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Abstract

Instruction fine-tuning is a key technique for
improving the performance of large language
models (LLMs), but it is often limited by low-
quality and redundant data. Recent studies
suggest that a small amount of high-quality
data can yield significant performance gains.
However, existing data selection methods may
not be suitable for rapidly evolving LLMs, and
each model may require distinct types of high-
quality data. To address these issues, we pro-
pose a novel perspective: the hidden states of
LLMs implicitly assess the quality of the train-
ing data. Building on this insight, we introduce
a new instruction-tuning data evaluation met-
ric, the Contrastive Perception Quality Score
(CPQS), and a dataset filtering approach based
on this metric. Experimental results demon-
strate that, when trained on less than 2% of
the dataset (1,000 samples) from the general-
purpose Alpaca and Alpaca_GPT4 datasets,
our method outperforms models trained on
the full dataset. Furthermore, our approach
surpasses current state-of-the-art data selec-
tion methods in terms of performance. In
downstream tasks, our method achieves an av-
erage performance improvement of over 3%
compared to models trained with leading data
selection algorithms, across multiple bench-
mark tests, including GSM8K, HumanEval,
and HumanEval-Plus.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Chiang et al., 2023; Yang et al., 2024a; Zeng
et al., 2024), such as ChatGPT (Ouyang et al.,
2022a; OpenAl, 2023) have led to a groundbreak-
ing shift in the realm of artificial intelligence in
recent years. These models excel in understanding
and handling a wide array of complex language
tasks. A critical factor behind their success is in-
struction tuning. Instruction tuning (Ouyang et al.,
2022b; Yu et al., 2023; Sun et al., 2023; Ding et al.,

2023) enables models to accurately follow user
instructions and exhibit outstanding performance
on multiple downstream tasks (Wang et al., 2023a;
Zhou et al., 2024; Guo et al., 2024; Ren et al., 2024;
Sun et al., 2025).

Early studies focused on building high-
quality datasets, relying on expert-designed re-
sponses (Khashabi et al., 2020; Ye et al., 2021;
Wang et al., 2022), but these efforts faced limi-
tations in terms of labor and cost. More recent
research has employed a powerful teacher LLM to
generate data (Wang et al., 2023b; Li et al., 2024a;
Lee et al., 2024), though the quality of such data
depends heavily on model performance and is chal-
lenging to control. Zhou et al. introduced the
LIMA model (Zhou et al., 2023), demonstrating
that as few as 1,000 high-quality instructions can
significantly improve model performance. This
suggests that pretraining has already endowed mod-
els with substantial instruction-following capabil-
ity, making only a small amount of high-quality
data sufficient for fine-tuning.

Building on this idea, many subsequent stud-
ies (Cao et al., 2023b; Chiang et al., 2023; Liu et al.,
2024c; Chen et al., 2023a) have explored how to
select a small, high-quality subset from large-scale
datasets generated by teacher models. For example,
some researchers have attempted to use advanced
LLMs (Chen et al., 2024; Lu et al., 2024) or reward
models (Bukharin et al., 2024) to score data and
filter it based on these scores. Other studies have an-
alyzed data quality from multiple dimensions (Du
et al., 2023; Wu et al., 2023; Li et al., 2024c; Yu
et al., 2024; Li et al., 2024d) and selected data ac-
cording to defined quality metrics. Additionally,
some research (Li et al., 2024b) has explored using
smaller, weaker models to filter datasets for fine-
tuning larger, more powerful models. However,
these existing methods typically rely on external
evaluation models or manually designed evaluation
metrics, often lacking in-depth consideration of



the internal architecture and intrinsic features of
large language models. This oversight may lead to
inaccurate data quality assessment and inefficient
filtering processes due to differences in training
tasks.

In contrast to these approaches, this paper pro-
poses the idea that the hidden states of Large Lan-
guage Models (LLMs) contain an implicit eval-
uation of the quality of the training data, based
on an analysis of the internal features of LLMs.
Since each LLM requires different high-quality
data depending on its architecture and training cor-
pus, analyzing the hidden states of such models
can provide a more accurate assessment of the
training data quality. To this end, we propose
a new instruction-tuning data evaluation metric,
Contrastive Perception Quality Score (CPQS), and
introduce a method for dataset filtering based on
this metric. Our approach consists of the following
four steps. @ We first construct an instruction fine-
tuning dataset generated by LLMs with varying
performance, containing both positive and negative
samples. @ We then extract the hidden states of
the target fine-tuning model for each instruction. @
Based on these hidden states, we train a Convolu-
tional Neural Network (CNN) model to identify the
current testing sample is effective (of high quality)
or not. @ During the prediction phase, the CNN
model analyzes the hidden states perceived by the
LLM for each instruction, generating a prediction
probability and classification result. The predic-
tion probability classified as effective is referred to
as CPQS, which serves as the criterion for dataset
filtering.

