien Van Nguyen, Ruiyi Zhang, Hanieh Deilamsalehy, Puneet Mathur, Viet Dac Lai, Haoliang
 609 Wang, Jayakumar Subramanian, Ryan A. Rossi, Trung Bui, Nikos Vlassis, Franck Dernoncourt,
 610 and Thien Huu Nguyen. Lizard: An efficient linearization framework for large language models,
 611 2025. URL <https://arxiv.org/abs/2507.09025>.

612 Daniele Paliotta, Junxiong Wang, Matteo Pagliardini, Kevin Y. Li, Aviv Bick, J. Zico Kolter, Albert
 613 Gu, François Fleuret, and Tri Dao. Thinking slow, fast: Scaling inference compute with distilled
 614 reasoners, 2025. URL <https://arxiv.org/abs/2502.20339>.

615 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
 616 Cheah, Teddy Ferdinand, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
 617 matrix-valued states and dynamic recurrence. *arXiv preprint arXiv:2404.05892*, 3, 2024.

618 Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
 619 In *Proceedings of ICLR*, 2021.

620 Hao Peng, Jungo Kasai, Nikolaos Pappas, Dani Yogatama, Zhaofeng Wu, Lingpeng Kong, Roy
 621 Schwartz, and Noah A. Smith. ABC: Attention with bounded-memory control. In Smaranda
 622 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meet-
 623 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7469–7483,
 624 Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 625 acl-long.515. URL <https://aclanthology.org/2022.acl-long.515>.

626 Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
 627 HGRN2: Gated Linear RNNs with State Expansion. In *Proceedings of CoLM*, 2024.

628 Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple
 629 hybrid state space models for efficient unlimited context language modeling, 2025. URL <https://arxiv.org/abs/2406.07522>.

630 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers Are Secretly Fast Weight
 631 Programmers. In *Proceedings of ICML*, 2021.

632 Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
 633 Grazzi. Deltaproduct: Improving state-tracking in linear rnns via householder products, 2025.
 634 URL <https://arxiv.org/abs/2502.10297>.

635 Dustin Wang, Rui-Jie Zhu, Steven Abreu, Yong Shan, Taylor Kergan, Yuqi Pan, Yuhong Chou,
 636 Zheng Li, Ge Zhang, Wenhao Huang, and Jason Eshraghian. A systematic analysis of hybrid
 637 linear attention, 2025a. URL <https://arxiv.org/abs/2507.06457>.

638 Junxiong Wang, Daniele Paliotta, Avner May, Alexander M Rush, and Tri Dao. The mamba in the
 639 llama: Distilling and accelerating hybrid models. In *The Thirty-eighth Annual Conference on
 640 Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=uAzhODjALU>.

648 Junxiong Wang, Wen-Ding Li, Daniele Paliotta, Daniel Ritter, Alexander M. Rush, and Tri Dao.
 649 M1: Towards scalable test-time compute with mamba reasoning models, 2025b. URL <https://arxiv.org/abs/2504.10449>.
 650

651 Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. RNNs are not transformers (yet): The key bottleneck
 652 on in-context retrieval. In *The Thirteenth International Conference on Learning Representations*,
 653 2025. URL <https://openreview.net/forum?id=h3wbI8Uk1Z>.
 654

655 Mingyu Yang, Mehdi Rezagholizadeh, Guihong Li, Vikram Appia, and Emad Barsoum. Zebra-
 656 llama: Towards extremely efficient hybrid models, 2025. URL <https://arxiv.org/abs/2505.17272>.
 657

658 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 659 transformers with hardware-efficient training. *arXiv preprint arXiv:2312.06635*, 2023.
 660

661 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
 662 delta rule. *arXiv preprint arXiv:2412.06464*, 2024a.
 663

664 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
 665 ers with the delta rule over sequence length. In *Proceedings of NeurIPS*, 2024b.
 666

667 Lin Yueyu, Li Zhiyuan, Peter Yue, and Liu Xiao. Arwkv: Pretrain is not what we need, an rnn-
 668 attention-based language model born from transformer. *arXiv preprint arXiv:2501.15570*, 2025.
 669

670 Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya Golatkar, Yantao Shen, Benjamin Bowman,
 671 Matthew Trager, Alessandro Achille, and Stefano Soatto. B'mojo: Hybrid state space realizations
 672 of foundation models with eidetic and fading memory, 2024. URL <https://arxiv.org/abs/2407.06324>.
 673

674 Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The Hedgehog & the Por-
 675 cupine: Expressive Linear Attentions with Softmax Mimicry, 2024a. *eprint: arXiv:2402.04347*.
 676

677 Michael Zhang, Simran Arora, Rahul Chalamala, Benjamin Frederick Spector, Alan Wu, Krishik
 678 Ramesh, Aaryan Singhal, and Christopher Re. LoLCATs: On low-rank linearizing of large lan-
 679 guage models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 680 URL <https://openreview.net/forum?id=8VtGeyJyx9>.
 681

682 Yu Zhang, Songlin Yang, Rui-Jie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang,
 683 Bolun Wang, Freda Shi, Bailin Wang, Wei Bi, Peng Zhou, and Guohong Fu.
 684 Gated slot attention for efficient linear-time sequence modeling. In *NeurIPS*,
 685 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/d3f39e51f5f634fb16cc3e658f8512b9-Abstract-Conference.html.
 686

