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Abstract001

Instruction fine-tuning is a key technique for002
improving the performance of large language003
models (LLMs), but it is often limited by low-004
quality and redundant data. Recent studies005
suggest that a small amount of high-quality006
data can yield significant performance gains.007
However, existing data selection methods may008
not be suitable for rapidly evolving LLMs, and009
each model may require distinct types of high-010
quality data. To address these issues, we pro-011
pose a novel perspective: the hidden states of012
LLMs implicitly assess the quality of the train-013
ing data. Building on this insight, we introduce014
a new instruction-tuning data evaluation met-015
ric, the Contrastive Perception Quality Score016
(CPQS), and a dataset filtering approach based017
on this metric. Experimental results demon-018
strate that, when trained on less than 2% of019
the dataset (1,000 samples) from the general-020
purpose Alpaca and Alpaca_GPT4 datasets,021
our method outperforms models trained on022
the full dataset. Furthermore, our approach023
surpasses current state-of-the-art data selec-024
tion methods in terms of performance. In025
downstream tasks, our method achieves an av-026
erage performance improvement of over 3%027
compared to models trained with leading data028
selection algorithms, across multiple bench-029
mark tests, including GSM8K, HumanEval,030
and HumanEval-Plus.031

1 Introduction032

Large Language Models (LLMs) (Brown et al.,033

2020; Chiang et al., 2023; Yang et al., 2024a; Zeng034

et al., 2024), such as ChatGPT (Ouyang et al.,035

2022a; OpenAI, 2023) have led to a groundbreak-036

ing shift in the realm of artificial intelligence in037

recent years. These models excel in understanding038

and handling a wide array of complex language039

tasks. A critical factor behind their success is in-040

struction tuning. Instruction tuning (Ouyang et al.,041

2022b; Yu et al., 2023; Sun et al., 2023; Ding et al.,042

2023) enables models to accurately follow user 043

instructions and exhibit outstanding performance 044

on multiple downstream tasks (Wang et al., 2023a; 045

Zhou et al., 2024; Guo et al., 2024; Ren et al., 2024; 046

Sun et al., 2025). 047

Early studies focused on building high- 048

quality datasets, relying on expert-designed re- 049

sponses (Khashabi et al., 2020; Ye et al., 2021; 050

Wang et al., 2022), but these efforts faced limi- 051

tations in terms of labor and cost. More recent 052

research has employed a powerful teacher LLM to 053

generate data (Wang et al., 2023b; Li et al., 2024a; 054

Lee et al., 2024), though the quality of such data 055

depends heavily on model performance and is chal- 056

lenging to control. Zhou et al. introduced the 057

LIMA model (Zhou et al., 2023), demonstrating 058

that as few as 1,000 high-quality instructions can 059

significantly improve model performance. This 060

suggests that pretraining has already endowed mod- 061

els with substantial instruction-following capabil- 062

ity, making only a small amount of high-quality 063

data sufficient for fine-tuning. 064

Building on this idea, many subsequent stud- 065

ies (Cao et al., 2023b; Chiang et al., 2023; Liu et al., 066

2024c; Chen et al., 2023a) have explored how to 067

select a small, high-quality subset from large-scale 068

datasets generated by teacher models. For example, 069

some researchers have attempted to use advanced 070

LLMs (Chen et al., 2024; Lu et al., 2024) or reward 071

models (Bukharin et al., 2024) to score data and 072

filter it based on these scores. Other studies have an- 073

alyzed data quality from multiple dimensions (Du 074

et al., 2023; Wu et al., 2023; Li et al., 2024c; Yu 075

et al., 2024; Li et al., 2024d) and selected data ac- 076

cording to defined quality metrics. Additionally, 077

some research (Li et al., 2024b) has explored using 078

smaller, weaker models to filter datasets for fine- 079

tuning larger, more powerful models. However, 080

these existing methods typically rely on external 081

evaluation models or manually designed evaluation 082

metrics, often lacking in-depth consideration of 083
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the internal architecture and intrinsic features of084