Through extensive experiments, we validate that
our algorithm performs excellently in data selec-
tion for general and downstream domain tasks. In
the general domain, we tested using the Alpaca
and Alpaca_GPT4 datasets (Taori et al., 2023a).
The selected data amount was less than 2% of the
original dataset (1,000 entries), yet it outperformed
models trained on the entire dataset. Our algorithm
was proven to surpass various state-of-the-art al-
gorithms on multiple LLMs. In downstream task
domains, such as mathematical problems and pro-
gramming tasks, our algorithm outperformed exist-
ing state-of-the-art algorithms by an average of 3
percentage points on benchmark tests like GSMSK,
HumanEval (Chen et al., 2021), and HumanEval-
Plus (Liu et al., 2023, 2024b) with the same data
scale.

The main contributions of this paper can be sum-

marized as follows:

* We revealed that the hidden states of LLMs
contain an implicit evaluation of the quality of
training data and introduced a new instruction-
tuning data evaluation metric, the Contrastive
Perception Quality Score (CPQS).

* We proposed an efficient and accurate data se-
lection method based on the LLM’s own con-
trastive perception quality score, significantly
enhancing instruction-tuning performance.

* This paper presents extensive empirical stud-
ies using two general fine-tuning datasets
and two task-specific datasets. The results
show that the proposed data selection method
achieves optimal performance in both general
tasks and specific areas such as mathematics
and programming.

2 Proposed Methods

This section provides a detailed description of our
method. The core of our approach is to train
an external CNN model by extracting the hidden
states perceived by a large language model on
high-quality and low-quality general fine-tuning
datasets for each data point. This model will be
used to analyze the implicit evaluation of the train-
ing data within the hidden states of the large lan-
guage model. The method consists of four key
steps, as shown in Figure 1. We will discuss each
step in depth and analyze them accordingly.

2.1 Construction of Positive and Negative
Sample Datasets

We first randomly selected 5,000 data points from
the Alpaca_GPT4 dataset to form the positive
sample dataset. The Alpaca_GPT4 dataset is a
high-quality, general-domain fine-tuning dataset
containing 52,000 entries. Each consisting of a
triplet: (Instruction, [Input], Response), where
Instruction describes the task to be performed, In-
put provides additional context for task execution,
and Response is the response generated by GPT-4
to the given instruction.

To construct the negative sample dataset, we
chose two additional models: Llama-3.2-1B-
Instruct (Dubey et al., 2024) and Qwen2.5-1.5B-
Instruct (Yang et al., 2024b), which are among
the smallest language models currently available.
The process for constructing the negative sample
dataset is as follows:
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Figure 1: Overall algorithm architecture diagram

1. Extract Instructions and Inputs: Extract the
(Instruction, [Input]) part from each entry
in the Alpaca_GPT4 dataset.

2. Generate Responses: Use Llama-
3.2-1B-Instruct and Qwen2.5-1.5B-
Instruct to generate corresponding Re-
sponse values, forming new triplets:
(Instruction, [Input], Response).

3. Sample Extraction: Extract 5,000 entries
from the generated responses of each model,
totaling 10,000 data points as the negative
sample dataset.

Finally, we mix the positive and negative sample
datasets to create a complete training dataset.

2.2 Extraction of Hidden States

For the collected training dataset, we concatenate
the Instruction and Input parts of each entry and use
this concatenated value as the “user” input to the
model, while the Response part is used as the “as-
sistant” input. This combined entry is then passed
to the model to obtain the hidden states across all
layers of the model. We retain only the hidden state
corresponding to the Response part of each entry.
This choice is made because the evaluation of the
fine-tuning dataset’s quality primarily depends on
the quality of the Response.

2.3 Training of the External CNN Model

The core idea of our algorithm is that the hidden
states generated by the LLM contain an implicit
evaluation of the quality of the training data. To
analyze the LLM’s quality assessment of the train-
ing data, we propose using an external model to
interpret the hidden state vectors produced by the
LLM. The external model is based on a simple
Convolutional Neural Network (CNN) architecture,
which can effectively capture the detailed informa-
tion within the hidden state vectors.

