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ABSTRACT

Distilling pretrained softmax attention Transformers into more efficient hybrid
architectures that interleave softmax and linear attention layers is a promising
approach for improving the inference efficiency of LLMs without requiring ex-
pensive pretraining from scratch. A critical factor in the conversion process is
layer selection, i.e., deciding on which layers to convert to linear attention vari-
ants. This paper describes a simple and efficient recipe for layer selection that uses
layer importance scores derived from a small amount of training on generic text
data. Once the layers have been selected we use a recent pipeline for the distilla-
tion process itself (RADLADS; Goldstein et al., 2025), which consists of attention
weight transfer, hidden state alignment, KL-based distribution matching, followed
by a small amount of finetuning. We find that this approach is more effective than
existing approaches for layer selection, including heuristics that uniformly inter-
leave linear attentions based on a fixed ratio, as well as more involved approaches
that rely on specialized diagnostic datasets.

1 INTRODUCTION

Linear attention (Katharopoulos et al., 2020; Peng et al., 2021; Yang et al., 2023, i.a.) and state-
space models (Gu et al., 2022; Gu & Dao, 2024; Dao & Gu, 2024, i.a.) have gained significant trac-
tion recently due to their high inference speed and competitive performance. However, most existing
pretrained models are still purely based on softmax attention, and pretraining such linear attention
models from scratch is resource-intensive. This has motivated the approaches for cross-architecture
distillation, a process that converts pretrained Transformer checkpoints into more efficient linear
attention counterparts (Kasai et al., 2021; Wang et al., 2024; Bick et al., 2025, i.a.).
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Figure 1: Performance of a sliding-window atten-
tion model (distilled from Qwen2.5-3B-Instruct)
across different window sizes on RULER and
commonsense tasks.

This distillation process involves two key deci-
sions: (1) the student architecture, and (2) the
optimal distillation recipe once the architecture
has been selected. For the second question,
recent work has shown the effectiveness of a
multi-stage pipeline over pure continued fine-
tuning approaches (Bick et al., 2025; Goldstein
et al., 2025). This pipeline involves an initial
stage of per-layer output alignment with an L2

loss, followed by a second stage of end-to-end
knowledge distillation. What student architec-
ture to distill to, however, remains open. Prior
efforts to distill Transformers into purely sub-
quadratic models have often resulted in perfor-
mance degradation (Zhang et al., 2024a;b; Mer-
cat et al., 2024). More recently, models in-
corporating a sliding window attention (SWA)
mechanism have shown surprisingly strong re-
sults across various benchmarks (Lan et al.,
2025; Zhang et al., 2025). However, these eval-
uations have primarily focused on knowledge-
intensive common-sense reasoning tasks, where in-context recall plays a lesser role. Our empirical
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findings show that even a small sliding window of size 16 is sufficient for a distilled SWA model to
recover strong performance on such tasks.

In contrast, performance on in-context recall benchmarks like RULER (Hsieh et al., 2024) is highly
dependent on the sliding window size (Figure 1). This is perhaps unsurprising, as it reflects the
well-documented limitations of fixed-state models in in-context recall (Wen et al., 2025; Arora et al.,
2024a;b).

A simple yet effective solution is to incorporate a few global (softmax) attention layers, resulting
in a hybrid architecture. This approach has been successfully adopted in recent models pretrained
from scratch, such as Jamba (Lenz et al., 2025), MiniMax-01 (MiniMax et al., 2025), Falcon-H1
(Zuo et al., 2025), and Qwen3-Next. These models typically interleave global and linear attention
layers at a fixed ratio (e.g., one global layer for every three or seven linear layers) (Wang et al.,
2025a). Following this trend, some distillation works have also adopted a fixed interleaving strategy
(Wang et al., 2024). However, our preliminary experiments show this uniform approach remains
suboptimal for in-context recall, presumably due to the fundamental difference between pretraining
and distillation. This observation has been recognized in recent work (Gu et al., 2025; Yang et al.,
2025; Hoshino et al., 2025), which also explore various criteria for selectively assigning global
attention.

In this work, we adopt a simple global attention selection criterion based on the distillation KL diver-
gence loss: intuitively, the more critical a global attention layer is, the more it reduces the resulting
distillation KL loss. Our experiments demonstrate the effectiveness of our selective hybrid distilla-
tion, which achieves strong in-context retrieval performance while maintaining efficiency. Our work
paves the way for future research on test-time compute scaling for distilled hybrid models (Paliotta
et al., 2025; Wang et al., 2025b), where in-context retrieval remains a key bottleneck (Chaudhry
et al., 2025).

2 PRELIMINARIES

Notation. Let X = [x1; . . . ;xT ] ∈ RT×d be a sequence of T token embeddings with model width
d. We use L pre-norm Transformer blocks indexed by ℓ ∈ {1, . . . , L}, and h attention heads with
per-head width dh so d = h dh. A Transformer block then given by

U(ℓ) = X(ℓ) +Mix(ℓ)(LN(X(ℓ))), X(ℓ+1) = U(ℓ) + FFN(ℓ)(LN(U(ℓ))).

where Mixℓ(·) is a sequence mixing operation (i.e., softmax or linear attention) for layer ℓ. When
not essential, we omit LN and residuals for readability. We write M for the (additive) attention
mask, which encodes causality and any positional encoding (e.g., RoPE/Alibi) as standard.

Softmax attention. For a single head (we suppress head indices) softmax attention proceeds by
computing the query, key and value matrices

Q = XWQ, K = XWK , V = XWV ,

where WQ,WK ,WV ∈ Rd×dh are learnable parameters. The output is given by (with mask M)

O = Softmax
(

1√
dh

QK⊤ +M
)
V, (1)

and multi-head concatenates per-head outputs which is transformed by a linear layer WO ∈
R(hdh)×d. During autoregressive inference, the same operation admits a recurrent view:

ot =
∑
i≤t

αt,i vi, αt,i ∝ exp
(

1√
dh

q⊤
t ki

)
,

∑
i≤t

αt,i = 1. (2)

The memory cost of softmax attention grows linearly with respect to sequence length due to the KV
cache, which can result in substantial slowdowns as generation length grows due to increasing data
movement across the memory hierarchy.

Linear attention. Linear attention layers have been proposed to address the above inefficiencies
of softmax attention during decoding. While many variants exist, they generally adopt the following
recurrent form:

ot = q⊤
t St, St = MtSt−1 + ktv

⊤
t , (3)

2
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where Mt is a data-dependent and time-varying transition matrix that is a function of xt. Setting
Mt = diag(αt) where αt ∈ Rd is a function of xt recovers recent gated linear attention (GLA)
variants (Yang et al., 2023; Katsch, 2023; Qin et al., 2024; Peng et al., 2024). Alternatively, using
Mt = αt(I − βtktk

⊤
t ) recovers the (gated) DeltaNet family of models (Schlag et al., 2021; Yang

et al., 2024b;a).1 The structure of Mt enables efficient parallel training via a chunking mechanism.

Linear attention compresses the entire history into the hidden state matrix St and thus the memory
cost is constant with respect to generation length, leading to much more efficient decoding compared
to softmax attention. However, this hidden state bottleneck is a fundamental limitation when it
comes to crucial capabilities such as performing associative recall over a given context.

