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Abstract: Offline imitation learning (IL) is a powerful method to solve decision-
making problems from expert demonstrations without reward labels. Existing
offline IL. methods suffer from severe performance degeneration under limited
expert data. Including a learned dynamics model can potentially improve the
state-action space coverage of expert data, however, it also faces challenging is-
sues like model approximation/generalization errors and suboptimality of rollout
data. In this paper, we propose the Discriminator-guided Model-based offline
Imitation Learning (DMIL) framework, which introduces a discriminator to simul-
taneously distinguish the dynamics correctness and suboptimality of model rollout
data against real expert demonstrations. DMIL adopts a novel cooperative-yet-
adversarial learning strategy, which uses the discriminator to guide and couple the
learning process of the policy and dynamics model, resulting in improved model
performance and robustness. Our framework can also be extended to the case when
demonstrations contain a large proportion of suboptimal data. Experimental results
show that DMIL and its extension achieve superior performance and robustness
compared to state-of-the-art offline IL methods under small datasets.
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1 Introduction

Offline imitation learning (IL) that trains a policy from expert demonstrations without additional
online environment interactions has become an attractive solution for many real-world decision-
making applications, such as robotic manipulation [1] and autonomous driving [2, 3], etc. It bypasses
several major obstacles in practice, such as the difficult reward function design [4] as in reinforcement
learning (RL) approaches, and the requirement of simulation or real-world system interactions during
model training as in online IL methods [5, 6, 7, 8, 9], which can be costly or dangerous.

Despite these desirable features, the performance of offline IL methods heavily depends on the size
and quality of demonstration data. Due to its supervised learning nature, learning an IL policy in
parts of the state space not covered by expert data could make arbitrary mistakes, which leads to
severe compounding errors. This phenomenon, called covariate shift [10, 11, 12], is a core issue in
IL and greatly hurts the policy generalization capability. In practice, collecting a large number of
expert demonstrations can be costly or infeasible. The reduction in data size coupled with the narrow
expert data distribution can lead to limited state space coverage, causing poor policy performance. On
the other hand, involving non-expert suboptimal offline demonstration data although can potentially
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Figure 1: Empirical observations on the impacts of involving dynamics model rollouts in BC. (a)-(d) TSNE
visualizations of expert data and dynamics model rollouts under different BC policies on MuJoCO Hopper task
with only 20,000 expert data transitions (2% of the D4RL [29] Hopper-expert dataset). The good policy and
dynamics model are two-layer MLPs with 256 hidden units, and are trained until convergence. The bad policy
and model are trained with fewer steps, and the hidden layers of the latter are reduced to 128 units. It can be
observed that model rollouts under well-learned policy and dynamics model align well with the expert data,
while noticeable discrepancies are observed when the policy or the model is problematic. (e) shows the final
performance of BC policy trained with 1:1 expert and model rollout data under the four cases in (a)-(d). It is
found that under small expert datasets, including a dynamics model in many cases is beneficial, but the quality
of rollout policy and dynamics model could have great impact on the final policy performance.

improve state-action space coverage, is shown in previous studies [13, 14] to result in reduced
performance in traditional offline IL methods like behavior cloning (BC) [2]. Many of these problems
can be alleviated in the online IL setting, either by interactively querying an expert to collect more
data [5, 15, 16], or by resorting to inverse reinforcement learning (IRL) to learn a rewards function or
match the state-action distribution induced by the expert policy [6, 8, 9, 17]. However, such treatments
do not apply to the offline setting, since additional environment interaction is not possible. Moreover,
utilizing additional suboptimal offline data through offline IRL approaches [13, 18] also shows inferior
performance compared with online IRL counterpart methods, due to the involvement of offline RL
sub-problems that is prone to training instability and bootstrapping error accumulation [19, 20].
Hence, the ability to leverage limited expert data for robust policy learning remains to be a key
challenge for the successful real-world deployment of offline IL. methods.

