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Abstract

Retrieval-augmented language models pose001
a promising alternative to standard language002
modeling. During pretraining, these models003
search in a corpus of documents for contex-004
tually relevant information that could aid the005
language modeling objective. We introduce006
an ‘ideal retrieval’ methodology to study these007
models in a fully controllable setting. We008
conduct an extensive evaluation to examine009
how retrieval augmentation affects the behav-010
ior of the underlying language model. Among011
other things, we observe that these models:012
i) save substantially less world knowledge in013
their weights, ii) are better in understanding014
local context and inter-word dependencies, but015
iii) are worse in comprehending global context.016

1 Introduction017

Retrieval-augmented language models combine the018

strengths of self-supervised pretraining with infor-019

mation retrieval techniques in order to allow for020

information extraction from a non-parametric mem-021

ory. During pretraining, the prediction of masked022

tokens is conditioned not only on the immediate023

context but also on information that is found contex-024

tually relevant by a similarity search over a knowl-025

edge database. These models are typically proven026

effective on knowledge-intensive tasks, such as027

open domain question answering (Guu et al., 2020;028

Lewis et al., 2022; Izacard et al., 2023).029

Little emphasis, however, has been put into un-030

derstanding what this type of training scheme031

does to the underlying language model when an-032

alyzed as a stand-alone – separated from the overall033

retrieval pipeline. Retrieval-augmentation is often034

proposed as a better alternative to standard pretrain-035

ing, without much evidence of its advantages and036

disadvantages. The behavior of the full pipeline de-037

pends on the qualities of the retrieved database and038

on the qualities of the stand-alone language model.039

While the database is relatively easy to control, the040
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Figure 1: The aggregated absolute differences from
the baseline across three categories of benchmarks, the
models exhibit consistent differences for each category.

performance of the language model can be hard to 041

estimate. This paper aims to shed more light on the 042

expected qualities of the language model, separated 043

from the database retrieval. 044

In total, we evaluate the effect of retrieval on 9 045

language models with 8 sets of zero-shot, probing 046

and finetuning tasks to empirically show that: 047

1. Retrieval augmentation separates linguistic 048

knowledge from world knowledge, to some 049

extend – the language model alone improves 050

in syntactic understanding while delegating 051

world knowledge to the retrieval module. This 052

separation gets larger with scale. 053

2. Retrieval augmentation negatively impacts 054

NLU performance – the stand-alone lan- 055

guage model performs worse in multi- 056

sentence language understanding, which is 057

concerning for general-use language models. 058

3. Poor retrieval quality does not negatively 059

impact pretraining – the model behavior 060

gets closer to the baseline no-retrieval perfor- 061

mance, without an overall quality degradation. 062
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2 Related work063

Evaluation of retrieval augmentation While064

there has been a lot of effort put into developing dif-065

ferent retrieval-augmented language models (Guu066

et al., 2020; Borgeaud et al., 2022; Izacard et al.,067

2023), little emphasis has been put into analyz-068

ing limitations and abilities of current methods.069

Recently, Norlund et al. (2023) found that the re-070

liance on surface-level similarities between the re-071

trieval database and test data has been somewhat072

understated in the literature, finding that token-073

level overlap between accounts for some of the074

reported performance in the popular RETRO archi-075

tecture (Borgeaud et al., 2022). Some have focused076

on the retrieval part of the pipeline, with Doost-077

mohammadi et al. (2023) reporting that a sparse078

retrieval index can decrease perplexity for retrieval-079

augmented language models. Charpentier et al.080

(2023) found that retrieval-augmented pretraining081

can improve context utilization.082

From-scratch pretraining Most of the current083

retrieval-augmented models are created by either084

finetuning or continued pretraining (retrofitting)085

of an already pretrained model. As shown in086

Wang et al. (2023), only RETRO trains a retrieval-087

augmented model from scratch. While Borgeaud088

et al. (2022) focus on the amelioration of the per-089

plexity and of text generation with retrieval assis-090

tance, we want to look at whether pretraining with091

retrieval leads to models that have a better syntactic092

understanding while retaining less world knowl-093

edge. This builds on the intuition that retrieval094

should free up parameter space for linguistic knowl-095

edge, as the relevant world-knowledge information096

is continuously supplied in the retrieved input. This097

hypothesis can be tested only with pretraining a098

blank model from scratch.099

3 Controlled retrieval augmentation100

This study examines the general implications of101

retrieval augmentation in language modeling, in a102

fully controllable ‘laboratory’ setting and without103

relying on a particular retrieval model or parame-104

ters. All existing retrieval models are noisy (not105

always retrieving relevant context) and even though106

the amount of noise might have a large impact on107

the downstream performance, it is hard to measure108

and control. Therefore, we use an impractical, but109

fully controllable, perfect retrieval in the form of110

paraphrased inputs, as illustrated in Figure 2.111

self-attention

cross-attention

feed-forward

embedding

MLM head

The term Orphism was coined by
Appol[MASK] at the Salon de la Sec-
tion d'Or in 1912, referring to the
works of [MASK] and František Kup-
ka.

12×

self-attention

feed-forward

embedding

12×

At a showcase organized by the Salon
de la Section d'Or in 1912, French poet
Guillaume Apollinaire used the term
'Orphism' to describe the style of art
portrayed by two artists – Robert De-
launay and František Kupka.

Masked language model

Retrieval augmentation

Figure 2: Diagram of the overall encoder-decoder ar-
chitecture. The retrieval mechanism can be greatly sim-
plified with our fully-controllable paraphrase-based re-
trieval augmentation. We train the whole model but
evaluate only the masked language model (in blue), to
investigate its stand-alone features.

Simplified retrieval-augmented LM We base 112

our experiments on masked language models as 113

they offer greater flexibility for evaluation (Devlin 114

et al., 2019; Rogers et al., 2020). The retrieval 115

augmentation is substantially simplified thanks to 116

paraphrase-based pretraining. As a whole, the 117

model is an encoder-decoder transformer (Vaswani 118

et al., 2017), where the encoder embeds the re- 119

trieved context and the decoder is a language model 120

(Figure 2). Specifically, the decoder is given a 121

masked text segments, its training objective is to 122

unmask it (Devlin et al., 2019) and the encoder is 123

provided with a paraphrase of the unmasked seg- 124

ment. 125

Paraphrased training data We utilize the En- 126

glish Wikipedia as a clean and information-rich 127

text corpus. Because of the cost of paraphrasing, 128

we select only the top 10% most visited articles by 129

page view count in the last year (about 400 mil- 130

lion words). The paraphrases are generated by a 131

prompted Mistral 7B language model (Jiang et al., 132

2023), as described in Appendix A.1 133

It is essential to train the models on good para- 134

phrases to avoid unwanted data leakage and irrel- 135

evant retrieved contexts, we quantitively evaluate 136

their ‘goodness’ in Appendix B. 137

1Such a dataset might be useful for tasks outside the
scope of this paper and we openly release it at censored.
for-review.com.
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(MRR ↑) (MRR ↑) (MRR ↑) (LAS ↑) (UUAS ↑) (Acc. ↑) (LBS ↑) (Acc. ↑) (Avg. ↑) (F1 ↑)

REFERENCE MODEL (110M)
bert-base-cased 26.0 34.0 62.0 82.0 45.1 85.6 -0.10 44.8 82.1 88.4

BASE (98M)
− retrieval 20.3 32.1 53.6 78.1 48.0 82.9 -0.47 46.0 82.2 91.2
+ retrieval (50% noise) 17.7 23.2 49.1 79.8 51.3 81.3 -0.37 43.2 82.0 90.7
+ retrieval (25% noise) 18.1 23.4 48.3 79.9 51.6 82.7 -0.38 40.6 81.9 90.2
+ retrieval (0% noise) 14.9 15.8 41.5 80.2 51.8 83.2 -0.37 37.5 81.2 89.7

SMALL (28M)
− retrieval 17.2 28.3 47.4 71.1 49.7 78.6 -0.56 35.1 78.0 88.6
+ retrieval 11.8 15.3 36.3 71.2 50.4 78.8 -0.53 26.2 78.4 86.2

X-SMALL (9M)
− retrieval 9.9 14.7 39.2 63.3 45.5 73.4 -0.55 25.3 75.2 81.1
+ retrieval 7.5 10.6 23.4 63.6 49.2 73.3 -0.57 19.3 76.0 78.7

Model

WORLD KNOWLEDGE SYNTACTIC KNOWLEDGE LANGUAGE UNDERSTANDING

Concept
Net

SQuAD TREx
linear

probing
attention
probing BLiMP MSGS LAMBADA GLUE SQuAD

Table 1: The overall evaluation scores for the all sets of tasks, divided into three categories. We divide the models
into three subsets based on their size and also give the reference scores of the official bert-base-cased model
evaluated with our pipeline. We highlight the best results for each model size in boldface and measure the average
score across 5 runs, when applicable. The red color indicates worse results than the no-retrieval baseline and
vice-versa for the blue color.