Hybrid attention. A common strategy for maintaining the capabilities of softmax attention while
realizing some of the efficiency benefits of linear attention is to use a hybrid model. This approach
partitions the set of layer indices into Ssoftmax and Slinear such that Ssoftmax ∪ Slinear = {1, . . . , L}.
Then the sequence-mixing layer is given by

Mix(ℓ) =

{
SoftmaxAttn(ℓ), ℓ ∈ Ssoftmax,

LinearAttn(ℓ), ℓ ∈ Slinear.

Recent works have shown that architectures that use a fixed ratio of linear to softmax attention layers
performs well when pretrained from scratch (Lenz et al., 2025; MiniMax et al., 2025). However,
such a uniform strategy may be suboptimal for distilling hybrid attention models from pretrained
softmax attention models, motivating our present work on layer selection for distillation.

3 LAYER SELECTION FOR DISTILLING HYBRID ATTENTION

For distilling a pretrained softmax attention LLM into a hybrid attention model, we seek to find a
set Lsoft for a given budget |Lsoft| = K such that converting all the other layers into linear attention
has minimal performance degradation. Solving this exactly would require a combinatorial search
over all possible K-sized subsets of [L], which would be intractable. Our key idea is to measure a
layer’s marginal utility by restoring exactly that layer (and only that layer) to softmax in an otherwise
all-linear student, then distilling briefly and scoring how much the teacher–student KL improves.

3.1 INITIAL DISTILLATION TO AN ALL-LINEAR STUDENT

We first distill to an all-linear student model, adopting the first two stages of the distillation pipeline
from RADLADS (Goldstein et al., 2025). LetMteacher be the original teacher model andMall-linear
be an all-linear student model, where the linear attention parameters are initialized from the teacher’s
parameters, i.e., (WQ,WK ,WV ,WO). The other parameters of the linear attention layer (in
particular the parameters of a linear layer for the data-dependent gating term αt) are initialized
randomly. Then distillation proceeds as follows:

Stage 1: Hidden-state alignment. For a given token sequence x = x1 . . . xT , the attention hidden
states from the all-linear student model {U(ℓ)

all-linear}ℓ∈[l] are trained to match the teacher’s hidden
states {U(ℓ)

teacher}ℓ∈[l],

Lhidden(Mall-linear,x) =
∑
ℓ∈[L]

1

T

∥∥U(ℓ)
teacher −U

(ℓ)
all-linear

∥∥2
2
. (4)

Here, we only train the parameters of the student’s linear attention layer while freezing FFN’s pa-
rameters. The targets are produced by the teacher model and remain fixed.

Stage 2: Distribution matching. In stage 2 we minimize a temperature-scaled KL between teacher
logits ℓteacher,t ∈ RV and student logits ℓall-linear,t ∈ RV with respect to all student parameters (i.e.,
including the student’s FFN layers)

LKL(Mall-linear,x) =
τ2

T

T∑
t=1

KL
(
Softmax

(
ℓteacher,t

τ

) ∥∥∥ Softmax
(

ℓall-linear,t
τ

))
, (5)

1DeltaNet also multiplies the additive term ktv
⊤
t with βt, which we omit for simplicity.
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where τ smoothing term that provides stronger gradient signal on non-argmax tokens. (The func-
tions Lhidden and LKL are obviously functions of Mteacher but we omit it from the argument for
readability.)

Stage 1 uses 100M tokens while stage 2 uses 600M tokens. All subsequent applications of the
stagewise pipeline (i.e., in §3.2 and §3.3) use the same number of tokens.2

3.2 DERIVING LAYERWISE IMPORTANCE SCORES

With the all-linear modelMall-linear derived from the above process in hand, we now describe our
layer selection strategy. LetM(−ℓ)

all-linear be a model derived fromMall-linear where the ℓ-th block has
been restored back into the ℓ-th layer ofMteacher. We run stage 1 and stage 2 of the above process
again to finetune the studentM(−ℓ)

all-linear, which now has one softmax attention layer. We define I(ℓ),
the layer importance for layer ℓ, as the KL divergence between and the teacher model, i.e.,

I(ℓ) = −Ex∼D
[
LKD(M(−ℓ)

all-linear,x)
]
. (6)

Higher I(ℓ) means larger KL reduction (i.e., greater marginal utility under our objective). Because
the baseline student and neighbors are fixed, I(ℓ) is hybrid-aware and variant-aware.

3.3 LAYER SELECTION AND FINAL DISTILLATION

Algorithm 1 KL-guided Layer Selection for Hybrid Attention Distillation

Require: TeacherMteacher; dataset D (DCLM); temperature τ ; target budget K
1: Distill into pure linear attention modelMall-linear (§3.1)
2: for ℓ = 1 to L in parallel do (§3.2)
3: ObtainM(−ℓ)

all-linear by changing ℓ-th layer ofMall-linear to ℓ-th layer ofMteacher
4: Stage 1: align all linear blocks by Lhid on D.
5: Stage 2: distill by LKL on D.
6: Compute I(ℓ) = −E[LKL] on a held-out slice of D.
7: end for
8: Select: Ssoftmax ← top-K layers by I(ℓ) (§3.3)
9: Final hybrid: instantiate hybrid based on Ssoftmax and linear on layers [L] \ Ssoftmax; train with

the two-stage distillation pipeline.

Given a budget of K softmax attention layers that we can keep, we now take the top-K most impor-
tant layers and convert the result into linear attention i.e.,

Ssoftmax = top-K(I(ℓ)), Slinear = {1, . . . , L} \ Ssoftmax.

Denoting the above hybrid model with K softmax attention layers as Mhybrid-K we run a final
distillation pipeline by rerunning stages 1 and 2 with this hybrid model. Our full algorithm is given
in Algorithm 1.

4 EXPERIMENTS

Having introduced our method, we now present a series of experiments designed to build a com-
prehensive case for its effectiveness. We begin by establishing why hybrid models are essential for
maintaining long-context capabilities (§4.1). We then demonstrate that our KL-guided approach
outperforms a wide range of baselines (§4.3).

2For our main GA-S2 selector, the final hybrid model reuses the Stage 1-aligned linear attention layers
from Mall-linear and therefore only runs Stage 2 in the last distillation step. For heuristic baselines that are not
initialized from Mall-linear, we run both Stage 1 and Stage 2 in the final distillation for fairness.

4
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4.1 THE CASE FOR HYBRID MODELS

There has been a flurry of recent work on distilling to pure linear attention models (Chen et al.,
2024; Mercat et al., 2024; Zhang et al., 2025; Goldstein et al., 2025; Wang et al., 2024; Yueyu
et al., 2025; Lan et al., 2025; Bick et al., 2025). These works generally report that pure linear
attention can maintain the performance of pretrained softmax attention baselines with the right dis-
tillation process. However, this conclusion is often based on comparing performance on tasks such
as MMLU and Commonsense Reasoning, whose context lengths are short; it is unclear the extent
to which such pure linear attention models can maintain performance on benchmarks which require
understanding and performing recall over longer contexts. To analyze this, we construct a series of
hybrid models based on our approach where the number of softmax layers ranges from 1 to L − 1.
We then evaluate these models on RULER (Hsieh et al., 2024), a diagnostic benchmark designed
to probe the long-context capabilities of LLMs. We also evaluate these models on short-context
commonsense reasoning benchmarks evaluated by previous methods, including PIQA, ARC-Easy,
ARC-Challenge, HellaSwag and WinoGrande (we report the average).
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Figure 2: Performance on recall-intensive vs. commonsense tasks as the number of full-attention
layers is varied for Qwen2.5-3B-Instruct (top) and Llama-3.2-3B-Instruct (bottom). Recall ability is
highly sensitive to the softmax budget, while commonsense reasoning is not.

