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Abstract
Vision-and-Language Navigation (VLN) is an001
essential skill for embodied agents, allow-002
ing them to navigate in 3D environments fol-003
lowing natural language instructions. High-004
performance navigation models require a large005
amount of training data, the high cost of man-006
ually annotating data has seriously hindered007
this field. Therefore, some previous methods008
translate trajectory videos into step-by-step in-009
structions for expanding data, but such instruc-010
tions do not match well with users’ communica-011
tion styles that briefly describe destinations or012
state specific needs. Moreover, local navigation013
trajectories overlook global context and high-014
level task planning. To address these issues,015
we propose NavRAG, a retrieval-augmented016
generation (RAG) framework that generates017
user demand instructions for VLN. NavRAG018
leverages LLM to build a hierarchical scene de-019
scription tree for 3D scene understanding from020
global layout to local details, then simulates021
various user roles with specific demands to re-022
trieve from the scene tree, generating diverse023
instructions with LLM. We annotate over 2 mil-024
lion navigation instructions across 861 scenes025
and evaluate the data quality and navigation026
performance of trained models. The model027
trained on our NavRAG dataset achieves SOTA028
performance on the REVERIE benchmark.029

1 Introduction030

Vision-and-Language Navigation (VLN) (Ander-031

son et al., 2018; Krantz et al., 2020; Qi et al., 2020;032

Zhu et al., 2021) requires the agent to understand033

natural language instructions and navigate to the034

described destination in 3D environments. The035

immense semantic space and diverse forms of lan-036

guage instructions require massive data to train a037

VLN agent capable of generalizing across differ-038

ent scenarios. However, the high cost of manual039

annotation has seriously hindered this field, driv-040

ing efforts to develop instruction generators for041

automating data generation.042
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(a) Instruction generation through translating trajectory video or images.

(b) User demand instruction generation through retrieval-augmented LLM.

• Ignore the global context
• Ignore the users' communication style and specific demands.
• Restricted step-by-step instruction

• Balance the global context and the local details.
• Match the users' communication style and specific demands.
• Flexible and diverse high-level instruction

Figure 1: The comparison of previous navigation in-
struction generation methods (a) and NavRAG (b).

As shown in Figure 1 (a), many previous ap- 043

proaches train a navigation instruction generator 044

that takes video or images from Web or simula- 045

tors as input and produces step-by-step instructions. 046

Leveraging large-scale generated navigation data, 047

this strategy has delivered outstanding results in 048

some navigation tasks using trajectory-based in- 049

structions, such as R2R (Anderson et al., 2018) and 050

REVERIE (Qi et al., 2020). However, such instruc- 051

tion generators still remain some shortcomings: 1) 052

These instruction generators are trained on small- 053

scale and domain-specific datasets, the generated 054

instructions lack diversity; 2) Such step-by-step 055

instructions are limited to local navigation trajecto- 056

ries overlooking the global context and high-level 057

task planning; 3) These instructions don’t match 058

well with users’ natural expressions that describe 059

destinations or state specific needs. 060

To tackle these challenges, this work proposes 061

NavRAG, an instruction generation method lever- 062

aging retrieval-augmented LLM, as illustrated in 063

Figure 1(b). Specifically, for each 3D scene, 064

NavRAG constructs a scene description tree in a 065

bottom-up manner for hierarchical scene represen- 066

tations. This hierarchical tree comprises multiple 067

layers of language descriptions: the instance layer 068

captures descriptions, attributes, and functionalities 069
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of individual instances; the view layer summarizes070