687 Jingwei Zuo, Maksim Velikanov, Ilyas Chahed, Younes Belkada, Dhia Eddine Rhayem, Guillaume
 688 Kunsch, Hakim Hacid, Hamza Yous, Brahim Farhat, Ibrahim Khadraoui, Mugariya Farooq, Giu-
 689 lia Campesan, Ruxandra Cojocaru, Yasser Djilali, Shi Hu, Iheb Chaabane, Puneesh Khanna,
 690 Mohamed El Amine Seddik, Ngoc Dung Huynh, Phuc Le Khac, Leen AlQadi, Billel Moked-
 691 dem, Mohamed Chami, Abdalgader Abubaker, Mikhail Lubinets, Kacper Piskorski, and Slim
 692 Frikha. Falcon-h1: A family of hybrid-head language models redefining efficiency and perfor-
 693 mance, 2025. URL <https://arxiv.org/abs/2507.22448>.
 694

695

696

697

698

699

700

701

A COMPLETE RESULTS ON RECALL-INTENSIVE BENCHMARKS

Tag	Selector	Signal / One-Line Procedure
UNIFORM	Uniform Interleave	Selects layers by evenly interleaving softmax layers at the target ratio.
<i>Task-Guided Search (Heuristic-Based)</i>		
KV	KV Retrieval	Importance from performance drop on a synthetic key-value dictionary lookup task when a layer is bypassed.
AR	Associative Recall	Importance from performance drop on a task to sum the values of prompted keys when a layer is bypassed.
AR-MH	Assoc. Recall—Multi-hop	As above, but with alias chains requiring multi-hop reasoning; performance drop defines importance.
VT	Variable Tracking	Importance from exact-set accuracy drop on a pointer-chasing task over shuffled assignments.
CWE	Common Words Extraction	Importance from set-match accuracy drop on a task to identify the K most frequent words in a long text.
ACT-MSE	Activation MSE	Mean-squared error on generic text between the final hidden states of a baseline vs. layer-bypassed model.
LM-PPL	LM Perplexity	Measures the increase in perplexity on a held-out corpus when a layer is bypassed.
<i>Greedy Structural Search (Learning-Based)</i>		
GR-S1	Greedy Removal (S1)	Starts with all softmax; greedily converts the layer to linear that hurts performance least after brief Stage-1 adaptation.
GR-S2	Greedy Removal (S2)	As above, but using a brief Stage-2 knowledge distillation for adaptation at each step.
GA-S1	Greedy Addition (S1)	Starts with all linear; greedily converts the layer to softmax that helps performance most after brief Stage-1 adaptation.
GA-S2	Greedy Addition (S2)	As above, but using a brief Stage-2 knowledge distillation for adaptation at each step.
AVG-S1	Rank-Avg Greedy (S1)	Averages the layer importance rankings from GR-S1 and GA-S1 before selecting the top- K layers.
AVG-S2	Rank-Avg Greedy (S2)	Averages the layer importance rankings from GR-S2 and GA-S2 before selecting the top- K layers.

Table 3: Layer-selection baselines and the tags used in figures. Layer bypass means applying an identity residual connection across the block’s mixing sublayer.

Selector	Llama-3.2-3B-Instruct				Qwen2.5-3B-Instruct			
	12.5%	25%	33%	50%	12.5%	25%	33%	50%
<i>Heuristic-Based</i>								
UNIFORM	0.4134	0.4359	0.5477	0.6940	0.3718	0.6663	0.5927	0.8048
KV	0.2029	0.6051	0.6626	0.7538	0.2543	0.7539	0.7552	0.8257
AR	0.3229	0.5671	0.6948	0.8303	0.5267	0.6203	0.6685	0.8753
VT	0.1839	0.2012	0.4334	0.7538	0.2922	0.4780	0.5359	0.7409
CWE	0.3129	0.3579	0.6752	0.8394	0.2900	0.4907	0.7065	0.8444
ACT-MSE	0.2802	0.4534	0.5257	0.5580	0.3685	0.3658	0.5515	0.6725
LM-PPL	0.3672	0.4432	0.4692	0.6890	0.3964	0.4712	0.6646	0.6617
AR-MH	0.4044	0.5123	0.6219	0.8039	0.4364	0.7187	0.7217	0.8045
<i>Learning-Based (SI - MSE)</i>								
GR-S1	0.2903	0.4508	0.5214	0.6435	0.3563	0.4827	0.6743	0.8209
GA-S1	0.3092	0.4193	0.4892	0.6569	0.3843	0.5408	0.6657	0.7873
AVG-S1	0.3108	0.4233	0.5355	0.6390	0.3960	0.4933	0.6441	0.8226
<i>Learning-Based (S2 - KL)</i>								
GR-S2	0.3084	0.4950	0.6991	0.7662	0.5804	0.8259	0.8541	0.8869
GA-S2	0.5389	0.6174	0.7003	0.7712	0.6946	0.8713	0.8743	0.9074
AVG-S2	0.4764	0.5580	0.6786	0.8111	0.7075	0.8205	0.8704	0.9051

Table 4: RULER performance for various layer selection strategies across different softmax ratios, for GDN-based hybrid students. The all-linear (0%) baselines are 0.0427 for Llama-3.2 and 0.1236 for Qwen2.5. The all-softmax teacher scores are 0.8934 and 0.9174, respectively.