During the training process, we use the hidden
states of each sample obtained in the previous sec-
tion, along with their corresponding positive and
negative labels, for training. The ratio of positive
to negative samples is 1:2, totaling 15,000 samples.
Drawing from the concept of contrastive learning,
the goal is to train the CNN model as a binary classi-
fication task. This enables the model to distinguish
between the different information perceived by the
hidden states of the LLM for good and bad samples.
In doing so, the CNN model can more accurately
reflect the LLLM’s evaluation of the training data
quality.

2.4 Prediction of Contrastive Perception
Quality Score (CPQS)

In the prediction phase, we introduce the Con-
trastive Perception Quality Score (CPQS), which
serves as an indicator to evaluate the training qual-
ity of each instruction-following sample. A higher



CP QS indicates that the LLM places more impor-
tance on the data, suggesting that the training effect
of the data is better and its quality is higher.

The process for calculating the CP QS is as fol-
lows:

For each instruction-following sample to be fil-
tered, we concatenate the Instruction and Input
parts as the “user” input to the model, while the
Response part serves as the “assistant” input. The
entire entry is then passed through the LLM to ex-
tract the hidden states for the Response part. These
hidden states are then fed into the pre-trained CNN
model, which outputs the predicted class and corre-
sponding probability values. We focus primarily on
the probability that the predicted class is 1, which
reflects how likely it is that the LLM interprets the
data entry as a high-quality sample. In other words,
the higher this probability, the greater the assessed
data quality. This value serves as the quality evalu-
ation metric for the data.

Based on these evaluation metrics, we rank the
entire dataset and select the top-ranked data points
for further processing. The calculation formula for
CPQAS is as follows:

CPOS; =pi = [ (x)

where p; is the predicted probability for the i-th
sample, representing the likelihood that the sample
belongs to the positive class, and f (x;) is the out-
put of the LLM’s hidden state vector for the i-th
entry, processed by the CNN model to produce the
probability that the sample belongs to class 1.

After calculating the CP QS for all samples, we
sort the entire dataset based on these probabilities
in descending order and select the top K samples
for further processing. The specific selection pro-
cess is represented as:

Dselected = tOP g ({CPQSi}f\LJ

where Digelected 15 the set of the top K selected sam-
ples from the dataset based on their CP QS values,
and topy denotes selecting the top K samples
after sorting.

3 Experimental Setup

3.1 Datasets and Models

To assess our method’s effectiveness, we utilized
four datasets and three open-source LLMs. The
datasets cover both general and specific task do-

mains, while the models include foundational and
dialogue-optimized variants.

For the general domain, we selected the Alpaca
data set (Taori et al., 2023b) and the Alpaca_GPT4
data set. The Alpaca Dataset (Taori et al., 2023a)
contains 52,000 instruction-response pairs gener-
ated via the self-instruct method, categorized as a
medium-quality classic dataset. The Alpaca_GPT4
Dataset builds on this by using GPT-4 to regenerate
responses, significantly improving data quality and
classifying it as a high-quality classic dataset.

In the downstream task domain, we chose the
GSMS8K Dataset (Cobbe et al., 2021) and the
Magicoder-Evol-Instruct-110K Dataset (Wei et al.,
2024). The GSM8K Dataset (Cobbe et al., 2021),
released by OpenAl, comprises approximately
8,500 elementary math problems designed to evalu-
ate and enhance models’ multi-step reasoning abil-
ities, with 7,500 for training and 1,000 for testing.
The Magicoder-Evol-Instruct-110K Dataset (Wei
et al., 2024) focuses on programming tasks, in-
cluding code generation and problem-solving, fea-
turing around 110,000 entries across various pro-
gramming languages and real-world scenarios to
improve models’ programming comprehension and
generation skills.

For model selection, we used three open-source
LLMs: Llama 2-7B (Touvron et al., 2023), Llama
2-7B-Chat (Touvron et al., 2023), and Qwen2.5-
7B-Instruct (Yang et al., 2024b). Llama 2-7B (Tou-
vron et al., 2023) by Meta is a foundational model
with 7 billion parameters, suitable for diverse lan-
guage tasks with stable performance. Llama 2-7B-
Chat (Touvron et al., 2023), also with 7 billion
parameters, is optimized for dialogue, providing
more fluent and natural interactions. Qwen2.5-
7B-Instruct (Yang et al., 2024b), developed by the
Qwen team, is a versatile model focused on text and
code generation, mathematical computations, and
instruction following, excelling in various bench-
marks and ranking among the most advanced open-
source models available.