The sample efficiency requirement for offline IL. methods reminds us of the success of model-based
approaches in the online and offline RL domains [21, 22, 23, 24, 25]. Dynamics models learned
from the data can greatly supplement the limited expert data to improve state-action space coverage,
leading to potentially improved policy performance and generalizability [22, 25, 26, 27]. However,
adopting a model-based approach in offline IL is still an underexplored area [26, 27, 28]. Many
existing methods bear some limitations, such as requiring an additional suboptimal dataset [26] or a
low-fidelity simulator [28] for training, or fully trusting the learned dynamics model [27]. The key
challenges of introducing a learned dynamics model in IL policy learning is twofold (see Figure 1 for
an empirical illustration): 1) the learned dynamics model has approximation/generalization errors,
directly using model rollouts for imitation learning can be problematic; 2) using the learned policy as
the rollout policy may generate suboptimal data, causing performance degeneration that similar to
the case of learning with suboptimal data in IL [13, 20]. In model-based RL, the second problem is
less severe, as the reward function can be used to distinguish the optimality of data. However, this is
typically not possible in IL settings.

In this work, we develop a novel model-based offline IL framework to tackle the above challenges. We
introduce a discriminator to simultaneously distinguish the dynamics discrepancy and suboptimality of
the model rollout data against the real expert demonstrations. This gives rise to a special cooperative-
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Figure 2: Illustration of the proposed model-based offline IL framework DMIL and its extension D2MIL

yet-adversarial “three-party game”. Both the dynamics model and the policy provide information
as inputs to the discriminator, while also challenging it to establish worst-case error minimization.
Under this design, the discriminator can use more information to make better judgment on the
dynamics correctness and optimality of the rollout data, and the worst-case optimization scheme also
substantially improves the robustness of all three models (policy, dynamics model and discriminator).
Interestingly, we can show that this design leads to new IL policy and dynamics model learning
objectives, where the outputs of the discriminator sever as weights in their original loss functions.
Moreover, the resulting algorithm can be efficiently solved in a simple supervised learning manner,
which avoids explicitly solving the complex min-max optimization problems as in adversarial
learning [30, 31]. We thus term our algorithm Discriminator-guided Model-based Imitation Learning
(DMIL). Our proposed framework can also be extended to the offline IL setting that involves limited
expert and a larger proportion of unknown quality, potentially suboptimal data [13, 20]. This can be
achieved by simply introducing the second discriminator to contrast the expert and suboptimal data,
which we refer this variant as Dual-Discriminator guided Model-based Imitation Learning (D2MIL).
Through extensive experiments on D4RL benchmarks [29] and real-world robotic tasks, we show that
both DMIL and D2MIL achieve superior performance and robustness against state-of-the-art methods
under small datasets. These promising results demonstrate the potential of adopting model-based
learning in real-world offline IL applications under limited expert demonstrations.

2 Method

2.1 Problem Setting

We consider the fully observed Markov Decision Process (MDP) setting, which can be described as
M = (S, A, P,dg,r,7), where S and A are the state and action space, respectively, P(s’|s, a) is the
transition probability, do(s) is the initial state distribution, (s, a) is the reward function, and y € [0, 1]
is the discount factor. Under offline IL setting, we have an expert dataset D, = {(s;,ai, s,)} Y,
collected from some expert policy 7. Our goal is to learn a policy 7(a|s) to minimize its gap with
the expert policy .. In the simplest case, behavior cloning (BC) trains the policy by minimizing the
negative log-likelihood of the observed expert actions:

mﬂin Ly :=E(sa)~p, [~ log(als)] S

2.2 Discriminator-Guided Model-Based Imitation Learning (DMIL)

Traditional offline IL methods like BC suffer greatly from covariate shift under small expert datasets
due to extremely sparse state space coverage of data. Our idea is to mitigate this issue by involving
dynamics model rollouts while also carefully handling these potentially problematic data through the
guidance of an additional discriminator in a coupled and cooperative-yet-adversarial learning process.
Figure 2 provides an illustration of the proposed DMIL framework as well as its extension D2MIL.