spatial relationships within a view; the viewpoint071

layer integrates multiple views into a panoramic072

environmental description; the zone layer clusters073

viewpoints within the same functional area (e.g., a074

bedroom or kitchen); and finally, the scene-level075

description provides an overview of all zones and076

their connectivity.077

After establishing the environmental context078

with the scene tree, the generated navigation in-079

structions are expected to meet the user demands.080

Therefore, unlike previous instruction generators081

that were only used to describe navigation trajec-082

tories, NavRAG set up several different user roles083

(with varying ages, genders, occupations, lifestyles084

and demands to navigation agent) to simulate and085

record the instructions sent to navigation agent dur-086

ing one day of this role. Meanwhile, to balance087

generation quality and cost, our framework ini-088

tially generates the coarse instruction only through089

the overview of the scene, then uses retrieval-090

augmented LLM to perform top-down, layer-by-091

layer retrieval of the best destination and relevant092

texts from the scene tree, and finally refines the093

coarse instruction into a more detailed and accurate094

refined instruction using retrieval-augmented LLM.095

In summary, our contributions are as follows:096

• This work proposes an approach for automati-097

cally constructing scene description trees and098

generating user demand navigation instruc-099

tions using retrieval-augmented LLM.100

• We annotate over 2 million high-quality navi-101

gation instructions across 861 3D scenes for102

training and evaluation.103

• The VLN models trained on our NavRAG104

dataset achieve superior performance on VLN105

benchmarks, validating the effectiveness of106

the proposed method.107

2 Related Work108

Vision-and-Language Navigation (VLN) (Ander-109

son et al., 2018; Krantz et al., 2020; Qi et al.,110

2020; Zhu et al., 2021) enables embodied agents111

to navigate to the destination described by the112

language instructions. Early VLN researches fo-113

cus on discrete environments within 90 scenes of114

Matterport3D (Chang et al., 2017), which uses a115

predefined navigation graph, the agent observes116

panoramic RGB and depth images, teleporting be-117

tween graph nodes to follow natural language in-118

structions. Under this setting, the datasets include 119

the step-by-step instruction dataset R2R (Anderson 120

et al., 2018), the multilingual instruction dataset 121

RxR (Ku et al., 2020) with longer trajectories, the 122

Remote Embodied Visual Referring Expression 123

(REVERIE) (Qi et al., 2020) dataset, and the Sce- 124

nario Oriented Object Navigation (SOON) (Zhu 125

et al., 2021) task. Although efficient for train- 126

ing in discrete environments, these datasets lack 127

real-world applicability. To address this, R2R- 128

CE (Krantz et al., 2020) introduce continuous en- 129

vironments (Savva et al., 2019) with instructions 130

from the R2R dataset, where agents navigate freely 131

in 3D spaces using low-level actions (e.g., turn 132

15°, move 0.25m) in the Habitat simulator (Savva 133

et al., 2019). In this work, we focus on generating 134

large-scale, high-quality navigation instructions, 135

for simplicity and efficiency, our NavRAG is cur- 136

rently validated in the discrete environments, while 137

the annotated data remains easily transferable to 138

continuous settings. 139

Navigation Instruction Generation is an effec- 140

tive approach to addressing the scarcity of train- 141

ing data for VLN. Speaker-follower (Fried et al., 142

2018) and Env-Drop (Tan et al., 2019) use the 143

LSTM-based instruction generator to generate the 144

offline augmented instructions. VLN-Trans (Zhang 145

and Kordjamshidi, 2023) propose a translator mod- 146

ule that enables the navigation agent to generate 147

more concise sub-instructions, leveraging recogniz- 148

able and distinctive landmarks. AutoVLN (Chen 149

et al., 2022a), MARVAL (Kamath et al., 2023) and 150

ScaleVLN (Wang et al., 2023c) leverage multiple 151

foundation models (Cheng et al., 2022; Radford 152

et al., 2019; Zhao et al.; Koh et al., 2023) and use 153

more 3D scenes to annotate instructions, such as 154

HM3D (Ramakrishnan et al.) and Gibson (Xia 155

et al., 2018). Recently, more works focus on design- 156

ing more powerful instruction generator, such as a 157

joint structure for instruction following and gener- 158

ation (Wang et al., 2023a), Knowledge enhanced 159

speaker (Zeng et al., 2023), LLM instruction gener- 160

ator with chain of thought prompting (Kong et al., 161

2025), and LLM instruction generator with BEV 162

perception (Fan et al., 2025). However, these meth- 163

ods are limited to identifying landmarks in naviga- 164

tion trajectories and generating low-level instruc- 165

tions, making it difficult to integrate global con- 166

text, match user demands, and plan high-level tasks. 167

NavRAG will generate navigation instructions bet- 168

ter tailored to the application scenario by consider- 169

ing the global context and user demands through 170
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scene description trees and retrieval-augmented171

