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ABSTRACT

Statistical adversarial data detection (SADD) detects whether an upcoming batch
contains adversarial examples (AEs) by measuring the distributional discrepancies
between clean examples (CEs) and AEs. In this paper, we reveal the potential
strength of SADD-based methods by theoretically showing that minimizing dis-
tributional discrepancy can help reduce the expected loss on AEs. Nevertheless,
despite these advantages, SADD-based methods have a potential limitation: they
discard inputs that are detected as AEs, leading to the loss of clean information
within those inputs. To address this limitation, we propose a two-pronged adversar-
ial defense method, named Distributional-Discrepancy-based Adversarial Defense
(DDAD). In the training phase, DDAD first optimizes the test power of the maxi-
mum mean discrepancy (MMD) to derive MMD-OPT, and then trains a denoiser
by minimizing the MMD-OPT between CEs and AEs. In the inference phase,
DDAD first leverages MMD-OPT to differentiate CEs and AEs, and then applies a
two-pronged process: (1) directly feeding the detected CEs into the classifier, and
(2) removing noise from the detected AEs by the distributional-discrepancy-based
denoiser. Extensive experiments show that DDAD outperforms current state-of-
the-art (SOTA) defense methods by notably improving clean and robust accuracy
on CIFAR-10 and ImageNet-1K against adaptive white-box attacks. The code is
available at: https://anonymous.4open.science/r/DDAD-DB60.

1 INTRODUCTION

The discovery of adversarial examples (AEs) has raised a security concern for artificial intelligence
techniques in recent decades (Szegedy et al., 2014; Goodfellow et al., 2015). AEs are often crafted
by adding imperceptible noise to clean examples (CEs), which can easily mislead a well-trained deep
learning model to make wrong predictions. Considering the extensive use of deep learning systems,
AEs pose a significant security threat for real-world applications (Sharif et al., 2016; Dong et al.,
2019; Finlayson et al., 2019; Cao et al., 2021; Jing et al., 2021). Therefore, it is imperative to develop
advanced defense methods to defend against AEs (Goodfellow et al., 2015; Madry et al., 2018; Zhang
et al., 2019; Wang et al., 2020; Yoon et al., 2021; Nie et al., 2022; Zhang et al., 2023).

Recently, statistical adversarial data detection (SADD) has gained increasing attention due to its
effectiveness in detecting AEs (Gao et al., 2021; Zhang et al., 2023). Unlike other detection-based
methods that train a detector for specific classifiers (Stutz et al., 2020; Deng et al., 2021; Pang et al.,
2022b), SADD leverages statistical methods (e.g., maximum mean discrepancy (MMD) (Gretton
et al., 2012)) to measure the discrepancies between the clean and adversarial distributions. Given the
fact that clean and adversarial data are from different distributions, SADD-based methods have been
shown empirically effective against adversarial attacks (Gao et al., 2021; Zhang et al., 2023).

In this paper, to understand the intrinsic strength of SADD-based methods from a theoretical stand-
point, we establish a relationship between distributional discrepancy and the expected loss on
adversarial data (see Section 2). Our theoretical analysis demonstrates that minimizing distributional
discrepancy can help reduce the expected loss on adversarial data, revealing the potential value of
leveraging distributional discrepancy to design more effective defense methods (see Section 3).

However, despite their effectiveness from both empirical and theoretical perspectives, detection-based
methods (e.g., SADD-based methods) have a potential limitation: they discard inputs if they are
detected as AEs, leading to the loss of clean information (e.g., semantic information) within those
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inputs. This issue is more prominent in SADD-based methods, where inputs are often processed in
batches, potentially resulting in the unintended loss of some CEs along with AEs if a batch contains
a mixture of CEs and AEs (Gao et al., 2021; Zhang et al., 2023). Furthermore, in many domains,
obtaining large quantities of high-quality data is challenging due to factors such as cost, privacy
concerns, or the rarity of specific data (e.g., obtaining medical images for rare diseases is challenging
(Litjens et al., 2017)). As a result, all possible samples with clean information are critical in these
data-scarce domains (Gandhar et al., 2024). Therefore, given the effectiveness of SADD-based
methods, the above-mentioned challenges naturally lead us to pose the following question:

Can we design an adversarial defense method that leverages the effectiveness of SADD-based
methods, while at the same time, preserves all the data before feeding them into a classifier?

The answer to this question is affirmative. Motivated by our theoretical analysis, we propose a two-
pronged adversarial defense called Distributional-Discrepancy-based Adversarial Defense (DDAD).
Specifically, we leverage an advanced MMD statistic (named MMD-OPT) in our pipeline, which
is obtained by maximizing the testing power of MMD (see Algorithm 1). MMD-OPT serves two
roles: in the training phase of the denoiser (see Algorithm 2), MMD-OPT serves as a ‘guider’ that
can help minimize the distributional discrepancies between AEs and CEs. Then, by simultaneously
minimizing the cross-entropy loss, we aim to train a denoiser that can minimize the distributional
discrepancy towards the direction of making the classification correct; in the inference phase (see
Section 4.3), MMD-OPT serves as a ‘detector’ that can help differentiate CEs and AEs. Then, our
method applies a two-pronged process: (1) directly feeding the detected CEs into the classifier,
and (2) removing noise from the detected AEs by the denoiser through distributional discrepancy
minimization. We provide a visual illustration in Figure 1.

Through extensive evaluations on benchmark image datasets such as CIFAR-10 and Imagenet-1K, we
demonstrate the effectiveness of DDAD in Section 5. Compared to current state-of-the-art (SOTA)
adversarial defense methods, DDAD can improve clean and robust accuracy by a notable margin
against well-designed adaptive white-box attacks (see Section 5.2 and Algorithm 3). Furthermore,
experiments show that DDAD can generalize well against unseen transfer attacks (see Section 5.3).

The success of DDAD in adversarial classification takes root in the following aspects: (1) minimizing
distributional discrepancies has the potential to reduce the expected loss on AEs; (2) the two-pronged
process combines the strengths of SADD-based and denoiser-based methods while also addressing
their potential limitations: SADD-based methods can effectively distinguish AEs from CEs but
discard the clean information within AEs. In contrast, denoiser-based methods can handle both data
without re-training the downstream task model. However, they cannot distinguish AEs and CEs
beforehand, which often results in a drop in clean accuracy. Our method, on the other hand, separates
CEs and AEs in the inference phase, thereby keeping the accuracy for CEs nearly unaffected. At
the same time, AEs can be properly handled by the denoiser; (3) compared to most denoiser-based
methods that rely on density estimation (e.g., Nie et al. (2022) and Lee & Kim (2023)), learning
distributional discrepancies is a simpler and more feasible task, especially on large-scale datasets.

2 PROBLEM SETTING

In this section, we discuss the problem setting for the adversarial classification in detail.

We formalize our problem for K-class classification as follows. We define a domain as a pair
consisting of a distributionD on inputsX and a labelling function f : X → {0, 1, ...,K}. Specifically,
we consider a clean domain and an adversarial domain. The clean domain is denoted by ⟨DC , fC⟩,
and the adversarial domain is denoted by ⟨DA, fA⟩. We define a hypothesis as a function h : X →
{0, 1, ...,K} from the hypothesis space H. The probability according to the distribution D that a
hypothesis h disagrees with a labelling function f (which can also be a hypothesis) is the risk:

R(h, f,D) = Ex∼D [L(h(x), f(x))] ,

where L(h(x), f(x)) is a loss function that measures the disagreement between h(x) and f(x).

We consider the clean risk of a hypothesis R(h, fC ,DC), and the adversarial risk R(h, fA,DA). In
our problem, adversarial data are generated based on the given clean data. Therefore, DC is fixed and
we use D to represent a set of valid adversarial distributions such that all possible DA ∈ D.
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Assumption 1. For any valid adversarial attack, adversarial data are generated by adding an ϵ-norm-
bounded imperceptible perturbation ϵ′ to the given clean data without changing its semantic meaning.
Assume a valid ground-truth labelling function fA exists, fA satisfies the following property:

∀ϵ′ s.t. ∥ϵ′∥p ≤ ϵ, fA(x+ ϵ′) = fA(x),

where ϵ is the maximum allowed perturbation budget, and ∥ · ∥p is the threat model’s ℓp norm.

Assumption 2. Attacks in the adversarial domain will not change the labelling from the clean ground
truth, i.e., mathematically:

∀ϵ′ s.t. ∥ϵ′∥p ≤ ϵ, fA(x+ ϵ′) = fC(x),

where ϵ is the maximum allowed perturbation budget.