large language models. This oversight may lead to085

inaccurate data quality assessment and inefficient086

filtering processes due to differences in training087

tasks.088

In contrast to these approaches, this paper pro-089

poses the idea that the hidden states of Large Lan-090

guage Models (LLMs) contain an implicit eval-091

uation of the quality of the training data, based092

on an analysis of the internal features of LLMs.093

Since each LLM requires different high-quality094

data depending on its architecture and training cor-095

pus, analyzing the hidden states of such models096

can provide a more accurate assessment of the097

training data quality. To this end, we propose098

a new instruction-tuning data evaluation metric,099

Contrastive Perception Quality Score (CPQS), and100

introduce a method for dataset filtering based on101

this metric. Our approach consists of the following102

four steps. ① We first construct an instruction fine-103

tuning dataset generated by LLMs with varying104

performance, containing both positive and negative105

samples. ② We then extract the hidden states of106

the target fine-tuning model for each instruction. ③107

Based on these hidden states, we train a Convolu-108

tional Neural Network (CNN) model to identify the109

current testing sample is effective (of high quality)110

or not. ④ During the prediction phase, the CNN111

model analyzes the hidden states perceived by the112

LLM for each instruction, generating a prediction113

probability and classification result. The predic-114

tion probability classified as effective is referred to115

as CPQS, which serves as the criterion for dataset116

filtering.117

Through extensive experiments, we validate that118

our algorithm performs excellently in data selec-119

tion for general and downstream domain tasks. In120

the general domain, we tested using the Alpaca121

and Alpaca_GPT4 datasets (Taori et al., 2023a).122

The selected data amount was less than 2% of the123

original dataset (1,000 entries), yet it outperformed124

models trained on the entire dataset. Our algorithm125

was proven to surpass various state-of-the-art al-126

gorithms on multiple LLMs. In downstream task127

domains, such as mathematical problems and pro-128

gramming tasks, our algorithm outperformed exist-129

ing state-of-the-art algorithms by an average of 3130

percentage points on benchmark tests like GSM8K,131

HumanEval (Chen et al., 2021), and HumanEval-132

Plus (Liu et al., 2023, 2024b) with the same data133

scale.134

The main contributions of this paper can be sum-135

marized as follows: 136

• We revealed that the hidden states of LLMs 137

contain an implicit evaluation of the quality of 138

training data and introduced a new instruction- 139

tuning data evaluation metric, the Contrastive 140

Perception Quality Score (CPQS). 141

• We proposed an efficient and accurate data se- 142

lection method based on the LLM’s own con- 143

trastive perception quality score, significantly 144

enhancing instruction-tuning performance. 145

• This paper presents extensive empirical stud- 146

ies using two general fine-tuning datasets 147

and two task-specific datasets. The results 148

show that the proposed data selection method 149

achieves optimal performance in both general 150

tasks and specific areas such as mathematics 151

and programming. 152

2 Proposed Methods 153

This section provides a detailed description of our 154

method. The core of our approach is to train 155

an external CNN model by extracting the hidden 156

states perceived by a large language model on 157

high-quality and low-quality general fine-tuning 158

datasets for each data point. This model will be 159

used to analyze the implicit evaluation of the train- 160

ing data within the hidden states of the large lan- 161

guage model. The method consists of four key 162

steps, as shown in Figure 1. We will discuss each 163

step in depth and analyze them accordingly. 164

2.1 Construction of Positive and Negative 165

Sample Datasets 166

We first randomly selected 5,000 data points from 167

the Alpaca_GPT4 dataset to form the positive 168

sample dataset. The Alpaca_GPT4 dataset is a 169

high-quality, general-domain fine-tuning dataset 170

containing 52,000 entries. Each consisting of a 171

triplet: (Instruction, [Input], Response), where 172

Instruction describes the task to be performed, In- 173

put provides additional context for task execution, 174

and Response is the response generated by GPT-4 175

to the given instruction. 176

To construct the negative sample dataset, we 177

chose two additional models: Llama-3.2-1B- 178

Instruct (Dubey et al., 2024) and Qwen2.5-1.5B- 179

Instruct (Yang et al., 2024b), which are among 180

the smallest language models currently available. 181

The process for constructing the negative sample 182

dataset is as follows: 183
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Figure 1: Overall algorithm architecture diagram