Selector	Llama-3.2-3B-Instruct				Qwen2.5-3B-Instruct			
	12.5%	25%	33%	50%	12.5%	25%	33%	50%
<i>Heuristic-Based</i>								
UNIFORM	0.3013	0.2931	0.3947	0.6379	0.2686	0.6869	0.3303	0.7350
KV	0.2069	0.6461	0.6760	0.6942	0.1370	0.6788	0.6261	0.7096
AR	0.3820	0.5653	0.6860	0.7042	0.4746	0.5336	0.6688	0.7387
VT	0.1978	0.3385	0.3648	0.6960	0.1588	0.4183	0.4809	0.6279
CWE	0.3149	0.3258	0.6207	0.6779	0.0789	0.2087	0.5345	0.6842
ACT-MSE	0.2178	0.4537	0.5263	0.5672	0.1833	0.2377	0.3485	0.5889
LM-PPL	0.2922	0.4510	0.4982	0.7132	0.2423	0.2495	0.4773	0.5481
AR-MH	0.3539	0.4147	0.5472	0.6216	0.1407	0.6425	0.6434	0.7278
<i>Learning-Based (SI - MSE)</i>								
GR-S1	0.2015	0.3548	0.5644	0.6007	0.2677	0.4465	0.5100	0.6697
GA-S1	0.2105	0.4365	0.4746	0.5563	0.2532	0.4247	0.5163	0.6234
AVG-S1	0.1951	0.4074	0.4628	0.6443	0.2414	0.4165	0.5227	0.6751
<i>Learning-Based (S2 - KL)</i>								
GR-S2	0.3303	0.5054	0.6933	0.6633	0.3612	0.6860	0.7459	0.7468
GA-S2	0.7060	0.7033	0.7114	0.7577	0.6180	0.7704	0.6878	0.8067
AVG-S2	0.6588	0.6806	0.7241	0.7060	0.5880	0.7532	0.7196	0.7641

Table 5: FDA performance for various layer selection strategies across different softmax ratios, for GDN-based hybrid students.

Selector	Llama-3.2-3B-Instruct				Qwen2.5-3B-Instruct			
	12.5%	25%	33%	50%	12.5%	25%	33%	50%
<i>Heuristic-Based</i>								
UNIFORM	0.7516	0.7525	0.8227	0.8452	0.7075	0.8515	0.8236	0.8776
KV	0.4671	0.7894	0.8110	0.8515	0.5311	0.8074	0.8101	0.8272
AR	0.6490	0.8191	0.8299	0.8542	0.7354	0.7759	0.7876	0.8866
VT	0.4761	0.6688	0.6895	0.8569	0.5572	0.7255	0.7507	0.8587
CWE	0.5878	0.6598	0.8290	0.8569	0.5302	0.7192	0.8020	0.8956
ACT-MSE	0.5896	0.7687	0.8101	0.8227	0.6049	0.7057	0.7930	0.8533
LM-PPL	0.6931	0.7525	0.7696	0.8362	0.6571	0.7453	0.8218	0.8353
AR-MH	0.7507	0.8128	0.8335	0.8461	0.6436	0.7948	0.7957	0.8200
<i>Learning-Based (SI - MSE)</i>								
GR-S1	0.5779	0.6958	0.7480	0.8254	0.6688	0.7831	0.8326	0.8821
GA-S1	0.5707	0.7282	0.8146	0.8344	0.6553	0.8047	0.8569	0.8668
AVG-S1	0.5671	0.7192	0.7957	0.8254	0.6670	0.7975	0.8506	0.8866
<i>Learning-Based (S2 - KL)</i>								
GR-S2	0.6301	0.8110	0.8245	0.8425	0.8299	0.8875	0.8749	0.8929
GA-S2	0.8101	0.8263	0.8614	0.8605	0.8434	0.8812	0.8893	0.8875
AVG-S2	0.7885	0.8137	0.8565	0.8704	0.8128	0.8848	0.9001	0.9109

Table 6: SWDE performance for various layer selection strategies across different softmax ratios, for GDN-based hybrid students.

Selector	Llama-3.2-3B-Instruct				Qwen2.5-3B-Instruct			
	12.5%	25%	33%	50%	12.5%	25%	33%	50%
<i>Heuristic-Based</i>								
UNIFORM	19.1708	21.9026	23.8641	24.3945	7.5400	9.6984	9.0306	14.0742
KV	17.4030	25.5568	26.3946	29.5483	6.6478	10.8318	16.4796	15.2550
AR	18.2412	25.2227	27.8562	30.5521	8.7855	7.8277	9.8152	6.5062
VT	19.0819	24.3118	23.9263	29.9387	7.1499	8.7797	14.3150	18.8876
CWE	23.7679	23.2527	28.0014	30.3961	6.7367	12.9678	9.9249	7.2352
ACT-MSE	16.1512	22.0928	23.3075	25.4255	7.4720	5.3176	12.0061	9.6091
LM-PPL	18.5295	21.5863	22.0008	28.8905	9.0530	8.1341	7.8841	7.6171
AR-MH	21.8859	25.3047	26.6214	30.3687	9.8987	8.3828	12.2048	13.7225
<i>Learning-Based (SI - MSE)</i>								
GR-S1	13.3918	20.7552	23.2197	27.3407	7.8245	7.0497	9.4220	8.6667
GA-S1	13.6481	17.8867	22.6633	29.2390	8.9412	9.0555	11.1751	9.1234
AVG-S1	15.0889	18.4342	24.3658	28.2178	7.6409	10.6217	10.1589	10.3181
<i>Learning-Based (S2 - KL)</i>								
GR-S2	18.0648	25.7848	30.4299	30.5907	12.1582	6.4855	7.8482	6.9539
GA-S2	25.9975	29.6941	30.8139	32.4805	11.4124	9.7799	12.0140	10.0936
AVG-S2	23.5556	29.2189	31.1063	32.1499	10.6181	6.4121	6.5623	11.3837

Table 7: SQuADv2 (F1) performance for various layer selection strategies across different softmax ratios, for GDN-based hybrid students.