LLM.172

Retrieval-Augmented Generation (RAG) (Lewis173

et al., 2020) was initially introduced to enhance174

LLMs by retrieving relevant document chunks,175

thereby providing domain-specific knowledge for176

better answer. Over time, several innovations have177

expanded on this idea, including techniques like it-178

erative knowledge retrieval (Shao et al., 2023), and179

the incorporation of knowledge graphs (Edge et al.,180

2024). Furthermore, adapting RAG to the field181

of robotics, some works (Xie et al., 2024; Booker182

et al., 2024) attempt constructing non-parametric183

memory or scene graphs for 3D scenes, and utilize184

retrieval-augmented LLM for question answering185

or navigation. However, traditional RAG meth-186

ods for scene graph retrieval struggle to balance187

global context with local details and interpret the188

environment layout. NavRAG leverages the scene189

description tree and hierarchical retrieval strategy,190

achieve better scene understanding.191

3 Method192

3.1 Navigation Setups193

In the vision-and-language navigation (VLN) set-194

ting, the navigation connectivity graph G = {V, E}195

is provided by the Matterport3D simulator (Chang196

et al., 2017), where V represents navigable nodes197

and E denotes the edges connecting them. The198

agent is equipped with RGB cameras and a GPS199

sensor. Starting from a starting node and follow-200

ing natural language instructions, the agent must201

explore the navigation connectivity graph G and202

move to the destination node. The instruction is203

represented by a sequence of word embeddings204

W = {wl}Ll=1, where L is the number of words. At205

each time step t, the agent can perceive a panoramic206

RGB observation Rt = {rt,k}Kk=1 at current node207

Vt, consisting of K view images. The RGB ob-208

servation of nodes can be obtained through the209

Matterport3D simulator, so each annotated navi-210

gation sample only needs a navigation instruction211

and an optimal path from the starting node to the212

destination node for training or evaluation.213

3.2 Constructing the Scene Description Tree214

Before generating instructions, it is essential to215

first represent and understand the environment. As216

illustrated in Figure 2, we propose a bottom-up,217

hierarchical approach for constructing a scene de-218

scription tree. At the view and object levels, each219

object is described with fine-grained details, in- 220

cluding its category, attributes, functionality. The 221

spatial relations among objects is summarized in 222

view-level description. The viewpoint level aggre- 223

gates multiple views surrounding each navigable 224

viewpoint and summarize the spatial layout around 225

this viewpoint. The zone level integrates multiple 226

viewpoints to define large functional areas (e.g., a 227

bedroom) within the 3D scene. Finally, the house 228

level encompasses multiple zones, offering a high- 229

level abstraction of the overall spatial layout and 230

functional partitioning of the whole scene. 231

Navigation Graph. We introduce 800 training 232

scenes from HM3D (Ramakrishnan et al.) and 233

61 training scenes along with 11 validation scenes 234

from Matterport3D (Chang et al., 2017) for scene 235

tree construction. Obtaining the navigation graphs 236

of these scenes is the first step. Although MP3D 237

already has manually annotated navigation graphs, 238

the navigation graphs of HM3D still remains to con- 239

struct. Following ScaleVLN (Wang et al., 2023c), 240

we use a heuristic method to build high-quality 241

navigation graphs for HM3D scenes, ensuring high 242

space coverage, fully traversable edges, and well- 243

positioned nodes, which samples dense viewpoints 244

using Habitat Simulator (Savva et al., 2019)’s 245

navigable position function, ensuring over 0.4m 246

geodesic separation. The Agglomerative Cluster- 247

ing (1.0m threshold) is utilized to centralize nodes 248

and form an initial graph by randomly connecting 249

viewpoints within 5.0m, capping node edges at five. 250

Finally, the graph is refined for full connectivity 251

and traversal, producing graphs for 800 scenes. 252

View and Object-level Annotation. To capture 253

detailed information about objects within a specific 254

viewpoint of the navigation graph, we utilize the 255

Habitat simulator (Savva et al., 2019) to uniformly 256

sample six views (each with an image resolution of 257

480×480) from every viewpoint in the navigation 258

graph. These views are then input into a multi- 259

modal LLM (i.e., GPT-4o-mini (Hurst et al., 2024)) 260

to generate descriptions of each view, objects, their 261

attributes, and functionalities. 262

Viewpoint-level Annotation. Integrating descrip- 263

tions and object information from multiple views, 264

the LLM generates a comprehensive description of 265

the environment surrounding the viewpoint. This 266

description encompasses the area type, spatial lay- 267

out, and relationships among objects, providing a 268

holistic understanding of panorama. 269

Zone Partitioning and Annotation. To enhance 270

the comprehension of the scene’s spatial layout 271
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This viewpoint is in a bedroom area. The room 
centers around a large bed with a dark 
headboard, white linens, and gold-brown 
accents. Flanked by bedside tables with lamps, 
it faces a light carpeted floor …

This zone is a multifunctional living space that combines a
bedroom and a bathroom. The bedroom feature a large bed, 
adorned with colorful or patterned bedding, enhancing comfort …

zone_1

zone_2

zone_3

The indoor scene consists of 12 interconnected zones, with a total of two floors. It includes three bedrooms, two bathrooms, and a 
large living room …
zone_1 is connected with zone_2
zone_2 is connected with zone_1, zone_3, zone_4
zone_3 is connected with zone_2, zone_5, zone_6
…

'bed_1': 'a large bed with a 
dark upholstered headboard, 
white linens, a thick duvet, 
and decorative gold and 
brown pillows with a matching 
bed runner’, 
'bedside_table_1': 'a dark 
wooden bedside table on the 
left side of the bed’,
'bedside_table_2': 'a dark 
wooden bedside table on the 
right side of the bed’,
…

'bed_1': 'providing a place 
for sleeping and resting’,
'bedside_table_1': 'holding 
bedside essentials like 
lamps, books, and personal 
items’, 
'bedside_table_2': 'holding 
bedside essentials like 
lamps, books, and personal 
items’, 
'table_lamp_1': 'providing 
lighting for reading or 
ambiance’, 
…

The room features a large bed positioned centrally against 
a wall, with a dark-colored upholstered headboard. The 
bed has white linens, a thick duvet, and decorative pillows 
in gold and brown tones, matching a patterned bed 
runner…

View Description

Object Description Object Functionality

Viewpoint Description

Zone Description

Scene Description

View image
Viewpoint with 6 views

Figure 2: Demonstration of the Scene Description Tree. Based on LLM, NavRAG constructs the scene description
tree in a bottom-up manner, progressively constructing from objects to views, viewpoints, zones, and the overall
scene. This hierarchical structure describes environmental semantics and spatial relationships at different levels,
facilitating LLM in understanding 3D environments and retrieving information for instruction generation.