Incorporating the Dynamics Model. Model-based approaches have been widely adopted in RL to
improve sample efficiency and shows good performance and generalization ability in recent offline



RL studies [22, 24, 25]. In our work, we introduce a probabilistic dynamics model implemented
using a neural network that outputs a Gaussian distribution over the difference between the current
and next state, i.e., f(s'[s,a) = N (s + g, (s,a), Yo, (s,a)), where 119, (s,a) and g, (s, a) are the
parameterized mean and diagonal covariance matrix. We predict the difference of states rather than
the next states as it has been shown in past studies [21, 22] to yield better dynamics predictions. The
dynamics model can be learned using the following maximum log-likelihood objective:

m}n ﬁf = E(s,a,s’)~Dg[_ log f(b/|b7a)] (2)

Cooperative-yet-Adversarial Learning Scheme. Directly using the rollout data D,. generated by
the learned BC policy 7 and dynamics model f in subsequent imitation learning can be problematic.
Under small datasets, it is usually difficult to obtain an accurate dynamics model, and the rollouts
from a less-well learned policy can be suboptimal compare with the true expert data. To solve this
issue, we use a discriminator d to measure dynamics discrepancy and suboptimality in rollout data
D,.. Moreover, we introduce a special cooperative-yet-adversarial learning scheme, and use the
discriminator as a bridge to couple the learning process of 7, f and d. The key idea is to first include
the element-wise loss information from both policy 7 and dynamics model f (i.e., log 7 and log f)
into the input of the discriminator (i.e., d(s, a,logm(a|s),log f(s'|s,a))) to establish cooperative
information sharing. And then make 7 and f challenge d to establish adversarial learning. This leads
to a special learning objective for the discriminator d, which can be expressed as:

minmax L4:= E  [—logd(s,a,logm(a|s),log f(s'|s,a))]+
d w,f (s,a,s")~D, 3)
E [~log(l—d(s,a,logm(als),log f(s']sa)))] »
(s,a,s")~D,

This design has a number of attractive properties. First, element-wise loss information from f and
« reflects the confidence of these models on the rollout data. Suppose f and 7 are well-learned,
then they will assign high probabilities (large log 7w and log f) on good rollouts with reasonable
dynamics and expert-like samples. This can provide valuable information to facilitate the judgment
of the discriminator. Second, the adversarial component forms a GAN-like problem [30], where 7
and f jointly serve as a generator to challenge the discriminator. This will force the discriminator
to minimize the worst-case error [31, 32], which makes its robustness significantly improved. In
return, a stronger d can better guide the learning of 7 and f to further improve their performance and
make better use of the generalization power of the dynamics model. Consequently, this cooperative-
yet-adversarial learning scheme enables coupling among policy, dynamics model and discriminator,
which can potentially lead to boosted performance for all three models.

Loss Correction for Policy and Dynamics Model. Jointly solving Eq.(3) together with minimiza-
tion problems in Eq.(1) and (2) can be rather complex. As both 7 and f appear in the input of the
discriminator, d becomes a functional of 7 and f (i.e., function of a function). Eq.(3) is a functional
min-max optimization problem, which is itself quite challenging to solve. Fortunately, based on calcu-
lus of variation [33] and the analysis method introduced in DWBC [20], we can avoid directly solving
this complex functional min-max optimization problem by introducing discriminator-dependent loss
correction terms £2°"" and L5°™" on the losses of policy £ and dynamics model L. In this way,
m, f and d can be efficiently learned by solving three simple minimization problems: min, o, - L,
+L™, ming oy - Ly + L?f’” and ming Lg, where o, oy > 1 are weight factors for the original
losses of 7 and f. In the follows, we briefly describe the essential steps of deriving £7°™" and L,
and provide detailed derivations in Appendix A. The outline of DMIL is presented in Appendix B.1.