Linear patching We need to separate the lan-138

guage model from its retrieval augmentation to139

measure its independent performance. However,140

when removed naively, the separated language141

model exhibits poor performance because it expects142

non-zero vectors from the cross-attention mecha-143

nism. Therefore we replace the retrieval augmen-144

tation with a simple linear layer and continue pre-145

training with all other parameters frozen, as illus-146

trated in Figure 2. In Appendix C, we demonstrate147

that (i) patching is necessary and that (ii) the linear148

patches do not provide any additional knowledge.149

4 Evaluation150

The experiments in this section evaluate how re-151

trieval augmentation, size and retrieval quality af-152

fect world knowledge, syntactic knowledge and153

language understanding of language models.154

Evaluated language models We follow the LTG-155

BERT architecture and training choices for pretrain-156

ing the masked language models; this method is157

designed to work competitively in low resource set-158

tings, which makes it suitable for our study (Samuel159

et al., 2023a). In total, we pretrain eight models:160

three sizes: X-SMALL (8.5M parameters), SMALL161

(27.7M) and BASE (98.2M), and each size with &162

without retrieval augmentation. We also experi-163

ment with a more realistic retrieval setting by in-164

jecting a random retrieval context 25 or 50 percent165

of time for the BASE model. The pretraining de-166

tails are listed in Appendix D. We openly release 167

all pretrained models, as well as the training code, 168

online.2 169

World knowledge In order to evaluate the knowl- 170

edge capacity of our model, we evaluate it in a 171

zero-shot setting on the Language Model Analysis 172

probe (LAMA; Petroni et al., 2019). The probe 173

provides cloze-style statements of factual informa- 174

tion from different sources. We evaluate all models 175

on the subsets extracted from SQuAD (Rajpurkar 176

et al., 2016), from the ConceptNet knowledge 177

graph (Speer et al., 2017) and from the Wikipedia- 178

based T-REx (Elsahar et al., 2018). 179

Syntactic knowledge There are many ways of 180

measuring the syntactic understanding of a lan- 181

guage model, each with its own disadvantages (Be- 182

linkov, 2022). We aim for a robust evaluation 183

and thus measure the syntactic knowledge on four 184

different types of benchmarks. First, with linear 185

probing, we test how easy is it to extract syntactic 186

dependencies between words from the contextual- 187

ized subword embeddings (Shi et al., 2016; Alain 188

and Bengio, 2017; Liu et al., 2019). Secondly, 189

attention probing measures how well can we con- 190

struct dependency trees directly from the attention 191

probabilities (Mareček and Rosa, 2018; Raganato 192

and Tiedemann, 2018; Ravishankar et al., 2021). 193

Then, BLiMP tests if a language model prefers 194

well-formed grammatical sentences (Warstadt et al., 195

2censored.for-review.com
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2020a; Salazar et al., 2020). Finally, MSGS lever-196

ages the poverty of the stimulus design (Wilson,197

2006) to measure the level of linguistic generaliza-198

tion (Warstadt et al., 2020b).199

Language understanding The third set of bench-200

marks evaluates different aspects of general lan-201

guage understanding. LAMBADA tests the ability202

to understand long passages of text and form long-203

range dependencies (Paperno et al., 2016). GLUE204

is a multi-task benchmark for finetuning and eval-205

uating languge models on a diverse set of down-206

stream tasks (Wang et al., 2018). SQuAD measures207

the degree of reading comprehension by an extrac-208

tive question-answering dataset (Rajpurkar et al.,209

2016).210

Results We present the overall results in Table 1211

and Figure 1. Fine-grained per-task results and an212

in-depth explanation of the evaluated tasks and our213

setup are given in Appendix E.214

5 Discussion215

Retrieval augmentation separates linguistic216

knowledge from world knowledge There is a217

clear trend in the performance between the world218

knowledge tasks and linguistic tasks – when the219

language model can rely more on retrieval during220

pretraining (with decreased retrieval noise), it re-221

members less facts and gets progressively worse222

on all evaluated world knowledge tasks (Table 1).223

On the other hand, its syntactic understanding gets224

consistently better (Table 1).225

This strongly suggests that a language model226

with retrieval does not allocate as many parameters227

to store world knowledge and instead uses them for228

other features, such as syntax. As a result, retrieval-229

augmented pretraining of leads to a clear separa-230

tion between the world knowledge (in the retriever)231

and syntactic knowledge (in the language model).232

This modular system allows for simply updating233

the factual knowledge by updating the retrieval234

database, without risking any side-effects from235

updating neural parameters (De Cao et al., 2021;236

Yao et al., 2023).237

The positive results on the syntactic tasks sug-238

gest that retrieval-based pretraining can be a239

promising avenue for efficient language modeling.240

Even more so when we notice that the advantage of241

the retrieval-pretrained models over standard mod-242

els grow with the size of these models (Table 1).243

Retrieval augmentation negatively impacts NLU 244

performance Contrary to the mostly local syn- 245

tactic understanding, the language understanding 246

gets worse with retrieval-augmented pretraining 247

(Table 1). The fine-grained GLUE results in Ta- 248

ble 9 show that this affects tasks that require global 249

inter-sentence comprehension tasks (NLI) more 250

than the short-range local tasks (CoLA or SST-2). 251

We argue that this is in part caused by the lack- 252

ing factual knowledge (which can help to resolve 253

ambiguous cases) but it is also indirectly caused by 254

the mechanism of retrieval-augmented pretraining. 255

When looking for the global context, the language 256

model is incentivized to trust the fully-embedded 257

retrieved document more than the partially masked 258

input. This poses a challenge to utilizing retrieval 259

augmentation for pretraining general-purpose 260

language models. It makes retrieval finetuning 261

not only a less costly but also a more performant 262

alternative. 263

Poor retrieval quality does not negatively impact 264

pretraining Noisy retrieval pretraining does not 265

lead to a drop in performance, instead, it interpo- 266

lates the behavior of the standard pretraining and 267

of the pretraining with a perfect retrieval (Table 1) 268

– more noise makes the retrieval less reliable and 269

the language model has to act more independently. 270

While a high-quality retrieval mechanism is crit- 271

ical during inference, our results suggest that a 272

subpar (but computationally inexpensive) retrieval 273

should not negatively impact training. 274

6 Conclusion 275

We introduced a novel theoretical framework for 276

studying the properties of retrieval-augmented lan- 277

guage models. Specifically, through this paper, 278

we were able to show that using retrieval during 279

pretraining leads models to learn less world knowl- 280

edge while gaining better syntactic knowledge, this 281

separation is especially pronounced for the larger 282

models. This however comes at the cost of per- 283

formance in language understanding and resolving 284

long-range context. Due to the model relying on 285

the retrieved spans, the global context resolution 286

may be delegated to the retrieval module of the 287

model which is removed during our evaluation. We 288

also conducted an ablation on the effect of noisy 289

retrieval and saw that it only mildly affects the 290

syntactic capabilities of the model while signifi- 291

cantly improving both its language understanding 292

and world knowledge. 293
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Limitations294

Pretraining corpus We pretrain all language295

models on the texts from the English Wikipedia296

– which is an information-rich and high-quality cor-297

pus, but also one that is monolingual and not very298

stylistically diverse. More typical web-crawl-based299

corpora are not as rich in factual information and300

the differences in evaluation on world knowledge301

might not be as pronounced for them. Similarly,302

we only evaluate the syntactic knowledge of an En-303

glish knowledge model, the results might differ for304

a typologically different language.305

Model scale Due to our computational con-306

straints, we decided to limit the size of the pre-307

trained language models to 100M parameters.308

While our results show a consistent trend from the309

smallest to the largest models, there is a possibility310

that this suddenly changes in the billion-parameter311

scale.312
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A Mistral 7B paraphrase generation 718

We use the mistralai/Mistral-7B-Instruct-v0.1 checkpoint available on HuggingFace 719

(Wolf et al., 2020).3 We use a combination of nucleus sampling and top-k sampling with temperature 720

of 0.9, p of 0.9 and k of 50 (Holtzman et al., 2020). We also utilize a repetition penalty of 1.2 to avoid 721

degenerate outputs. 722

The instructive prompt template for paraphrasing is the following Python f-string: 723

1 """<s>[INST] Paraphrase the following paragraphs, try to be very
creative and make it look as different as possible without
changing any meaning or losing any information. Don't be afraid
to change the order of words or sentences. Don't add any new
information that is not already in the text.