1. Extract Instructions and Inputs: Extract the184

(Instruction, [Input]) part from each entry185

in the Alpaca_GPT4 dataset.186

2. Generate Responses: Use Llama-187

3.2-1B-Instruct and Qwen2.5-1.5B-188

Instruct to generate corresponding Re-189

sponse values, forming new triplets:190

(Instruction, [Input], Response).191

3. Sample Extraction: Extract 5,000 entries192

from the generated responses of each model,193

totaling 10,000 data points as the negative194

sample dataset.195

Finally, we mix the positive and negative sample196

datasets to create a complete training dataset.197

2.2 Extraction of Hidden States198

For the collected training dataset, we concatenate199

the Instruction and Input parts of each entry and use200

this concatenated value as the “user” input to the201

model, while the Response part is used as the “as-202

sistant” input. This combined entry is then passed203

to the model to obtain the hidden states across all204

layers of the model. We retain only the hidden state205

corresponding to the Response part of each entry.206

This choice is made because the evaluation of the207

fine-tuning dataset’s quality primarily depends on208

the quality of the Response.209

2.3 Training of the External CNN Model 210

The core idea of our algorithm is that the hidden 211

states generated by the LLM contain an implicit 212

evaluation of the quality of the training data. To 213

analyze the LLM’s quality assessment of the train- 214

ing data, we propose using an external model to 215

interpret the hidden state vectors produced by the 216

LLM. The external model is based on a simple 217

Convolutional Neural Network (CNN) architecture, 218

which can effectively capture the detailed informa- 219

tion within the hidden state vectors. 220

During the training process, we use the hidden 221

states of each sample obtained in the previous sec- 222

tion, along with their corresponding positive and 223

negative labels, for training. The ratio of positive 224

to negative samples is 1:2, totaling 15,000 samples. 225

Drawing from the concept of contrastive learning, 226

the goal is to train the CNN model as a binary classi- 227

fication task. This enables the model to distinguish 228

between the different information perceived by the 229

hidden states of the LLM for good and bad samples. 230

In doing so, the CNN model can more accurately 231

reflect the LLM’s evaluation of the training data 232

quality. 233

2.4 Prediction of Contrastive Perception 234

Quality Score (CPQS) 235

In the prediction phase, we introduce the Con- 236

trastive Perception Quality Score (CPQS), which 237

serves as an indicator to evaluate the training qual- 238

ity of each instruction-following sample. A higher 239
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CPQS indicates that the LLM places more impor-240