(e.g., room count and connectivity) meanwhile de-272

creasing retrieval cost from numerous viewpoints,273

we construct zones by merging multiple viewpoints,274

as shown in Figure 2. Unlike previous meth-275

ods (Xie et al., 2024) using hierarchical cluster-276

ing based on spatial positions to construct scene277

trees, we propose a new algorithm that incorporates278

viewpoint connectivity and environmental seman-279

tics for scene partitioning as shown in Figure 3.280

Hierarchical clustering based on spatial positions281

has two important drawbacks: 1) It overlooks view-282

point connectivity, potentially grouping nearby but283

wall-separated viewpoints into the same zone. 2)284

It ignores environmental semantics, relying solely285

on spatial positions cannot accurately recognize286

different functional areas of the scene.287

To address these issues, our algorithm first se-288

lects the viewpoint with the highest connectivity289

to initialize a zone and uses LLM to generate its290

description. Then, by searching the adjacent view-291

points in descending order of connectivity, the al-292

gorithm inputs the zone description and the descrip-293

tion of adjacent viewpoint into LLM to determine294

if the viewpoint belongs to the zone, if yes, this295

viewpoint will be added to the zone, and the zone296

description is updated. Once all viewpoints for this297

zone are identified, all nodes within the zone are298

removed from the navigation graph, then the next299

zone construction begins.300

Scene-level Annotation. To provide an overview301

Viewpoints and zone 
description of the i-th zone

Search the j-th adjacent 
viewpoint of i-th zone

LLM determines whether 
the j-th adjacent viewpoint 
belongs to i-th zone

Add j-th adjacent 
viewpoint to i-th zone

if none of the adjacent viewpoints belong to i-th zone

Remove all viewpoints 
within the i-th zone from 
the navigation graph

Search the viewpoint with the 
highest connectivity

Navigation Graph

No Yes

Initialize the i-th zone with only this viewpoint

i = i + 1

j = 0

j = j + 1

Is there a viewpoint on 
the navigation graph?

Yes

FinishNo

i = 0

Figure 3: Framework of the zone partitioning algorithm
based on connectivity relations and environmental se-
mantics.

of the spatial layout of the entire scene, the 302

scene-level description primarily includes the 303

connectivity between various zones (similar to 304

MapGPT (Chen et al., 2024)), the types of each 305

zone, a concise summary, and the functionality. 306

3.3 User Demand Instruction Generation 307

As shown in Figure 4 and Figure 5, after construct- 308

ing the scene description tree, NavRAG leverages 309

the scene-level description, user information, and 310

demands to generate a rough instruction for the 311

navigation agent, such as "Walk to the warm hall 312

and set the wooden table for lunch". Subsequently, 313

NavRAG performs a top-down, hierarchical re- 314
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Figure 4: Framework of NavRAG for scene tree construction and navigation instruction generation through
Retrieval-Augmented LLM.

trieval of potential destinations from the scene tree315

and integrates the retrieved environmental descrip-316

tions at different levels into the LLM, to refine317

rough instruction into precise and comprehensive318

instruction, such as "Walk to the warm hall fea-319

turing elegant wooden accents and set the large320

wooden table with candles and napkins for a lovely321

dinner ambiance".322

User Demands Simulation. To further improve323

the diversity of generated instructions and meet the324

user demands, NavRAG integrates texts of user in-325

formation and demands, enabling the instruction326

generator to simulate specific roles to generate tai-327

lored instructions. A sample of user profile and328

demands is as follows:329

{330

"Age": 33,331

"Gender": "Female",332

"Occupation": "Lawyer",333

"Lifestyle Description": "You maintain the good habit of334

going to bed early and waking up early. Besides working in335

the study, you often do yoga and other exercises in the living336

room and enjoy cooking your own meals."337

}338

We manually annotate 20 user profiles for dif-339

ferent roles. For each role, the prompt guides the340

LLM in simulating the role’s behavior with a given341

scene description tree, generating the records of 50342

navigation instructions sent to the agent during one343

day of this role.344

Retrieval-Augmented Generation. As illustrated345

in Figure 4, Figure 5 and Figure 6, NavRAG per-346

forms layer-by-layer retrieval of texts at different347

levels based on the scene description tree, progres-348

sively localizes the navigation destination. Initially,349

the LLM generates a rough instruction based on 350

scene-level descriptions, user information, and his- 351

torical instruction records. It then identifies the 352

most probable zone containing the navigation des- 353

tination from the zone-level descriptions. Based 354

on the viewpoint descriptions within that zone, the 355

LLM selects the target viewpoint and locates the 356

view containing the navigation target. By integrat- 357

ing texts from all different levels, the LLM ulti- 358

mately refines rough instruction and outputs the 359

precise and comprehensive instruction. 360

4 Experiments 361

Dataset Generated #Scene #Instr. Instr. length
REVERIE (Qi et al., 2020) × 60 10,466 18.64
R2R (Anderson et al., 2018) × 61 14,039 26.33