The results in Figure 2 reveal a stark dichotomy. Performance on the long-context RULER bench-
mark is highly sensitive to the number of softmax layers (K), growing monotonically and confirming
that global context aggregation is critical for in-context retrieval. In contrast, commonsense reason-
ing performance is almost entirely insensitive to K; models with even a single softmax layer achieve
near-teacher-level performance, suggesting these local tasks are well-handled by linear attention.
Ironically, the efficiency benefits of linear attention are minimal on precisely these short-context
tasks. This dichotomy motivates our work: the central challenge in distilling hybrid models is to
preserve long-context recall. This requires a method that can judiciously allocate a limited budget
of expensive softmax layers to the positions where they are most impactful.

4.2 EXPERIMENTAL SETUP

Having established the importance of selection, we now evaluate our KL-guided method against the
a suite of baselines.

Model and data. We evaluate two 3B-class decoder-only teachers: Qwen2.5-3B-Instruct and
Llama-3.2-3B-Instruct. For each architecture we take the checkpoint’s native depth L and re-
port K to match the target softmax:linear ratio. We target four ratios 1:8, 1:3, 1:2, 1:1 (thus
K ∈{4, 9, 12, 18} when L=36; if L differs, we use the nearest integer K). All selection and distil-
lation runs use the DCLM (Li et al., 2025) generic-text mixture. As noted in § 3.1, each instance of
stage 1 uses 100M tokens while stage 2 uses 600M tokens.
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Figure 3: Performance comparison of various layer selection methods on RULER (top) and SWDE
(bottom) for distilling Qwen2.5-3B (left) and Llama-3.2-3B (right) into hybrid GDN-based models.
Performance is plotted against the percentage of softmax layers retained. The dashed line indicates
the performance of the all-softmax teacher model.

Baselines. We compare our one-swap selector to the baselines below. Each returns a set of K soft-
max layers and is trained with the same two-stage distillation and token budget as ours (§3.1): (1)
Uniform interleave (UNIFORM). Pick K layers by evenly spacing them across depth (one roughly
every ⌊L/K⌋ blocks), as adopted by Wang et al. (2024). (2) Task-guided selectors. AR (Associa-
tive Recall): bypass each layer and measure the drop on a synthetic key–value recall task and then
rank layer importance by drop in performance (Chaudhry et al., 2025). AR-MH (Associative
Recall - Multihop): same as AR but with multi-hop alias chains, which makes the task more diffi-
cult. (3) Model-signal selectors. ACT-MSE: layer importance is derived from zero-ing out a layer
and measuring increase in activation MSE vs. the baseline. LM-PPL: same as Act-MSE, but
derived from measuring an increase in LM perplexity on held-out data. (4) SMART (Yang et al.,
2025). A sensitivity-aware strategy: (i) score each layer by the reduction in teacher–student KL
when swapping an global layer into an otherwise linear baseline; (ii) preserve high-score layers near
input/output (so-called “terminal preservation”); (iii) choose the rest from near-uniform candidates
to maximize total sensitivity. We also compare against PostNAS (Gu et al., 2025), a contemporane-
ous work that uses a more complex search procedure. Their method involves training a once-for-all
SuperNet and then using beam search to find the optimal K softmax layers for a specific down-
stream task. This process is computationally intensive, requiring 50B training tokens, whereas our
selection pipeline uses only 5-6B tokens. Fortunately, PostNAS released their selected layers for the
Qwen2.5 model. To ensure a fair comparison, we take their publicly released layer set and distill it
using our own pipeline and token budget. More baselines descriptions are included in Table 3 in the
Appendix A.

4.3 MAIN RESULTS

We use gated DeltaNet (GDN) for our linear attention layer and evaluate our proposed layer se-
lection method against the baselines for Qwen2.5-3B-Instruct and Llama-3.2-3B-Instruct teachers.
The results on two long-context, recall-intensive benchmarks, RULER and SWDE, are presented
in Figure 3. Our central finding is that our selection method consistently and substantially out-
performs all other baselines across both models and tasks. This demonstrates the effectiveness of
using a brief, KL-divergence-guided distillation to derive model-intrinsic layer importance scores
for creating hybrid architectures.

A key advantage of our approach is particularly evident in the low-budget regime, where only a small
fraction of layers are kept as full softmax attention. For instance, on the RULER benchmark with the
Qwen2.5 model at a 12.5% ratio (corresponding to 5 attention layers), our method achieves a score
of nearly 0.70, whereas the next best baseline, AR, scores around 0.53, and the common UNIFORM
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interleaving strategy scores below 0.40. This pronounced gap at low softmax ratios highlights our
method’s efficiency in identifying the most critical layers for preserving long-context recall, enabling
significant performance gains with minimal computational overhead from expensive attention layers.

As the budget for softmax layers increases, our method continues to maintain a performance advan-
tage, approaching the teacher model’s performance more rapidly than competing approaches. For
both models, a hybrid with 50% of its layers selected by our method recovers a vast majority of the
teacher’s performance on these challenging recall tasks. Similar performance trends were observed
on other benchmarks, including FDA and SQuADv2; these results are detailed in the Appendix A.

5 ANALYSIS

In this section, we conduct a series of ablation studies to deconstruct our method (§5.1), understand
its architectural sensitivities (§5.2), and validate its practical efficiency (§5.3).

5.1 THE IMPORTANCE OF KL AND GREEDY ADDITION STRATEGY

Our proposed layer selection method involves two key design choices: (1) we use the stage-2 (S2)
knowledge distillation (KL-based) loss as the importance metric for each layer in the one-swap
setting of §3.2, and (2) given these layerwise scores, we select the top-K softmax layers in a greedy
addition fashion (GA), i.e., we keep the K layers that yield the largest marginal KL reduction relative
to the all-linear baseline. There are natural alternatives: we could use the stage-1 (S1) hidden-state
alignment (MSE-based) metric as our layer importance; we could also use a greedy removal (GR)
search strategy, which starts from an all-softmax model and greedily converts the least important
layer to a linear attention layer. It is also possible to average the layer importance rankins from both
GA and GR (AVG). Note that our main proposed method corresponds to GA-S2.

The ablation results, presented in Table 1, show that the Stage-2 (KL-based) methods consistently
and dramatically outperform their Stage-1 (MSE-based) counterparts, and our greedy addition strat-
egy (GA-S2) is more effective than greedy removal (GR-S2). This suggests that identifying the
single most impactful layer to add from an all-linear base is a more robust signal than identifying
the least harmful layer to remove.

Stage 1 (MSE-based) Stage 2 (KL-based)

Model GR-S1 GA-S1 AVG-S1 GR-S2 GA-S2 (OURS) AVG-S2

Llama-3.2-3B-Instruct 0.4508 0.4193 0.4233 0.4950 0.6174 0.5580
Qwen2.5-3B-Instruct 0.4827 0.5408 0.4933 0.8259 0.8713 0.8205

Table 1: Ablation on layer selection strategies for a fixed 25% softmax ratio. We compare Greedy
Addition (GA), Greedy Removal (GR), and Averaged (AVG) search using either a Stage-1 (MSE)
or Stage-2 (KL) importance metric.