tance on the data, suggesting that the training effect241

of the data is better and its quality is higher.242

The process for calculating the CPQS is as fol-243

lows:244

For each instruction-following sample to be fil-245

tered, we concatenate the Instruction and Input246

parts as the “user” input to the model, while the247

Response part serves as the “assistant” input. The248

entire entry is then passed through the LLM to ex-249

tract the hidden states for the Response part. These250

hidden states are then fed into the pre-trained CNN251

model, which outputs the predicted class and corre-252

sponding probability values. We focus primarily on253

the probability that the predicted class is 1, which254

reflects how likely it is that the LLM interprets the255

data entry as a high-quality sample. In other words,256

the higher this probability, the greater the assessed257

data quality. This value serves as the quality evalu-258

ation metric for the data.259

Based on these evaluation metrics, we rank the260

entire dataset and select the top-ranked data points261

for further processing. The calculation formula for262

CPQS is as follows:263

CPQSi = pi = f (xi)264

where pi is the predicted probability for the i-th265

sample, representing the likelihood that the sample266

belongs to the positive class, and f (xi) is the out-267

put of the LLM’s hidden state vector for the i-th268

entry, processed by the CNN model to produce the269

probability that the sample belongs to class 1.270

After calculating the CPQS for all samples, we271

sort the entire dataset based on these probabilities272

in descending order and select the top K samples273

for further processing. The specific selection pro-274

cess is represented as:275

Dselected = topK

(
{CPQSi}Ni=1

)
276

where Dselected is the set of the top K selected sam-277

ples from the dataset based on their CPQS values,278

and topK denotes selecting the top K samples279

after sorting.280

3 Experimental Setup281

3.1 Datasets and Models282

To assess our method’s effectiveness, we utilized283

four datasets and three open-source LLMs. The284

datasets cover both general and specific task do-285

mains, while the models include foundational and 286

dialogue-optimized variants. 287

For the general domain, we selected the Alpaca 288

data set (Taori et al., 2023b) and the Alpaca_GPT4 289

data set. The Alpaca Dataset (Taori et al., 2023a) 290

contains 52,000 instruction-response pairs gener- 291

ated via the self-instruct method, categorized as a 292

medium-quality classic dataset. The Alpaca_GPT4 293

Dataset builds on this by using GPT-4 to regenerate 294

responses, significantly improving data quality and 295

classifying it as a high-quality classic dataset. 296

In the downstream task domain, we chose the 297

GSM8K Dataset (Cobbe et al., 2021) and the 298

Magicoder-Evol-Instruct-110K Dataset (Wei et al., 299

2024). The GSM8K Dataset (Cobbe et al., 2021), 300

released by OpenAI, comprises approximately 301

8,500 elementary math problems designed to evalu- 302

ate and enhance models’ multi-step reasoning abil- 303

ities, with 7,500 for training and 1,000 for testing. 304

The Magicoder-Evol-Instruct-110K Dataset (Wei 305

et al., 2024) focuses on programming tasks, in- 306

cluding code generation and problem-solving, fea- 307

turing around 110,000 entries across various pro- 308

gramming languages and real-world scenarios to 309

improve models’ programming comprehension and 310

generation skills. 311

For model selection, we used three open-source 312

LLMs: Llama 2-7B (Touvron et al., 2023), Llama 313

2-7B-Chat (Touvron et al., 2023), and Qwen2.5- 314

7B-Instruct (Yang et al., 2024b). Llama 2-7B (Tou- 315

vron et al., 2023) by Meta is a foundational model 316

with 7 billion parameters, suitable for diverse lan- 317

guage tasks with stable performance. Llama 2-7B- 318

Chat (Touvron et al., 2023), also with 7 billion 319

parameters, is optimized for dialogue, providing 320

more fluent and natural interactions. Qwen2.5- 321

7B-Instruct (Yang et al., 2024b), developed by the 322

Qwen team, is a versatile model focused on text and 323

code generation, mathematical computations, and 324

instruction following, excelling in various bench- 325

marks and ranking among the most advanced open- 326

source models available. 327

3.2 Comparison Algorithms 328

To validate the effectiveness of our algorithm, we 329

selected three state-of-the-art data selection meth- 330

ods as comparison algorithms: 331

ALPAGASUS (Chen et al., 2024): Chen et al. 332

leverage LLMs, such as ChatGPT, to automatically 333

identify and filter low-quality data. 334

MoDS (Du et al., 2023): Du et al. propose a 335

data selection strategy based on quality, coverage, 336
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and necessity criteria.337

Superfiltering (Li et al., 2024b): Li et al. intro-338

duce a method that uses a smaller model to filter339

data based on instruction-following difficulty be-340

fore fine-tuning a larger model.341

3.3 Implementation Details342

We conducted our experiments on a platform343

equipped with two NVIDIA RTX 4090 GPUs.344

We leveraged the LoRA-based fine-tuning method345

within the Llama-Factory framework (Zheng et al.,346

2024) developed by Zheng et al. During the super-347

vised fine-tuning (SFT) phase, we set the training348

precision to bf16, the number of training epochs to349

three, the learning rate to 5e-5, a batch size of 16,350

and a maximum sequence length of 2048.351

For the deployment and inference of our model,352

we utilized vLLM (Kwon et al., 2023). During in-353

ference, we configured the temperature to 0, main-354

tained the precision at bf16, and set the maximum355

sequence length to 2048.356

3.4 Evaluation Metrics357

3.4.1 General Domain Evaluation Standards358

We evaluate our method using four test sets from359

Chen et al.: Koala (Vu et al., 2023), WizardLM (Xu360

et al., 2024), Self-instruct (Wang et al., 2023b),361

and Vicuna (Chiang et al., 2023), containing 180,362

218, 252, and 80 instructions, respectively, cov-363

ering diverse domains such as mathematics, pro-364

gramming, and writing. Models generate responses365

based on these instructions. Responses are evalu-366

ated by GPT-4o, scoring from 1 to 10 based on367

relevance and accuracy. Two rounds of evaluation368

are conducted for responses from each model pair,369

using varied prompt orders to reduce position bias.370

Model performance is compared as follows:371

• Win: Better in both evaluations, or better in372

one and tied in the other.373

• Tie: Tied in both evaluations or mixed results.374

• Loss: Inferior in both evaluations, or worse in375

one and tied in the other.376

Additionally, we used two datasets to assess gen-377

eral domain performance:378

MMLU (Hendrycks et al., 2021): A benchmark379

with 14,000 questions across 57 domains widely380

used to track LLM capabilities.381

MMLU-Pro (Wang et al., 2024): An enhanced 382

version featuring over 12,000 challenging ques- 383

tions in 14 domains, including biology, business, 384

chemistry, and more. 385

3.4.2 Evaluation Criteria for Downstream 386

Task Domains 387

For downstream task evaluations, we mainly focus 388

on two domains: mathematical reasoning and code 389

generation, using different standards and datasets 390

to assess the models’ actual capabilities. We use 391

GSM8K Datetset (Cobbe et al., 2021) to evalu- 392

ate mathematical abilities. The test set consists of 393

1,000 arithmetic, algebra, and geometry problems 394

at middle and high school levels, designed to assess 395

the model’s mathematical reasoning and problem- 396

solving skills. For code generation, we employ the 397

HumanEval (Chen et al., 2021) and HumanEval- 398

Plus (Liu et al., 2023, 2024b) datasets. HumanEval 399

contains 164 programming problems, testing the 400

model’s basic code generation and algorithm under- 401

standing capabilities. HumanEval-Plus, as a more 402

challenging extended version, includes more com- 403

plex tasks, evaluating the model’s code generation 404

accuracy, reasoning abilities, and adaptability. It 405

also tests the model’s stability and performance 406

under diverse input conditions through a variety of 407

data points. 408

4 Experimental Result 409

4.1 General Domain Evaluation 410

In this section, we present the comparison results 411

of our method against three other state-of-the-art 412

data selection methods across different models and 413

datasets. We selected the Alpaca_dataset and Al- 414

paca_GPT4_dataset as test datasets and filtered out 415

the top 1000 highest-quality data points from each 416

dataset. For each selected dataset, we trained a 417

model and evaluated it on the test set using GPT- 418

4o as a judge, comparing the performance of our 419

algorithm with the other three methods. It is worth 420

noting that the ALPAGASUS algorithm could only 421

filter out 9K high-quality data points, so we ran- 422

domly selected 1000 data points from this set for 423

comparison. 424

As shown in Figure 2, our method consistently 425

outperforms the other algorithms. The model 426

trained with our selected 1000 data points also out- 427

performs the one trained with the full 52K dataset. 428

To assess the generalization ability, we evalu- 429

ated each model using the MMLU and MMLU-Pro 430
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Figure 2: Performance Comparison of Data Selection Methods on the Llama2-7B Model Using the Alpaca Dataset.