Corollary 1. If Assumptions 1 and 2 both hold, then we have:

∀x ∈ X , fC(x) = fA(x).

Remark 1. Assumptions 1 and 2 are more like inherent truths here, as attacks should only generate
valid examples that abide by the original label (Bartoldson et al., 2024). Therefore, compared to the
setting of common domain adaptation problems (Ben-David et al., 2006; 2010), the ground-truth
labelling functions for the clean and adversarial domains are equal in our problem setting.

3 MOTIVATION FROM THEORETICAL JUSTIFICATION

In this section, we study a toy setting on the relationship between adversarial risk and distributional
discrepancy, aiming to shed some light on designing effective adversarial defense methods.

Simplified problem setting. For simplicity, we analyze our problem for binary classification, i.e.,
a labelling function f is simplified to f : X → {0, 1} and a hypothesis h ∈ H is simplified to
h : X → {0, 1}. The loss function is simplified to 0-1 loss (i.e., L(h(x), f(x)) = |h(x) − f(x)|).
Otherwise, other settings (e.g., the definition of risks) are the same as described in Section 2.

Definition 1. For simplicity, we use L1-divergence or variation divergence as a natural measure of
divergence between two distributions:

d1(D,D′) = 2 sup
B∈B
|Pr
D
[B]− Pr

D′
[B]|,

where B is the set of measurable subsets under D and D′.

Theorem 1. For a hypothesis h ∈ H and a distribution DA ∈ D:

R(h, fA,DA) ≤ R(h, fC ,DC) + d1(DC ,DA).

The proof of Theorem 1 can be found in Appendix A.

Definition 2. The optimal hypothesis that minimizes the clean risk is defined as:

h∗
C = argmin

h∈H
R(h, fC ,DC).

Significance of distributional discrepancy to adversarial defense. In our problem, we use a
practical setting that an attacker aims to attack a well-trained classifier on clean data (i.e., ideally the
clean risk is minimized). According to Theorem 1, we have:

R(h∗
C , fA,DA) ≤ R(h∗

C , fC ,DC) + d1(DC ,DA). (1)

Since h∗
C , fC and DC are fixed, R(h∗

C , fC ,DC) is possibly a small constant (according to Definition
2). In our problem, the objective of an attacker can be considered as finding an optimal DA ∈ D
that maximizes R(h∗

C , fA,DA). Now, assume we have a detector that leverages the distributional
discrepancies to identify AEs. Then, to break the defense, the attacker must generate AEs that could
minimize the distributional discrepancies between CEs and AEs (i.e., to mislead the detector to iden-
tify AEs as CEs). However, according to Eq. 1, reducing the distributional discrepancy d1(DC ,DA)
can help reduce adversarial risk R(h∗

C , fA,DA), which violates the objective of adversarial attacks.
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Figure 1: The illustration of Distributional-Discrepancy-based Adversarial Defense (DDAD). In the
training phase, DDAD first optimizes the test power of the maximum mean discrepancy (MMD) to
derive MMD-OPT and then trains a denoiser by minimizing the MMD-OPT between CEs and AEs.
Then, by simultaneously minimizing the cross-entropy loss, we aim to obtain a denoiser that can
minimize the distributional discrepancy towards the direction of making the classification correct.
In the inference phase, DDAD uses MMD-OPT to detect AEs and then denoises them instead of
discarding them. Conversely, our method will directly feed detected CEs into the classifier.

This intriguing phenomenon helps explain why SADD-based methods are effective against adaptive
attacks in practice and inspires the design of our proposed method in this paper (see Section 4).

Comparison with previous studies. Previous studies have attempted to use distributional discrepancy
in adversarial defense. For example, at the early stage of AT, Song et al. (2019) propose to treat
adversarial attacks as a domain adaptation problem. However, to the best of our knowledge, the
relationship between adversarial risk and distributional discrepancy has not been well investigated
yet from a theoretical perspective. In previous domain adaptation literature, the upper bound of the
risk on the target domain is always bounded by one extra constant (Mansour et al., 2009; Ben-David
et al., 2010), e.g., R(h∗

C , fA,DA) ≤ R(h∗
C , fC ,DC) + d1(DC ,DA) + C. This constant C may

prevent decreasing the risk on the target domain from minimizing the distributional discrepancy
between the source domain and the target domain. By contrast, we treat adversarial classification as a
special domain adaptation problem where the ground truth labelling functions are equivalent for both
source and target domain. Based on this, we derive an upper bound without any extra constant, i.e.,
distributional discrepancy minimization can help reduce the expected loss on adversarial domain.

4 DISTRIBUTIONAL-DISCREPANCY-BASED ADVERSARIAL DEFENSE

Motivated by our theoretical analysis in Section 3, we propose a two-pronged adversarial defense
method called Distributional-Discrepancy-based Adversarial Defense (DDAD). In this section, we
will first introduce the concepts of maximum mean discrepancy (MMD). This will be followed by a
detailed discussion of the training and inference process of DDAD. We provide a visual illustration
for DDAD in Figure 1 and a detailed description of mathematical notations in Appendix B.

4.1 PRELIMINARY

Maximum mean discrepancy. In this paper, we use MMD to measure the distributional discrepancies
between AEs and CEs. MMD can effectively distinguish the difference between two distributions
using small batches of data (Liu et al., 2020; Gao et al., 2021; Zhang et al., 2023). Following Gretton
et al. (2012), let X ⊂ Rd denote a separable metric space, and let P and Q represent Borel probability
measures defined on X . Given two sets of IID observations SX = {x(i)}ni=1 and SZ = {z(i)}mi=1
sampled from distributions P and Q, respectively, kernel-based MMD (Borgwardt et al., 2006)

4
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Algorithm 1 Optimizing MMD (Liu et al., 2020).
1: Input: clean data Strain

C , adversarial data Strain
A , learning rate η, epoch T ;

2: Initialize ω ← ω0; λ← 10−8;
3: for epoch = 1, ..., T do
4: S′

C ← minibatch from Strain
C ;

5: S′
A ← minibatch from Strain

A ;
6: kω ← kernel function with parameters ω using Eq. 3;

7: M(ω)← M̂MD
2

u(S
′
C , S

′
A; kω) using Eq. 2;

8: Vλ(ω)← σ̂λ(S
′
C , S

′
A; kω) using Eq. 5;

9: Ĵλ(ω)←M(ω)/
√

Vλ(ω) using Eq. 4;
10: ω ← ω + η∇AdamĴλ(ω);
11: end for
12: Output: k∗ω

Algorithm 2 Training the denoiser.
1: Input: clean data-label pairs (Strain

C , Y train
C ), optimized characteristic kernel k∗ω by Algorithm 1,

pre-trained classifier ĥ∗
C , denoiser g with parameters θ, learning rate η, epoch T ;

2: Initialize µ← 0; σ ← 0.25; α← 10−2;
3: for epoch = 1, ..., T do
4: (S′

C , Y
′
C)← minibatch from (Strain

C , Y train
C );

5: S′
A ← adversarial examples generated from (S′

C , Y
′
C);

6: generate Gaussian noise: n ∼ N(µ, σ2);
7: S′

noise ← S′
A + n;

8: Compute MMD-OPT(S′
C , gθ(S

′
noise))← M̂MD

2

u(S
′
C , gθ(S

′
noise); k

∗
ω) by Eq. 6;

9: θ ← θ − η∇Adam(MMD-OPT(S′
C , gθ(S

′
noise)) + α · Lce(ĥ∗

C(gθ(S
′
noise)), Y

′
C)) using Eq. 7;

10: end for
11: Output: denoiser g with well-trained parameters θ∗

quantifies the discrepancy between these two distributions:

MMD(P,Q;Hk) = ∥µP − µQ∥Hk
=

√
E[k(X,X ′)] + E[k(Z,Z ′)]− 2E[k(X,Z)],

where k : X × X → R is the kernel of a reproducing kernel Hilbert space Hk, µP := E[k(·, X)] and
µQ := E[k(·, Z)] are the kernel mean embeddings of P and Q, respectively.