↪→

↪→

↪→

↪→

2

3 {original_unmasked_segment} [/INST]"""

We chose Mistral because of its state-of-the-art size-to-power performance (Jiang et al., 2023), and 724

its consistent and reliable outputs – but also because of its light safety alignment. The safety-aligned 725

language models sometimes refused to paraphrase Wikipedia articles about problematic topics, such as 726

the development of nuclear bombs or the biography of Adolf Hitler. We note that while there are good 727

arguments for restricting the capabilities of language models for the general public, the ‘safe’ language 728

models can be limiting for scientific research. As an example, this is the output of Llama-2-7b by Touvron 729

et al. (2023) when asked to paraphrase a seemingly controversial Wikipedia article: 730

“It is not appropriate or ethical to provide information or assistance that promotes or glorifies 731

harmful or hateful ideologies, individuals, or actions. Therefore, I cannot paraphrase the given 732

text about Adolf Hitler as it would be inappropriate and potentially harmful to do so. Instead, I 733

suggest focusing on topics that promote positivity, inclusivity, and respect for all individuals. Is 734

there anything else I can assist you with?” 735

B Quality of paraphrases 736

For the purposes of this study, a good paraphrase should have exactly the same meaning as the original, 737

but should be completely different both lexically and syntactically. In that way, the retrieval can serve its 738

intended purpose of providing relevant context and world knowledge without inhibiting the training signal 739

from the masked language modeling objective. 740

We measure the preservation of meaning as the average semantic similarity of every original-paraphrase 741

pair (Reimers and Gurevych, 2019). Specifically, the average cosine similarity is 0.88 according to 742

all-mpnet-base-v24 – this indicates that the paraphrases are almost semantically identical. The 743

lexical (and to some extend syntactic) similarity is evaluated by the BLEU score (Papineni et al., 2002; 744

Post, 2018).5 The average BLEU score is 0.13 for the raw pairs, and 0.07 for pairs with removed named 745

entities and digits – this shows that the paraphrases should not leak surface-level information. 746

3Online link: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
4The best SentenceTransformers model as of December 2023: https://www.sbert.net/docs/

pretrained_models.html.
5Using the default SacreBLEU metric from torchmetrics 1.2.1: https://torchmetrics.readthedocs.

io/.
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C Effect of linear patching747

As discussed in Section 3, we have to apply a linear patch in order to conduct a fair evaluation of the748

separated language model, the whole process is also illustrated in the following figure – we add a liner749

layer (called a linear patch) between the self-attention and feed-forward network of each layer of the750

encoder as a proxy to the missing cross-attention:751

self-attention

cross-attention

feed-forward

embedding

MLM head

The term Orphism was coined by [MASK] at the
Salon de la Section d'Or in 1912, referring to the
works of [MASK] and František Kupka.

12×

self-attention

feed-forward

embedding

12×

At a showcase organized by the Salon de la
Section d'Or in 1912, French poet Guillaume
Apollinaire used the term 'Orphism' to describe
the style of art portrayed by two artists – Robert
Delaunay and František Kupka.

Masked language model

Retrieval augmentation

self-attention (frozen)

linear patch

feed-forward (frozen)

embedding (frozen)

MLM head (frozen)

The term [MASK] by Apollinaire at the Salon de
la Section d'Or in [MASK] to the works
of Robert Delaunay and [MASK]

12×

patch finetuning

Figure 3: Linear patching of the separated masked language model.

The purpose of this section is to empirically show that the linear patching necessary and that it does not752

bias the results by providing any additional knowledge to the patched model. For that, we will use the753

detailed results from Appendix E that compare the performance of the patched and unpatched models.754

C.1 Patching is necessary for the retrieval models755

The results clearly show that when we evaluate the separated language model pretrained with retrieval,756

it completely fails without patching when evaluated on tasks that do not involve any finetuning. While757

this effect is clear across all tasks (Appendices E.1, E.2 and E.4), we will illustrate it specifically on the758

LAMBADA task from Appendix E.6. There, the X-SMALL, SMALL and BASE retrieval models achieve759

0%, 0% and 23% accuracy without a patch, which is substantially less than the 19%, 26% and 38%760

accuracy with a simple linear patch. The naive removal of the cross-entropy modules (Figure 3) hinders761

the language model and the linear patching is able to remove this handicap. Note that the naive removal is762

not a problem for a model that is further finetuned – for example, the no-patch to patch SQuAD F1 scores763

stay very stable for the retrieval models: 78.7→ 78.7, 86.2→ 86.3 and 89.7→ 89.7 (Appendix E.8).764

C.2 Linear patches do not provide any additional knowledge765

The linear patch is apparently needed and helps with the removal of the retrieval augmentation – however,766

it is not acceptable to use a patch, which is doing more than ‘patching’ and which adds some additional767

knowledge to the language model. This might even invalidate the positive results of retrieval-augmented768

pretraining on syntactic understanding. We will therefore focus on these tasks in this section.769

We can test if the patch provides additional knowledge by examining models that work well without it –770

for them, patching should essentially be a no-operation that does not boost the performance. In our case,771

the models pretrained without any retrieval are the ones that do not need patching – as they never use772

cross-attention. Looking at the X-SMALL, SMALL and BASE no-retrieval model, we can see that adding773

the linear patch does not lead to a better performance on linear probing: with the LAS scores 63.3→ 63.4,774

71.2→ 69.9 and 78.1→ 77.9 (Table 5). The same applies for the average BLiMP results: 73.4→ 73.2,775

10



78.6 → 78.6 and 82.9 → 82.8 (Table 6); as well as for the average MSGS results: −0.55 → −0.57, 776

−0.52→ −0.56 and −0.47→ −0.40 (Table 7). The last result is the only exception, but we believe that 777

it might be caused by the high variation of the MSGS results (as visible in Figure 5). In addition, the 778

trend applied for the world knowledge and language understanding tasks – linear patching does not give 779

a consistent advantage to the ‘no-retrieval’ model. We therefore conclude that the separated language 780

model do not gain an unfair advantage by using linear patching. 781

D Pretraining details 782

We pretrained a number of masked language models on a relatively small dataset of about 400 million 783

words. That is why we follow the optimized LTG-BERT training recipe from Samuel et al. (2023b), that 784

showed to be effective for a low-resource setting. 785

We use WordPiece as the subword tokenizer (Wu et al., 2016) and set its vocabulary size to 16 384, 786

following LTG-BERT. We represent the text as a sequence of UTF-8 bytes instead of Unicode character, 787

as proposed by Radford et al. (2019). 788

The training time is sped up by parallelization over multiple GPUs. The computationally most expensive 789

models are the BASE-sized retrieval-augmented models, these are pretrained on 128 AMD MI250X GPUs 790

for 414 minutes. All the experiments were run on the LUMI supercomputer.6. 791

Hyperparameter X-SMALL / SMALL / BASE

Number of layers 12 / 12 / 12
Hidden size 192 / 384 / 768
FF intermediate size 512 / 1 024 / 2 04
Vocabulary size 16 384
Attention heads 3 / 6 / 12
Dropout 0.1
Attention dropout 0.1
Training steps 15 625
Batch size 32 768
Sequence length 128
Warmup steps 500 (1.6% steps)
Initial learning rate 0.01
Final learning rate 0.001
Learning rate decay cosine
Weight decay 0.1
Layer norm ϵ 1e-7
Optimizer LAMB
LAMB ϵ 1e-6
LAMB β1 0.9
LAMB β2 0.98
Gradient clipping 2.0

Table 2: Pre-training hyperparameters for all three model sizes. The retrival and no-retrieval models use the same
hyperparameters.

6https://www.lumi-supercomputer.eu/sustainable-future/
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E Evaluation details792

E.1 LAMA probing793

We calculate rank-based metrics for all subsets: mean precision at k (P@k) and mean reciprocal rank794

(MRR). For a given statement, we count a fact as correctly predicted if the object is ranked among the top795

k results, and wrong otherwise. As the models are trained on a relatively small corpus in a narrow domain,796

the vocabulary is smaller than a typical language model. To account for this during evaluation, we remove797

all statements where the correct token is not in the models’ vocabularies.798

Both baselines and models trained with retrieval have the same vocabulary, so we do not need to account799

for differences between the two with respect to OOV words. However, as our models are trained only800

on a subset of Wikipedia, the proportion of OOV words with respect to the gold tokens in the LAMA801

probe is significant. We account for this by removing all statements where the correct token is not in the802

models’ vocabularies. Table 3 shows the number of original statements and how many were included in803

the evaluations.804

Dataset # Facts # Facts evaluated on

SQuAD 305 221

ConceptNet 29 774 16 997

TREx 34 039 22 550

Table 3: Statistics about the number of facts in the different subsets of LAMA (Petroni et al., 2019)

P@1 P@10 P@100 MRR P@1 P@10 P@100 MRR P@1 P@10 P@100 MRR

REFERENCE MODEL

bert-base-cased 17.20 44.31 70.59 26.00 21.71 65.15 79.63 34.00 52.55 80.08 92.27 62.00