Self MoDs Alp. Sup. Full
M 41.35 35.91 39.97 38.37 40.61
M-Pro 12.08 12.92 12.75 12.20 12.57
Avg. 26.72 24.42 26.36 25.29 26.59

Table 1: Performance of Models Trained with Different
Algorithms on MMLU and MMLU-Pro Datasets. (Note:
"M" is short for MMLU, "M-Pro" is short for MMLU-
Pro, "Alp." is short for Alpagaus, "Sup." is short for
Superfiltering, and "Full" refers to the full dataset.)

datasets. As shown in Table 1, the model trained431

with our algorithm achieved a score of 41.35 on432

MMLU, 3.27 points higher than the other algo-433

rithms and 0.74 points higher than the full dataset434

model. In MMLU-Pro, while the MoDs algorithm435

performed the best with a score of 12.92, our model436

achieved an average score of 26.715 across both437

datasets, 1.36 points higher than the other algo-438

rithms and 0.125 points higher than the full dataset439

model.440

We further verified our algorithm’s effectiveness441

on the higher-quality Alpaca_GPT4_dataset. As442

shown in Figure 3, our method again outperforms443

the other algorithms, with the model trained on444

1000 selected data points outperforming the one445

trained on the full 52K dataset. In the MMLU eval-446

uation (Table 2), our method achieved a score of447

44.76, 3.31 points higher than the other algorithms448

and 2.61 points higher than the full dataset model.449

While models trained on the Al-450

paca_GPT4_dataset perform better than those451

on the Alpaca_dataset in MMLU, all algorithms 452

performed worse in MMLU-Pro, likely due to the 453

dataset’s increased difficulty. Despite this, our 454

method outperformed the average of the other 455

algorithms by 1.08 points and the full dataset 456

model by 1.01 points, highlighting the significant 457

performance boost with higher-quality data. 458

We also tested our algorithm on the Llama2-7B- 459

Chat and Qwen 2.5-7B-Instruct models. As shown 460

in Appendix A, our method consistently outper- 461

forms the other algorithms, with models trained 462

on 1000 selected data points outperforming those 463

trained on the full dataset. Notably, in the Qwen 464

2.5-7B-Instruct model, trained with the full Alpaca 465

dataset (Taori et al., 2023a), the model achieved an 466

average score of 49.385, while our model trained 467

with 1000 data points scored 62.815, surpassing the 468

full dataset model by 13.43 points. This highlights 469

the significant impact of data quality on model per- 470

formance, particularly with more advanced models. 471

When combined with advanced models, our algo- 472

rithm delivers even more outstanding results. 473

We also examined the iterative nature of our al- 474

gorithm and the factors that affect its performance. 475

Detailed experiments can be found in Appendix B 476

and Appendix C. 477

4.2 Downstream Task Evaluation 478

We evaluated the performance of our algorithm 479

for downstream task dataset selection, focusing 480

on Llama 2-7B-Chat and Qwen 2.5-7B-Instruct 481

models. Common methods for downstream task 482
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Figure 3: Performance Comparison of Data Selection Methods on the Llama2-7B Model Using the Al-
paca_GPT4_Dataset.

Self MoDs Alp. Sup. Full
M 44.76 41.57 41.25 41.54 42.15
M-Pro 10.00 11.62 12.35 10.48 10.60
Avg. 27.38 26.60 26.30 26.01 26.38

Table 2: Performance of Models Trained with Different
Algorithms on MMLU and MMLU-Pro Datasets. (Note:
"M" is short for MMLU, "M-Pro" is short for MMLU-
Pro, "Alp." is short for Alpagaus, "Sup." is short for
Superfiltering, and "Full" refers to the full dataset.)