864 B ELABORATION ON EARLY STOPPING FOR EFFICIENT SELECTION
865

866 **Protocol.** We study the sample efficiency of our one-swap selector (§3.2) at a fixed hybrid ratio
867 of 1:3 ($K=9$ for Qwen2.5-3B-Instruct; $K=7$ for Llama-3.2-3B-Instruct). During Stage-2 we train
868 for 4,550 steps and, every 50 steps, compute the current top- K set of layers (from the one-swap
869 importance scores). This yields 91 snapshot sets per model. To quantify stability we analyze each
870 *rolling window* of the last $R=10$ snapshots using two complementary views:
871

- 872 • **Rolling pairwise similarity:** the mean pairwise Jaccard over the R sets.
873
- 874 • **Rolling backbone size:** the size of the intersection across the R sets (how many positions
875 are “locked in”).
876

876 We also relate snapshots to the final selection by reporting the fraction that are *within one swap* of
877 the final consensus (Jaccard $\geq \frac{K-1}{K+1}$; i.e., 0.80 for $K=9$ and 0.75 for $K=7$).³
878

879 **Reliable selections emerge well before 4550 steps.** Two patterns are consistent across both teach-
880 ers:
881

- 882 • **Qwen2.5-3B-Instruct (K=9).** The run-best set first appears by step 850. From step 1500
883 onward, 95% of snapshot sets are within one swap of the final consensus; the 10-snapshot
884 rolling Jaccard is high on average (≈ 0.95), and rises to 0.99 beyond step 2350.
885 By step 1900, the last R snapshots share an 8/9 backbone with at most two candidates for
886 the remaining slot; any one-swap variant at this point attains RULER within 0.007–0.009
887 absolute points of the run-best (0.8662 vs. 0.8592/0.8582/0.8574).
888
- 889 • **Llama-3.2-3B-Instruct (K=7).** A 6/7 backbone appears by step 750 (mean window Jac-
890 card ≈ 0.91). The near-optimal set that differs by a single layer first appears at step 1200;
891 from step 1200 onward, 100% of snapshots are within one swap of the final consensus.
892 Stopping here gives RULER 0.6971, within 0.004 absolute of the run-best 0.7011 and
893 comparable to the best late-appearing set.
894

894 These observations (i) The selector’s rankings stabilize far earlier than the full 4500-step budget; (ii)
895 once the windowed sets agree on $K-1$ layers, the remaining degree of freedom is small and can
896 be resolved cheaply; (iii) one-swap neighbors of the eventual best set typically match downstream
897 RULER within 0.1–1.0 absolute points, so stopping once the $K-1$ backbone is stable is a sound
898 efficiency–quality trade-off.
899

900 A conservative choice (see rule below) would have stopped at ~ 1900 steps for Qwen and ~ 1200
901 steps for Llama—consuming 42% and 27% of the 4550-step budget, respectively (i.e., 58–74%
902 fewer tokens for the selection pass).
903

903 **Practical recipe (rolling-Jaccard early stop).** Let S_t be the top- K set at step t and $W_t =$
904 $\{S_{t-9}, \dots, S_t\}$. Define
905

$$906 \text{Backbone}_t = \bigcap_{S \in W_t} S, \quad \text{JaccardMean}_t = \frac{2}{R(R-1)} \sum_{i < j} \text{Jac}(S_i, S_j).$$

907 Stop at the first step t satisfying:
908

- 909 1. $\text{JaccardMean}_t \geq 0.90$,
910
- 911 2. $|\text{Backbone}_t| \geq K-1$, and
912
- 913 3. $|\bigcup_{S \in W_t} S| \leq K+1$ (at most two options for the remaining slot).
914

915 (Optional) Stop when (3) first becomes true and $S_t \neq S_{t-1}$ to pick the newer of the two candidates.
916

917 ³For fixed set size K , replacing one layer yields intersection $K-1$ and union $K+1$, hence Jaccard $(K-1)/(K+1)$.

918 **C COMPLETE LAYER IMPORTANCE RANKINGS**
919920 For all methods that produce a scalar importance score per layer, we obtain hybrid architectures at
921 target softmax ratios (12.5%, 25%, 33%, 50%) by taking the top- K most important layers according
922 to that ranking (with K determined by the ratio and total depth L). In this section we report the
923 *full* importance ranking for each such method. Layer indices are zero-based. Methods such as
924 POSTNAS and SMART do not provide layerwise importance scores, so they are omitted here.
925926 **C.1 QWEN2.5-3B-INSTRUCT**
927