3.2 Comparison Algorithms

To validate the effectiveness of our algorithm, we
selected three state-of-the-art data selection meth-
ods as comparison algorithms:

ALPAGASUS (Chen et al., 2024): Chen et al.
leverage LLLMs, such as ChatGPT, to automatically
identify and filter low-quality data.

MoDS (Du et al., 2023): Du et al. propose a
data selection strategy based on quality, coverage,



and necessity criteria.

Superfiltering (Li et al., 2024b): Li et al. intro-
duce a method that uses a smaller model to filter
data based on instruction-following difficulty be-
fore fine-tuning a larger model.

3.3 Implementation Details

We conducted our experiments on a platform
equipped with two NVIDIA RTX 4090 GPUs.
We leveraged the LoRA-based fine-tuning method
within the Llama-Factory framework (Zheng et al.,
2024) developed by Zheng et al. During the super-
vised fine-tuning (SFT) phase, we set the training
precision to bf16, the number of training epochs to
three, the learning rate to 5e-5, a batch size of 16,
and a maximum sequence length of 2048.

For the deployment and inference of our model,
we utilized vLLM (Kwon et al., 2023). During in-
ference, we configured the temperature to 0, main-
tained the precision at bf16, and set the maximum
sequence length to 2048.

3.4 Evaluation Metrics
3.4.1 General Domain Evaluation Standards

We evaluate our method using four test sets from
Chen et al.: Koala (Vu et al., 2023), WizardLM (Xu
et al., 2024), Self-instruct (Wang et al., 2023b),
and Vicuna (Chiang et al., 2023), containing 180,
218, 252, and 80 instructions, respectively, cov-
ering diverse domains such as mathematics, pro-
gramming, and writing. Models generate responses
based on these instructions. Responses are evalu-
ated by GPT-40, scoring from 1 to 10 based on
relevance and accuracy. Two rounds of evaluation
are conducted for responses from each model pair,
using varied prompt orders to reduce position bias.
Model performance is compared as follows:

e Win: Better in both evaluations, or better in
one and tied in the other.

¢ Tie: Tied in both evaluations or mixed results.

¢ Loss: Inferior in both evaluations, or worse in
one and tied in the other.

Additionally, we used two datasets to assess gen-
eral domain performance:

MMLU (Hendrycks et al., 2021): A benchmark
with 14,000 questions across 57 domains widely
used to track LLM capabilities.

MMLU-Pro (Wang et al., 2024): An enhanced
version featuring over 12,000 challenging ques-
tions in 14 domains, including biology, business,
chemistry, and more.

3.4.2 Evaluation Criteria for Downstream
Task Domains

For downstream task evaluations, we mainly focus
on two domains: mathematical reasoning and code
generation, using different standards and datasets
to assess the models’ actual capabilities. We use
GSMBS8K Datetset (Cobbe et al., 2021) to evalu-
ate mathematical abilities. The test set consists of
1,000 arithmetic, algebra, and geometry problems
at middle and high school levels, designed to assess
the model’s mathematical reasoning and problem-
solving skills. For code generation, we employ the
HumanEval (Chen et al., 2021) and HumanEval-
Plus (Liu et al., 2023, 2024b) datasets. HumanEval
contains 164 programming problems, testing the
model’s basic code generation and algorithm under-
standing capabilities. HumanEval-Plus, as a more
challenging extended version, includes more com-
plex tasks, evaluating the model’s code generation
accuracy, reasoning abilities, and adaptability. It
also tests the model’s stability and performance
under diverse input conditions through a variety of
data points.

4 Experimental Result

4.1 General Domain Evaluation

In this section, we present the comparison results
of our method against three other state-of-the-art
data selection methods across different models and
datasets. We selected the Alpaca_dataset and Al-
paca_GPT4_dataset as test datasets and filtered out
the top 1000 highest-quality data points from each
dataset. For each selected dataset, we trained a
model and evaluated it on the test set using GPT-
40 as a judge, comparing the performance of our
algorithm with the other three methods. It is worth
noting that the ALPAGASUS algorithm could only
filter out 9K high-quality data points, so we ran-
domly selected 1000 data points from this set for
comparison.