training involve fine-tuning pre-optimized mod-483

els. To validate our approach, we used the484

GSM8K (Cobbe et al., 2021) and Magicoder-Evol-485

Instruct-110K (Wei et al., 2024) datasets for fil-486

tering, reducing GSM8K to 500 data points and487

Magicoder-Evol-Instruct-110K to 1000 data points.488

We assessed performance on the GSM8K test set,489

Humaneval, and HumanEval-Plus datasets. For the490

ALPAGASUS algorithm, we used the GPT-4o-mini491

model for data selection, as it outperforms GPT-4492

in both effectiveness and cost.493

Table 3 presents results on the GSM8K Dataset,494

where our algorithm outperforms the others by 4.17495

points on Llama 2-7B-Chat and 2.9 points on Qwen496

2.5-7B-Instruct. Notably, the model trained on the497

full GSM8K dataset underperforms on Qwen 2.5-498

7B-Instruct (score 76.04), while the model trained499

on 500 selected data points achieves 84.91, surpass-500

ing the full dataset by 8.87 points. This highlights 501

that more advanced models require higher-quality 502

datasets for optimal downstream task adaptation. 503

Tables 4 and 5 show results with the Magicoder- 504

Evol-Instruct-110K dataset. On Llama 2-7B-Chat, 505

our algorithm outperforms others by 4.3 points on 506

average, and models trained on 1000 data points 507

from other algorithms performed worse than the 508

original. In contrast, the model trained on 1000 509

points selected by our algorithm improved by 510

2.45 points. On Qwen 2.5-7B-Instruct, the model 511

trained with our selected data outperformed oth- 512

ers by 1.47 points on average. However, all mod- 513

els trained on the filtered Magicoder-Evol-Instruct- 514

110K dataset showed performance degradation, 515

likely due to its lower quality for this model. These 516

results further confirm that our algorithm excels 517

in dataset selection, especially when high-quality 518

datasets are available, leading to substantial im- 519

provements in model performance. 520

5 Related Work 521

5.1 Data Selection Strategies During 522

Fine-Tuning 523

The goal of instruction tuning (Wei et al., 2022; 524

Sanh et al., 2022; Longpre et al., 2023; Liu et al., 525

2024a) is to help large language models better un- 526

derstand human task requirements. Early research 527
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Model Original Self MoDs Alpagasus Superfiltering Full
Llama 2-7B-Chat 24.56 25.25 23.05 23.12 17.06 35.56
Qwen2.5-7B-Instruct 79.76 84.91 80.74 81.27 84.00 76.04

Table 3: Performance Evaluation of Models Trained with Different data selection Methods on the GSM8K Dataset
in the Mathematics Domain.

Ori. Self MoDs Alp. Sup.
H 13.4 16.5 12.2 12.2 10.0
H-Plus 11.6 13.4 9.8 10.4 9.1
Avg. 12.5 14.95 11 11.3 9.55

Table 4: Performance Evaluation of Models Trained
with Different Algorithms on Llama2-7B-Chat in the
Code Domain (pass@1). (Note: "H" is short for Hu-
maneval, "Ori." is short for Original, "Alp." is short for
Alpagaus, "Sup." is short for Superfiltering.)

Ori. Self MoDs Alp. Sup.
H 82.9 80.0 78.7 78.0 79.3
H-Plus 75.6 74.4 72.6 72.6 73.2
Avg. 79.25 77.2 75.65 75.3 76.25

Table 5: Performance Evaluation of Models Trained
with Different Algorithms on Qwen 2.5-7B-Instruct in
the Code Domain. (Note: "H" is short for Humaneval,
"Ori." is short for Original, "Alp." is short for Alpagasus,
"Sup." is short for Superfiltering.)