For characteristic kernels, µP = µQ implies P = Q, and thus, MMD(P,Q;Hk) = 0 if and only
if P = Q. In practice, we use the estimator from a recent work that can effectively measure the
discrepancies between AEs and CEs (Gao et al., 2021), which is defined as:

M̂MD
2

u(SX , SZ ; kω) =
1

n(n− 1)

∑
i ̸=j

Hij , (2)

where Hij = kω(xi,xj) + kω(zi, zj)− kω(xi, zj)− kω(zi,xj), and kω(x, z) is defined as:

kω(x, z) =
[
(1− β0)sĥ∗

C
(x, z) + β0

]
q(x, z), (3)

where β0 ∈ (0, 1) and q(x, z), i.e., the Gaussian kernel with bandwidth σq, are two important
components ensuring that kω(x, z) serves as a characteristic kernel (Liu et al., 2020). Additionally,
s
ĥ∗
C
(x, z) represents a deep kernel function designed to measure the similarity between x and z by

utilizing semantic features extracted via the second last layer in ĥ∗
C (i.e., a well-trained classifier on

CEs). In practice, s
ĥ∗
C
(x, z) is a well-trained feature extractor (e.g., a classifier without the last layer).

4.2 TRAINING PROCESS OF DDAD

In this section, we discuss the training process of DDAD in detail, which includes optimizing MMD
and training the denoiser. For convenience, we provide a detailed algorithmic descriptions for the
training process of DDAD in Algorithm 1 and 2.

5
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Optimizing MMD. Following Liu et al. (2020), the test power of MMD can be maximized by
maximizing the following objective (i.e., optimize kω):

J(P,Q; kω) = MMD2(P,Q; kω)/σ(P,Q; kω),

σ(P,Q; kω) :=
√
4(E[H12H13]− E[H12]2) and H12, H13 refer to the Hij in Section 4.1. However,

J(P,Q; kω) cannot be directly optimized because MMD2(P,Q; kω) and σ(P,Q; kω) depend on P
and Q that are unknown. Therefore, instead, we can optimize an estimator of J(P,Q; kω):

Ĵλ(SC , SA; kω) := M̂MD
2

u(SC , SA; kω)/σ̂λ(SC , SA; kω), (4)

where SC are clean samples, SA can be any adversarial samples, σ̂2
λ is a regularized estimator of

σ2 and λ is a small constant to avoid 0 division (here we assume m = n to obtain the asymptotic
distribution of the MMD estimator):

σ̂2
λ =

4

n3

n∑
i=1

 n∑
j=1

Hij

2

− 4

n4

 n∑
i=1

n∑
j=1

Hij

2

+ λ. (5)

We can obtain optimized kω (we denote it as k∗ω) by maximizing Eq. 4 on the training set. Then, we
define MMD-OPT as the MMD estimator with an optimized characteristic kernel k∗ω:

MMD-OPT(S′
X , S′

Z) = M̂MD
2

u(S
′
X , S′

Z ; k
∗
ω), (6)

where S′
X and S′

Z can be any two batches of samples from either the clean or the adversarial domain.

Training the denoiser. In this paper, we use DUNET (Liao et al., 2018) as our denosing model. To
train the denoiser, we first randomly generate noise n from a Gaussian distribution N(µ, σ2) and add
n to SA that are generated from clean data-label pairs (SC , YC), resulting in noise-injected AEs:

Snoise = SA + n.

The design of injecting Gaussian noise is inspired by previous works showing that applying denoised
smoothing to a denoiser-classifier pipeline can provide certified robustness (Salman et al., 2020b;
Carlini et al., 2023). Following Lin et al. (2024), we set µ = 0 and σ = 0.25 by default. Then, we
can obtain denoised samples Sdenoised by feeding Snoise to a denoiser g with parameters θ:

Sdenoised = gθ(Snoise).

Ideally, Sdenoised should perform in the same way as its clean counterpart SC . To achieve this,
motivated by our theoretical analysis in Section 3, the optimized parameters θ∗ are obtained by
minimizing the distributional discrepancy towards the direction of making the classification correct,
i.e., minimize MMD-OPT and the cross-entropy loss Lce simultaneously:

gθ∗ = argmin
θ

MMD-OPT(SC , gθ(Snoise)) + α · Lce(ĥ∗
C(gθ(Snoise)), YC), (7)

where α > 0 is a regularization term (10−2 by default) and ĥ∗
C is the pre-trained classifier.

4.3 INFERENCE PROCESS OF DDAD

In this section, we discuss the two-pronged inference process of DDAD in detail.

The use of validation data. In the inference phase, we define a batch of clean validation data as SV
and the test data as ST . In practice, SV is extracted from the training data and is completely inacces-
sible during the training. Then SV serves as a reference to measure the distributional discrepancy.
According to Eq. 6, the distributional discrepancies between SV and ST can be defined as:

MMD-OPT(SV , ST ) = M̂MD
2

u(SV , ST ; k
∗
ω). (8)

The two-pronged inference process. (1) if MMD-OPT(SV , ST ) in Eq. 8 is less than some threshold
t, i.e., MMD-OPT(SV , ST ) < t, then ST will be treated as CEs and directly fed into the classifier.
Then the output will be ĥ∗

C(ST ), where ĥ∗
C is a well-trained classifier; (2) otherwise, ST will be

treated as AEs and denoised by the denoiser. Then, the output will be ĥ∗
C(gθ∗(ST )), where gθ∗ is a

well-trained denoiser.

6
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Algorithm 3 Adaptive white-box PGD+EOT attack for DDAD.

1: Input: clean data-label pairs (SC , YC), optimized characteristic kernel k∗ω by Algorithm 1, pre-
trained classifier ĥ∗

C , denoiser g with parameters θ, maximum allowed perturbation ϵ, step size η,
PGD iteration T , EOT iteration K;

2: Initialize adversarial data SA ← SC ;
3: Initialize µ← 0; σ ← 0.25; α← 10−2; t← 0.05;
4: for PGD iteration 1, ..., T do
5: Initialize gradients over EOT GEOT ← 0;

6: Compute MMD-OPT(SC , SA)← M̂MD
2

u(SC , SA; k
∗
ω) by Eq. 6;

7: for EOT iteration 1, ...,K do
8: if MMD-OPT(SC , SA) < t then
9: GEOT ← GEOT +∇SA(MMD-OPT(SC , SA) + α · Lce(ĥ∗

C(SA), YC));
10: else
11: Generate Gaussian noise: n ∼ N(µ, σ2);
12: Snoise ← SA + n;
13: GEOT ← GEOT +∇SA(MMD-OPT(SC , SA) + α · Lce(ĥ∗

C(gθ(Snoise)), YC));
14: end if
15: end for
16: GEOT ← 1

KGEOT;
17: Update adversarial data SA ← ΠBϵ(SC) (SA + η · sign(GEOT));
18: end for
19: Output: SA

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

We briefly introduce the experiment settings here and provide a more detailed version in Appendix C.

Dataset and target models. We evaluate DDAD on two benchmark datasets with different scales, i.e.,
CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009). For the target models, we
use three architectures with different capacities: ResNet (He et al., 2016), WideResNet (Zagoruyko &
Komodakis, 2016) and Swin Transformer (Liu et al., 2021).

Baseline settings. DDAD is a two-pronged adversarial defense method, which is different from most
existing defense methods. In terms of the pipeline structure, MagNet (Meng & Chen, 2017) is the
only similar defense method to ours, which also contains a two-pronged process. However, MagNet
is now considered outdated, making it unfair for DDAD to compare with it. Therefore, to make the
comparison as fair as possible, we follow a recent study on robust evaluation (Lee & Kim, 2023) to
compare our method with SOTA adversarial training (AT) methods in RobustBench (Croce et al.,
2020) and adversarial purification (AP) methods selected by Lee & Kim (2023).

Evaluation settings. We mainly use PGD+EOT (Athalye et al., 2018b) and AutoAttack (Croce
& Hein, 2020a) to compare our method with different baseline methods. Specifically, following
Lee & Kim (2023), we evaluate AP methods on the PGD+EOT attack with 200 PGD iterations
for CIFAR-10 and 20 PGD iterations for ImageNet-1K. We set the EOT iteration to 20 for both
datasets. We evaluate AT baseline methods using AutoAttack with 100 update iterations, as AT
methods have seen PGD attacks during training, leading to overestimated results when evaluated on
PGD+EOT (Lee & Kim, 2023). For our method, we implicitly design an adaptive white-box attack
by considering the entire defense mechanism of DDAD. To make a fair comparison, we evaluate our
method on both adaptive white-box PGD+EOT attack and adaptive white-box AutoAttack with the
same configurations mentioned above. Notably, we find that our method achieves the worst-case
robust accuracy on adaptive white-box PGD+EOT attack. Therefore, we report the robust accuracy of
our method on adaptive white-box PGD+EOT attack for Table 1 and 2. The algorithmic descriptions
of the adaptive white-box attack is provided in Algorithm 3. On CIFAR-10, the maximum allowed
perturbaiton budget ϵ for ℓ∞-norm-based attacks and ℓ2-norm-based attacks is set to 8/255 and 0.5,
respectively. While on ImageNet-1K, we set ϵ = 4/255 for ℓ∞-norm-based attacks.
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Table 1: Clean and robust accuracy (%) against adaptive white-box attacks (left: ℓ∞ (ϵ = 8/255),
right: ℓ2 (ϵ = 0.5)) on CIFAR-10. † means this method uses WideResNet-34-10 as a classifier. *
means this method is trained with extra data. We report the averaged results and standard deviations
of our method for five runs. We show the most successful defense in bold.