As shown in Figure 2, our method consistently
outperforms the other algorithms. The model
trained with our selected 1000 data points also out-
performs the one trained with the full 52K dataset.

To assess the generalization ability, we evalu-
ated each model using the MMLU and MMLU-Pro
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Figure 2: Performance Comparison of Data Selection Methods on the Llama2-7B Model Using the Alpaca Dataset.

Self MoDs Alp. Sup. Full
M 41.35 3591 3997 3837 40.61
M-Pro 12.08 1292 1275 1220 12.57
Avg. 2672 2442 2636 2529 26.59

Table 1: Performance of Models Trained with Different
Algorithms on MMLU and MMLU-Pro Datasets. (Note:
"M" is short for MMLU, "M-Pro" is short for MMLU-
Pro, "Alp." is short for Alpagaus, "Sup." is short for
Superfiltering, and "Full" refers to the full dataset.)

datasets. As shown in Table 1, the model trained
with our algorithm achieved a score of 41.35 on
MMLU, 3.27 points higher than the other algo-
rithms and 0.74 points higher than the full dataset
model. In MMLU-Pro, while the MoDs algorithm
performed the best with a score of 12.92, our model
achieved an average score of 26.715 across both
datasets, 1.36 points higher than the other algo-
rithms and 0.125 points higher than the full dataset
model.

We further verified our algorithm’s effectiveness
on the higher-quality Alpaca_GPT4_dataset. As
shown in Figure 3, our method again outperforms
the other algorithms, with the model trained on
1000 selected data points outperforming the one
trained on the full 52K dataset. In the MMLU eval-
uation (Table 2), our method achieved a score of
44.76, 3.31 points higher than the other algorithms
and 2.61 points higher than the full dataset model.

While models trained on the Al-
paca_GPT4_dataset perform better than those

on the Alpaca_dataset in MMLU, all algorithms
performed worse in MMLU-Pro, likely due to the
dataset’s increased difficulty. Despite this, our
method outperformed the average of the other
algorithms by 1.08 points and the full dataset
model by 1.01 points, highlighting the significant
performance boost with higher-quality data.

We also tested our algorithm on the Llama2-7B-
Chat and Qwen 2.5-7B-Instruct models. As shown
in Appendix A, our method consistently outper-
forms the other algorithms, with models trained
on 1000 selected data points outperforming those
trained on the full dataset. Notably, in the Qwen
2.5-7B-Instruct model, trained with the full Alpaca
dataset (Taori et al., 2023a), the model achieved an
average score of 49.385, while our model trained
with 1000 data points scored 62.815, surpassing the
full dataset model by 13.43 points. This highlights
the significant impact of data quality on model per-
formance, particularly with more advanced models.
When combined with advanced models, our algo-
rithm delivers even more outstanding results.

We also examined the iterative nature of our al-
gorithm and the factors that affect its performance.
Detailed experiments can be found in Appendix B
and Appendix C.

4.2 Downstream Task Evaluation

We evaluated the performance of our algorithm
for downstream task dataset selection, focusing
on Llama 2-7B-Chat and Qwen 2.5-7B-Instruct
models. Common methods for downstream task
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Figure 3: Performance Comparison of Data Selection Methods on the Llama2-7B Model Using the Al-

paca_GPT4_Dataset.

Selff MoDs Alp. Sup. Full
M 44.76 41.57 41.25 41.54 42.15
M-Pro 10.00 11.62 1235 1048 10.60
Avg. 27.38 26.60 2630 26.01 26.38

Table 2: Performance of Models Trained with Different
Algorithms on MMLU and MMLU-Pro Datasets. (Note:
"M" is short for MMLU, "M-Pro" is short for MMLU-
Pro, "Alp." is short for Alpagaus, "Sup." is short for
Superfiltering, and "Full" refers to the full dataset.)

training involve fine-tuning pre-optimized mod-
els. To validate our approach, we used the
GSMSK (Cobbe et al., 2021) and Magicoder-Evol-
Instruct-110K (Wei et al., 2024) datasets for fil-
tering, reducing GSM8K to 500 data points and
Magicoder-Evol-Instruct-110K to 1000 data points.
We assessed performance on the GSMSK test set,
Humaneval, and HumanEval-Plus datasets. For the
ALPAGASUS algorithm, we used the GPT-40-mini
model for data selection, as it outperforms GPT-4
in both effectiveness and cost.