5.2 THE IMPORTANCE OF ARCHITECTURE CONSISTENCY

Llama-3.2-3B Qwen2.5-3B

Ratio GDN GLA GDN GLA

12.5% 0.5389 0.4918 0.6946 0.5903
25% 0.6174 0.6379 0.8713 0.6921
33% 0.7003 0.7108 0.8743 0.8811
50% 0.7712 0.7644 0.9074 0.8950

Figure 4: Final RULER performance using
architecture-specific selections.

Our layer selection approach is sensitive to
the type of linear attention layer employed.
To what extent is this selection approach
architecture-agnostic—i.e., is our method sim-
ply finding a fixed set of “important layers” in
the teacher, or is it adapting its selection to the
specific architecture of the student’s linear lay-
ers? To test this, we run the selection process
independently for both GDN and GLA students
and analyze the results.

The results in Figure 5 and Table 4 reveal an in-
teresting architectural dependence. For Llama-
3.2-3B-Instruct, the layer selections for GDN

7
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Figure 5: Jaccard similarity of top-K layer selections between GDN and GLA variants over the
selection pass. Llama shows higher agreement, suggesting its layer importance is less student-
dependent.
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Figure 6: The evolution of RULER performance during the Stage-2 selection process for Qwen2.5-
3B-Instruct.
and GLA show high agreement (mean Jaccard similarity of 0.65), and the final models perform
almost identically. This suggests that for the Llama architecture, our method identifies a robust,
largely student-agnostic set of important layers. For Qwen2.5-3B-Instruct, however, the story is
more nuanced. The agreement between selections is much lower (mean similarity of 0.54), indi-
cating that the two student variants favor different layers. This divergence has a dramatic impact
on performance: the specialized GDN-GDN model (0.8713 on RULER) is vastly superior to the
specialized GLA-GLA model (0.6921).

Model Student UNIFORM AR AR-MH MSE PPL SMART Ours

Llama GDN 0.4359 0.5671 0.5123 0.4534 0.4432 0.5974 0.6174
GLA 0.4050 0.5671 0.5115 0.3983 0.3866 0.5767 0.6014

Qwen GDN 0.6663 0.6203 0.7187 0.3658 0.4712 0.6103 0.8713
GLA 0.6334 0.5689 0.6628 0.3435 0.4296 0.5771 0.8613

Table 2: Performance on RULER for GDN- and GLA-based hybrid students at a fixed 25% softmax
ratio. For both student variants, the layer set for our method (Ours) was selected using a GDN-based
process to test for transferability. Note that Llama refers to Llama-3.2-3B-Instruct and Qwen refers
to Qwen2.5-3B-Instruct.
Most surprisingly, when we test the transferability by using the GDN-selected layers to distill a
GLA student, we achieve a RULER score of 0.8613 (Table 2). This result is not only far better
than all baselines, but is also significantly better than the score from the specialized GLA-GLA
process (0.6921). This reveals a key finding: the choice of linear attention variant used during the
selection pass acts as a “probe”, and some probes are better than others at identifying a truly robust
set of important layers for a given teacher architecture. For the Qwen model, using GDN as the
probe in our selection algorithm yields a universally superior set of layers that benefits both GDN
and GLA students. For the Llama model, both probes are equally effective. This demonstrates
that our method’s strength is not just in specialization, but in its ability to leverage different student
architectures to find the most fundamentally important layers in the teacher.

5.3 HOW MANY TOKENS ARE REALLY NECESSARY FOR LAYER SELECTION?

We used 100M tokens for stage 1 and 600M tokens for stage 2 following the recipe recommended in
Goldstein et al. (2025). However, it is possible that the layer selection process could be even more
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token-efficient. To investigate this, we tracked the top-K layer set chosen by our selector throughout
the Stage-2 training process (at a 1:3 softmax ratio for both models). We measured stability over
time using rolling-window Jaccard similarity and the size of the intersection between consecutive
sets (the ”backbone”). For both teacher models, we find that the set of selected layers stabilizes
long before the full training budget is consumed. A nearly complete ”backbone” of K − 1 layers
is typically identified within the first 25-40% of training. Continuing training beyond this point
only refines the choice for the final one or two slots, with a negligible impact on the final model’s
RULER performance (a difference of less than 0.01 absolute points). This observation suggests that
a simple stability-based rule can dramatically improve efficiency. For instance, a conservative early
stopping point for our runs would have reduced the token budget for the selection pass by 58–74%.
The effectiveness of this early stopping rule is backed by our empirical observation: for Qwen, the
RULER performance during Stage-2 stabilizes around step 1500, as shown in Figure 6. For more
details, please refer to Appendix B.

6 RELATED WORK

In-context recall presents a significant challenge for subquadratic models, a difficulty often attributed
to the perplexity gap between them and standard transformers (Arora et al., 2024a). One promising
approach to address this is the development of linear attention variants with superior recall capa-
bilities. The seminal work on DeltaNet (Schlag et al., 2021; Yang et al., 2024b) and its successors
(Yang et al., 2024a; Siems et al., 2025; Grazzi et al., 2025) has demonstrated great success in this
area. Nevertheless, these recurrent approaches are fundamentally limited in associative recall by
their fixed-size state (Wen et al., 2025; Arora et al., 2024a). Highlighting the importance of this
problem, recent work reveals a connection between in-context recall and test-time scaling perfor-
mance, arguably making it one of the most critical research directions in efficient sequence model
design (Chaudhry et al., 2025). Other notable efforts to improve recall include reading inputs twice
(Arora et al., 2024c), dynamic state allocation (Ben-Kish et al., 2025), and dynamic caching for
hard-to-memorize items (Nguyen et al., 2025).

Hybrid attention architectures, which combine the complementary strengths of global attention (for
accurate retrieval) and linear attention (for fast local processing), can theoretically overcome these
state-size limitations (Wen et al., 2025; Arora et al., 2024b). While most hybrid models adopt an
inter-layer strategy, interleaving global and linear attention layers (Ren et al., 2025; MiniMax et al.,
2025; Lenz et al., 2025), we also note the potential of intra-layer hybridization schemes for efficient
time mixing (Irie et al., 2025; Dong et al., 2024; Zuo et al., 2025; Zancato et al., 2024). However,
pretraining these linear and hybrid models from scratch is computationally expensive. An effective
alternative is to distill a pretrained softmax attention model into a linear attention-based one. This
concept was first proposed by Kasai et al. (2021). Subsequent work has emphasized preserving or
mimicking the softmax operator during distillation to maintain performance while achieving linear
complexity Peng et al. (2022); Zhang et al. (2024b;a). Research work shows that sliding window
attention with window size 64 works well in many benchmarks Lan et al. (2025); Zhang et al. (2025),
though we show in this work that such strategies still perform poorly on in-context recall.

In the context of distilling into a hybrid of global and linear attention, a key question has emerged:
how to select which global attention patterns to preserve. Some methods rely on downstream bench-
mark performance to determine importance Gu et al. (2025), while others use speculative decoding
as a diagnostic tool to identify redundant attention layers Hoshino et al. (2025). In contrast, our work
focuses on a simple strategy using an unsupervised learning loss and provides extensive analysis that
goes beyond prior research (Yang et al., 2025).