RxR-en (Ku et al., 2020) × 60 26,464 102.13
SOON (Zhu et al., 2021) × 34 2,780 44.09

Prevalent (Hao et al., 2020) ✓ 60 1,069,620 24.23
Marky (Wang et al., 2022) ✓ 60 333,777 99.45

AutoVLN (Chen et al., 2022a) ✓ 900 217,703 20.52
ScaleVLN (Wang et al., 2023c) ✓ 1289 4,941,710 21.61

NavRAG (Ours) ✓ 861 2,115,019 29.11

Table 1: Statistics of training data on different VLN
datasets.

4.1 Datasets and Evaluation Metrics 362

Datasets. Table 1 summarizes the main VLN 363

datasets, including human-annotated data and 364

model-generated data. The high cost of manual 365

annotation limits the scale of manual training data, 366

severely restricting the generalization ability of 367

VLN models. An effective approach to enhancing 368

navigation performance is to automatically gener- 369

ate large-scale navigation data for VLN pretraining, 370

then fine-tune on manual data. Our NavRAG anno- 371

tates over 2 million navigation instructions across 372

861 training scenes, each corresponding to a nav- 373

igation destination (i.e., target viewpoint). Using 374
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Now, you are a user of a household assistant robot, and your personal information is as follows: 

{"Age": 28,  "Gender": "Female",  "Occupation": "Graphic Designer",  "Lifestyle Description": "You are a creative individual who enjoys working from home. You 
spend long hours on your computer designing, and your work environment needs to be tidy and inspiring. You rely on the robot to handle cleaning and organizing 
your space while you focus on your projects."}

Your house is divided into several zones, with each zone's connectivity and environmental description provided below: 

zone_1 is connected with zone_5, zone_6, zone_11, zone_12, zone_13, zone_15, zone_18, zone_19
zone_2 is connected with zone_9, zone_14, zone_17
…
{ "zone_1": "This zone is a large, multi-functional living area with a rustic yet modern aesthetic…Adjacent to these seating areas are multiple rustic wooden dining 
tables and a kitchen area, promoting both dining and workspace functionalities…", 

"zone_2": "This zone is a rustic multi-functional living area and hallway…", … }

Please simulate the user and record your instructions to the household assistant robot throughout your day, from waking up to going to bed. Record each 
instruction in the form of a dictionary (include the time that instruction is given, the ID of the target zone, and the instruction content), an example is as follows: 
{‘time’: ‘10:00 am’, ‘target zone’: ‘zone_5’, ‘instruction’: ‘Go to the bathroom and prepare a bath.’}. Do not include multiple tasks in one instruction. Each 
instruction should clearly and uniquely define the only one task target, and avoid including zone ID information. Here are some existing instruction records:

{‘time’: ‘11:00 am’, ‘target zone’: ‘zone_1’, ‘instruction’: ‘ Walk to the warm hall and set the wooden table for lunch.'}

{‘time’: ‘9:00 am’, ‘target zone’: ‘zone_5’, ‘instruction’: ‘Please head to the stylish bathroom featuring a round vessel sink; make sure to wipe down the stone 
countertop and tidy up any items left around the space.’}
{‘time’: ‘9:30 am’, ‘target zone’: ‘zone_14’, ‘instruction’: Move into the workshop featuring rustic wooden floors and make sure the long workbench is clean and 
organized, ready for morning projects.’}
{‘time’: ‘10:40 am’, ‘target zone’: ‘zone_13’, ‘instruction’: ‘Head to the rustic loft with a large, soft sofa and arrange the decorative cushions for added comfort.'}

Please output the next instruction record, don't output anything other than a correct dictionary.

These are the environmental descriptions of some viewpoints within zone_1 (recorded as a dictionary, with keys as viewpoint_id and values as 
descriptions). Which viewpoint is the most likely location of the robot's task target? Please output the string of the viewpoint_id, ensure the viewpoint_id 
is correct and in the keys of dictionary and don't output anything other than it:

The following are text descriptions observed from the selected viewpoint_2 in six directions (forward, front-right, back-right, backward, back-left, and 
front-left), recorded as a dictionary, with keys as direction IDs and values as descriptions. Which direction is most likely to contain the robot's task target? 
Please output the string of the direction ID, and don't output anything other than it:

{ “viewpoint_1": "This viewpoint is in a rustic interior space that features a combination of a hallway and living area… ", 
“viewpoint_2”: “This viewpoint is in a spacious warm hall area characterized by high ceilings and a rustic yet modern ambiance…the front-left showcases a 

large wooden dining table surrounded by chairs, offering a gathering space…",
“viewpoint_5": " This viewpoint is in an attic space that serves as a cozy bedroom. A large bed with layered bedding is situated against the left wall … ", 

…}

“viewpoint_2”