Table 3 presents results on the GSMS8K Dataset,
where our algorithm outperforms the others by 4.17
points on Llama 2-7B-Chat and 2.9 points on Qwen
2.5-7B-Instruct. Notably, the model trained on the
full GSMS8K dataset underperforms on Qwen 2.5-
7B-Instruct (score 76.04), while the model trained
on 500 selected data points achieves 84.91, surpass-

ing the full dataset by 8.87 points. This highlights
that more advanced models require higher-quality
datasets for optimal downstream task adaptation.

Tables 4 and 5 show results with the Magicoder-
Evol-Instruct-110K dataset. On Llama 2-7B-Chat,
our algorithm outperforms others by 4.3 points on
average, and models trained on 1000 data points
from other algorithms performed worse than the
original. In contrast, the model trained on 1000
points selected by our algorithm improved by
2.45 points. On Qwen 2.5-7B-Instruct, the model
trained with our selected data outperformed oth-
ers by 1.47 points on average. However, all mod-
els trained on the filtered Magicoder-Evol-Instruct-
110K dataset showed performance degradation,
likely due to its lower quality for this model. These
results further confirm that our algorithm excels
in dataset selection, especially when high-quality
datasets are available, leading to substantial im-
provements in model performance.

5 Related Work

5.1 Data Selection Strategies During
Fine-Tuning

The goal of instruction tuning (Wei et al., 2022;
Sanh et al., 2022; Longpre et al., 2023; Liu et al.,
2024a) is to help large language models better un-
derstand human task requirements. Early research



Model Original Self MoDs Alpagasus Superfiltering Full
Llama 2-7B-Chat 2456 2525 23.05 23.12 17.06 35.56
Qwen2.5-7B-Instruct 79.76 8491 80.74 81.27 84.00 76.04

Table 3: Performance Evaluation of Models Trained with Different data selection Methods on the GSM8K Dataset

in the Mathematics Domain.

Ori. Self MoDs Alp. Sup.
H 13.4 16.5 122 122 10.0
H-Plus 11.6 134 9.8 104 9.1
Avg. 12.5 14.95 11 11.3 9.55

Table 4: Performance Evaluation of Models Trained
with Different Algorithms on Llama2-7B-Chat in the
Code Domain (pass@1). (Note: "H" is short for Hu-
maneval, "Ori." is short for Original, "Alp." is short for
Alpagaus, "Sup." is short for Superfiltering.)

Ori. Self MoDs Alp. Sup.
H 829 80.0 787 780 1793
H-Plus 75.6 744 726 72,6 732
Avg. 79.25 772 7565 753 76.25

Table 5: Performance Evaluation of Models Trained
with Different Algorithms on Qwen 2.5-7B-Instruct in
the Code Domain. (Note: "H" is short for Humaneval,
"Ori." is short for Original, "Alp." is short for Alpagasus,
"Sup." is short for Superfiltering.)

primarily focused on building large-scale instruc-
tion datasets, but studies like LIMA have shown
that only a small amount of high-quality data is
needed during instruction fine-tuning to achieve
good results. Existing data selection methods can
be classified into four categories: indicator-based
methods, trainable LL.M-based methods, power-
ful LLM-based methods, and small-model-based
methods.

Indicator-based methods use a metric system to
identify multiple evaluation indicators to compre-
hensively assess data quality (Cao et al., 2023a;
Wei et al., 2023). Trainable LLM-based meth-
ods treat the large language model as a trainable
data selector, processing and assigning scores to
each instruction fine-tuning data for selection (Li
et al., 2024c; Chen et al., 2023b). Powerful LLM-
based approaches, such as those using models like
ChatGPT, typically design prompt templates and
leverage the model’s capabilities to quantitatively
evaluate the quality of data samples (Chen et al.,
2024; Liu et al., 2024¢). Finally, small-model-
based methods involve using external small models
to score the data or projecting the data samples into

vectors with a small model for further processing
and selection (Chen et al., 2023a; Li et al., 2024b).

5.2 Performance Evaluation of LLMs

The evaluation of LLMs is typically done through
automatic evaluation, human evaluation, and us-
ing LLMs as evaluators. Automatic evaluation re-
lies on predefined criteria and quantitative assess-
ment (Hendrycks et al., 2021; Wang et al., 2024;
Chen et al., 2021). Human evaluation focuses on
qualitative aspects like clarity, consistency, and fac-
tual accuracy, and is essential for quality assess-
ment (van der Lee et al., 2021; Zheng et al., 2023).
However, due to its time and labor demands, using
powerful LLMs (Chen et al., 2024; Huang et al.,
2024) to evaluate other LLMs has become a popu-
lar approach in recent years.