7 CONCLUSION

In this work, we introduced a simple and effective method for selecting which softmax attention lay-
ers to retain when distilling a pretrained Transformer into a more efficient hybrid architecture. While
our selection process is more efficient than complex search-based alternatives, future work could
explore even cheaper proxies for layer importance, potentially derived directly from the teacher
model’s activations or gradients. Other promising directions include extending this selection frame-
work from the layer level to a more fine-grained, head-level hybridization.
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STATEMENT ON LLM USAGE

We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
manuscript. Specifically, LLMs were utilized to improve grammar and clarity, aid in literature
discovery, and generate boilerplate code snippets for our experiments and testing scripts. The authors
have carefully reviewed and edited all LLM-generated outputs and take full responsibility for the
final content and scientific integrity of this work.
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A COMPLETE RESULTS ON RECALL-INTENSIVE BENCHMARKS

Tag Selector Signal / One-Line Procedure

UNIFORM Uniform Interleave Selects layers by evenly interleaving softmax layers at the target
ratio.

Task-Guided Search (Heuristic-Based)

KV KV Retrieval Importance from performance drop on a synthetic key-value dic-
tionary lookup task when a layer is bypassed.

AR Associative Recall Importance from performance drop on a task to sum the values
of prompted keys when a layer is bypassed.

AR-MH Assoc. Recall—Multi-hop As above, but with alias chains requiring multi-hop reasoning;
performance drop defines importance.

VT Variable Tracking Importance from exact-set accuracy drop on a pointer-chasing
task over shuffled assignments.

CWE Common Words Extraction Importance from set-match accuracy drop on a task to identify
the K most frequent words in a long text.

ACT-MSE Activation MSE Mean-squared error on generic text between the final hidden
states of a baseline vs. layer-bypassed model.

LM-PPL LM Perplexity Measures the increase in perplexity on a held-out corpus when a
layer is bypassed.

Greedy Structural Search (Learning-Based)

GR–S1 Greedy Removal (S1) Starts with all softmax; greedily converts the layer to linear that
hurts performance least after brief Stage-1 adaptation.

GR–S2 Greedy Removal (S2) As above, but using a brief Stage-2 knowledge distillation for
adaptation at each step.

GA–S1 Greedy Addition (S1) Starts with all linear; greedily converts the layer to softmax that
helps performance most after brief Stage-1 adaptation.

GA–S2 Greedy Addition (S2) As above, but using a brief Stage-2 knowledge distillation for
adaptation at each step.

AVG–S1 Rank-Avg Greedy (S1) Averages the layer importance rankings from GR–S1 and
GA–S1 before selecting the top-K layers.

AVG–S2 Rank-Avg Greedy (S2) Averages the layer importance rankings from GR–S2 and
GA–S2 before selecting the top-K layers.

Table 3: Layer-selection baselines and the tags used in figures. Layer bypass means applying an
identity residual connection across the block’s mixing sublayer.
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Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct

Selector 12.5% 25% 33% 50% 12.5% 25% 33% 50%

Heuristic-Based
UNIFORM 0.4134 0.4359 0.5477 0.6940 0.3718 0.6663 0.5927 0.8048
KV 0.2029 0.6051 0.6626 0.7538 0.2543 0.7539 0.7552 0.8257
AR 0.3229 0.5671 0.6948 0.8303 0.5267 0.6203 0.6685 0.8753
VT 0.1839 0.2012 0.4334 0.7538 0.2922 0.4780 0.5359 0.7409
CWE 0.3129 0.3579 0.6752 0.8394 0.2900 0.4907 0.7065 0.8444
ACT-MSE 0.2802 0.4534 0.5257 0.5580 0.3685 0.3658 0.5515 0.6725
LM-PPL 0.3672 0.4432 0.4692 0.6890 0.3964 0.4712 0.6646 0.6617
AR-MH 0.4044 0.5123 0.6219 0.8039 0.4364 0.7187 0.7217 0.8045

Learning-Based (S1 - MSE)
GR-S1 0.2903 0.4508 0.5214 0.6435 0.3563 0.4827 0.6743 0.8209
GA-S1 0.3092 0.4193 0.4892 0.6569 0.3843 0.5408 0.6657 0.7873
AVG-S1 0.3108 0.4233 0.5355 0.6390 0.3960 0.4933 0.6441 0.8226

Learning-Based (S2 - KL)
GR-S2 0.3084 0.4950 0.6991 0.7662 0.5804 0.8259 0.8541 0.8869
GA-S2 0.5389 0.6174 0.7003 0.7712 0.6946 0.8713 0.8743 0.9074
AVG-S2 0.4764 0.5580 0.6786 0.8111 0.7075 0.8205 0.8704 0.9051

Table 4: RULER performance for various layer selection strategies across different softmax ratios,
for GDN-based hybrid students . The all-linear (0%) baselines are 0.0427 for Llama-3.2 and 0.1236
for Qwen2.5. The all-softmax teacher scores are 0.8934 and 0.9174, respectively.

Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct

Selector 12.5% 25% 33% 50% 12.5% 25% 33% 50%

Heuristic-Based
UNIFORM 0.3013 0.2931 0.3947 0.6379 0.2686 0.6869 0.3303 0.7350
KV 0.2069 0.6461 0.6760 0.6942 0.1370 0.6788 0.6261 0.7096
AR 0.3820 0.5653 0.6860 0.7042 0.4746 0.5336 0.6688 0.7387
VT 0.1978 0.3385 0.3648 0.6960 0.1588 0.4183 0.4809 0.6279
CWE 0.3149 0.3258 0.6207 0.6779 0.0789 0.2087 0.5345 0.6842
ACT-MSE 0.2178 0.4537 0.5263 0.5672 0.1833 0.2377 0.3485 0.5889
LM-PPL 0.2922 0.4510 0.4982 0.7132 0.2423 0.2495 0.4773 0.5481
AR-MH 0.3539 0.4147 0.5472 0.6216 0.1407 0.6425 0.6434 0.7278

Learning-Based (S1 - MSE)
GR-S1 0.2015 0.3548 0.5644 0.6007 0.2677 0.4465 0.5100 0.6697
GA-S1 0.2105 0.4365 0.4746 0.5563 0.2532 0.4247 0.5163 0.6234
AVG-S1 0.1951 0.4074 0.4628 0.6443 0.2414 0.4165 0.5227 0.6751

Learning-Based (S2 - KL)
GR-S2 0.3303 0.5054 0.6933 0.6633 0.3612 0.6860 0.7459 0.7468
GA-S2 0.7060 0.7033 0.7114 0.7577 0.6180 0.7704 0.6878 0.8067
AVG-S2 0.6588 0.6806 0.7241 0.7060 0.5880 0.7532 0.7196 0.7641

Table 5: FDA performance for various layer selection strategies across different softmax ratios, for
GDN-based hybrid students.
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Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct

Selector 12.5% 25% 33% 50% 12.5% 25% 33% 50%

Heuristic-Based
UNIFORM 0.7516 0.7525 0.8227 0.8452 0.7075 0.8515 0.8236 0.8776
KV 0.4671 0.7894 0.8110 0.8515 0.5311 0.8074 0.8101 0.8272
AR 0.6490 0.8191 0.8299 0.8542 0.7354 0.7759 0.7876 0.8866
VT 0.4761 0.6688 0.6895 0.8569 0.5572 0.7255 0.7507 0.8587
CWE 0.5878 0.6598 0.8290 0.8569 0.5302 0.7192 0.8020 0.8956
ACT-MSE 0.5896 0.7687 0.8101 0.8227 0.6049 0.7057 0.7930 0.8533
LM-PPL 0.6931 0.7525 0.7696 0.8362 0.6571 0.7453 0.8218 0.8353
AR-MH 0.7507 0.8128 0.8335 0.8461 0.6436 0.7948 0.7957 0.8200