ℓ∞ (ϵ = 8/255)

Type Method Clean Robust

WRN-28-10

AT
Gowal et al. (2021) 87.51 63.38
Gowal et al. (2020)* 88.54 62.76
Pang et al. (2022a) 88.62 61.04

AP
Yoon et al. (2021) 85.66 33.48
Nie et al. (2022) 90.07 46.84

Lee & Kim (2023) 90.16 55.82

Ours DDAD 94.16 ± 0.08 67.53 ± 1.07
WRN-70-16

AT
Rebuffi et al. (2021)* 92.22 66.56
Gowal et al. (2021) 88.75 66.10
Gowal et al. (2020)* 91.10 65.87

AP
Yoon et al. (2021) 86.76 37.11
Nie et al. (2022) 90.43 51.13

Lee & Kim (2023) 90.53 56.88

Ours DDAD 93.91 ± 0.11 67.68 ± 0.87

ℓ2 (ϵ = 0.5)

Type Method Clean Robust

WRN-28-10

AT
Rebuffi et al. (2021)* 91.79 78.80

Augustin et al. (2020)† 93.96 78.79
Sehwag et al. (2022)† 90.93 77.24

AP
Yoon et al. (2021) 85.66 73.32
Nie et al. (2022) 91.41 79.45

Lee & Kim (2023) 90.16 83.59

Ours DDAD 94.16 ± 0.08 84.38 ± 0.81
WRN-70-16

AT
Rebuffi et al. (2021)* 95.74 82.32
Gowal et al. (2020)* 94.74 80.53
Rebuffi et al. (2021) 92.41 80.42

AP
Yoon et al. (2021) 86.76 75.66
Nie et al. (2022) 92.15 82.97

Lee & Kim (2023) 90.53 83.57

Ours DDAD 93.91 ± 0.11 84.03 ± 0.75

Implementation details of DDAD. To avoid
the evaluation bias caused by seeing similar at-
tacks beforehand during training, we train both
the MMD-OPT and the denoiser using ℓ∞-norm
MMA attack (Gao et al., 2022), which differs sig-
nificantly from PGD+EOT and AutoAttack. Then,
we use unseen attacks to evaluate DDAD. For opti-
mizing the MMD, following Gao et al. (2021), we
set the learning rate to be 2× 10−4 and the epoch
number to be 200. For training the denoiser, we
set the epoch number to be 60. The initial learn-
ing rate is set to 1× 10−3 for both datasets and is
divided by 10 at the 45th and 60th epoch to avoid
robust overfitting (Rice et al., 2020). More details
can be found in Appendix C.

Table 2: Clean and robust accuracy (%) against
adaptive white-box attacks ℓ∞ (ϵ = 4/255) on
ImageNet-1K. We report the averaged results and
standard deviations of our method for three runs.
We show the most successful defense in bold.

ℓ∞ (ϵ = 4/255)

Type Method Clean Robust

RN-50

AT
Salman et al. (2020a) 64.02 34.96
Engstrom et al. (2019) 62.56 29.22

Wong et al. (2020) 55.62 26.24

AP Nie et al. (2022) 71.48 38.71
Lee & Kim (2023) 70.74 42.15

Ours DDAD 78.61 ± 0.04 53.85 ± 0.23

5.2 DEFENDING AGAINST ADAPTIVE WHITE-BOX ATTACKS

Result analysis on CIFAR-10. Table 1 shows the evaluation performance of DDAD against adaptive
white-box PGD+EOT attack with ℓ∞(ϵ = 8/255) and ℓ2(ϵ = 0.5) on CIFAR-10. Compared to SOTA
defense methods, DDAD improves clean and robust accuracy by a notable margin. The evaluation
results against BPDA+EOT on CIFAR-10 can be found in Appendix D.1.

Result analysis on ImageNet-1K. Table 2 shows the evaluation performance of DDAD against
adaptive white-box PGD+EOT attack with ℓ∞(ϵ = 4/255) on ImageNet-1K. The advantages of our
method over baselines become more significant on large-scale datasets. Specifically, compared with
AP methods that rely on density estimation (Nie et al., 2022; Lee & Kim, 2023), our method improves
clean accuracy by at least 7.13% and robust accuracy by 11.70% on ResNet-50. This empirical
evidence supports that identifying distributional discrepancies is a simpler and more feasible task
than estimating data density, especially on large-scale datasets such as ImageNet-1K.

5.3 DEFENDING AGAINST UNSEEN TRANSFER ATTACKS

Since DDAD requires AEs to train the MMD-OPT and the denoiser, it is important for us to evaluate
the transferability of our method. Table 3 shows the transferability of our method (trained on
WideResNet-28-10) under different threat models, which include WideResNet-70-16, ResNet-18,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Robust accuracy (%) of our method trained on WideResNet-28-10 against unseen transfer
attacks on CIFAR-10. Notably, attackers cannot access the parameters of WideResNet-28-10, and
thus it is in a gray-box setting. We report the averaged results and standard deviations of five runs.

Trained on WRN-28-10

Unseen Transfer Attack WRN-70-16 RN-18 RN-50 Swin-T

PGD+EOT (ℓ∞) ϵ = 8/255 80.84 ± 0.46 80.78 ± 0.60 81.47 ± 0.30 81.46 ± 0.29
ϵ = 12/255 80.26 ± 0.60 80.54 ± 0.45 80.98 ± 0.36 80.40 ± 0.41

C&W (ℓ2) ϵ = 0.5 82.45 ± 0.19 91.30 ± 0.20 89.26 ± 0.11 93.45 ± 0.17
ϵ = 1.0 81.20 ± 0.39 90.37 ± 0.17 88.65 ± 0.22 93.41 ± 0.18

ResNet-50 and Swin Transformer. We use
PGD+EOT ℓ∞ and C&W ℓ2 (Carlini & Wagner,
2017) for evaluation. The iteration number of
C&W ℓ2 is set to 200. Experiment results show
that our method can generalize well to these un-
seen transfer attacks.

5.4 ABLATION STUDIES

Ablation study on batch size. Identifying dis-
tributional discrepancies requires the data to be
processed in batches. Therefore, we aim to de-
termine how much data in a batch will not affect
the stability of our method. Figure 2 (top) shows
the clean accuracy of our method on CIFAR-10
with different batch sizes, ranging from 10 to 110.
We find that once the batch size exceeds 100, the
performance of our method is stable. In this paper,
we set the test batch size to 100 for evaluation.
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Figure 2: Top: clean accuracy (%) vs. batch size;
Bottom: mixed accuracy (%) vs. proportion of
AEs in every batch (%). We plot the averaged
results and the standard deviations of five runs.

Ablation study on mixed data batches. We explore a more challenging scenario for our method,
in which each data batch contains a mixture of CEs and AEs. Figure 2 (bottom) shows the mixed
accuracy (i.e., the accuracy on mixed data) of our method on CIFAR-10 with different proportions of
AEs (generated by adaptive white-box PGD+EOT ℓ∞ with ϵ = 8/255) in each batch, ranging from
0% (i.e., pure CEs) to 100% (i.e., pure AEs). Initially, (e.g., from 0% to 30%), the mixed accuracy
drops from over 90% to approximately 80%. This is because, with a high proportion of CEs, the
MMD-OPT has a high chance to regard the entire batch as clean data. After that (i.e., from 30%
onwards), the mixed accuracy degrades gradually to approximately 70%. This is because, as the
proportion of AEs increases, the MMD-OPT regards the entire batch as adversarial and feeds it into
the denoiser. Notably, DDAD can still outperform baseline methods (see Appendix D.2).