6 Conclusion

This paper addresses the issue of low-quality and
redundant data in LLM instruction fine-tuning. We
propose a data selection method using the Con-
trastive Perception Quality Score, a metric that
evaluates data quality by analyzing LLM hidden
states. Our method filters high-quality data subsets,
enhancing fine-tuning performance.

Experimental results show that our approach
achieves superior performance with less than 2%
of the original data (1,000 samples) compared to
models trained on the full dataset. It also outper-
forms existing data selection techniques at equal
data scales. In downstream tasks, such as mathe-
matical problem solving (GSM8K) and program-
ming (HumanEval, HumanEval+), our method pro-
vides a 3% average performance improvement over
current state-of-the-art data selection algorithms.

7 Limitations

This paper presents a data selection method using
the Contrastive Perception Quality Score to filter
high-quality data. However, there are still areas for
improvement: (1) The method focuses on data qual-
ity but does not consider data diversity. (2) While
effective during fine-tuning, the method needs fur-



ther exploration for incremental pre-training and
reinforcement learning stages of LLMs.
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A Performance Evaluation of Our
Algorithm on Multiple Models and
Datasets

Tables 6 and 7 along with Figures 4 and 5 dis-
play the performance of our algorithm on the Al-
paca_GPT4 Dataset and the Alpaca Dataset (Taori
etal., 2023a) using the Qwen2.5-7B-Instruct model.
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Similarly, Tables 8 and 9 along with Figures 6 and 7
show the performance of our algorithm on the Al-
paca_GPT4 Dataset and the Alpaca Dataset using
the Llama 2-7B-Chat model.

B Experiment on Iterative Model
Training and Data Selection

We conducted experiments to assess the iterative-
ness of our algorithm. First, we trained a CNN
model using our algorithm on the Qwen2.5-7B-
Instruct dataset. This trained model was then
used to predict and rank the Alpaca_GPT4 dataset.
Based on the ranking, we extracted the top 5,000
and the last 10,000 data samples. We then retrained
another CNN model using this subset to further
filter 1,000 samples from the Alpaca_GPT4 dataset
for additional training. As shown in Figure 8, the
performance of the newly trained model demon-
strated a significant improvement over the previous
version.

C Impact of Hidden Layer Selection and
Dataset Preferences

C.1 The Impact of Different Hidden Layers
on Model Performance

In this section, we investigate the impact of differ-
ent hidden layers of the model on data selection
performance. To this end, we chose the Qwen 2.5-
7B-Instruct model for experimentation and focused
on analyzing the contribution of each layer’s hidden
states to the selection performance. Specifically,
we used the hidden states from the first 9 layers,
the middle 9 layers, the last 11 layers, and the final
layer to train separate CNN models, and validated
them on the GSM8K dataset and Magicoder-Evol-
Instruct-110K Dataset (Wei et al., 2024).

As shown in Table 10, on the GSMS8K
Dataset (Cobbe et al., 2021), the model trained
using the hidden states from the first 9 layers per-
formed the best, with a score of 84.23. However,
its performance was still not as good as the model
trained with hidden states from all layers. On the
Magicoder-Evol-Instruct-110K Dataset (Wei et al.,
2024), the model trained with the hidden states
from the last 11 layers performed the best, with
an average score of 76.55, although it still lagged
behind the performance of the model trained using
all layers.
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Self Mods ALPAGASUS Superfiltering Original model ALpaca(52k)

MMLU 73.32  60.52 70.66
MMLU-Pro 5231 47.32 51.92
Average 62.82 53.92 61.29

67.17 75.60 61.89
51.57 49.65 36.88
59.36 62.63 49.39

Table 6: Performance of Models Trained with Different Algorithms on MMLU and MMLU-Pro using the ALpaca

Dataset with Qwen2.5-7B-Instruct.

(a) Self vs Superfiltering
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Figure 4: Performance Comparison of Data Selection Methods on the Qwen2.5-7B-Instruct Model Using the Alpaca

Dataset.