928 Selector	929 Layer indices (most → least important)
930 KV	[1, 0, 26, 19, 18, 20, 5, 17, 27, 6, 15, 22, 24, 16, 3, 11, 23, 21, 28, 8, 14, 25, 2, 29, 32, 12, 931 13, 9, 4, 10, 31, 34, 35, 30, 33, 7]
932 AR	[0, 1, 27, 18, 20, 25, 24, 26, 21, 8, 12, 19, 23, 7, 35, 17, 33, 22, 28, 16, 32, 30, 34, 9, 29, 2, 6, 5, 31, 4, 13, 10, 14, 15, 3, 11]
933 VT	[0, 1, 19, 26, 28, 25, 35, 10, 15, 17, 3, 7, 27, 29, 16, 14, 30, 34, 32, 31, 23, 33, 9, 13, 18, 8, 2, 21, 11, 12, 22, 24, 20, 5, 4, 6]
934 CWE	[0, 1, 22, 24, 16, 13, 26, 2, 27, 19, 20, 11, 23, 6, 31, 28, 29, 33, 4, 8, 34, 7, 30, 32, 9, 25, 3, 5, 21, 15, 17, 18, 35, 10, 14, 12]
935 ACT-MSE	[0, 1, 35, 34, 31, 33, 32, 30, 8, 12, 27, 3, 4, 2, 6, 5, 28, 10, 9, 29, 11, 7, 14, 13, 26, 25, 16, 15, 18, 24, 17, 23, 20, 19, 22, 21]
936 LM-PPL	[0, 1, 35, 34, 32, 31, 33, 30, 27, 12, 6, 5, 9, 8, 29, 2, 4, 7, 10, 11, 25, 28, 16, 14, 13, 26, 24, 20, 3, 22, 23, 15, 18, 21, 19, 17]
937 AR-MH	[0, 1, 27, 21, 26, 16, 20, 5, 23, 24, 18, 6, 13, 3, 9, 22, 8, 17, 33, 35, 19, 4, 25, 12, 30, 7, 29, 34, 14, 15, 10, 2, 28, 11, 32, 31]
938 GA-S1	[33, 32, 34, 31, 35, 28, 29, 27, 21, 22, 19, 30, 24, 16, 23, 26, 12, 17, 18, 20, 14, 25, 10, 3, 11, 6, 13, 7, 9, 15, 0, 4, 8, 2, 5, 1]
939 GR-S1	[33, 32, 34, 35, 31, 27, 28, 30, 21, 29, 22, 19, 26, 25, 16, 24, 23, 17, 18, 14, 15, 12, 20, 13, 11, 10, 8, 9, 7, 6, 3, 5, 4, 0, 2, 1]
940 AVG-S1	[33, 32, 34, 31, 35, 28, 27, 29, 21, 30, 22, 19, 16, 24, 26, 23, 17, 25, 18, 12, 14, 20, 10, 11, 13, 15, 3, 6, 7, 9, 8, 0, 4, 5, 2, 1]
941 GA-S2 (OURS)	[20, 32, 33, 21, 22, 25, 17, 19, 5, 31, 4, 3, 10, 30, 26, 29, 27, 13, 0, 28, 15, 23, 6, 12, 24, 7, 18, 9, 34, 14, 11, 8, 16, 35, 2, 1]
942 GR-S2	[21, 33, 19, 27, 0, 32, 17, 22, 20, 25, 23, 18, 24, 15, 29, 12, 26, 31, 16, 3, 10, 13, 14, 28, 30, 5, 7, 8, 11, 4, 35, 6, 9, 2, 34, 1]
943 AVG-S2	[21, 33, 32, 20, 19, 22, 17, 25, 27, 0, 31, 29, 3, 26, 23, 10, 5, 15, 24, 18, 30, 12, 13, 4, 28, 16, 7, 14, 6, 8, 11, 9, 34, 35, 2, 1]

952 Table 8: Complete layer-importance rankings for Qwen2.5-3B-Instruct. Each row lists all
953 $L = 36$ layers from most to least important.
954955 **C.2 LLAMA-3.2-3B-INSTRUCT**
956

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009	986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009	986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009	986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
Selector	Layer indices (most → least important)		
KV	[0, 7, 5, 4, 8, 11, 14, 2, 1, 3, 6, 23, 10, 20, 26, 17, 22, 9, 24, 21, 25, 18, 16, 19, 12, 13, 27, 15]		
AR	[0, 16, 11, 14, 7, 5, 9, 13, 2, 12, 1, 8, 27, 26, 10, 6, 24, 15, 3, 20, 18, 19, 17, 21, 25, 4, 23, 22]		
VT	[0, 5, 4, 11, 3, 12, 10, 1, 2, 17, 9, 13, 15, 16, 18, 23, 8, 14, 21, 24, 20, 25, 26, 22, 6, 27, 19, 7]		
CWE	[0, 5, 12, 8, 9, 4, 1, 13, 14, 10, 21, 24, 16, 22, 15, 27, 25, 20, 6, 2, 26, 23, 18, 3, 11, 17, 19, 7]		
ACT-MSE	[0, 1, 27, 24, 25, 2, 26, 4, 15, 23, 19, 21, 3, 18, 20, 14, 16, 5, 22, 17, 13, 6, 7, 12, 11, 10, 8, 9]		
LM-PPL	[0, 1, 27, 2, 24, 3, 26, 25, 4, 14, 15, 19, 16, 5, 20, 23, 12, 17, 10, 21, 13, 18, 6, 22, 9, 11, 7, 8]		
AR-MH	[0, 13, 12, 16, 11, 7, 23, 14, 10, 5, 21, 25, 9, 8, 19, 17, 2, 6, 4, 3, 1, 26, 18, 24, 15, 22, 27, 20]		
GA-S1	[26, 27, 25, 24, 13, 20, 23, 7, 10, 22, 9, 12, 19, 8, 14, 15, 21, 11, 16, 17, 18, 2, 5, 6, 4, 1, 0, 3]		
GR-S1	[26, 27, 24, 25, 23, 12, 22, 13, 14, 21, 10, 19, 11, 15, 9, 20, 8, 7, 16, 18, 17, 6, 5, 4, 3, 2, 1, 0]		
AVG-S1	[26, 27, 24, 25, 23, 13, 22, 12, 10, 20, 14, 19, 7, 9, 21, 15, 8, 11, 16, 17, 18, 5, 6, 2, 4, 1, 3, 0]		
GA-S2 (OURS)	[14, 8, 5, 12, 15, 13, 2, 26, 24, 16, 17, 18, 21, 10, 25, 20, 19, 23, 22, 27, 9, 7, 6, 4, 1, 0, 11, 3]		
GR-S2	[0, 1, 12, 2, 13, 5, 10, 14, 8, 7, 9, 6, 3, 11, 26, 15, 16, 4, 22, 24, 27, 25, 19, 17, 18, 23, 21, 20]		
AVG-S2	[12, 5, 14, 2, 8, 13, 10, 15, 26, 0, 1, 16, 24, 7, 9, 6, 17, 18, 25, 22, 19, 21, 3, 11, 27, 4, 20, 23]		