{ "forward" : 
…
"back-left" :

{"view_summary": "The picture appears to be a spacious interior room with wooden finishes. There is a large wooden dining table in the center of the room, 
with candles and napkins. The room features large windows on one side, providing ample natural light. To the left of the dining table, there is a stairway leading 
to an upper level. The area has a cozy ambiance due to the wooden beams and flooring.", "instance_description": {"dining_table_1": "a large rectangular 
wooden dining table situated in the center", "staircase_1": "a wooden staircase to the left of the dining table"}, "instance_affordance": {"dining_table_1": "used 
for dining and gathering; placing items for meals", "staircase_1": "providing access to an upper level of the interior space"}},
… }

“back-left”

Prompt

Prompt

Prompt

Prompt

Prompt

Prompt

Output

Input

Input

Input

Input

Input

Output

Output

Rough 
Instruction 
Generation

Hierarchical
Retrieval

Figure 5: Prompt, input and output of the Rough Instruction Generator and Hierarchical Retrieval.

The description of the target zone is: $ZONE.  The description of the target viewpoint is: $VIEWPOINT. The description of the target direction within this viewpoint is: 
$VIEW. The main instances within this direction are: $INSTANCE, and their functions are: $AFFORDANCE. Please modify your instruction to ensure it is accurate 
and clearly specifies only one destination (i.e., does not exist in other zones and different from the destination in previous instructions). You can modify the 
description of it, use more diverse objects and spatial relations, use more varied range of sentence structures for better diversity. An example is as follows: {‘time’: 
‘10:00 am’, ‘target zone’: ‘zone_5’, ‘instruction’: ‘Go to the bathroom with a large mirror and fill the white bathtub with hot water for me.’}. The instructions should be 
phrased in a natural, concise, conversational tone. Don't output anything other than a correct dictionary, don't use code blocks in Markdown.

{'time': '11:00 am', 'target zone': 'zone_1', 'instruction': 'Walk to the warm hall featuring elegant wooden accents and set the large wooden table with candles 
and napkins for a lovely dinner ambiance.'}

Rough Instruction Generation

Input

Output

Refined 
Instruction 
Generation

Figure 6: Prompt, input and output of the Refined Instruction Generator. $ZONE, $VIEWPOINT, $VIEW,
$INSTANCE and $AFFORDANCE denote retrieved environmental descriptions at different levels.

a trajectory generator which samples the starting375

viewpoint and calculate the shortest path to the376

destination, we randomly sample 5 trajectories per377

instruction, yielding over 10 million navigation tra-378

jectories in total. To evaluate model performance,379

we also annotate 7,396 instruction-trajectory pairs380

across 11 unseen scenes, forming the NavRAG Val381

Unseen benchmark for performance evaluation.382

Evaluation Metrics. Four main metrics are used383

for navigation: 1) Navigation Error (NE): the mean384

of the shortest path distance between the agent’s385

final position and the destination. 2) Oracle Suc-386

cess Rate (OSR): the percentage that the agent has387

reached a position within 3 meters of the destina-388

tion. 3) Success Rate (SR): the percentage of the389

predicted stop position being within 3 meters from390

the destination. (3) Success rate weighted Path 391

Length (SPL) that normalizes the success rate with 392

trajectory length. 393

4.2 VLN Models 394

To evaluate our NavRAG dataset, multiple VLN 395

models are used in the experiments, as shown in 396

Table 2 and Table 3. 397

DUET (Dual-scale Graph Transformer) (Chen 398

et al., 2022b) is a VLN model that dynamically 399

builds a topological map for efficient global explo- 400

ration while integrating fine-grained local observa- 401

tions and coarse-grained global encoding through 402

graph transformers. 403

HAMT (History Aware Multimodal Trans- 404

former) (Chen et al., 2021) is a VLN model that 405
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Models LLM Training Data NavRAG Val Unseen REVERIE Val Unseen
NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

DUET × AutoVLN (REVERIE-style) 13.2 30.2 16.2 10.7 6.9 49.7 42.3 26.4
DUET × ScaleVLN (REVERIE-style) 11.3 41.9 17.4 11.9 6.7 50.2 44.6 28.2
DUET × ScaleVLN (R2R-style) 12.6 31.1 10.3 4.2 9.0 41.4 27.9 11.6

NavGPT GPT-4o-mini - 7.7 43.1 28.2 11.6 9.2 25.8 20.2 13.1
MapGPT GPT-4o-mini - 7.8 47.7 30.9 15.3 8.2 37.4 30.2 21.6
MapGPT Llama-3.1-8B (Dubey et al., 2024) - 8.1 44.2 25.5 12.4 8.4 35.8 24.4 16.2
HAMT × NavRAG (Ours) 8.3 42.5 25.1 20.4 8.1 40.3 32.8 21.7
DUET × NavRAG (Ours) 7.7 50.0 30.7 25.4 7.6 45.9 36.1 24.9