Denote x = (s,a,s’) and Q. as its domain. Note that the functional £4(d, log 7, log f) can be
written as the integral of a new functional F'(z,log 7, log f) with the following form:

Lg= /Q [Pp.(z)-(—logd)+Pp, (z)-(—(1—logd))]dz = /Q F(z,d,logm,log f)dx (4)

sas SG.S’

where we slightly abuse the notations and write the output of d(s, a,log w(a|s),log f(s'|s,a)) as
d and F(z,d,logm,log f) as F hereafter; Pp, and Pp, are distributions of z in D, and D,.. To
simplify the analysis, we focus on the inner maximization problem in Eq.(3). According to calculus
of variation, maximizing L4 with respect to function 7 and f requires to find the extrema of Ly,
which can be achieved by solving the following associate Euler-Lagrangian equations:

F.— 2Fo. =F, =0
e ®)
Ff— §:For = F; =0



where F); stands for %—F. Let 6, and 8¢ denote the network parameters of policy m and dynamics
E y g

model f. Using the analysis on policy 7 as an example. Assuming F’ and d are continuously
differentiable with respect to d and log w respectively, from the first equation in Eq.(5), we have

. Or _ 9F _0d  Ologm Or _ _od  OF | - i i
F; 50, — od  Dlogr - 50, — Dlogr ° od Vg, logm = 0. As d is determined by

the outer minimization problem of Eq.(3), thus % is not obtainable by solely inspecting the
inner maximization problem. To ensure the previous equation hold, we can instead consider a
relaxed condition by letting %—g - Vg, logm = 0. The integration of this new condition is still 0
( me/ %—5 - Vp_ log mdz = 0), which leads to the following tractable condition:

—L -V, log 77} =0 (6)
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Above can be equivalently perceived as the first-order optimality condition of minimizing the
following corrective loss term L7 for policy :

1
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Similarly, we can obtain the corrective loss term E‘}"” for dynamics model f as:

1

Loorr — E
! (s,a,8")~D, |:d

log f<s’|s,a>} - g f(s’ls,a)] ®)

E
(s,a,s")~D, |:1 —d

2.3 Extensions to Scenarios with Additional Suboptimal Dataset

The DMIL framework can be casily extended to IL scenarios with a small expert dataset D, and a
larger dataset D, sampled from one or multiple potentially suboptimal policies [13, 20, 34]. Under
this setting, we can add a second optimality discriminator d,, in additional to the original rollout
discriminator in DMIL (referred as d,. in this setting), dedicated to differentiate between expert and
suboptimal samples in both D, and D,.. We follow Xu et al. [20] to adopt a positive-unlabeled (PU)
learning [35] objective for d,,, and also introduce a second pair of adversarial relationship between 7
and d,,. PU-learning enables learning from positive (expert data D) and unlabeled data (D, U D, in
our case) with a hyperparameter 7 to capture the proportion of positive samples to unlabeled samples.

minmax L4, :=n E [~logd,(s,a,logm(als))]+
do ™ (s,a)~De

B [ l0s(1 — do(s,a.log(als)] < [~1og(1 - do(s,alog w(als))]

©)

Similar to the derivation in previous section, when jointly solving above functional min-max opti-
mization problem together with Eq.(1)-(3), we can obtain the following updated corrective loss term
for policy 7, which now depends on outputs of both discriminators d, and d,., with 3, and /3, being
the weight parameters for the two discriminators. We term this extension as Dual-Discriminator
guided Model-based Imitation Learning (D2MIL). Complete derivation can be found in Appendix A.

5077 ﬁr ﬁo /Br
corr _ E _ Boll Oy 4 B B B
L =B Kdo i—d) "d ) "8 m(als) ol o T ) s w(als)

Bo Br
_ (sﬁa,\l:'E)N'Dr Kl v + 7 _dr> -logw(als)} (10)

3 Experiments

We evaluate our methods against offline IL baseline methods on both D4RL benchmark datasets [29]
and a real-world wheel-legged robot. Our methods achieve superior performance and robustness
compared with baselines, especially under small datasets. Experiment setups and results are described
below. Ablation study on the impact of different design elements of DMIL can be found in Appendix
C.2. Implementation details and extra comparative results are reported in Appendix B and C.

wn



Table 1: Normalized scores for models trained on different proportion of D4RL MuJoCo-expert datasets and

Adroit-human tasks. Results are averaged over 3 random seeds.