primarily focused on building large-scale instruc-528

tion datasets, but studies like LIMA have shown529

that only a small amount of high-quality data is530

needed during instruction fine-tuning to achieve531

good results. Existing data selection methods can532

be classified into four categories: indicator-based533

methods, trainable LLM-based methods, power-534

ful LLM-based methods, and small-model-based535

methods.536

Indicator-based methods use a metric system to537

identify multiple evaluation indicators to compre-538

hensively assess data quality (Cao et al., 2023a;539

Wei et al., 2023). Trainable LLM-based meth-540

ods treat the large language model as a trainable541

data selector, processing and assigning scores to542

each instruction fine-tuning data for selection (Li543

et al., 2024c; Chen et al., 2023b). Powerful LLM-544

based approaches, such as those using models like545

ChatGPT, typically design prompt templates and546

leverage the model’s capabilities to quantitatively547

evaluate the quality of data samples (Chen et al.,548

2024; Liu et al., 2024c). Finally, small-model-549

based methods involve using external small models550

to score the data or projecting the data samples into551

vectors with a small model for further processing 552

and selection (Chen et al., 2023a; Li et al., 2024b). 553

5.2 Performance Evaluation of LLMs 554

The evaluation of LLMs is typically done through 555

automatic evaluation, human evaluation, and us- 556

ing LLMs as evaluators. Automatic evaluation re- 557

lies on predefined criteria and quantitative assess- 558

ment (Hendrycks et al., 2021; Wang et al., 2024; 559

Chen et al., 2021). Human evaluation focuses on 560

qualitative aspects like clarity, consistency, and fac- 561

tual accuracy, and is essential for quality assess- 562

ment (van der Lee et al., 2021; Zheng et al., 2023). 563

However, due to its time and labor demands, using 564

powerful LLMs (Chen et al., 2024; Huang et al., 565

2024) to evaluate other LLMs has become a popu- 566

lar approach in recent years. 567

6 Conclusion 568

This paper addresses the issue of low-quality and 569

redundant data in LLM instruction fine-tuning. We 570

propose a data selection method using the Con- 571

trastive Perception Quality Score, a metric that 572

evaluates data quality by analyzing LLM hidden 573

states. Our method filters high-quality data subsets, 574

enhancing fine-tuning performance. 575

Experimental results show that our approach 576

achieves superior performance with less than 2% 577

of the original data (1,000 samples) compared to 578

models trained on the full dataset. It also outper- 579

forms existing data selection techniques at equal 580

data scales. In downstream tasks, such as mathe- 581

matical problem solving (GSM8K) and program- 582

ming (HumanEval, HumanEval+), our method pro- 583

vides a 3% average performance improvement over 584

current state-of-the-art data selection algorithms. 585

7 Limitations 586

This paper presents a data selection method using 587

the Contrastive Perception Quality Score to filter 588

high-quality data. However, there are still areas for 589

improvement: (1) The method focuses on data qual- 590

ity but does not consider data diversity. (2) While 591

effective during fine-tuning, the method needs fur- 592

8



ther exploration for incremental pre-training and593

reinforcement learning stages of LLMs.594
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A Performance Evaluation of Our1103

Algorithm on Multiple Models and1104

Datasets1105

Tables 6 and 7 along with Figures 4 and 5 dis-1106

play the performance of our algorithm on the Al-1107

paca_GPT4 Dataset and the Alpaca Dataset (Taori1108

et al., 2023a) using the Qwen2.5-7B-Instruct model.1109

Similarly, Tables 8 and 9 along with Figures 6 and 7 1110

show the performance of our algorithm on the Al- 1111

paca_GPT4 Dataset and the Alpaca Dataset using 1112

the Llama 2-7B-Chat model. 1113

B Experiment on Iterative Model 1114

Training and Data Selection 1115

We conducted experiments to assess the iterative- 1116

ness of our algorithm. First, we trained a CNN 1117

model using our algorithm on the Qwen2.5-7B- 1118

Instruct dataset. This trained model was then 1119

used to predict and rank the Alpaca_GPT4 dataset. 1120

Based on the ranking, we extracted the top 5,000 1121

and the last 10,000 data samples. We then retrained 1122

another CNN model using this subset to further 1123

filter 1,000 samples from the Alpaca_GPT4 dataset 1124

for additional training. As shown in Figure 8, the 1125

performance of the newly trained model demon- 1126

strated a significant improvement over the previous 1127

version. 1128

C Impact of Hidden Layer Selection and 1129

Dataset Preferences 1130

C.1 The Impact of Different Hidden Layers 1131

on Model Performance 1132

In this section, we investigate the impact of differ- 1133

ent hidden layers of the model on data selection 1134

performance. To this end, we chose the Qwen 2.5- 1135

7B-Instruct model for experimentation and focused 1136

on analyzing the contribution of each layer’s hidden 1137

states to the selection performance. Specifically, 1138

we used the hidden states from the first 9 layers, 1139

the middle 9 layers, the last 11 layers, and the final 1140

layer to train separate CNN models, and validated 1141

them on the GSM8K dataset and Magicoder-Evol- 1142

Instruct-110K Dataset (Wei et al., 2024). 1143

As shown in Table 10, on the GSM8K 1144

Dataset (Cobbe et al., 2021), the model trained 1145

using the hidden states from the first 9 layers per- 1146

formed the best, with a score of 84.23. However, 1147

its performance was still not as good as the model 1148

trained with hidden states from all layers. On the 1149

Magicoder-Evol-Instruct-110K Dataset (Wei et al., 1150

2024), the model trained with the hidden states 1151

from the last 11 layers performed the best, with 1152

an average score of 76.55, although it still lagged 1153

behind the performance of the model trained using 1154

all layers. 1155
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Self Mods ALPAGASUS Superfiltering Original model ALpaca(52k)
MMLU 73.32 60.52 70.66 67.17 75.60 61.89
MMLU-Pro 52.31 47.32 51.92 51.57 49.65 36.88
Average 62.82 53.92 61.29 59.36 62.63 49.39

Table 6: Performance of Models Trained with Different Algorithms on MMLU and MMLU-Pro using the ALpaca
Dataset with Qwen2.5-7B-Instruct.

Figure 4: Performance Comparison of Data Selection Methods on the Qwen2.5-7B-Instruct Model Using the Alpaca
Dataset.