Table 2: Zero-shot performance comparison on NavRAG and REVERIE datasets, reflecting the model’s generaliza-
tion ability. Gray values do not strictly follow the zero-shot setting.

integrates long-horizon history using a hierarchical406

vision transformer, which efficiently encodes past407

panoramic observations and combines text, history,408

and current views to predict navigation actions.409

NavGPT (Zhou et al., 2024) is a purely LLM-based410

instruction-following navigation agent, which411

performs zero-shot sequential action prediction,412

demonstrating abilities such as high-level planning,413

sub-goal decomposition, commonsense integration,414

and navigation progress tracking.415

MapGPT (Chen et al., 2024) is a LLM-based VLN416

agent that integrates an online linguistic-formed417

map to enable global exploration. By incorporat-418

ing node information and topological relationships419

into prompts, MapGPT understands spatial envi-420

ronments and features an adaptive planning mecha-421

nism for multi-step path planning.422

4.3 Limitations of the Existing Training Data.423

Table 2 evaluates the zero-shot performance of mul-424

tiple VLN methods on NavRAG and REVERIE425

benchmarks, and also shows the performance of426

models trained on NavRAG datasets. As shown427

in rows 1-3 of Table 2, models trained on previ-428

ously generated large-scale datasets (i.e., AutoVLN429

and ScaleVLN) perform poorly on the NavRAG430

benchmark, whereas LLM-based methods (rows431

4-6) demonstrate relatively strong performance.432

NavRAG leverages the scene description tree433

and retrieval-augmented LLM, resulting in a larger434

semantic space of instructions with more diverse435

sentence structures, meanwhile, better aligned with436

human expression. LLM-based models effectively437

comprehend these instructions. In contrast, in-438

structions in ScaleVLN and AutoVLN are gener-439

ated by a pre-trained instruction generator trained440

on a small-scale manually annotated dataset (i.e.441

REVERIE and R2R), restricting the semantic space442

and diversity, and further hindering the generation443

ability. Thus, models trained on them struggle with444

NavRAG benchmark and real-world applications.445
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Figure 7: Navigation performance with respect to the
number of pre-training scenes in NavRAG dataset.

Notably, the performance of the LLM-based 446

method on the NavRAG benchmark surpasses the 447

human-annotated REVERIE benchmark (NE, OSR 448

and SR metrics), due to NavRAG’s longer, more 449

detailed, and accurate instructions (shown in Ta- 450

ble 1). This finding further validates the quality of 451

instructions generated by our NavRAG. 452

4.4 Generalization Ability of NavRAG 453

As shown in the last two rows of Table 2, the mod- 454

els trained on the NavRAG dataset achieves com- 455

petitive performance on both NavRAG Val Unseen 456

and REVERIE Val Unseen benchmarks, and even 457

outperforms LLM-based methods (i.e., NavGPT 458

and MapGPT), showing the ability of NavRAG 459

dataset to enhance model generalization. 460

Furthermore, Figure 7 illustrates that NavRAG 461

consistently improves the performance of the VLN 462

model as the pre-training data scale increases, un- 463

derscoring the potential and value of large-scale 464

generated navigation data. 465

4.5 Comparison with SOTA Methods 466

The last row of Table 3 presents the performance 467

of DUET pre-trained on the NavRAG dataset and 468

fine-tuned on the REVERIE dataset, which is com- 469

parable to the SOTA approaches with LLM. 470

Previous methods use manually annotated object 471

bounding boxes of REVERIE datasets to extract 472

visual features for model inputs. However, this 473

strategy restricts the model’s applicability in real- 474
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Methods LLM Objects REVERIE Val Unseen
NE↓ OSR↑ SR↑ SPL↑

HAMT (Chen et al., 2021) × ✓ - 36.8 33.0 30.2
DUET (Chen et al., 2022b) × ✓ - 51.1 47.0 33.7

Lily (Lin et al., 2023) × ✓ - 53.7 48.1 34.4
KERM (Li et al., 2023) × ✓ - 55.2 50.4 35.4

BEVBert (An et al., 2023) × ✓ - 56.4 51.8 36.4
BSG (Liu et al., 2023) × ✓ - 58.1 52.1 35.6

GridMM (Wang et al., 2023b) × ✓ - 57.5 51.4 36.5
ENP-DUET (Liu et al., 2024a) × ✓ - 54.7 48.9 33.8
AutoVLN (Chen et al., 2022a) × ✓ - 62.1 55.9 40.9
ScaleVLN (Wang et al., 2023c) × ✓ - 63.9 57.0 41.8

VER (Liu et al., 2024b) × ✓ - 61.1 56.0 39.7
GOAT (Wang et al., 2024) × ✓ - - 53.4 36.7

NaviLLM (Zheng et al., 2024) ✓ ✓ - 51.5 28.1 21.0
MiC (Qiao et al., 2023) ✓ ✓ - 62.4 57.0 43.6