Ratio BC BC+d 2-phase BC+d DWBC+d ValueDICE 1Q-Learn DMIL
100%  95.06+20.38 106.78+4.4 110.59£0.63  96.96+18.15 60.34+10.12 25494534  110.22+1.22
Hopper 10%  83.52+30.58 100.59£13.21  104.35+£9.44  91.52£24.81 58.77£10.45 25.16£6.69  111.56+1.51
5%  73.35+37.04  94.82+19.72  99.66+14.98  88.35£28.16 44.94+13.71 4.58%0.51 111.14+1.83
2% 53.54+36.89  61.574+30.18 88.24+£25.63  81.704+32.27 31.384+12.84  3.72+0.56 108.51+3.88
100%  91.95£1.24 89.23£1.35 91.48+0.33 83.75+£6.57 56.07+5.33 38.12£9.96  93.34+1.29
Halfcheetah  10% 90.64+2.21 89.71+2.88 71.27£19.33  77.484+12.97  48.7748.30  18.36+16.09  92.69+1.82
5% 82.90£11.71  76.40£16.94  70.89£23.06  65.76+20.55  30.61+6.98 7.12+6.77 90.18+4.43
2% 23.58+16.36  21.48+16.86  57.48+25.63  30.10+22.27  17.47+£7.63 1.63+1.37 76.87+15.31
100% 107.35£2.29  106.82+1.33 108.15+£0.27  103.92+£6.53 86.42+11.20 100.96+1.23  107.65+0.37
Walker2d 10%  105.36+4.38  107.61+1.14 106.40+1.96  91.17£25.05 86.76£13.04 73.65+12.64 107.62+£0.83
5% 103.21+7.81  105.42+3.93 104.51+4.54  89.78+24.81 83.51£12.96 59.474+23.17 107.89+0.71
2% 58.34+3586  60.64+35.10  86.71£21.20  65.19+36.27 78.844+23.16 34.19£20.11 105.55+4.42
pen-human 57.91£55.05 7.27+£15.87 68.57£53.57 18.61+26.46 52.51+£19.58 4.94+11.51  67.56+£57.87
hammer-human 1.05£1.01 1.18+£1.25 1.64+1.30 0.67+0.64 1.1240.64 0.37£0.13 2.06+1.91
door-human 0.4740.65 0.1640.29 0.94+1.24 0.01£0.21 0.2240.01 -0.28+0.01 6.06+7.56

3.1 Experiment Setup

Baselines. We compare DMIL with 5 baselines: 1) BC: vanilla BC [2]; 2) BC+d: learns a dynamics
model alongside BC to generate rollouts, and the policy is trained on both expert and rollout data; 3)
2-phase BC+d: first pretrains the dynamics model and a BC policy on expert data, then uses BC+d to
fine-tune the policy; 4) DWBC+d: we use a pretrained dynamics model and a BC policy to generate
the suboptimal dataset required in DWBC, and then run DWBC to learn the policy; 5) ValueDICE:
we implement an offline version of the original ValueDICE [9], which uses a learned dynamics model
to serve as the online sampling environment; 6) IQ-Learn [36]: a recent IL method that learns Q
function to implicitly represent the policy, and can work offline. For D2MIL, we compare it with
BC trained on expert data only (BC-exp) and on all data (BC-all), as well as two recent methods
ORIL [13], DemoDICE [34] and DWBC [20] which are designed for the same problem setting.

Simulation Tasks. We conduct the experiments on the widely-used D4RL [29] MuJoCo ex-
pert/medium datasets and the more complex Adroit human datasets (Pen, Hammer, Door). To
investigate the impact of sample size on model performance, we randomly sample certain proportions
of transitions from MuJoCo expert datasets to construct a set of much smaller datasets for evaluation.