BASE

− retrieval pretraining (patch) 12.97 37.46 60.15 20.48 21.71 65.15 72.39 31.98 43.31 75.11 88.72 53.84
− retrieval pretraining (no patch) 13.03 36.62 60.06 20.34 21.17 65.15 72.39 32.09 42.82 75.11 88.67 53.62
+ retrieval pretraining (50% noise, patch) 10.80 33.51 56.63 17.74 14.47 43.43 65.15 23.15 37.38 72.92 87.91 49.09
+ retrieval pretraining (25% noise, patch) 11.16 31.72 56.78 18.08 14.47 36.19 72.39 23.44 36.26 72.76 87.15 48.29
+ retrieval pretraining (0% noise, patch) 9.30 27.81 54.71 14.93 7.23 43.43 72.39 15.75 29.62 66.08 85.77 41.51
+ retrieval pretraining (0% noise, no patch) 5.54 19.35 40.99 9.78 7.23 14.47 50.67 10.50 20.41 55.09 79.13 31.42

SMALL

− retrieval pretraining (patch) 10.24 29.89 54.04 16.64 14.47 57.91 72.39 25.59 37.13 68.86 86.36 47.62
− retrieval pretraining (no patch) 10.90 30.42 54.89 17.25 21.71 50.67 79.63 28.29 36.77 69.19 85.97 47.44
+ retrieval pretraining (0% noise, patch) 6.57 22.77 48.51 11.77 7.23 28.95 65.15 15.38 25.71 58.71 81.47 36.31
+ retrieval pretraining (0% noise, no patch) 1.21 5.83 18.52 2.72 0.0 7.23 21.17 3.92 5.58 15.44 34.48 8.88

X-SMALL

− retrieval pretraining (patch) 5.82 21.52 45.03 10.67 7.23 36.19 65.15 14.57 27.44 61.10 83.13 38.48
− retrieval pretraining (no patch) 5.26 21.33 45.60 9.91 7.23 43.43 72.39 14.74 27.92 61.11 83.45 39.17
+ retrieval pretraining (0% noise, patch) 4.3 14.80 37.45 7.47 7.23 14.47 57.91 10.64 14.03 45.12 73.80 23.42
+ retrieval pretraining (0% noise, no patch) 0.0 0.0 1.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Model ConceptNet SQuAD TREx

Table 4: Results on zero-shot evaluation on different subsets of the LAMA probe. MRR is calculated at k = 100.
The bold numbers represent the best model at each size, while the underline is the second best.

E.2 Linear probing805

With linear probing, we are measuring how much information about a downstream task can be extracted806

from the hidden representations with a simple linear transformation. The reasoning is that a model with807

a better syntactic understanding should encode more of the syntactic information in the latent vectors.808

However, note that the results also depend on the accessibility of the syntactic information, because we do809

not use any non-linear transformations. The reason for avoiding non-linearities is that we want to measure810
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the amount of knowledge already stored in the language model, not the knowledge learned by the complex 811

non-linear transformation. 812

In order to parse an input, we first extract subword representations si,k from a frozen language model, for 813

all positions i and layers k. To get a vector representation ht for the tth word-span, we apply two pooling 814

operations on the subword-token representations st,k: first, we pool the vectors at all layers by taking a 815

learned convex combination: 816

ŝt =
L∑

k=1

γkst,k, 817

where γk ∈ R (based on the observation that the syntactic information is present more strongly in some 818

layers (Kondratyuk and Straka, 2019; Rogers et al., 2020), we allow the model to select the most useful 819

combination of layers). Next, since one word-span can be split into multiple subwords, we average the 820

respective subword representation and get the final contextualized representation ht. 821

Finally, to predict the dependency tree, we take a similar approach to Dozat and Manning (2017) and 822

employ a shallow bilinear attention mechanism – without any non-linear activations. The logit of an arc 823

between words at positions i and j is defined as: 824

arci→j = hiUhj + hiuhead + hjudep + b, 825

where U, uhead, udep and b are learnable parameters; the original parameters of the language model remain 826

frozen. Then we apply the Chu-Liu-Edmonds maximum spanning tree algorithm on the directed graph of 827

arc probabilities (Chu and Liu, 1965). The edge-label prediction also follows Dozat and Manning (2017) 828

in a similar manner. 829

We use the gold standard dependency corpus for English (Silveira et al., 2014), specifically its conversion 830

to Universal Dependencies 2.12 (Nivre et al., 2017). 831

Model UAS LAS CLAS

REFERENCE MODEL

bert-base-cased 85.01±0.08 81.96±0.11 77.98±0.16

BASE

− retrieval pretraining (patch) 81.19±0.09 77.90±0.07 73.93±0.11

− retrieval pretraining (no patch) 81.42±0.08 78.06±0.09 74.14±0.11

+ retrieval pretraining (50% noise, patch) 82.95±0.12 79.82±0.10 76.18±0.09

+ retrieval pretraining (25% noise, patch) 83.06±0.08 79.94±0.12 76.46±0.15

+ retrieval pretraining (0% noise, patch) 83.41±0.09 80.25±0.11 76.72±0.17

+ retrieval pretraining (0% noise, no patch) 81.28±0.08 78.07±0.07 74.17±0.14

SMALL

− retrieval pretraining (patch) 73.15±0.02 69.93±0.01 64.63±0.05

− retrieval pretraining (no patch) 74.34±0.09 71.17±0.11 66.03±0.19

+ retrieval pretraining (patch) 74.91±0.07 71.72±0.12 66.40±0.17

+ retrieval pretraining (no patch) 67.86±0.07 64.57±0.09 58.25±0.11

X-SMALL

− retrieval pretraining (patch) 67.24±0.03 63.41±0.05 57.01±0.11

− retrieval pretraining (no patch) 67.13±0.07 63.31±0.07 56.86±0.13

+ retrieval pretraining (patch) 67.46±0.18 63.61±0.13 56.96±0.15

+ retrieval pretraining (no patch) 50.26±0.08 46.23±0.08 40.51±0.18

Table 5: The results of linear probing for dependency parsing. We evaluate the predictions with three standard
metric: the unlabeled attachment score (UAS), the labeled attachment score (LAS) and the content-word labeled
attachment score (CLAS; Nivre and Fang, 2017).The bold numbers represent the best model at each size, while the
underline is the second best.
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layer 1 33.3 33.2 35.6 19.1 17.6 34.3 18.2 26.2 22.6 26.1 33.6 37.8 34.9

layer 2 34.2 33.6 34.3 27.6 18.7 25.1 29.9 34.3 48.0 28.4 8.4 29.2 39.1

layer 3 10.4 32.9 42.2 21.2 26.2 31.2 26.1 22.8 34.9 34.5 29.1 37.0 44.5

layer 4 31.5 11.9 36.8 19.0 27.7 33.3 11.9 19.7 43.3 42.8 32.7 9.0 42.8

layer 5 7.7 31.6 12.2 10.4 15.2 11.4 18.3 34.0 37.1 34.5 20.9 32.8 26.4

layer 6 14.9 20.3 40.4 18.4 31.0 28.2 8.6 15.8 9.8 8.1 41.0 12.6 38.0

layer 7 14.5 18.6 18.9 12.2 8.9 29.1 29.0 31.6 21.7 38.8 33.4 32.0 36.7

layer 8 36.3 20.4 20.4 11.9 31.5 26.2 33.0 13.4 21.8 26.8 29.0 21.7 37.7

layer 9 24.3 16.2 12.7 13.1 18.3 25.1 39.2 22.9 16.1 15.7 9.6 33.2 27.0

layer 10 24.8 15.9 23.5 24.7 16.6 22.4 22.4 9.8 24.8 26.5 13.9 29.9 31.5

layer 11 13.1 25.0 8.5 25.1 10.8 20.1 36.2 9.2 30.4 13.2 13.7 34.6 28.2

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 8.8 15.4 15.1 25.5 9.3 13.4 10.0 8.9 24.5 13.6 14.2 25.4

layer
average

18.9

full
average

36.6

(a) BASE: no retrieval pretraining.

layer 1 22.0 32.6 31.4 23.3 27.2 35.0 29.9 29.7 31.7 24.3 34.1 31.5 35.5

layer 2 34.7 16.3 35.9 39.7 46.0 28.1 41.6 29.0 30.2 8.4 7.6 21.1 40.8

layer 3 47.9 32.8 8.8 34.5 35.3 19.4 10.1 18.1 35.5 39.6 31.9 17.8 45.5

layer 4 51.8 12.2 13.0 25.2 16.8 12.8 31.9 30.1 7.2 38.4 29.8 29.9 41.1

layer 5 35.9 19.7 11.0 38.7 30.2 30.8 26.9 25.5 8.0 12.5 30.4 11.3 39.2

layer 6 7.3 14.8 35.3 27.4 8.0 41.7 27.7 23.5 7.4 13.2 13.0 35.2 35.1

layer 7 19.9 11.6 12.3 36.6 20.2 28.3 36.0 16.0 35.8 32.6 15.0 29.0 37.8

layer 8 14.0 19.9 27.9 31.1 38.5 7.9 36.0 9.7 38.2 38.4 16.5 36.7 42.2

layer 9 23.9 31.5 13.6 23.8 11.6 16.7 39.6 15.8 29.2 34.5 28.9 26.0 39.0

layer 10 12.2 18.6 35.2 33.8 25.9 15.4 41.3 20.0 33.4 25.3 29.9 15.5 40.6

layer 11 28.9 15.0 26.0 34.0 23.7 22.5 31.1 27.6 27.8 28.9 7.2 34.2 37.2

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 24.9 22.3 24.4 6.3 35.6 31.5 35.7 31.6 32.9 20.8 32.1 33.3

layer
average

34.7

full
average

38.7

(b) BASE: retrieval-augmented pretraining.