Ablation study on injecting Gaussian noise. We provide evaluation results of our method against
adaptive white-box PGD+EOT attack with and without injecting Gaussian noise on CIFAR-10 in
Appendix D.3. We find that injecting Gaussian noise can make DDAD generalize better.

Ablation study on the two-pronged process. We provide evaluation results of our method against
adaptive white-box PGD+EOT attack with and without MMD-OPT on CIFAR-10 in Appendix D.4.
We find that using the two-pronged process can largely improve clean accuracy.

5.5 COMPUTE RESOURCE OF DDAD

We report the compute resources used for training and evaluating DDAD in Appendix D.6. Compared
to AT baselines, DDAD offers better training efficiency (e.g., it can scale to large datasets like
ImageNet-1K). Additionally, although DDAD requires training an extra denoiser and MMD-OPT,
it significantly outperforms AP baselines in inference speed. Furthermore, relying on a pre-trained
generative model is not always feasible, as training such models at scale can be highly resource-
intensive. Therefore, in general, DDAD provides a more lightweight design.
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6 RELATED WORK

We briefly review the related work here, and a more detailed version can be found in Appendix E.

Statistical adversarial data detection. Recently, statistical adversarial data detection (SADD) has
attracted increasing attention in defending against AEs. For example, Gao et al. (2021) demonstrate
that maximum mean discrepancy (MMD) is aware of adversarial attacks and leverage the distributional
discrepancy between AEs and CEs to filter out AEs, which has been shown effective against unseen
attacks. Based on this, Zhang et al. (2023) further propose a more robust statistic called expected
perturbation score (EPS) that measures the expected score of a sample after multiple perturbations.

Denoiser-based adversarial defense. Denoiser-based adversarial defense often leverages generative
models to shift AEs back to their clean counterparts before feeding them into a classifier. In most
literature, it is called adversarial purification (AP). At the early stage of AP, Meng & Chen (2017)
propose a two-pronged defense called MagNet to remove adversarial noise by first using a detector
to discard the detected AEs, and then using an autoencoder to purify the remaining samples. The
following studies mainly focus on exploring the use of more powerful generative models for AP
(Liao et al., 2018; Samangouei et al., 2018; Song et al., 2018; Yoon et al., 2021; Nie et al., 2022).
Recently, the outstanding denoising capabilities of pre-trained diffusion models have been leveraged
to purify AEs (Nie et al., 2022; Lee & Kim, 2023). The success of recent AP methods often relies
on the assumption that there will be a pre-trained generative model that can precisely estimate the
probability density of the CEs (Nie et al., 2022; Lee & Kim, 2023). However, even powerful generative
models (e.g., diffusion models) may have an inaccurate density estimation, leading to unsatisfactory
performance (Chen et al., 2024). By contrast, instead of estimating probability densities, our method
directly minimizes the distributional discrepancies between AEs and CEs, leveraging the fact that
identifying distributional discrepancies is simpler and more feasible than estimating density.

7 PRACTICABILITY AND LIMITATION

We briefly discuss the practicability and limitation here, and see Appendix F for detailed discussions.

Practicability of batch-wise evaluation. DDAD leverages statistics based on distributional dis-
crepancies, which requires the data to be processed in batches. we believe feeding batch images
is practical in real-world applications. For example, in model training, data are processed into
batches for quicker training; in surveillance systems, multiple camera feeds are processed together
for real-time security; autonomous vehicles batch-wisely process camera data for better navigation;
Besides, a main benefit of using a batch-wise statistical hypothesis test is that it can effectively control
the false positive rate. For example, for DDAD, we set the maximum false positive rate to be 5%.

Limitation of batch-wise evaluation. When the batch size is too small, the stability of DDAD will
be affected (see Figure 2). To address this issue, one possible solution is to find more robust statistics
that can measure distributional discrepancies with fewer samples. Another possible solution is to put
single instances into a queue, and process the entire queue when its size is large enough. We leave
them as future work. Besides, Fang et al. (2022) theoretically prove that for instance-wise detection
methods to work perfectly, there must be a gap in the support set between in-distribution (ID) and
out-of-distribution (OOD) data. This theory also applies to adversarial problems, but such a support
set probably does not exist in adversarial settings, making perfect instance-wise detection difficult.

8 CONCLUSION

SADD-based defense methods empirically show that leveraging the distributional discrepancies
can effectively defend against adversarial attacks. However, a potential limitation of SADD-based
methods is that they will discard data batches that contain AEs, leading to the loss of clean information.
To solve this problem, inspired by our theoretical analysis that minimizing distributional discrepancy
can help reduce the expected loss on AEs, we propose a two-pronged adversarial defense called
Distributional-Discrepancy-based Adversarial Defense (DDAD) that leverages the effectiveness
of SADD-based methods without discarding input data. Extensive experiments demonstrate the
effectiveness of DDAD against various adversarial attacks. In general, we hope this simple yet
effective method could open up a new perspective on adversarial defenses.
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ETHICS STATEMENT

This study on adversarial defense mechanisms raises important ethical considerations that we have
carefully addressed. We have taken steps to ensure our adversarial defense method is fair. We use
widely accepted public benchmark datasets to ensure comparability of our results. Our evaluation
encompasses a wide range of attack types and strengths to provide a comprehensive assessment of
our defense mechanism.

We have also carefully considered the broader impacts of our work. The proposed defense algorithm
contributes to the development of more robust machine learning models, potentially improving the
reliability of AI systems in various applications. We will actively engage with the research community
to promote responsible development and use of adversarial defenses.

REPRODUCIBILITY STATEMENT

Appendix A include justifications of the theoretical results in Section 3. To replicate the experimental
results presented in Section 5, we have included a link to our anonymous downloadable source code
in the abstract. We include additional implementation details required to reproduce the reported
results in Section 5.1 and Appendix C.
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A PROOF OF THEOREM 1

Theorem 1. For a hypothesis h ∈ H and a distribution DA ∈ D:

R(h, fA,DA) ≤ R(h, fC ,DC) + d1(DC ,DA).

Proof. Let ϕC and ϕA be the density functions of DC and DA:

R(h, fA,DA) = R(h, fA,DA) +R(h, fC ,DC)−R(h, fC ,DC) +R(h, fA,DC)−R(h, fA,DC)

≤ R(h, fC ,DC) + |R(h, fA,DC)−R(h, fC ,DC)|+ |R(h, fA,DA)−R(h, fA,DC)|
≤ R(h, fC ,DC) + E [|fC(x)− fA(x)|] + |R(h, fA,DA)−R(h, fA,DC)|

≤ R(h, fC ,DC) + E [|fC(x)− fA(x)|] +
∫
|ϕC(x)− ϕA(x)||h(x)− fA(x)|dx

(a)

≤ R(h, fC ,DC) + E [|fC(x)− fA(x)|] + d1(DC ,DA)

(b)
= R(h, fC ,DC) + E [|fC(x)− fC(x)|] + d1(DC ,DA)

= R(h, fC ,DC) + d1(DC ,DA),

where (a) is based on Definition 1 and (b) is based on Corollary 1.

B MATHEMATICAL NOTATIONS IN SECTION 4

X A separable metric space in Rd

P,Q Borel probability measures defined on X
SX n IID observations sampled from P, i.e., {x(i)}ni=1

SZ m IID observations sampled from Q, i.e., {z(i)}mi=1

Hk A reproducing kernel Hilbert space

kω A kernel of Hk with parameters ω

µP The kernel mean embedding of P
µQ The kernel mean embedding of Q
Hij kω(xi,xj) + kω(zi, zj)− kω(xi, zj)− kω(zi,xj)

s
ĥ∗
C

A deep kernel function that measures the similarity between x and z

ĥ∗
C A well-trained classifier

β0 A constant ∈ (0, 1)

q The Gaussian kernel with bandwidth σq

J The objective function of optimizing MMD

µ, σ Mean and standard deviation

λ A small constant to avoid 0 division

n Gaussian noise, i.e., n ∼ N(µ, σ2)

gθ A denoiser with parameters θ

SC Clean samples

YC Ground truth labels of SC

SA Adversarial examples

Snoise Noise-injected adversarial examples

Sdenoised Denoised samples

α A regularization term
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C DETAILED EXPERIMENT SETTINGS

C.1 DATASET AND TARGET MODELS

We evaluate the effectiveness of DDAD on two benchmark datasets with different scales, i.e.,
CIFAR-10 (Krizhevsky et al., 2009) (small scale) and ImageNet-1K (Deng et al., 2009) (large scale).
Specifically, CIFAR-10 contains 50,000 training images and 10,000 test images, divided into 10
classes. ImageNet-1K is a large-scale dataset that contains 1,000 classes and consists of 1,281,167
training images, 50,000 validation images, and 100,000 test images. For the target models, we
use three widely used architectures with different scales: ResNet (He et al., 2016), WideResNet
(Zagoruyko & Komodakis, 2016) and Swin Transformer (Liu et al., 2021). Specifically, following
Lee & Kim (2023), we use WideResNet-28-10 and WideResNet-70-16 to evaluate the performance
of defense methods on CIFAR-10 and we use ResNet-50 to evaluate the performance of defense
methods on ImageNet-1K. Additionally, we examine the transferability of our method under different
threat models, which include ResNet-18, ResNet-50, WideResNet-70-16 and Swin Transformer.