C.2 Preferences of Different Models for1156

High-Quality Datasets1157

In this section, we explore whether different LLMs1158

have distinct preferences for high-quality datasets.1159

To this end, we trained the models on high-quality1160

datasets selected from the GSM8K dataset and1161

Magicoder-Evol-Instruct-110K Dataset (Wei et al.,1162

2024) using Llama 2-7B-Chat and Qwen 2.5-7B-1163

Instruct. We then compared the performance of1164

these models when exchanging datasets. Specifi-1165

cally, we trained Qwen 2.5-7B-Instruct and Llama1166

2-7B-Chat on each other’s selected datasets and1167

compared their performance with training on their1168

own selected datasets.1169

As shown in Table 11 and Table 12, whether in1170

the mathematical or coding domains, the models1171

trained after swapping datasets did not perform as1172

well as those trained on their original datasets. For1173

both Llama 2-7B-Chat and Qwen 2.5-7B-Instruct,1174

the high-quality dataset considered by one model1175

did not yield the same results when used by the1176

other model. Therefore, our experiment shows that 1177

different models exhibit significant differences in 1178

selecting high-quality datasets, with each model 1179

having its own definition of what constitutes a 1180

“high-quality dataset.” 1181

This finding is crucial for data selection and 1182

model optimization, as it suggests that the structure 1183

and characteristics of a model may significantly in- 1184

fluence its evaluation of data quality when selecting 1185

datasets. 1186
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Self MoDs Alpagasus Superfiltering ALpaca_GPT4 (52k)
MMLU 75.55 73.03 71.34 75.27 75.60
MMLU-Pro 51.66 50.73 51.99 50.65 49.65
Average 63.61 61.88 61.67 62.96 62.63

Table 7: Performance of Models Trained with Different Algorithms on MMLU and MMLU-Pro using the AL-
paca_GPT4 Dataset with Qwen2.5-7B-Instruct.

Figure 5: Performance Comparison of Data Selection Methods on the Qwen2.5-7B-Instruct Model Using the
Alpaca_GPT4 Dataset.

Self MoDs ALPAGASUS Superfiltering Original model ALpaca_52k
MMLU(14k) 45.25 45.82 45.62 46.34 46.02 42.08
MMLU-Pro(12k) 17.49 16.72 16.53 16.03 18.92 17.18
Average 31.37 31.27 31.08 31.19 32.47 29.63

Table 8: Performance of Llama 2-7B-Chat Trained with Different Algorithms on MMLU and MMLU-Pro on the
Alpaca Dataset.

Self MoDs ALPAGASUS Superfiltering Llama 2-7B-Chat ALpaca_GPT4(52k)
MMLU 46.09 45.82 45.44 46.16 46.02 46.43
MMLU-Pro 18.92 17.96 18.18 19.09 18.92 17.59
Average 32.51 31.89 31.81 32.63 32.47 32.01

Table 9: Performance of Llama 2-7B-Chat trained with different algorithms on MMLU and MMLU-Pro on the
Alpaca_GPT4_Dataset.

Full Early (9) Middle (9) last (11) final (1)
GSM8K 84.91 84.23 83.85 83.70 83.70
HumEval(pass@1) 80.0 75.0 77.4 79.3 78.7
HumanEval-Plus(pass@1) 74.4 70.1 71.3 73.8 72.6

Table 10: Comparison of CNN Model Performance Trained on Different Hidden Layer Parts of Qwen2.5-7B-Instruct
Model.
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Figure 6: Performance Comparison of Data Selection Methods on the Llama 2-7B-Chat Model Using the Alpaca
Dataset.

Figure 7: Performance Comparison of Data Selection Methods on the Llama 2-7B-Chat Model Using the Al-
paca_GPT4 Dataset.

Training Method Llama 2-7B-Chat Qwen2.5-7B-Instruct
Self Training 25.25 84.91
Dataset Swapping 23.58 83.24

Table 11: Performance of Llama 2-7B-Chat and Qwen2.5-7B-Instruct Models Trained on Their Own and Swapped
Datasets on the GSM8K Dataset (Cobbe et al., 2021).
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Figure 8: Comparison of Model Performance After Two-Stage Data Selection.

Training Method HumanEval pass@1 HumanEval-Plus pass@1 Average
Llama 2-7B-Chat (Self) 16.5 13.4 14.95
Llama 2-7B-Chat (Swapped with Qwen2.5) 11.2 11.0 11.1
Qwen2.5-7B-Instruct (Self) 80.0 74.4 77.2
Qwen2.5-7B-Instruct (Swapped with Llama2) 72.0 67.1 69.55

Table 12: Performance of Llama 2-7B-Chat and Qwen2.5-7B-Instruct Models Trained on Their Own and Swapped
Datasets on the HumanEval Dataset.
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