layer 1 30.6 30.4 32.3 29.7 19.5 35.8 37.0 24.1 31.1 25.4 29.9 24.2 35.4

layer 2 32.2 19.7 38.8 35.4 42.5 41.2 35.7 30.4 35.7 7.9 8.7 22.0 40.7

layer 3 19.9 37.0 16.7 17.2 37.1 25.0 10.3 32.9 34.5 41.5 51.6 28.0 45.8

layer 4 47.1 14.4 18.7 23.3 18.7 33.7 25.3 9.9 7.5 36.4 37.9 27.8 41.6

layer 5 36.1 9.8 8.1 34.7 27.2 26.9 17.0 29.8 18.5 29.5 30.5 11.1 37.2

layer 6 9.3 9.5 33.9 27.9 12.2 17.9 25.7 28.2 23.1 17.9 13.7 35.1 33.6

layer 7 10.8 12.1 13.1 30.1 17.3 26.7 38.0 31.7 28.7 15.5 31.5 32.2 36.9

layer 8 15.5 28.3 16.3 24.1 42.5 9.2 33.1 9.3 37.4 16.8 28.7 36.6 41.2

layer 9 18.3 33.4 14.4 28.3 13.0 35.9 33.8 25.0 26.5 23.1 20.2 22.6 36.4

layer 10 16.1 33.2 35.7 34.7 20.7 21.0 35.8 12.2 10.4 24.5 31.1 33.6 40.0

layer 11 19.9 21.0 33.0 42.2 19.0 31.3 20.0 34.6 22.8 28.3 8.5 31.4 36.5

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 29.2 28.0 32.6 18.7 34.6 24.5 36.1 29.6 35.5 18.8 27.7 35.0

layer
average

35.5

full
average

39.0

(c) BASE: retrieval-augmented pretraining with 25% noise.

layer 1 33.2 30.7 29.8 32.8 17.3 33.3 35.6 28.9 23.2 25.4 33.2 25.6 35.5

layer 2 28.2 20.8 37.1 34.1 39.1 36.0 33.7 29.4 34.3 7.1 10.3 34.0 38.0

layer 3 38.9 24.5 12.8 34.4 32.4 19.9 11.3 29.0 13.8 51.3 31.7 28.4 45.9

layer 4 36.8 18.2 13.9 9.6 25.2 17.0 24.0 10.6 8.1 34.8 44.3 28.2 39.8

layer 5 43.3 9.4 9.7 32.3 24.4 16.1 19.9 40.9 23.5 21.7 37.5 10.0 39.4

layer 6 14.6 11.0 33.3 18.8 16.3 20.4 26.1 23.3 36.0 24.2 11.9 30.1 36.1

layer 7 20.7 14.9 11.9 34.6 11.2 26.7 33.2 24.1 31.3 16.3 8.9 21.8 31.9

layer 8 19.3 13.1 19.0 33.4 43.0 7.4 20.0 11.8 34.3 33.4 35.7 41.4 41.0

layer 9 16.3 29.5 24.2 31.3 11.3 26.3 28.1 17.1 39.2 18.1 19.6 28.0 36.2

layer 10 20.0 23.5 29.3 35.8 16.8 18.4 26.1 10.2 27.0 22.6 9.3 37.8 39.7

layer 11 31.6 22.2 25.9 43.8 17.4 18.8 27.4 30.8 14.1 29.8 20.4 14.4 34.3

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 25.4 23.9 33.1 27.2 23.0 34.6 34.8 25.6 36.4 21.1 29.6 32.0

layer
average

35.6

full
average

39.3

(d) BASE: retrieval-augmented pretraining with 50% noise.

layer 1 31.0 36.0 37.8 23.3 34.1 19.9 34.9

layer 2 9.6 36.6 35.9 48.6 36.4 19.6 38.2

layer 3 38.4 33.2 31.7 27.9 33.4 45.7 40.4

layer 4 39.4 12.3 8.9 34.7 16.9 39.0 38.6

layer 5 36.2 13.9 27.8 48.2 33.9 11.3 36.9

layer 6 14.9 34.7 31.3 49.7 37.5 26.2 46.5

layer 7 36.8 14.6 33.9 34.0 35.1 19.1 35.7

layer 8 18.0 37.7 28.6 23.8 35.5 12.0 35.1

layer 9 36.8 36.1 14.4 27.4 38.8 33.9 38.5

layer 10 28.0 22.7 35.9 30.2 28.9 45.8 45.0

layer 11 28.4 30.2 36.5 45.6 30.2 36.4 38.9

head 1 head 2 head 3 head 4 head 5 head 6

layer 12 19.2 17.2 24.6 35.0 36.0 34.7

layer
average

35.1

full
average

39.6

(e) SMALL: no retrieval pretrain-
ing.

layer 1 32.5 35.8 24.1 31.6 30.0 34.7 35.3

layer 2 8.0 37.8 31.1 31.0 39.5 49.2 45.5

layer 3 14.9 34.7 31.0 34.1 13.2 32.4 35.3

layer 4 9.9 35.2 8.3 15.6 42.0 31.9 38.5

layer 5 18.4 21.6 35.5 17.4 11.2 34.1 31.4

layer 6 10.7 7.8 18.7 25.8 50.4 36.4 39.0

layer 7 36.0 32.2 33.8 36.2 22.6 19.1 38.1

layer 8 30.5 20.0 14.4 21.7 38.6 40.2 38.3

layer 9 33.4 24.5 37.6 36.3 21.8 37.6 37.7

layer 10 41.2 36.0 23.9 32.8 25.5 38.0 39.9

layer 11 35.2 29.0 39.9 28.0 21.2 36.9 35.1

head 1 head 2 head 3 head 4 head 5 head 6

layer 12 25.7 20.1 38.7 28.5 24.5 36.0

layer
average

37.3

full
average

38.2

(f) SMALL: retrieval-augmented
pretraining.

layer 1 30.1 35.8 36.1 35.7

layer 2 38.4 11.0 36.0 33.6

layer 3 43.4 24.4 45.5 41.4

layer 4 45.5 34.4 38.1 38.8

layer 5 11.5 13.9 20.6 16.7

layer 6 35.5 30.9 34.6 39.8

layer 7 17.7 16.3 39.3 25.8

layer 8 19.7 21.5 40.1 29.2

layer 9 26.2 32.9 35.9 36.4

layer 10 39.1 43.5 39.9 43.1

layer 11 13.5 34.6 21.3 32.2

head 1 head 2 head 3

layer 12 27.2 36.2 35.3

layer
average

35.7

full
average

37.8

(g) X-SMALL: no re-
trieval pretraining.

layer 1 33.2 35.9 25.3 34.3

layer 2 46.0 38.4 31.4 41.4

layer 3 39.3 12.4 36.5 35.9

layer 4 8.0 41.9 38.7 36.5

layer 5 14.3 14.8 35.4 23.8

layer 6 37.9 16.9 32.3 33.4

layer 7 36.5 11.9 24.9 33.6

layer 8 33.0 33.7 16.3 30.4

layer 9 41.5 36.4 25.1 37.8

layer 10 49.2 32.7 34.5 47.9

layer 11 36.6 36.0 26.6 36.2

head 1 head 2 head 3

layer 12 36.6 31.7 23.1

layer
average

34.6

full
average

37.2

(h) X-SMALL: retrieval-
augmented pretraining.