Learning-Based (S1 - MSE)
GR-S1 0.5779 0.6958 0.7480 0.8254 0.6688 0.7831 0.8326 0.8821
GA-S1 0.5707 0.7282 0.8146 0.8344 0.6553 0.8047 0.8569 0.8668
AVG-S1 0.5671 0.7192 0.7957 0.8254 0.6670 0.7975 0.8506 0.8866

Learning-Based (S2 - KL)
GR-S2 0.6301 0.8110 0.8245 0.8425 0.8299 0.8875 0.8749 0.8929
GA-S2 0.8101 0.8263 0.8614 0.8605 0.8434 0.8812 0.8893 0.8875
AVG-S2 0.7885 0.8137 0.8565 0.8704 0.8128 0.8848 0.9001 0.9109

Table 6: SWDE performance for various layer selection strategies across different softmax ratios,
for GDN-based hybrid students.

Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct

Selector 12.5% 25% 33% 50% 12.5% 25% 33% 50%

Heuristic-Based
UNIFORM 19.1708 21.9026 23.8641 24.3945 7.5400 9.6984 9.0306 14.0742
KV 17.4030 25.5568 26.3946 29.5483 6.6478 10.8318 16.4796 15.2550
AR 18.2412 25.2227 27.8562 30.5521 8.7855 7.8277 9.8152 6.5062
VT 19.0819 24.3118 23.9263 29.9387 7.1499 8.7797 14.3150 18.8876
CWE 23.7679 23.2527 28.0014 30.3961 6.7367 12.9678 9.9249 7.2352
ACT-MSE 16.1512 22.0928 23.3075 25.4255 7.4720 5.3176 12.0061 9.6091
LM-PPL 18.5295 21.5863 22.0008 28.8905 9.0530 8.1341 7.8841 7.6171
AR-MH 21.8859 25.3047 26.6214 30.3687 9.8987 8.3828 12.2048 13.7225

Learning-Based (S1 - MSE)
GR-S1 13.3918 20.7552 23.2197 27.3407 7.8245 7.0497 9.4220 8.6667
GA-S1 13.6481 17.8867 22.6633 29.2390 8.9412 9.0555 11.1751 9.1234
AVG-S1 15.0889 18.4342 24.3658 28.2178 7.6409 10.6217 10.1589 10.3181

Learning-Based (S2 - KL)
GR-S2 18.0648 25.7848 30.4299 30.5907 12.1582 6.4855 7.8482 6.9539
GA-S2 25.9975 29.6941 30.8139 32.4805 11.4124 9.7799 12.0140 10.0936
AVG-S2 23.5556 29.2189 31.1063 32.1499 10.6181 6.4121 6.5623 11.3837

Table 7: SQuADv2 (F1) performance for various layer selection strategies across different softmax
ratios, for GDN-based hybrid students.
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B ELABORATION ON EARLY STOPPING FOR EFFICIENT SELECTION

Protocol. We study the sample efficiency of our one-swap selector (§3.2) at a fixed hybrid ratio
of 1:3 (K=9 for Qwen2.5-3B-Instruct; K=7 for Llama-3.2-3B-Instruct). During Stage-2 we train
for 4,550 steps and, every 50 steps, compute the current top-K set of layers (from the one-swap
importance scores). This yields 91 snapshot sets per model. To quantify stability we analyze each
rolling window of the last R=10 snapshots using two complementary views:

• Rolling pairwise similarity: the mean pairwise Jaccard over the R sets.

• Rolling backbone size: the size of the intersection across the R sets (how many positions
are “locked in”).

We also relate snapshots to the final selection by reporting the fraction that are within one swap of
the final consensus (Jaccard ≥ K−1

K+1 ; i.e., 0.80 for K=9 and 0.75 for K=7).3

Reliable selections emerge well before 4550 steps. Two patterns are consistent across both teach-
ers:

• Qwen2.5-3B-Instruct (K=9). The run-best set first appears by step 850. From step 1500
onward, 95% of snapshot sets are within one swap of the final consensus; the 10-snapshot
rolling Jaccard is high on average (≈0.95), and rises to 0.99 beyond step 2350.
By step 1900, the last R snapshots share an 8/9 backbone with at most two candidates for
the remaining slot; any one-swap variant at this point attains RULER within 0.007–0.009
absolute points of the run-best (0.8662 vs. 0.8592/0.8582/0.8574).

• Llama-3.2-3B-Instruct (K=7). A 6/7 backbone appears by step 750 (mean window Jac-
card ≈ 0.91). The near-optimal set that differs by a single layer first appears at step 1200;
from step 1200 onward, 100% of snapshots are within one swap of the final consensus.
Stopping here gives RULER 0.6971, within 0.004 absolute of the run-best 0.7011 and
comparable to the best late-appearing set.

These observations (i) The selector’s rankings stabilize far earlier than the full 4500-step budget; (ii)
once the windowed sets agree on K−1 layers, the remaining degree of freedom is small and can
be resolved cheaply; (iii) one-swap neighbors of the eventual best set typically match downstream
RULER within 0.1–1.0 absolute points, so stopping once the K−1 backbone is stable is a sound
efficiency–quality trade-off.

A conservative choice (see rule below) would have stopped at ∼ 1900 steps for Qwen and ∼ 1200
steps for Llama—consuming 42% and 27% of the 4550-step budget, respectively (i.e., 58–74%
fewer tokens for the selection pass).

Practical recipe (rolling-Jaccard early stop). Let St be the top-K set at step t and Wt =
{St−9, . . . , St}. Define

Backbonet =
⋂

S∈Wt

S, JaccardMeant =
2

R(R− 1)

∑
i<j

Jac(Si, Sj).

Stop at the first step t satisfying:

1. JaccardMeant ≥ 0.90,

2. |Backbonet| ≥ K − 1, and

3. |
⋃

S∈Wt
S| ≤ K + 1 (at most two options for the remaining slot).

(Optional) Stop when (3) first becomes true and St ̸= St−1 to pick the newer of the two candidates.

3For fixed set size K, replacing one layer yields intersection K−1 and union K+1, hence Jaccard (K −
1)/(K + 1).
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C COMPLETE LAYER IMPORTANCE RANKINGS

For all methods that produce a scalar importance score per layer, we obtain hybrid architectures at
target softmax ratios (12.5%, 25%, 33%, 50%) by taking the top-K most important layers according
to that ranking (with K determined by the ratio and total depth L). In this section we report the
full importance ranking for each such method. Layer indices are zero-based. Methods such as
POSTNAS and SMART do not provide layerwise importance scores, so they are omitted here.