1010
 1011 Table 9: Complete layer-importance rankings for Llama-3.2-3B-Instruct. Each row lists all
 1012 $L = 28$ layers from most to least important.
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **D LAYER-SELECTION PATTERNS AND SPATIAL ORGANIZATION**
10271028 We now examine where in depth the selected softmax layers tend to lie, and whether our selector
1029 prefers isolated layers or groups of consecutive layers.
10301031 **Setup.** For each teacher we take the GA-S2 ranking $\mathcal{R} = (\ell_1, \dots, \ell_L)$ from Appendix C, ordered
1032 from most to least important. For a softmax budget K we define the selected set $S_K = \{\ell_1, \dots, \ell_K\}$.
1033 To quantify how much the selected layers cluster in depth, we use the *adjacency index*

1034
$$A_K = |\{i \in S_K : i + 1 \in S_K\}|,$$

1035

1036 i.e., the number of pairs of consecutive layers that are both selected. For a uniformly random K -
1037 subset of $\{0, \dots, L - 1\}$, the expected value is $\mathbb{E}[A_K] \approx K(K - 1)/L$, so values substantially
1038 above this baseline indicate more clustering than would be obtained by chance. Figure 7 shows the
1039 selected indices across budgets, and Figure 8 compares observed and expected adjacency counts.
10401041 **Results and discussion.** For **Qwen2.5-3B-Instruct** ($L=36$), GA-S2 produces selected sets that
1042 are visibly concentrated in a few depth ranges. At a 25% budget ($K=9$), we obtain $A_K = 4.0$ versus
1043 a random baseline of 2.0; at 33% ($K=12$), $A_K = 7.0$ versus 3.68; and at 50% ($K=18$), $A_K = 11.0$
1044 versus 8.49. The plot in Figure 7 show that several of these adjacent pairs occur repeatedly around
1045 layers roughly 3–5, 19–22, and 31–33, while the remaining layers are used more sparsely. Thus, the
1046 selector does not simply spread the softmax layers uniformly but repeatedly reuses a small number
1047 of depth regions as the budget increases.
10481049 For **Llama-3.2-3B-Instruct** ($L=28$), the effect is weaker but still present. At 25% ($K=7$), $A_K =$
1050 3.0 versus a baseline of 1.50; at 33% ($K=9$), $A_K = 3.0$ versus 2.58; and at 50% ($K=14$), $A_K = 6.0$
1051 versus 6.50. The selected layers tend to form one main group in the middle of the network (around
1052 layers 12–18), with a smaller number of layers near the input and output.
10531054 Overall, both models show some degree of clustering beyond what would be expected from a ran-
1055 dom K -subset, but the pattern (multiple groups versus a single main group) depends on the teacher
1056 architecture.
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