Real-world Robotic Tasks. We also experiment on a real-world
robot which stands on a pair of wheels to get balanced, as shown in
Figure 3. The states of robot are composed of its forward tilt angle 6,
displacement x, angular velocity 6 and linear velocity &. The robot
is controlled by the torque 7 of motors at two wheels. We evaluate
our method on two tasks: (1) Standing still: keep the robot balanced
and not fall down; (2) Moving straight: keep the robot balanced and
move forward with a target velocity v. The dataset for these tasks are
collected from very few human demonstrations (10,000 transitions
from about 50s human control at a sampling frequency of 200Hz). — .

Figure 3: Wheel-legged robot
3.2 Results

Comparative Evaluation on D4RL Benchmarks. The comparative results are presented in Table
1. We can see that in many tasks, naively incorporating dynamics model with BC only leads to
marginal improvement. This is due to the lack of discrimination on the quality of rollout data. 2-phase
BC+d that use a pretrained, high quality dynamics model and rollout policy in some cases can result
in improved performance under small dataset. Besides, offline ValueDICE performs poorly owing
to its reliance on accurate online interaction. 1Q-Learn performs badly on the continuous control
tasks with high-dimensional state-action space. For DWBC+d, we can see that simply incorporating
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Figure 4: Evaluation results on a real-world wheel-legged robot
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Figure 5: Evaluation results on policy robustness. For different sizes of expert datasets, we randomly pick 20%
samples and add a Gaussian noise on the states to make policy learning more challenging.
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Figure 6: Evaluation results of D2MIL under small datasets. We first sample 1% trajectories from the D4RL
MuJoCo expert datasets. We then sample X proportion of these trajectories and combine them with the 2%
medium dataset to constitute the suboptimal dataset D,. The remaining 1-X trajectories constitute the expert
dataset D.. The larger X, D, contains more high quality data, but corresponds to a smaller expert dataset De.
We label each task as exp-med-X in the figure.

rollouts from dynamics model as suboptimal dataset in DWBC brings no benefit to dynamics model
learning, and insufficient leverage of information in the limited data, which leads to substaintial
performance drop with smaller dataset. By contrast, our method achieves the best performance in
almost all tasks with small variance. Most importantly, we find DMIL performs surprisingly well
under small datasets while other baselines suffer from severe performance degeneration. It achieves
comparable performance even if the training data is reduced to 5% or 2% of its original size.

Comparative Evaluation on Real-World Tasks. The imitation performance of two tasks on a
wheel-legged robot are shown in figure 4. In these two tasks, we only use 50s human demonstrations
to learn the policy. For the Standing still task, despite some small drifts, the robot using DMIL policy
can maintain in a balanced state for over 30s, which achieves the most stable performance in both
displacement measure and tilt angle. The robot with other control policies either quickly bump to
the ground (BC,BC+d,valueDICE) or dashes forward (IQ-learn). For the Moving straight task, most
methods can make the robot move forward within a certain speed range, but DMIL policy maintains
a closest speed to the target speed v=0.2m/s and also keeps a relatively more balanced state.

Evaluation on Policy Robustness. We further evaluate the policy robustness of DMIL under small
and noisy training data on MuJoCo tasks in Figure 5. We compare with three stronger baselines
in Table 1: BC, BC+d and 2-phase BC+d. To further examine the effectiveness of the cooperative-
yet-adversarial learning scheme on the learned dynamics model, we add an additional baseline
DMIL-no-d-adv, which removes £5°"" as well as log [ in the input of discriminator d from DMIL.
We observe that the performances of BC and BC+d drop with the introduction of noise, mainly due
to the lack of discrimination on data quality. 2-phase BC+d is slightly better, but still perform worse
than DMIL and DMIL-no-d-adv. Due to the absence of adversarial learning in dynamics model,
DMIL-no-d-adv is generally less performant compared with DMIL due to the noisy training data. In
all tasks, DMIL shows great robustness to training noise and achieves almost the same performance



as the case without noise (Table 1). This is because that the discriminator of DMIL in this setting not
only distinguishes dynamics correctness and optimality of rollouts, but can also serve as a denoiser to
identify and alleviate the negative impact of noisy inputs for policy and dynamics model.