C.2 BASELINE SETTINGS

DDAD is a two-pronged adversarial defense method, which is different from most existing defense
methods. In terms of the pipeline structure, MagNet (Meng & Chen, 2017) is the only similar defense
method to ours, which also contains a two-pronged process. However, MagNet is now considered
outdated, making it unfair for DDAD to compare with it. Therefore, to make the comparison as fair
as possible, we follow a recent study on robust evaluation (Lee & Kim, 2023) to compare our method
with SOTA adversarial training (AT) methods in RobustBench (Croce et al., 2020) and adversarial
purification (AP) methods selected by Lee & Kim (2023).

C.3 EVALUATION SETTINGS

We mainly use PGD+EOT (Athalye et al., 2018b) and AutoAttack (Croce & Hein, 2020a) to compare
our method with different baseline methods. Specifically, following Lee & Kim (2023), we evaluate
AP methods on the PGD+EOT attack with 200 PGD iterations for CIFAR-10 and 20 PGD iterations
for ImageNet-1K. We set the EOT iteration to 20 for both datasets. We evaluate AT baseline methods
using AutoAttack with 100 update iterations, as AT methods have seen PGD attacks during training,
leading to overestimated results when evaluated on PGD+EOT (Lee & Kim, 2023). For our method,
we implicitly design an adaptive white-box attack by considering the entire defense mechanism of
DDAD. To make a fair comparison, we evaluate our method on both adaptive white-box PGD+EOT
attack and adaptive white-box AutoAttack with the same configurations mentioned above. Notably,
we find that our method achieves the worst-case robust accuracy on adaptive white-box PGD+EOT
attack. Therefore, we report the robust accuracy of our method on adaptive white-box PGD+EOT
attack for Table 1 and 2. The algorithmic descriptions of the adaptive white-box attack is provided in
Algorithm 3. On CIFAR-10, ϵ for ℓ∞-norm-based attacks and ℓ2-norm-based attacks is set to 8/255
and 0.5, respectively. While on ImageNet-1K, we set ϵ = 4/255 for ℓ∞-norm-based attacks. We
also evaluate our method against BPDA+EOT (Hill et al., 2021) on CIFAR-10. For BPDA+EOT,
we use the implementation of Hill et al. (2021) with default hyperparameters for evaluation. For
transferability experiments, we use PGD+EOT ℓ∞ (Athalye et al., 2018b) and C&W ℓ2 (Carlini &
Wagner, 2017) for evaluation. Specifically, the iteration number of C&W ℓ2 is set to 200. For ℓ∞-
norm transfer attacks, we examine the robustness of our method under ϵ = 8/255 and ϵ = 12/255.
For C&W ℓ2, we examine our method under ϵ = 0.5 and ϵ = 1.0.

C.4 IMPLEMENTATION DETAILS OF DDAD

To avoid the evaluation bias caused by learning similar attacks beforehand during training, we train
both the MMD-OPT and the denoiser using the MMA attack with ℓ∞-norm (Gao et al., 2022), which
differs significantly from PGD+EOT and AutoAttack. Then, we use unseen attacks to evaluate DDAD.
We set ϵ = 8/255 with a step size of 2/255 for CIFAR-10, and ϵ = 4/255 with a step size of 1/255
for ImageNet-1K. For optimizing the MMD, following Gao et al. (2021), we set the learning rate to
be 2× 10−4 and the epoch number to be 200. For training the denoiser, we set the initial learning
rate to 1× 10−3 for both CIFAR-10 and ImageNet-1K. We set the epoch number to be 60 and divide
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the learning rate by 10 at the 45th epoch and 60th epoch to avoid robust overfitting (Rice et al.,
2020). The training batch size is set to 500 for CIFAR-10 and 128 for ImageNet-1K. The optimizer
we use is Adam (Kingma & Ba, 2015). To improve the training efficiency on ImageNet-1K, we
randomly select 100 samples from each class, resulting in 100,000 training samples in total. Notably,
during the inference time, we evaluate our method using the entire testing set for both CIFAR-10 and
ImageNet-1K. The batch size for evaluation is set to 100 for all datasets.

D ADDITIONAL EXPERIMENTS

D.1 DEFENDING AGAINST BPDA+EOT ATTACK

Table 4: Clean accuracy (%) and robust accuracy (%) of defense methods against BPDA+EOT attack
under ℓ∞(ϵ = 8/255) threat models on CIFAR-10. We report the averaged results and standard
deviations of DDAD for five runs. We show the most successful defense in bold.

Category Model Method Clean Robust Average

Adversarial Training
RN-18 Madry et al. (2018) 87.30 45.80 66.55

Zhang et al. (2019) 84.90 45.80 65.35

WRN-28-10 Carmon et al. (2019) 89.67 63.10 76.39
Gowal et al. (2020) 89.48 64.08 77.28

Adversarial Purification

RN-18 Yang et al. (2019) 94.80 40.80 67.80
RN-62 Song et al. (2018) 95.00 9.00 52.00

WRN-28-10

Hill et al. (2021) 84.12 54.90 69.51
Yoon et al. (2021) 86.14 70.01 78.08
Wang et al. (2022) 93.50 79.83 86.67
Nie et al. (2022) 89.02 81.40 85.21

Lee & Kim (2023) 90.16 88.40 89.28

Ours WRN-28-10 DDAD 94.16 ± 0.08 87.13 ± 1.19 90.65

D.2 ABLATION STUDY ON MIXED DATA BATCHES

Table 5: Mixed accuracy (%) of defense methods against adaptive white-box attacks ℓ∞(ϵ = 8/255)
on CIFAR-10 under different proportions of AEs. The target model is WRN-28-10. We report the
averaged results and standard deviations of five runs. We show the most successful defense in bold.

Method Proportion of AEs in Each Batch (%)
10 20 30 40 50 60 70 80 90 100

Rebuffi et al. (2021) 85.10 82.68 80.27 77.86 75.45 73.03 70.62 68.21 65.79 63.38
Augustin et al. (2020) 85.96 83.38 80.81 78.23 75.65 73.07 70.49 67.92 65.34 62.76
Sehwag et al. (2022) 85.86 83.10 80.35 77.59 74.83 72.07 69.31 66.56 63.80 61.04
Yoon et al. (2021) 81.80 76.83 71.87 66.90 61.94 56.97 52.01 47.04 42.08 37.11
Nie et al. (2022) 85.75 81.42 77.10 72.78 68.46 64.13 59.81 55.49 55.16 46.84
Lee & Kim (2023) 86.73 83.29 79.86 76.42 72.99 69.56 66.12 62.69 59.25 55.82

91.22 87.15 81.77 79.94 77.78 76.14 74.22 72.37 69.56 67.53Ours ± 0.47 ± 0.58 ± 0.66 ± 0.66 ± 0.51 ± 0.69 ± 0.53 ± 0.74 ± 0.83 ± 1.07

D.3 ABLATION STUDY ON INJECTING GAUSSIAN NOISE

Table 6: Robust accuracy (%) of our method with and without injecting Guassian noise against
adaptive white-box PGD+EOT ℓ∞(ϵ = 8/255) and ℓ2(ϵ = 0.5) on CIFAR-10. We report the
averaged results and standard deviations of five runs. We show the most successful defense in bold.

Gaussian Noise Model PGD+EOT (ℓ∞) PGD+EOT (ℓ2)

✗ WRN-28-10 65.31 ± 0.67 81.04 ± 0.52
✔ 67.53 ± 1.07 84.38 ± 0.81
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D.4 ABLATION STUDY ON THE TWO-PRONGED PROCESS

Table 7: Clean and robust accuracy (%) of our method with and without the two-pronged process
against adaptive white-box PGD+EOT ℓ∞(ϵ = 8/255) and ℓ2(ϵ = 0.5) on CIFAR-10. We report the
averaged results and standard deviations of five runs. We show the most successful defense in bold.