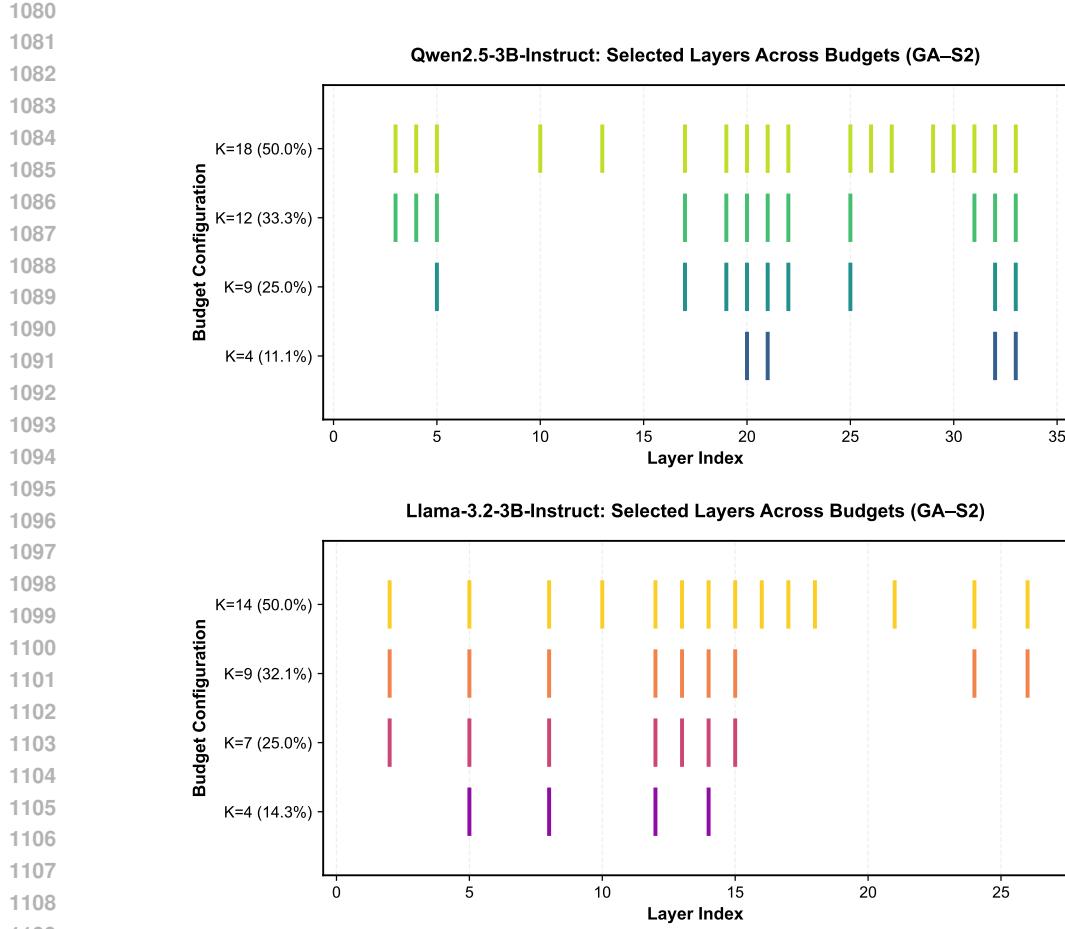


Figure 7: Visualization of selected layers for Qwen2.5-3B-Instruct (top) and Llama-3.2-3B-Instruct (bottom) across budgets (12.5%, 25%, 33%, 50%). Each vertical tick marks a selected layer index.

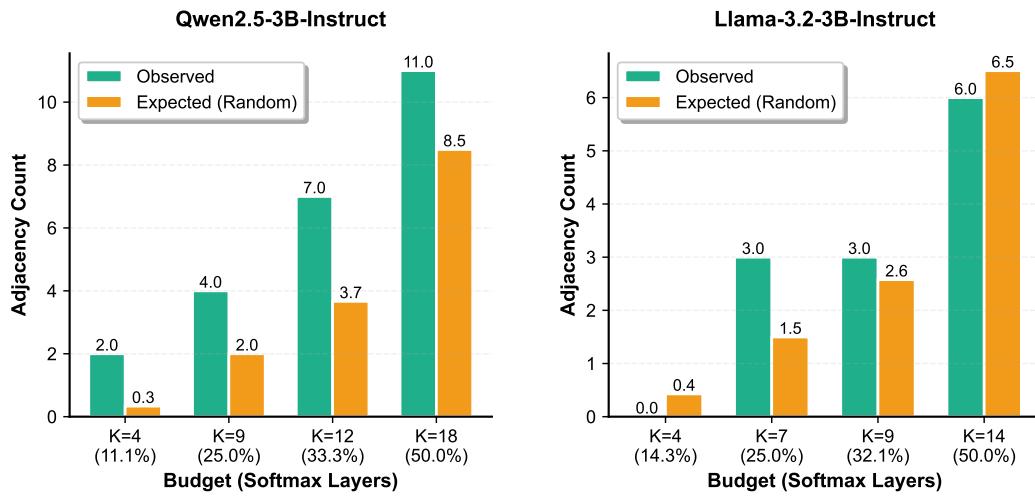


Figure 8: Observed (solid) vs. random-baseline expected (dashed) adjacency counts A_K for Qwen2.5-3B (left) and Llama-3.2-3B (right).

1134 **E DISTANCE-REGULARIZED SELECTION (DIVERSIFICATION ABLATION)**
11351136 To probe whether clustering is redundant, we evaluate a re-weighted greedy rule for selecting K
1137 layers:

1138
$$\tilde{\mathcal{I}}(\ell | S) = \mathcal{I}(\ell) - \lambda \sum_{j \in S} \exp\left(-\frac{|\ell - j|}{\sigma}\right),$$

1139
1140

1141 with $\lambda > 0$, $\sigma > 0$. Here S is the set of softmax layers selected so far and $\mathcal{I}(\ell)$ is the original
1142 GA-S2 importance score. The exponential term penalizes placing a new softmax layer too close (in
1143 depth) to previously selected ones, nudging the selector toward more spatially diverse configurations
1144 without discarding the model-intrinsic KL signal.1145 We instantiate this diversification for Qwen2.5-3B-Instruct with a GDN student at a fixed 25% softmax
1146 ratio ($K=9$), and sweep $\lambda \in \{0.025, 0.05\}$ and $\sigma \in \{1, 2\}$. All other training and evaluation
1147 settings are kept identical to the main GA-S2 runs.