C.2 Preferences of Different Models for
High-Quality Datasets

In this section, we explore whether different LLMs
have distinct preferences for high-quality datasets.
To this end, we trained the models on high-quality
datasets selected from the GSM8K dataset and
Magicoder-Evol-Instruct-110K Dataset (Wei et al.,
2024) using Llama 2-7B-Chat and Qwen 2.5-7B-
Instruct. We then compared the performance of
these models when exchanging datasets. Specifi-
cally, we trained Qwen 2.5-7B-Instruct and Llama
2-7B-Chat on each other’s selected datasets and
compared their performance with training on their
own selected datasets.

As shown in Table 11 and Table 12, whether in
the mathematical or coding domains, the models
trained after swapping datasets did not perform as
well as those trained on their original datasets. For
both Llama 2-7B-Chat and Qwen 2.5-7B-Instruct,
the high-quality dataset considered by one model
did not yield the same results when used by the
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other model. Therefore, our experiment shows that
different models exhibit significant differences in
selecting high-quality datasets, with each model
having its own definition of what constitutes a
“high-quality dataset.”

This finding is crucial for data selection and
model optimization, as it suggests that the structure
and characteristics of a model may significantly in-
fluence its evaluation of data quality when selecting
datasets.



Self

MoDs Alpagasus Superfiltering ALpaca_GPT4 (52Kk)
MMLU 75.55  73.03 71.34 75.27 75.60
MMLU-Pro 51.66 50.73 51.99 50.65 49.65
Average 63.61 61.88 61.67 62.96 62.63

Table 7: Performance of Models Trained with Different Algorithms on MMLU and MMLU-Pro using the AL-

paca_GPT4 Dataset with Qwen2.5-7B-Instruct.
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Figure 5: Performance Comparison of Data Selection Methods on the Qwen2.5-7B-Instruct Model Using the
Alpaca_GPT4 Dataset.
Self MoDs ALPAGASUS Superfiltering Original model ALpaca_52k
MMLU((14k) 45.25 45.82 45.62 46.34 46.02 42.08
MMLU-Pro(12k) 17.49 16.72 16.53 16.03 18.92 17.18
Average 31.37 31.27 31.08 31.19 32.47 29.63

Table 8: Performance of Llama 2-7B-Chat Trained with Different Algorithms on MMLU and MMLU-Pro on the
Alpaca Dataset.

Self MoDs ALPAGASUS Superfiltering Llama 2-7B-Chat ALpaca_GPT4(52k)
MMLU 46.09 45.82 45.44 46.16 46.02 46.43
MMLU-Pro 18.92 17.96 18.18 19.09 18.92 17.59
Average 32.51 31.89 31.81 32.63 32.47 32.01

Table 9: Performance of Llama 2-7B-Chat trained with different algorithms on MMLU and MMLU-Pro on the
Alpaca_GPT4_Dataset.

Full Early (9) Middle (9) last(11) final (1)
GSMB8K 84.91 84.23 83.85 83.70 83.70
HumEval(pass@1) 80.0 75.0 77.4 79.3 78.7
HumanEval-Plus(pass@1) 74.4 70.1 71.3 73.8 72.6

Table 10: Comparison of CNN Model Performance Trained on Different Hidden Layer Parts of Qwen2.5-7B-Instruct
Model.
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Figure 6: Performance Comparison of Data Selection Methods on the Llama 2-7B-Chat Model Using the Alpaca

Dataset.
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Figure 7: Performance Comparison of Data Selection Methods on the Llama 2-7B-Chat Model Using the Al-

paca_GPT4 Dataset.

Training Method Llama 2-7B-Chat Qwen2.5-7B-Instruct

Self Training 25.25
Dataset Swapping 23.58

84.91
83.24

Table 11: Performance of Llama 2-7B-Chat and Qwen2.5-7B-Instruct Models Trained on Their Own and Swapped

Datasets on the GSM8K Dataset (Cobbe et al., 2021).
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Figure 8: Comparison of Model Performance After Two-Stage Data Selection.

Training Method HumanEval pass@1 HumanEval-Plus pass@1 Average
Llama 2-7B-Chat (Self) 16.5 134 14.95
Llama 2-7B-Chat (Swapped with Qwen2.5) 11.2 11.0 11.1
Qwen2.5-7B-Instruct (Self) 80.0 74.4 77.2
Qwen2.5-7B-Instruct (Swapped with Llama2) 72.0 67.1 69.55

Table 12: Performance of Llama 2-7B-Chat and Qwen2.5-7B-Instruct Models Trained on Their Own and Swapped
Datasets on the HumanEval Dataset.
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