C.1 QWEN2.5-3B-INSTRUCT

Selector Layer indices (most → least important)

KV [1, 0, 26, 19, 18, 20, 5, 17, 27, 6, 15, 22, 24, 16, 3, 11, 23, 21, 28, 8, 14, 25, 2, 29, 32, 12,
13, 9, 4, 10, 31, 34, 35, 30, 33, 7]

AR [0, 1, 27, 18, 20, 25, 24, 26, 21, 8, 12, 19, 23, 7, 35, 17, 33, 22, 28, 16, 32, 30, 34, 9, 29, 2,
6, 5, 31, 4, 13, 10, 14, 15, 3, 11]

VT [0, 1, 19, 26, 28, 25, 35, 10, 15, 17, 3, 7, 27, 29, 16, 14, 30, 34, 32, 31, 23, 33, 9, 13, 18, 8,
2, 21, 11, 12, 22, 24, 20, 5, 4, 6]

CWE [0, 1, 22, 24, 16, 13, 26, 2, 27, 19, 20, 11, 23, 6, 31, 28, 29, 33, 4, 8, 34, 7, 30, 32, 9, 25, 3,
5, 21, 15, 17, 18, 35, 10, 14, 12]

ACT-MSE [0, 1, 35, 34, 31, 33, 32, 30, 8, 12, 27, 3, 4, 2, 6, 5, 28, 10, 9, 29, 11, 7, 14, 13, 26, 25, 16,
15, 18, 24, 17, 23, 20, 19, 22, 21]

LM-PPL [0, 1, 35, 34, 32, 31, 33, 30, 27, 12, 6, 5, 9, 8, 29, 2, 4, 7, 10, 11, 25, 28, 16, 14, 13, 26, 24,
20, 3, 22, 23, 15, 18, 21, 19, 17]

AR-MH [0, 1, 27, 21, 26, 16, 20, 5, 23, 24, 18, 6, 13, 3, 9, 22, 8, 17, 33, 35, 19, 4, 25, 12, 30, 7, 29,
34, 14, 15, 10, 2, 28, 11, 32, 31]

GA-S1 [33, 32, 34, 31, 35, 28, 29, 27, 21, 22, 19, 30, 24, 16, 23, 26, 12, 17, 18, 20, 14, 25, 10, 3,
11, 6, 13, 7, 9, 15, 0, 4, 8, 2, 5, 1]

GR-S1 [33, 32, 34, 35, 31, 27, 28, 30, 21, 29, 22, 19, 26, 25, 16, 24, 23, 17, 18, 14, 15, 12, 20, 13,
11, 10, 8, 9, 7, 6, 3, 5, 4, 0, 2, 1]

AVG-S1 [33, 32, 34, 31, 35, 28, 27, 29, 21, 30, 22, 19, 16, 24, 26, 23, 17, 25, 18, 12, 14, 20, 10, 11,
13, 15, 3, 6, 7, 9, 8, 0, 4, 5, 2, 1]

GA-S2 (OURS) [20, 32, 33, 21, 22, 25, 17, 19, 5, 31, 4, 3, 10, 30, 26, 29, 27, 13, 0, 28, 15, 23, 6, 12, 24, 7,
18, 9, 34, 14, 11, 8, 16, 35, 2, 1]

GR-S2 [21, 33, 19, 27, 0, 32, 17, 22, 20, 25, 23, 18, 24, 15, 29, 12, 26, 31, 16, 3, 10, 13, 14, 28,
30, 5, 7, 8, 11, 4, 35, 6, 9, 2, 34, 1]

AVG-S2 [21, 33, 32, 20, 19, 22, 17, 25, 27, 0, 31, 29, 3, 26, 23, 10, 5, 15, 24, 18, 30, 12, 13, 4, 28,
16, 7, 14, 6, 8, 11, 9, 34, 35, 2, 1]

Table 8: Complete layer-importance rankings for Qwen2.5-3B-Instruct. Each row lists all
L = 36 layers from most to least important.

C.2 LLAMA-3.2-3B-INSTRUCT
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Selector Layer indices (most → least important)

KV [0, 7, 5, 4, 8, 11, 14, 2, 1, 3, 6, 23, 10, 20, 26, 17, 22, 9, 24, 21, 25, 18, 16, 19, 12, 13, 27,
15]

AR [0, 16, 11, 14, 7, 5, 9, 13, 2, 12, 1, 8, 27, 26, 10, 6, 24, 15, 3, 20, 18, 19, 17, 21, 25, 4, 23,
22]

VT [0, 5, 4, 11, 3, 12, 10, 1, 2, 17, 9, 13, 15, 16, 18, 23, 8, 14, 21, 24, 20, 25, 26, 22, 6, 27, 19,
7]

CWE [0, 5, 12, 8, 9, 4, 1, 13, 14, 10, 21, 24, 16, 22, 15, 27, 25, 20, 6, 2, 26, 23, 18, 3, 11, 17, 19,
7]

ACT-MSE [0, 1, 27, 24, 25, 2, 26, 4, 15, 23, 19, 21, 3, 18, 20, 14, 16, 5, 22, 17, 13, 6, 7, 12, 11, 10, 8,
9]

LM-PPL [0, 1, 27, 2, 24, 3, 26, 25, 4, 14, 15, 19, 16, 5, 20, 23, 12, 17, 10, 21, 13, 18, 6, 22, 9, 11, 7,
8]

AR-MH [0, 13, 12, 16, 11, 7, 23, 14, 10, 5, 21, 25, 9, 8, 19, 17, 2, 6, 4, 3, 1, 26, 18, 24, 15, 22, 27,
20]

GA-S1 [26, 27, 25, 24, 13, 20, 23, 7, 10, 22, 9, 12, 19, 8, 14, 15, 21, 11, 16, 17, 18, 2, 5, 6, 4, 1, 0,
3]

GR-S1 [26, 27, 24, 25, 23, 12, 22, 13, 14, 21, 10, 19, 11, 15, 9, 20, 8, 7, 16, 18, 17, 6, 5, 4, 3, 2, 1,
0]

AVG-S1 [26, 27, 24, 25, 23, 13, 22, 12, 10, 20, 14, 19, 7, 9, 21, 15, 8, 11, 16, 17, 18, 5, 6, 2, 4, 1, 3,
0]

GA-S2 (OURS) [14, 8, 5, 12, 15, 13, 2, 26, 24, 16, 17, 18, 21, 10, 25, 20, 19, 23, 22, 27, 9, 7, 6, 4, 1, 0, 11,
3]

GR-S2 [0, 1, 12, 2, 13, 5, 10, 14, 8, 7, 9, 6, 3, 11, 26, 15, 16, 4, 22, 24, 27, 25, 19, 17, 18, 23, 21,
20]

AVG-S2 [12, 5, 14, 2, 8, 13, 10, 15, 26, 0, 1, 16, 24, 7, 9, 6, 17, 18, 25, 22, 19, 21, 3, 11, 27, 4, 20,
23]

Table 9: Complete layer-importance rankings for Llama-3.2-3B-Instruct. Each row lists all
L = 28 layers from most to least important.
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D LAYER-SELECTION PATTERNS AND SPATIAL ORGANIZATION

We now examine where in depth the selected softmax layers tend to lie, and whether our selector
prefers isolated layers or groups of consecutive layers.

Setup. For each teacher we take the GA–S2 rankingR = (ℓ1, . . . , ℓL) from Appendix C, ordered
from most to least important. For a softmax budget K we define the selected set SK = {ℓ1, . . . , ℓK}.
To quantify how much the selected layers cluster in depth, we use the adjacency index

AK =
∣∣{ i ∈ SK : i+ 1 ∈ SK }

∣∣,
i.e., the number of pairs of consecutive layers that are both selected. For a uniformly random K-
subset of {0, . . . , L − 1}, the expected value is E[AK ] ≈ K(K − 1)/L, so values substantially
above this baseline indicate more clustering than would be obtained by chance. Figure 7 shows the
selected indices across budgets, and Figure 8 compares observed and expected adjacency counts.