	λ	σ	RULER (4096)	Selected layers
0 (GA-S2)	—		0.8713	[20, 32, 33, 21, 22, 25, 17, 19, 5]
0.025	1		0.8509	[20, 32, 25, 17, 22, 5, 33, 10, 3]
0.025	2		0.8244	[20, 32, 25, 5, 17, 10, 33, 0, 22]
0.050	1		0.8334	[20, 32, 25, 17, 5, 10, 22, 0, 29]
0.050	2		0.8303	[20, 32, 5, 25, 10, 17, 0, 33, 13]

1149 Table 10: Distance-regularized GA-S2 selection on Qwen2.5-3B-Instruct with a GDN student at a
1150 25% softmax ratio. The $\lambda=0$ row corresponds to our default GA-S2 selector without regularization;
1151 the last column lists the resulting softmax layer indices.1152 As shown in Table 10, none of the distance-regularized variants outperform the unregularized GA-
1153 S2 selector. A mild penalty ($\lambda=0.025$, $\sigma=1$) yields a small degradation (0.8509 vs. 0.8713 on
1154 RULER), while stronger or more broadly supported penalties lead to larger drops. This suggests that
1155 the clustering observed in our selections is not merely redundant: forcing softmax layers to spread
1156 out in depth tends to remove genuinely useful local groupings. At the same time, the $\lambda=0.025$, $\sigma=1$
1157 configuration may be acceptable when a slightly more uniform spatial allocation is desired and a
1158 modest recall loss (about two points on RULER) is tolerable.1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **F EXTENDED LONG-CONTEXT EVALUATION VIA NEEDLE-IN-A-HAYSTACK**
1189

1190 In the main text, long-context behavior is evaluated primarily through RULER and SWDE (§4,
1191 §4.1), whose contexts are below 10k tokens, and our distillation pipeline (§3.1) is trained on generic
1192 text with comparatively shorter sequence lengths. This leaves open whether the distilled hybrid
1193 model recovers teacher-like retrieval ability at substantially longer sequences than those used during
1194 distillation and benchmark evaluation. To probe this, we perform an additional needle-in-a-haystack
1195 (NiHA) experiment.

1196 We consider the Qwen2.5-3B-Instruct teacher and its corresponding hybrid student with a 25%
1197 softmax / 75% GDN configuration selected by our method. For each context length, we construct
1198 inputs by embedding a single target “needle” span into a long filler context and measure retrieval
1199 accuracy, defined as the fraction of cases where the model correctly identifies the target span. We
1200 evaluate across exponentially increasing context window sizes from 8k to 128k tokens. Results are
1201 reported in Table 11.

1203 Context length (tokens)	1204 Teacher	1205 Hybrid student
1204 8,192	1205 1.000	1206 1.000
1205 16,384	1206 1.000	1207 0.998
1206 32,768	1207 1.000	1208 0.998
1207 65,536	1208 1.000	1209 0.994
1208 131,072	1209 0.954	1210 0.684

1209 Table 11: Needle-in-a-haystack retrieval accuracy as a function of context length for Qwen2.5-3B-
1210 Instruct (teacher) and the corresponding hybrid student (25% softmax, 75% GDN layers).
1211

1212 The hybrid model maintains near-perfect retrieval accuracy up to 65,536 tokens, closely tracking
1213 the teacher with only minor degradation. At 131,072 tokens both models begin to degrade, with
1214 a larger drop for the hybrid student. These results indicate that the proposed layer selection and
1215 distillation procedure successfully preserves long-context retrieval well beyond the context lengths
1216 used during distillation and primary benchmark evaluations, while leaving further improvements at
1217 extreme lengths as an interesting direction for future work.

1242 G ADDITIONAL SCALING RESULTS FOR QWEN2.5 TEACHERS

1244 To verify that our KL-guided layer selection method scales across model sizes within a family, we
 1245 also distill GDN-based hybrid students from two additional Qwen2.5 teachers:

- 1247 • **Qwen2.5-1.5B-Instruct**, with RULER score 0.8742.
- 1248 • **Qwen2.5-7B-Instruct**, with RULER score 0.9445.

1250 We use the same DCLM mixture and distillation pipeline as in the main Qwen2.5-3B experiments,
 1251 and evaluate at 25% and 33% softmax ratios. As in the main text, we compare against **UNI-**
 1252 **FORM**, **AR**, **AR-MH**, **ACT-MSE**, **LM-PPL**, and **SMART**. Our selector **GA-S2** remains consis-
 1253 tently stronger than all baselines, particularly in the low-budget regime.

1255 Model / Ratio	1256 UNIFORM	1257 AR	1258 AR-MH	1259 ACT-MSE	1260 LM-PPL	1261 SMART	1262 GA-S2
Qwen2.5-1.5B-Instruct (teacher RULER: 0.8742)							
25%	0.4778	0.5096	0.4243	0.3807	0.4271	0.5098	0.5408
33%	0.5651	0.5552	0.5229	0.4374	0.5056	0.6479	0.6953
Qwen2.5-7B-Instruct (teacher RULER: 0.9445)							
25%	0.7357	0.7453	0.7322	0.6469	0.6544	0.8158	0.8584
33%	0.7516	0.8423	0.8533	0.7227	0.6590	0.8949	0.9110

1262 Table 12: RULER performance of GDN-based hybrid students distilled from smaller (1.5B) and
 1263 larger (7B) Qwen2.5 teachers at 25% and 33% softmax ratios. Our GA-S2 selector consistently
 1264 outperforms all baselines across scales.