Evaluation of D2MIL. We also evaluate the performance of D2MIL when learning with a small
expert dataset and a larger suboptimal dataset in Figure 6. The results show that D2MIL outperforms
state-of-the-art method DWBC [20] and other baselines in all tasks. The introduction of the dynamics
model f and the two discriminators (d, and d,) indeed help with improving the generalization
performance of imitating policy under small datasets, which demonstrates the effectiveness of D2MIL
in scenarios with suboptimal data.

4 Related Work

Model-based Imitation Learning. To combat the covariate shift and improve sample efficiency,
many online IL studies have incorporated dynamics models during policy learning [27, 37, 38, 39].
These methods typically require online system interactions or additional expert guidance to correct
model errors. Under offline settings without environment interaction, incorporating the model-based
approach is much more challenging and less explored. A few existing works all bear some limitations,
such as requiring an extra suboptimal dataset [26] or a misspecified simulator [28], only applicable
to imagery input [40], or simply fully trust the learned model [27]. Many of these methods assume
sufficient coverage of demonstration data, which can be fragile in scenarios with small datasets.

Offline Imitation Learning. Offline IL. methods that imitate expert demonstrations can be catego-
rized into two paradigms, behavior cloning (BC) and offline inverse reinforcement learning (offline
IRL). BC [2] is the simplest IL method, it trains a policy by maximizing the log-likelihood of ob-
served actions. Some recent works enhance BC by using energy-based model [41, 42] or introducing
curriculum training strategy [43]. Offline IRL methods [9, 44, 45, 42, 36] on the other hand, consider
matching the reward or state-action distribution of the expert policy. This can be done explicitly by
learning a reward function [44] or implicitly by learning a Q-function that represents both reward and
policy [9, 36]. Although these recent methods can mitigate covariate shift to some extent, they still
struggle to work under limited expert data and suffer from the involvement of suboptimal data.

Another stream of studies focus on the problem when demonstrations contain suboptimal data. Some
studies [46, 47] leverage previously learned policies [47] or entropy of the model [46] as weights to
penalize noisy demonstrations. However, they require the clean expert data occupy the majority of
the offline dataset. When both the expert demonstrations and additional suboptimal data are given,
some IRL-based methods [13, 26, 34] first construct a reward function to distinguish expert and
suboptimal data, and then use it to solve an offline RL problems. The drawbacks of these methods
are that the reward learning through offline IRL is costly, and the inner-loop offline RL problem also
suffers from training instability [19]. The recently proposed DWBC [20] trains a discriminator to
distinguish expert and non-expert data and uses its outputs to re-weight the IL objective, so as to
imitate demonstrations selectively. Our method shares some similarity with DWBC, however, we use
the discriminator to distinguish both the dynamics discrepancy and suboptimality of model rollout
data, and re-weight the objectives of both the IL policy and the dynamics model.

5 Conclusion and Limitations

We propose a model-based offline IL framework DMIL for scenarios with limited expert data, which
is composed of an imitation policy, a dynamics model and a discriminator. We use the discriminator
as a bridge to couple the learning process of all three models through a cooperative-yet-adversarial
learning scheme. This design allows us fully leverage the generalizability of dynamics model to
improve state-action space coverage, while also alleviating the negative impacts from potentially
problematic rollouts. Our framework can also be extended to scenarios with suboptimal data (D2MIL).
Through comprehensive experiments, we show that our method achieves strong performance and
robustness under small datasets, which can be a nice tool for many real-world IL tasks.

Our method also has some limitations. When the state-action space is large or the MDP is partially
observed, the dynamics model might need to be specially designed. For future directions, adopting
temporal models, or learning the dynamics in latent state space might be a solution to achieve
improved model performance.
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