Results and discussion. For Qwen2.5-3B-Instruct (L=36), GA–S2 produces selected sets that
are visibly concentrated in a few depth ranges. At a 25% budget (K=9), we obtain AK = 4.0 versus
a random baseline of 2.0; at 33% (K=12), AK = 7.0 versus 3.68; and at 50% (K=18), AK = 11.0
versus 8.49. The plot in Figure 7 show that several of these adjacent pairs occur repeatedly around
layers roughly 3–5, 19–22, and 31–33, while the remaining layers are used more sparsely. Thus, the
selector does not simply spread the softmax layers uniformly but repeatedly reuses a small number
of depth regions as the budget increases.

For Llama-3.2-3B-Instruct (L=28), the effect is weaker but still present. At 25% (K=7), AK =
3.0 versus a baseline of 1.50; at 33% (K=9), AK = 3.0 versus 2.58; and at 50% (K=14), AK = 6.0
versus 6.50. The selected layers tend to form one main group in the middle of the network (around
layers 12–18), with a smaller number of layers near the input and output.

Overall, both models show some degree of clustering beyond what would be expected from a ran-
dom K-subset, but the pattern (multiple groups versus a single main group) depends on the teacher
architecture.
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Figure 7: Visualization of selected layers for Qwen2.5-3B-Instruct (top) and Llama-3.2-3B-Instruct
(bottom) across budgets (12.5%, 25%, 33%, 50%). Each vertical tick marks a selected layer index.
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Figure 8: Observed (solid) vs. random-baseline expected (dashed) adjacency counts AK for
Qwen2.5-3B (left) and Llama-3.2-3B (right).
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E DISTANCE-REGULARIZED SELECTION (DIVERSIFICATION ABLATION)

To probe whether clustering is redundant, we evaluate a re-weighted greedy rule for selecting K
layers:

Ĩ(ℓ | S) = I(ℓ) − λ
∑
j∈S

exp

(
−|ℓ− j|

σ

)
,

with λ > 0, σ > 0. Here S is the set of softmax layers selected so far and I(ℓ) is the original
GA–S2 importance score. The exponential term penalizes placing a new softmax layer too close (in
depth) to previously selected ones, nudging the selector toward more spatially diverse configurations
without discarding the model-intrinsic KL signal.

We instantiate this diversification for Qwen2.5-3B-Instruct with a GDN student at a fixed 25% soft-
max ratio (K=9), and sweep λ ∈ {0.025, 0.05} and σ ∈ {1, 2}. All other training and evaluation
settings are kept identical to the main GA–S2 runs.

λ σ RULER (4096) Selected layers

0 (GA–S2) – 0.8713 [20, 32, 33, 21, 22, 25, 17, 19, 5]
0.025 1 0.8509 [20, 32, 25, 17, 22, 5, 33, 10, 3]
0.025 2 0.8244 [20, 32, 25, 5, 17, 10, 33, 0, 22]
0.050 1 0.8334 [20, 32, 25, 17, 5, 10, 22, 0, 29]
0.050 2 0.8303 [20, 32, 5, 25, 10, 17, 0, 33, 13]

Table 10: Distance-regularized GA–S2 selection on Qwen2.5-3B-Instruct with a GDN student at a
25% softmax ratio. The λ=0 row corresponds to our default GA–S2 selector without regularization;
the last column lists the resulting softmax layer indices.

As shown in Table 10, none of the distance-regularized variants outperform the unregularized GA–
S2 selector. A mild penalty (λ=0.025, σ=1) yields a small degradation (0.8509 vs. 0.8713 on
RULER), while stronger or more broadly supported penalties lead to larger drops. This suggests that
the clustering observed in our selections is not merely redundant: forcing softmax layers to spread
out in depth tends to remove genuinely useful local groupings. At the same time, the λ=0.025, σ=1
configuration may be acceptable when a slightly more uniform spatial allocation is desired and a
modest recall loss (about two points on RULER) is tolerable.
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F EXTENDED LONG-CONTEXT EVALUATION VIA NEEDLE-IN-A-HAYSTACK

In the main text, long-context behavior is evaluated primarily through RULER and SWDE (§4,
§4.1), whose contexts are below 10k tokens, and our distillation pipeline (§3.1) is trained on generic
text with comparatively shorter sequence lengths. This leaves open whether the distilled hybrid
model recovers teacher-like retrieval ability at substantially longer sequences than those used during
distillation and benchmark evaluation. To probe this, we perform an additional needle-in-a-haystack
(NiHA) experiment.

We consider the Qwen2.5-3B-Instruct teacher and its corresponding hybrid student with a 25%
softmax / 75% GDN configuration selected by our method. For each context length, we construct
inputs by embedding a single target “needle” span into a long filler context and measure retrieval
accuracy, defined as the fraction of cases where the model correctly identifies the target span. We
evaluate across exponentially increasing context window sizes from 8k to 128k tokens. Results are
reported in Table 11.

Context length (tokens) Teacher Hybrid student

8,192 1.000 1.000
16,384 1.000 0.998
32,768 1.000 0.998
65,536 1.000 0.994

131,072 0.954 0.684

Table 11: Needle-in-a-haystack retrieval accuracy as a function of context length for Qwen2.5-3B-
Instruct (teacher) and the corresponding hybrid student (25% softmax, 75% GDN layers).

The hybrid model maintains near-perfect retrieval accuracy up to 65,536 tokens, closely tracking
the teacher with only minor degradation. At 131,072 tokens both models begin to degrade, with
a larger drop for the hybrid student. These results indicate that the proposed layer selection and
distillation procedure successfully preserves long-context retrieval well beyond the context lengths
used during distillation and primary benchmark evaluations, while leaving further improvements at
extreme lengths as an interesting direction for future work.
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G ADDITIONAL SCALING RESULTS FOR QWEN2.5 TEACHERS

To verify that our KL-guided layer selection method scales across model sizes within a family, we
also distill GDN-based hybrid students from two additional Qwen2.5 teachers:

• Qwen2.5-1.5B-Instruct, with RULER score 0.8742.
• Qwen2.5-7B-Instruct, with RULER score 0.9445.

We use the same DCLM mixture and distillation pipeline as in the main Qwen2.5-3B experiments,
and evaluate at 25% and 33% softmax ratios. As in the main text, we compare against UNI-
FORM, AR, AR-MH, ACT-MSE, LM-PPL, and SMART. Our selector GA-S2 remains consis-
tently stronger than all baselines, particularly in the low-budget regime.

Model / Ratio UNIFORM AR AR-MH ACT-MSE LM-PPL SMART GA-S2

Qwen2.5-1.5B-Instruct (teacher RULER: 0.8742)
25% 0.4778 0.5096 0.4243 0.3807 0.4271 0.5098 0.5408
33% 0.5651 0.5552 0.5229 0.4374 0.5056 0.6479 0.6953

Qwen2.5-7B-Instruct (teacher RULER: 0.9445)
25% 0.7357 0.7453 0.7322 0.6469 0.6544 0.8158 0.8584
33% 0.7516 0.8423 0.8533 0.7227 0.6590 0.8949 0.9110

Table 12: RULER performance of GDN-based hybrid students distilled from smaller (1.5B) and
larger (7B) Qwen2.5 teachers at 25% and 33% softmax ratios. Our GA-S2 selector consistently
outperforms all baselines across scales.
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