Figure 4: The undirected unlabeled attachment scores (UUAS) of attention probing with every head and layer
combination. The plot also shows the UUAS scores of attention matrices averaged across each layer and across the
whole language model.
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E.3 Attention probing 832

We mostly follow Raganato and Tiedemann (2018) and Ravishankar et al. (2021) in their evaluation setup 833

of attention probing. Our goal is to decode dependency trees directly from the attention weights – with 834

the idea that a language model with better syntactic understanding should better utilize the hierarchical 835

syntactic structure in its attention mechanism. 836

First, given a sentence of length T , we pass it through the language model and separately save the attention 837

probabilities Aℓ,h ∈ RT×T for every layer ℓ and attention head h. To get elements that correspond to 838

the surface words (not the tokenized subwords), we remove the rows and columns that correspond to 839

the special [CLS] and [SEP] tokens, and we take the sum of the columns and the mean of the rows 840

that correspond to one word split into multiple subwords. Then we make the attention matrix symmetric 841

by multiplying it element-wise with its transpose: Aℓ,h ← Aℓ,h ·A⊺
ℓ,h. Finally, we interpret Aℓ,h as the 842

weighted adjacency matrix of a fully-connected undirected graph and extract the dependency tree by 843

finding the maximum spanning tree of that graph (Borůvka, 1926). The fitness the decoded graph is then 844

measured via the undirected unlabeled attachment score (UUAS; Htut et al., 2019). 845

As per Ravishankar et al. (2021), we report the best head score as the primary metric in Table 1. However, 846

fine-grained results for all heads are given in Figure 4. 847

E.4 BLiMP 848

The Benchmark of Linguistic Minimal Pairs for English (Warstadt et al., 2020a) attempts to measure the 849

linguistic knowledge of a language model in a zero-shot manner – without any additional training. It 850

consists of 67 tasks, each focuses on a specific linguistic feature, which is tested with 1 000 automatically 851

generated sentence pairs. Each pair of sentences differs minimally on the surface level, but only one of the 852

sentences is grammatically valid. The tasks are clustered into the following subgroups, with descriptions 853

taken from Warstadt et al. (2020a): 854

• ANAPHOR AGREEMENT (AA): the requirement that reflexive pronouns like herself (also known as 855

anaphora) agree with their antecedents in person, number, gender, and animacy. 856

• ARGUMENT STRUCTURE (AS): the ability of different verbs to appear with different types of 857

arguments. For instance, different verbs can appear with a direct object, participate in the causative 858

alternation, or take an inanimate argument. 859

• BINDING (B): the structural relationship between a pronoun and its antecedent. 860

• CONTROL/RAISING (CR): syntactic and semantic differences between various types of predicates 861

that embed an infinitival VP. This includes control, raising, and tough-movement predicates. 862

• DETERMINER-NOUN AGREEMENT (DNA): number agreement between demonstrative determiners 863

(e.g., this/these) and the associated noun. 864

• ELLIPSIS (E): the possibility of omitting expressions from a sentence. Because this is difficult to 865

illustrate with sentences of equal length, our paradigms cover only special cases of noun phrase 866

ellipsis that meet this constraint. 867

• FILLER-GAP (FG): dependencies arising from phrasal movement in, for example, wh-questions. 868

• IRREGULAR FORMS (IF): irregular morphology on English past participles (e.g., awoken). 869

• ISLAND EFFECTS (IE): restrictions on syntactic environments where the gap in a filler-gap depen- 870

dency may occur. 871
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• NPI LICENSING (NL): restrictions on the distribution of negative polarity items like any and ever872

limited to, for example, the scope of negation and only.873

• QUANTIFIERS (Q): restrictions on the distribution of quantifiers. Two such restrictions are covered:874

superlative quantifiers (e.g., at least) cannot be embedded under negation, and definite quantifiers875

and determiners cannot be subjects in existential-there constructions.876

• SUBJECT-VERB AGREEMENT (SVA): subjects and present tense verbs must agree in number.877

We use the intrinsic ability of language models to estimate the probability of any text segment, and878

measure how often the evaluated language model assigns a higher probability to the grammatically correct879

sentence. Specifically we employ the pseudo-log-likelihood score by Wang and Cho (2019) and Salazar880

et al. (2020) to rank the sentences with a masked language model. We also follow the observation by881

Samuel (2023, Appendix A) that the results on BLiMP greatly depend on temperature scaling – to do882

a fair comparison between different types of language models, they proposed to search for the optimal883

temperature value for each evaluated model.884

Table 6 shows the detailed results of each model for each subgroup mentioned above. At all sizes, we885

observe that retrieval pre-trained models perform better with quantifiers and binding.886

Model AS Q IF FGD IE AA NL SVA E B CR DNA Average

REFERENCE MODEL

bert-base-cased 86.22 60.80 97.95 87.49 71.79 97.45 86.50 94.53 89.80 82.20 85.58 97.56 85.56

BASE

− retrieval pretraining (patch) 81.97 65.85 95.35 86.50 65.86 97.90 84.77 94.57 91.75 72.77 79.52 96.76 82.77
− retrieval pretraining (no patch) 82.14 65.90 95.50 86.59 66.39 97.85 84.89 94.17 91.65 73.10 79.26 96.85 82.87
+ retrieval pretraining (50% noise, patch) 81.26 62.25 94.40 85.84 63.76 98.40 80.49 93.57 89.40 70.40 79.80 96.94 81.31
+ retrieval pretraining (25% noise, patch) 82.67 65.33 94.30 87.33 68.73 98.10 82.97 93.38 89.20 69.63 81.72 97.09 82.74
+ retrieval pretraining (0% noise, patch) 82.99 68.70 95.65 87.81 67.70 96.50 83.11 95.35 90.45 69.33 81.68 97.55 83.15
+ retrieval pretraining (0% noise, no patch) 79.28 68.45 90.25 86.89 66.03 92.30 74.10 89.22 88.70 74.20 79.88 95.78 80.67

SMALL

− retrieval pretraining (patch) 78.99 64.08 94.50 80.71 57.91 96.75 74.87 91.78 89.35 68.03 77.86 95.95 78.58
− retrieval pretraining (no patch) 79.50 62.50 92.70 82.41 57.73 97.35 75.60 90.80 88.05 67.84 77.62 95.94 78.58
+ retrieval pretraining (0% noise, patch) 76.71 62.88 93.45 80.99 56.00 92.75 80.04 91.07 90.90 71.41 78.94 95.75 78.78
+ retrieval pretraining (0% noise, no patch) 69.87 68.70 89.50 74.66 49.51 89.75 75.77 83.28 85.00 75.27 72.08 92.70 74.77

X-SMALL

− retrieval pretraining (patch) 71.22 65.58 93.25 71.36 46.58 93.70 70.00 87.75 86.75 68.03 69.48 92.54 73.18
− retrieval pretraining (no patch) 72.17 64.60 94.30 70.96 44.95 93.75 70.19 88.45 85.80 69.04 70.26 93.34 73.36
+ retrieval pretraining (0% noise, patch) 72.22 64.08 90.10 74.30 51.15 87.20 68.96 84.15 85.45 69.43 68.66 91.74 73.31
+ retrieval pretraining (0% noise, no patch) 58.82 68.85 52.90 56.86 51.41 75.00 50.50 63.30 36.95 66.00 61.38 61.75 58.81

Table 6: Fine-grained BLiMP results. AS = argument structure, Q = quantifiers, IF = irregular forms, FGD = filler
gap dependency, IE = island effects, AA = anaphor agreement, NL = NPI licensing, SVA = subject-verb agreement,
E = ellipsis, B = binding, CR = control raising and DNA = determiner-noun agreement. The bold numbers represent
the best model at each size, while the underline is the second best.

E.5 MSGS887

The MSGS benchmark (Warstadt et al., 2020b) evaluates whether the model biases linguistic features888

or surface features. A score of 1 means only using the linguistic features, while a score of -1 is surface889

features only. To evaluate the performance we use the Mathews Correlation Coefficient (MCC), also called890

Linguistic Bias Score (LBS). The surface features in this dataset are (definitions taken from Warstadt et al.891

(2020b)):892

• ABSOLUTE TOKEN POSITION (ATP): This feature is 1 iff the is the first token of the sentence.893

• LENGTH (L): This feature is 1 iff the sentence contains more than n (3) words.894
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• LEXICAL CONTENT (LCT): This feature is 1 iff the sentence contains the. 895

• RELATIVE TOKEN POSITION (RTP): This feature is 1 when the precedes a, and 0 when a precedes 896

the. 897

• ORTHOGRAPHY (TC): This feature is 1 iff the sentence is in title case. 898

The linguistic features are (definitions taken from Warstadt et al. (2020b)): 899

• SYNTACTIC CONSTRUCTION (CR): This feature has value 1 iff the sentence contains the control 900

construction. 901

• MORPHOLOGY (IF): This feature is 1 iff the sentence contains an irregular verb in the past tense. 902

• SYNTACTIC POSITION (MV): This feature is 1 iff the sentence’s main verb is in the -ing form. 903

• SYNTACTIC CATEGORY (SC): This feature is 1 iff the sentence contains an adjective. 904

For every model, we run five different seeds: 34, 42, 74, 2395, and 10801 at four different learning rates: 905

1e-5, 3e-5, 5e-5, 1e-4. Figure 5 shows the distribution of all our runs for the base models from Table 1. 906

Table 7 shows the LBS results over each feature. From this table, we see that our retrieval pre-trained 907

models are better at biasing the morphology feature and biasing less the lexical content feature while 908

biasing more the length feature compared to the regular pretrained models. In general, the length task is 909

the hardest surface task to detect while morphology is the easiest linguistic task to detect. 910