Module Model Clean PGD+EOT (ℓ∞) PGD+EOT (ℓ2)

Denoiser only WRN-28-10 85.07 ± 0.16 71.76 ± 0.65 85.01 ± 0.50
Denoiser + MMD-OPT 94.16 ± 0.08 67.53 ± 1.07 84.37 ± 0.81

D.5 ABLATION STUDY ON THE THRESHOLD OF MMD-OPT

In our work, we select the threshold based on the experimental results on the validation data.
Specifically, a threshold value of 0.5 is selected for CIFAR-10 and 0.02 is selected for ImageNet-1K.
It is reasonable to use a smaller threshold for ImageNet-1K because the distribution of AEs with
ϵ = 4/255 (i.e., AEs for ImageNet-1K) will be closer to CEs than AEs with ϵ = 8/255 (i.e., AEs for
CIFAR-10). Intuitively, when ϵ decreases to 0, AEs are the same as CEs (i.e., the distribution of AEs
and CEs will be the same).

Table 8: Sensitivity of DDAD to the threshold values of MMD-OPT on CIFAR-10. We report clean
and robust accuracy (%) against adaptive white-box attacks (ϵ = 8/255). The classifier used is
WRN-28-10.

Threshold Value Clean PGD+EOT AutoAttack
ℓ∞ ℓ2 ℓ∞ ℓ2

0.05 94.16 66.98 73.40 72.21 85.96
0.07 94.16 66.98 73.40 72.21 85.96
0.10 94.16 66.98 73.40 72.21 85.96
0.50 94.16 66.98 84.38 72.21 85.96
0.70 94.16 66.98 84.38 72.21 85.96
1.00 94.16 64.75 84.38 72.21 85.96

Table 9: Sensitivity of DDAD to the threshold values of MMD-OPT on ImageNet-1K. We report
clean and robust accuracy (%) against adaptive white-box attacks (ϵ = 4/255). The classifier used is
RN-50.

Threshold Value Clean PGD+EOT(ℓ∞)
0.010 76.61 53.75
0.015 76.61 53.75
0.020 78.61 53.75
0.025 78.61 53.75
0.030 78.61 0.46
0.040 78.61 0.46
0.050 78.61 0.46

D.6 COMPUTE RESOURCES

Table 10 presents the compute resources for DDAD, which include GPU configurations, batch size,
classifier, training time, and memory usage for each dataset. For CIFAR-10, using 2 NVIDIA A100
GPUs with a batch size of 500, our method’s training time is approximately 28 minutes with ResNet-
18 and 55 minutes with WideResNet-28-10. The memory consumption is 5927 MB and 6276 MB,
respectively. For ImageNet-1K, using 4 NVIDIA A100 GPUs with a batch size of 128, our method’s
training time is approximately 10 hours, with a memory consumption of 97354 MB. Compared to
AT baseline methods, DDAD offers better training efficiency (e.g., it can scale to large datasets like
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Table 10: Training time (hours : minutes : seconds) and memory consumption (MB) for DDAD on
CIFAR-10 and ImageNet-1K . This table reports the compute resources for the entire training process
of DDAD described in Section 4.2 (i.e., optimizing MMD + training the denoiser).

Dataset GPU Batch Size Classifier Training Time Memory

CIFAR-10 2 × NVIDIA A100 500 RN-18 00:28:17 5927
WRN-28-10 00:55:34 6276

ImageNet-1K 4 × NVIDIA A100 128 RN-50 09:52:50 97354

Table 11: Inference time (hours : minutes : seconds) for DDAD on CIFAR-10 and ImageNet-1K. This
table reports the comput resources for evaluating the entire test set of CIFAR-10 (i.e., 10,000 images)
and ImageNet-1K (i.e., 50,000 images).

Dataset GPU Batch Size Classifier Inference Time

CIFAR-10 1 × NVIDIA A100 100 WRN-28-10 00:00:32

ImageNet-1K 2 × NVIDIA A100 100 RN-50 00:03:08

ImageNet-1K). This is mainly because we directly use the pre-trained classifier. Furthermore, training
MMD is extremely fast (usually less than 1 minute on CIFAR-10) and we use a lightweight denoiser.

Table 11 presents the compute resources for evaluating DDAD, which include GPU configurations,
batch size, classifier and inference time for each dataset. For CIFAR-10, using 1 NVIDIA A100
GPU with a batch size of 100, our method’s inference time is approximately 32 seconds over the
entire test set of CIFAR-10. For ImageNet-1K, using 2 NVIDIA A100 GPUs with a batch size of
100, our method’s inference time is approximately 3 minutes over the entire test set of ImageNet-1K.
Although DDAD requires training an extra denoiser and MMD-OPT, it significantly outperforms AP
baselines in inference speed. Furthermore, relying on a pre-trained generative model is not always
feasible, as training such models at scale can be highly resource-intensive. Therefore, considering
considering the trade-off between computational cost and the performance of DDAD, we believe that
training an additional detector and denoiser is feasible and worthwhile. In general, DDAD provides a
more lightweight design.

D.7 EXPERIMENT ON SVHN

Table 12: Clean and robust accuracy (%) against adaptive white-box attacks ℓ∞(ϵ = 8/255) on
SVHN. Adversarial training methods are evaluated on AutoAttack, adversarial purification methods
are evaluated on PGD+EOT and our method is evaluated on adaptive white-box PGD+EOT. We show
the most successful defense in bold.

Category Model Method Clean Robust Average

AT
ResNet-18 Rade & Moosavi-Dezfooli (2022) 93.08 52.83 72.96

WRN-28-10 Gowal et al. (2020) 92.87 56.83 74.85
Gowal et al. (2021) 94.15 60.90 77.53

AP WRN-28-10 Nie et al. (2022) 97.85 34.30 66.08
Lee & Kim (2023) 95.55 63.05 79.30

Ours WRN-28-10 DDAD 96.57 69.45 83.01
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E DETAILED RELATED WORK

Adversarial attacks. The discovery of adversarial examples (AEs) has raised a security concern
for AI development in recent decades (Szegedy et al., 2014; Goodfellow et al., 2015). AEs are often
crafted by adding imperceptible noise to clean images, which can easily mislead a classifier to make
wrong predictions. The algorithms that generate AEs are called adversarial attacks. For example,
the Fast Gradient Sign Method (FGSM) involves adding noise to the clean data in the direction of
the gradient of the loss function with respect to the clean data (Goodfellow et al., 2015). Expanding
on FGSM, the Basic Iterative Method (BIM) (Kurakin et al., 2017) iteratively applies small noises
to the clean data in the direction of the gradient of the loss function, updating the input at each step
to create more effective AEs than single-step methods such as FGSM. Madry et al. (2018) propose
the Projected Gradient Descent (PGD), which further improves the iterative approach of BIM by
adding random initialization to the input data before applying iterative gradient-based perturbations.
Beyond non-targeted attacks, the Carlini & Wagner attack (C&W) specifically directs data towards a
chosen target label, which crafts AEs by optimizing a specially designed objective function (Carlini
& Wagner, 2017). AutoAttack (AA) (Croce & Hein, 2020a) is an ensemble of multiple adversarial
attacks, which combines three non-target white-box attacks (Croce & Hein, 2020b) and one targeted
black-box attack (Andriushchenko et al., 2020), which makes AA a benchmark standard for evaluating
adversarial robustness. However, the computational complexity of AA is relatively high. Gao et al.
(2022) propose the Minimum-margin attack (MMA), which can be used as a faster alternative to AA.
Beyond computing exact gradients, Athalye et al. (2018b) propose Expectation over Transformation
(EOT) to correctly compute the gradient for defenses that apply randomized transformations to the
input. Athalye et al. (2018a) propose the Backward Pass Differentiable Approximation (BPDA),
which approximates the gradient with an identity mapping to effectively break the defenses that
leverage obfuscated gradients. According to Lee & Kim (2023), PGD+EOT is currently the best
attack for denoiser-based defense methods.