Model ATP L LCT RTP TC CR IF MV SC Average

REFERENCE MODEL

bert-base-cased -0.55 0.66 0.28 0.05 -0.95 -0.36 0.31 -0.19 -0.17 -0.10

BASE

− retrieval pretraining (patch) -0.96 0.70 -0.37 -0.40 -1.00 -0.62 -0.06 -0.59 -0.35 -0.40
− retrieval pretraining (no patch) -0.95 0.68 -0.63 -0.30 -1.00 -0.62 -0.20 -0.57 -0.46 -0.47
+ retrieval pretraining (50% noise, patch) -1.00 0.65 -0.42 -0.07 -1.00 -0.52 -0.21 -0.24 -0.50 -0.37
+ retrieval pretraining (25% noise, patch) -1.00 0.64 -0.30 -0.25 -1.00 -0.58 -0.09 -0.36 -0.51 -0.38
+ retrieval pretraining (0% noise, patch) -1.00 0.65 -0.30 -0.19 -1.00 -0.58 0.06 -0.49 -0.47 -0.37
+ retrieval pretraining (0% noise, no patch) -1.00 0.57 -0.88 -0.30 -1.00 -0.56 -0.29 -0.57 -0.67 -0.52

[0.5em] SMALL

− retrieval pretraining (patch) -1.00 0.56 -0.81 -0.53 -1.00 -0.59 -0.29 -0.62 -0.73 -0.56
− retrieval pretraining (no patch) -1.00 0.59 -0.77 -0.43 -1.00 -0.56 -0.31 -0.62 -0.60 -0.52
+ retrieval pretraining (0% noise, patch) -1.00 0.54 -0.75 -0.43 -1.00 -0.60 -0.22 -0.63 -0.66 -0.53
+ retrieval pretraining (0% noise, no patch) -1.00 0.54 -0.66 -0.44 -1.00 -0.59 -0.14 -0.64 -0.64 -0.50

[0.5em] X-SMALL

− retrieval pretraining (patch) -1.00 0.36 -0.73 -0.45 -1.00 -0.60 -0.28 -0.67 -0.71 -0.57
− retrieval pretraining (no patch) -1.00 0.44 -0.79 -0.42 -1.00 -0.60 -0.30 -0.64 -0.69 -0.55
+ retrieval pretraining (0% noise, patch) -1.00 0.33 -0.76 -0.44 -1.00 -0.58 -0.32 -0.71 -0.69 -0.57
+ retrieval pretraining (0% noise, no patch) -1.00 0.22 -0.69 -0.47 -1.00 -0.56 -0.24 -0.81 -0.74 -0.59

SURFACE FEATURES LINGUISTICS FEATURES

Table 7: Fine-grained MSGS results. ATP = Absolute Token Position, L = Length, LCT = Lexical Content, RTP
= Relative Token Position, TC = Orthography, CR = Syntactic Construction, IF = Morphology, MV = Syntactic
Position, and SC = Syntactic Category. The bold numbers represent the best model at each size, while the underline
is the second best.
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Figure 5: The dots in each sub-plot represent the LBS score of each run of each model. Each model has 20 different
runs for each combination of surface and linguistic features. NR = Model pre-trained without retrieval, R50 = Model
pre-trained with 50% noisy retrieval, R25 = Model pre-trained with 25% noisy retrieval, R = Model pre-trained with
0% noisy retrieval

E.6 LAMBADA911

LAMBADA is a zero-shot language modeling tasks that focuses on resolving long-range dependencies in912

text (Paperno et al., 2016); we used its detokenized version from Radford et al. (2019). While it has been913

traditionally used for evaluating autoregressive language models, we adapt the task for masked language914

models. Note that this adaptation does not allow for a direct comparison with the autoregressive models.915

An illustrative sample from this dataset looks as follows:916

Prompt: "Give me a minute to change and I’ll meet you at the docks." She’d forced those words through917

her teeth. "No need to change. We won’t be that long." Shane gripped her arm and started leading her to918

the dock. "I can make it there on my own, {answer}."919

Gold answer: Shane920

We insert the whole tokenized prompt to the evaluated language model and replace the missing answer by921

k mask tokens, where k is the length of the tokenized gold answer. Then we evaluate the exact-match922

accuracy of predicting filling in the correct continuation and also the mean perplexity.923
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Model Accuracy Perplexity

REFERENCE MODEL

bert-base-cased 44.77 26.95

BASE

− retrieval pretraining (patch) 47.00 17.60
− retrieval pretraining (no patch) 46.09 18.56
+ retrieval pretraining (50% noise, patch) 43.22 24.40
+ retrieval pretraining (25% noise, patch) 40.58 29.62
+ retrieval pretraining (0% noise, patch) 37.59 39.84
+ retrieval pretraining (0% noise, no patch) 22.63 141.62

SMALL

− retrieval pretraining (patch) 35.11 44.81
− retrieval pretraining (no patch) 35.84 41.25
+ retrieval pretraining (0% noise, patch) 26.24 135.94
+ retrieval pretraining (0% noise, no patch) 0.43 37183.08

X-SMALL

− retrieval pretraining (patch) 25.42 133.44
− retrieval pretraining (no patch) 25.33 137.73
+ retrieval pretraining (0% noise, patch) 19.33 329.90
+ retrieval pretraining (0% noise, no patch) 0.00 1.88× 1011

Table 8: Fine-grained LAMBADA results. The bold numbers represent the best model at each size, while the
underline is the second best.

E.7 GLUE 924

To judge one of the facets of language understanding we use most of the GLUE benchmark (Wang et al., 925

2019). The benchmark is composed of the following tasks: 926

• Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019) evaluated with the Matthews 927

correlation coefficient (MCC; Matthews, 1975). 928

• The Stanford Sentiment Treebank (SST-2; Socher et al., 2013), evaluated with accuracy. 929

• The Microsoft Research Paraphrase Corpus (MRPC; Dolan and Brockett, 2005), evaluated with 930

both F1-score (originally also evaluated with accuracy). 931

• The Quora Question Pairs (QQP),7 evaluated with F1-score (originally evaluated with accuracy). 932

• The Multi-Genre Natural Language Inference Corpus (MNLI; Williams et al., 2018). Its devel- 933

opment set consists of two parts: matched, sampled from the same data source as the training set, 934

and mismatched, which is sampled from a different domain. Both parts are evaluated with accuracy. 935

• Question-answering Natural Language Inference (QNLI) constructed from the Stanford Question 936

Answering Dataset (SQuAD; Rajpurkar et al., 2016), evaluated with accuracy. 937

• The Recognizing Textual Entailment datasets (RTE; Dagan et al., 2006; Bar-Haim et al., 2006; 938

Giampiccolo et al., 2007; Bentivogli et al., 2009), evaluated with accuracy. 939

• The Semantic Textual Similarity Benchmark (STS-B; Cer et al., 2017) is a collection of sentence 940

pairs drawn from news headlines, video and image captions, and natural language inference data. 941

Each pair is human-annotated with a similarity score from 1 to 5; the task is to predict these scores. 942

We evaluate using Pearson and Spearman correlation coefficients. 943

• Winograd Schema Challenge (WSC; Levesque et al., 2011) evaluated with accuracy. 944

7https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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We omit the Winograd Schema Challenge due to the lack of training and test data leading to all our models945

underperforming compared to the majority label.946

Table 9 shows the detailed results of each of the GLUE tasks. We see that independent of model size, the947

retrieval pre-trained models perform better on the CoLA dataset, although the difference between the948

models shrinks as the model size grows. In addition, we see inversions in the MNLI, RTE and STS-B949

tasks with the XS model performing better, the Small model on par and the Base model performing worse.950

We did an extensive hyperparameter search for the retrieval pre-trained patched base and xs models as951

well as the regular pre-trained base and xs models. For the small version, we limited our learning rates to952

be in between those of the base and xs models. For the noisy versions, we combined the hyperparameters953

of the retrieval and regular pre-trained model and divided them by the amount of noise. In other words,954

the values of the learning rate for 25% noise are 25% of the way from the retrieval parameters going to955

the regular parameters, while keeping the batch size and warmup ratio the same as the retrieval version956

(although we made a mistake and did the opposite but to save compute, we have not re-run them correctly).957

For the 50% noise, we took the half-point values for all three hyperparameters. Finally, we used the958

hyperparameters of the base regular pre-trained models for BERT-BASE-CASED. The detailed list of the959

hyperparameters can be found in Table 10.960

Model CoLA SST-2 MRPC QQP MNLI MNLI-mm QNLI RTE STS-B Average

REFERENCE MODEL

bert-base-cased 57.4±0.6 91.3±0.5 89.2±0.6 87.2±0.2 82.5±0.3 82.9±0.3 89.2±0.2 63.9±3.5 88.9±0.6/88.5±0.7 82.1±1.2

BASE

− retrieval pretraining (patch) 51.9±1.1 91.8±0.9 90.5±0.4 88.2±0.1 84.2±0.2 84.4±0.3 91.4±0.3 62.1±3.8 87.9±0.3/87.7±0.3 82.0±1.3

− retrieval pretraining (no patch) 51.9±1.5 91.3±0.5 90.6±0.5 88.2±0.2 84.4±0.1 84.4±0.2 91.5±0.2 64.4±3.9 87.8±0.4/87.6±0.4 82.2±1.4