Adversarial detection. The most lightweight method to defend against adversarial attacks is to detect
and discard AEs in the input data. Previous studies have largely utilized statistics on hidden-layer
features of deep neural networks (DNNs) to filter out AEs from test data. For example, Ma et al.
(2018) utilize the local intrinsic dimensionality (LID) of DNN features as detection characteristics.
Lee et al. (2018) implement a Mahalanobis distance-based score for identifying AEs. Raghuram
et al. (2021) develop a meta-algorithm that extracts intermediate layer representations of DNNs,
offering configurable components for detection. Deng et al. (2021) leverage a Bayesian neural
network to detect AEs, which is trained by adding uniform noises to samples. Another prevalent
strategy involves equipping classifiers with a rejection option. For example, Stutz et al. (2020)
introduce a confidence-calibrated adversarial training framework, which guides the model to make
low-confidence predictions on AEs, thereby determining which samples to reject. Similarly, Pang
et al. (2022b) integrate confidence measures with a newly proposed R-Con metric to effectively
separate AEs out. However, these methods, train a detector for specific classifiers or attacks, tend
to neglect the modeling of data distribution, which can limit their effectiveness against unknown
attacks. Recently, statistical adversarial data detection (SADD) has delivered increasing insight.
For example, Gao et al. (2021) demonstrate that maximum mean discrepancy (MMD) is aware of
adversarial attacks and leverage the distributional discrepancy between AEs and CEs to filter out AEs,
which has been shown effective against unseen attacks. Based on this, Zhang et al. (2023) further
propose a new statistic called expected perturbation score (EPS) that measures the expected score
of a sample after multiple perturbations. Then, an EPS-based MMD is proposed to measure the
distributional discrepancy between CEs and AEs. Despite the effectiveness of SADD, an undeniable
problem of SADD-based methods is that they will discard data batches that contain AEs. To solve
this problem, in this paper, we propose a new defense method that does not discard any data, while
also inherits the capabilities of SADD-based detection methods.

Adversarial training. Another prominent defensive framework is adversarial training (AT). Vanilla
AT (Madry et al., 2018) directly generates and incorporates AEs during the training process, forcing
the model to learn the underlying distributions of AEs. Besides vanilla AT, several modifications
have been developed to enhance the effectiveness of AT. For instance, at the early stage of AT,
Song et al. (2019) propose to treat adversarial attacks as a domain adaptation problem and enhance
the generalization of AT by minimizing the distributional discrepancy. Zhang et al. (2019) propose
optimizing a surrogate loss function based on theoretical bounds. Similarly, Wang et al. (2020) explore
how misclassified examples influence a model’s robustness, leading to an improved adversarial risk
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through regularization. From the perspective of reweighting, Ding et al. (2020) propose to reweight
adversarial data with instance-dependent perturbation bounds ϵ and Zhang et al. (2021) introduce
a geometry-aware instance-reweighted AT framework, which differentiates weights based on the
proximity of data points to the class boundary. Other modifications include improving AT using
data augmentation methods (Gowal et al., 2021; Rebuffi et al., 2021) and hyper-parameter selection
methods (Gowal et al., 2020; Pang et al., 2021). Although AT achieves high robustness against
particular attacks, it suffers from significant degradation in clean accuracy and high computational
complexity (Wong et al., 2020; Laidlaw et al., 2021; Poursaeed et al., 2021). Different from the AT
framework, our method does not train a robust classifier. Instead, by directly feeding detected CEs to
a pre-trained classifier, our method can effectively maintain clean accuracy. Meanwhile, by using a
lightweight detector and denoiser model, our method can alleviate the computational complexity.

Denoiser-based adversarial defense. Another well-known defense framework is denoiser-based
adversarial defense, which often leverages generative models to shift AEs back to their clean coun-
terparts before feeding them into a classifier. In most literature, it is called adversarial purification
(AP). Previous methods mainly focus on exploring the use of more powerful generative models
for AP. For example, at the early stage of AP, Meng & Chen (2017) propose a two-step process
called MagNet to remove adversarial noise by first using a detector to discard the detected AEs, and
then leveraging the reconstructability of an autoencoder to purify the rest of the examples, which
guides AEs towards the manifold of clean data. After MagNet, Liao et al. (2018) design a denoising
UNet that can denoise AEs to their clean counterparts by reducing the distance between adversarial
and clean data under high-level representations. Samangouei et al. (2018) use a GAN trained on
clean examples to project AEs onto the generator’s manifold. Song et al. (2018) find that AEs lie in
low-probability regions of the image distribution and propose to maximize the probability of a given
test example. Naseer et al. (2020) focus on training a conditional GAN, which engages in a min-max
game with a critic network, to differentiate between adversarial and clean data. Yoon et al. (2021)
propose to use the denoising score-based model to purify adversarial examples. Nie et al. (2022)
propose to use diffusion models to remove adversarial noise by gradually adding Gaussian noise to
AEs, and then wash out the noise by solving the reverse-time stochastic differential equation. The
success of recent AP methods often relies on the assumption that there will be a pre-trained generative
model that can precisely estimate the probability density of the CEs (Yoon et al., 2021; Nie et al.,
2022). However, even powerful generative models (e.g., diffusion models) may have an inaccurate
density estimation, leading to unsatisfactory performance (Chen et al., 2024). By contrast, instead
of estimating probability densities, our method directly minimizes the distributional discrepancies
between AEs and CEs, leveraging the fact that identifying distributional discrepancies is simpler
and more feasible than estimating density. Nayak et al. (2023) propose to use MMD as a regularizer
during the training of the denoiser. Different from their work, we use an optimized version of MMD
(i.e., MMD-OPT), which is more sensitive to adversarial attacks. Furthermore, the MMD-OPT serves
not only as a ‘guider’ during training to help minimize the distributional discrepancy between AEs
and CEs, but also a ‘detector’ that helps distinguish AEs and CEs.

F LIMITATIONS ON BATCH-WISE EVALUATIONS

DDAD leverages statistics based on distributional discrepancies (i.e., MMD-OPT), which requires
the data to be processed in batches. A main benefit of using a batch-wise statistical hypothesis test is
that it can effectively control the false positive rate. For example, for DDAD, we set the maximum
false positive rate to be 5%. However, when the batch size is too small, the stability of DDAD will be
affected (see Figure 2). To address this issue, one possible solution is to find more robust statistics
that can measure distributional discrepancies with fewer samples. Recently, measuring the expected
score of a sample after multiple perturbations has proven useful for this purpose (Zhang et al., 2023).
However, computing the expected score is time-consuming. We emphasize that this paper primarily
focuses on the relationship between distributional discrepancies and adversarial risk, aiming to inspire
the design of a new defense method. Another possible solution is to put single instances into a queue,
and process the entire queue when its size is large enough. Besides, Fang et al. (2022) theoretically
prove that for instance-wise detection methods to work perfectly, there must be a gap in the support
set between IID and out-of-distribution (OOD) data. This theory also applies to adversarial problems,
but such a support set does not exist in adversarial settings, making perfect instance-wise detection
generally difficult. We leave finding more robust statistics as future work.
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Furthermore, the practicality of a method should be evaluated in the context of specific scenarios
and application requirements, which means there is no absolute ’practical’ or ’impractical’ method.
For example, for user inference, single samples provided by the user can be dynamically stored in a
queue. Once the queue accumulates enough samples to form a batch, our method can then process
the batch collectively using the proposed approach. A direct cost of this solution is the waiting time,
as the system must accumulate enough samples (e.g., 50 samples) to form a batch before processing.
However, in scenarios where data arrives quickly, the waiting time is typically very short, making this
approach feasible for many real-time applications. For applications with stricter latency requirements,
the batch size can be dynamically adjusted based on the incoming data rate to minimize waiting time.
For instance, if the system detects a lower data arrival rate, it can process smaller batches to ensure
timely responses.

Overall, it is a trade-off problem: using our method for user inference can obtain high robustness, but
the cost is to wait for batch processing. Based on the performance improvements our method obtains
over the baseline methods, we believe the cost is feasible and acceptable.

On the other hand, our method is not necessarily used for user inference. Instead, our method is
suitable for cleaning the data before fine-tuning the underlying model. In many domains, obtaining
large quantities of high-quality data is challenging due to factors such as cost, privacy concerns, or
the rarity of specific data. As a result, all possible samples with clean information are critical in
these data-scarce domains. Then, a practical scenario is that there exists a pre-trained model on a
large-scale dataset (e.g., a DNN trained on ImageNet-1K) and clients want to fine-tune the model to
perform well on downstream tasks. If the data for downstream tasks contain AEs, our method can be
applied to batch-wisely clean the data before fine-tuning the underlying model.
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