+ retrieval pretraining (50% noise, patch) 51.7±1.5 91.2±0.9 90.3±0.9 88.0±0.1 83.9±0.1 83.9±0.1 91.3±0.1 64.9±3.5 87.7±0.3/87.5±0.3 82.0±1.3

+ retrieval pretraining (25% noise, patch) 51.8±0.5 91.4±0.2 90.6±0.6 87.9±0.1 83.9±0.3 83.8±0.2 91.1±0.1 63.5±1.4 87.7±0.4/87.4±0.4 81.9±0.6

+ retrieval pretraining (0% noise, patch) 51.4±1.8 91.3±0.8 90.1±1.2 87.8±0.2 83.3±0.1 83.4±0.2 90.2±0.3 61.1±3.6 86.8±0.3/86.6±0.3 81.2±1.4

+ retrieval pretraining (0% noise, no patch) 53.1±0.4 90.6±0.4 88.0±1.0 87.8±0.1 83.2±0.2 83.4±0.3 89.5±0.2 55.8±1.7 86.5±0.3/86.1±0.3 80.4±0.7

SMALL

− retrieval pretraining (patch) 35.3±1.8 89.1±0.8 88.3±1.2 86.6±0.1 81.7±0.2 82.0±0.3 89.4±0.5 53.4±3.3 84.2±0.5/83.8±0.5 77.4±1.3

− retrieval pretraining (no patch) 37.5±2.8 89.8±0.5 88.4±0.7 86.9±0.1 82.0±0.1 82.6±0.1 89.5±0.3 53.3±2.3 85.1±0.5/84.7±0.5 78.0±1.2

+ retrieval pretraining (0% noise, patch) 40.4±2.1 90.6±0.5 88.3±1.2 86.6±0.1 81.8±0.2 82.0±0.2 89.0±0.3 55.8±1.4 85.1±0.4/84.7±0.4 78.5±0.9

+ retrieval pretraining (0% noise, no patch) 40.9±1.8 89.7±0.4 86.5±0.6 86.5±0.2 81.5±0.3 81.9±0.3 87.8±0.4 53.4±2.0 84.4±0.5/84.1±0.4 77.7±0.9

X-SMALL

− retrieval pretraining (patch) 25.5±1.5 88.1±0.5 88.3±0.7 84.6±0.2 78.3±0.2 79.3±0.2 86.4±0.2 51.1±4.7 82.4±0.5/82.0±0.5 74.6±1.6

− retrieval pretraining (no patch) 25.0±3.7 88.6±0.4 88.7±0.9 85.0±0.1 78.8±0.3 79.7±0.1 86.9±0.4 54.1±1.4 82.8±0.2/82.3±0.2 75.2±1.3

+ retrieval pretraining (0% noise, patch) 32.7±2.4 88.6±0.7 87.3±1.0 84.9±0.1 79.6±0.3 80.0±0.3 86.8±0.2 55.4±2.2 82.5±0.7/82.3±0.7 76.0±1.1

+ retrieval pretraining (0% noise, no patch) 25.4±2.2 89.0±0.6 85.0±1.0 84.7±0.2 79.5±0.1 80.2±0.2 85.2±0.5 52.0±3.3 82.9±0.4/82.7±0.4 74.6±1.3

Table 9: Fine-grained GLUE results. The CoLA metric is MCC, the F1-score is used for MRPC and QQP, and the
other tasks are evaluated with accuracy. Reported are the mean results and standard deviation from 5 seeded runs.
The bold numbers represent the best model at each size, while the underline is the second best.

20



Hyperparameter CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

SHARED

Epochs 10 10 10 4 4 10 10 10
Weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Learning Rate Scheduler linear linear linear linear linear linear linear linear
Attention Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Classifier Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Adam Epsilon 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

BASE − RETRIEVAL & REFERENCE MODEL

Learning rate 2e-5 2e-5 5e-5 5e-5 5e-5 5e-5 1e-4 1.2e-4
Batch size 16 16 16 16 16 16 32 32
Warmup Ratio 0.1 0.06 0.1 0.06 0.1 0.06 0.06 0.1

BASE + RETRIEVAL(50% NOISE)
Learning rate 3.5e-5 2e-5 7.5e-5 5e-5 5e-5 3.5e-5 1e-4 1.35e-4
Batch size 24 16 24 16 24 16 32 24
Warmup Ratio 0.08 0.06 0.1 0.08 0.1 0.08 0.06 0.1

BASE + RETRIEVAL (25% NOISE)
Learning rate 2.75e-5 2e-5 6.25e-5 5e-5 5e-5 4.25e-5 1e-4 1.275e-4
Batch size 16 16 16 16 16 16 32 32
Warmup Ratio 0.1 0.06 0.1 0.06 0.1 0.06 0.06 0.1

BASE + RETRIEVAL

Learning rate 5e-5 2e-5 1e-4 5e-5 5e-5 2e-5 1e-4 1.5e-4
Batch size 32 16 32 16 32 16 32 16
Warmup Ratio 0.06 0.06 0.1 0.1 0.1 0.1 0.06 0.1

SMALL − RETRIEVAL

Learning rate 1.5e-4 2e-4 1e-4 1.5e-4 1e-4 5e-5 1e-4 1.8e-4
Batch size 32 32 8 32 32 16 8 8
Warmup Ratio 0.03 0.1 0.1 0.06 0.1 0.06 0.03 0.06

SMALL + RETRIEVAL

Learning rate 1e-4 1e-4 1.25e-4 1e-4 1e-4 3e-5 1.25e-4 2e-4
Batch size 32 32 16 16 32 16 16 32
Warmup Ratio 0.03 0.06 0.06 0.06 0.06 0.06 0.06 0.12

XS − RETRIEVAL

Learning rate 1.5e-4 2e-4 1e-4 1.5e-4 2e-4 5e-5 5e-5 2e-4
Batch size 16 16 32 16 32 16 8 8
Warmup Ratio 0.1 0.1 0.06 0.1 0.15 0.06 0.06 0.03

XS + RETRIEVAL

Learning rate 1e-4 2.8e-4 1.5e-4 2.2e-4 1.8e-4 5e-5 1.5e-4 2e-4
Batch size 8 32 16 32 32 16 16 32
Warmup Ratio 0.12 0.1 0.06 0.06 0.1 0.1 0.06 0.06

Table 10: Fine-tuning hyperparameter details of GLUE, these are the optimal values found by the grid search
described in Appendix E.7.
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E.8 SQuAD961

SQuAD is an extractive question answering dataset with 107,785 question-answer pairs. The task is to962

answer questions by providing the span of the correct answer string from a provided passage that is known963

to answer the question. We finetune all models over three epochs, using a learning rate of 5e− 5, a batch964

size of 16, and a weight decay of 0.01. Models are evaluated on the original development set, with no965

additional data used. We report the percentage of token-level exact matches (EM) and F1-score. The full966

set of results can be seen in Table 11.967

We observe that retrieval impairs performance for all model sizes. For the base versions, the absolute968

performance decrease follow the amount of retrieved documents given to the model, showing that the969

closer one gets to a "perfect" set of retrieved documents, the worse the language model performs on the970

task of extractive QA. Furthermore, we observe that the addition of our patched linear layer has little971

effect on SQuAD for all model sizes, which we hypothesize is due to the size of the dataset; with over972

100k examples, finetuning allows the model to fully "recover", making the patch obsolete.973

Model Exact Match F1 score

REFERENCE MODEL

bert-base-cased 80.6±0.2 88.4±0.3

BASE

− retrieval pretraining (patch) 84.6±0.2 91.3±0.1

− retrieval pretraining (no patch) 84.4±0.4 91.2±0.2

+ retrieval pretraining (50% noise, patch) 83.9±0.1 90.7±0.2

+ retrieval pretraining (25% noise, patch) 83.3±0.5 90.2±0.2

+ retrieval pretraining (0% noise, patch) 82.8±0.1 89.7±0.2

+ retrieval pretraining (0% noise, no patch) 82.2±0.1 89.7±0.2

SMALL

− retrieval pretraining (patch) 81.5±0.2 88.6±0.2

− retrieval pretraining (no patch) 81.7±0.3 88.6±0.2

+ retrieval pretraining (0% noise, patch) 78.9±0.1 86.3±0.2

+ retrieval pretraining (0% noise, no patch) 78.9±0.1 86.2±0.2

X-SMALL

− retrieval pretraining (patch) 73.5±0.2 81.8±0.2

− retrieval pretraining (no patch) 73.6±0.3 81.8±0.2

+ retrieval pretraining (0% noise, patch) 69.9±0.2 78.7±0.1

+ retrieval pretraining (0% noise, no patch) 70.0±0.2 78.7±0.1

Table 11: Results on SQuAD 1.1. Results are reported as the mean and standard deviation over three random seeds.
The bold numbers represent the best model at each size, while the underline is the second best.
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