VLN-Copilot (Qiao et al., 2024) ✓ ✓ - 62.6 57.4 43.6
DUET × × 6.0 50.0 45.8 32.5

AutoVLN × × 5.7 61.8 54.3 39.1
ScaleVLN × × 5.7 62.7 55.9 40.6

NavRAG (Ours) × × 5.5 70.7 57.3 42.0

Table 3: Fine-tuning performance comparison on
REVERIE dataset. "Objects" indicates whether visual
features of annotated object bounding boxes are utilized
for training.

world deployment, since the real world does not475

have ground-truth object information. NavRAG476

removes the reliance on annotated object bound-477

ing boxes, making it more suitable for real-world478

deployment. For a fair comparison, we also eval-479

uate the performance of other generated datasets480

after removing the object bounding box informa-481

tion from REVERIE, in this setting, NavRAG482

shows superior performance. This suggests that,483

despite NavRAG having a larger domain gap with484

the REVERIE dataset compared to AutoVLN and485

ScaleVLN, pretraining on more diverse instruc-486

tions of the NavRAG dataset enables the model487

to achieve strong generalization, even leading to488

better fine-tuning performance surpasses domain-489

specific generated data.490

4.6 Ablation Study491

Training Data Validation Data NavRAG Val Unseen
NE↓ OSR↑ SR↑ SPL↑

GraphRAG GraphRAG 14.1 41.4 12.1 8.7
Zone Clustering Zone Clustering 9.8 48.9 16.4 11.6

w/o User. w/ User. 9.4 45.6 18.6 13.7
w/ User. w/o User. 9.1 48.1 20.8 15.7
NavRAG NavRAG 8.9 46.8 21.5 15.4

Table 4: The ablation study of NavRAG, evaluating the
effectiveness of the components. To reduce costs, only
100 scenes are annotated for DUET training.

Retrieval-Augmented Generation: NavRAG vs.492

GraphRAG. To validate the superiority of our493

scene description tree-based retrieval over tra-494

ditional RAG methods (e.g., GraphRAG (Edge495

et al., 2024)), we also annotate 100 scenes through496

GraphRAG to evaluate instruction quality. Specif-497

ically, GraphRAG replaces the scene description498

tree with a knowledge graph built from view-level499

descriptions. During instruction generation, it re- 500

trieves relevant text fragments from the knowledge 501

graph, integrates them into a prompt, and feeds 502

them to the LLM to generate instructions and nav- 503

igation destinations. Comparing the first and last 504

rows of Table 4 shows that the model trained with 505

GraphRAG-annotated data performs poorly on its 506

validation set, indicating low annotation quality. 507

Zone Partitioning Algorithm. Row 2 of Table 4 508

evaluates the instruction quality using zones from 509

hierarchical clustering (Xie et al., 2024). Com- 510

pared to our proposed zone partitioning algorithm, 511

hierarchical clustering relies solely on the distance 512

between different viewpoints, disregarding the spa- 513

tial layout of the environment (e.g., wall partitions) 514

and lacking environmental semantic understanding. 515

Role Simulation and User Demands. To enhance 516

the diversity of instructions and better match user 517

demands, we design prompts that guide the LLM to 518

simulate a user with a specific role profile and gen- 519

erate instructions to the agent in everyday scenarios. 520

As shown in rows 3 and 4 of Table 5, we analyze the 521

impact of role simulation and user demands on the 522

quality of NavRAG-generated instructions. When 523

user demands are not utilized for training data gen- 524

eration, performance significantly decreases in val- 525

idation data with diverse user demands (Table 5, 526

row 3). However, if user demands are included in 527

the training data but removed from the validation 528

data, the model still maintains strong performance. 529

The experimental results indicate that enhancing 530

the diversity of generated instructions by simulat- 531

ing user roles and incorporating user demands is 532

feasible. Moreover, more diverse instructions can 533

provide the model with stronger generalizability 534

and performance. 535

5 Conclusion 536

In this work, we propose NavRAG, a user demand- 537

oriented navigation data generation method 538

through retrieval-augmented LLM. Unlike previous 539

works that use trajectory-based instruction gener- 540

ators to translate navigation videos into step-by- 541

step instructions, our NavRAG utilizes the environ- 542

mental representations from a hierarchical scene 543

description tree. By retrieving descriptions of dif- 544

ferent levels in a top-down manner and introducing 545

the user demands, NavRAG effectively enhances 546

the quality of instructions generated by the LLM. 547
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6 Limitations548

1) Although the strong navigation performance549

shows the quality of the NavRAG dataset, no ef-550

fective method exists to evaluate the correctness551

of generated instructions. Previous approaches552

evaluate instruction generators by comparing gen-553

erated instructions with human-annotated instruc-554

tions (e.g., using metrics like Bleu, SPICE, and555

CIDEr). However, our experiments show that556

small-scale human annotations lack diversity and557

are insufficient for accurately evaluating dataset558

quality. 2) The navigation targets annotated by559

NavRAG are limited to the viewpoint-level, fail-560

ing to precisely locate specific target objects and561

their positions, which restricts its applicability in562

object-centered tasks such as mobile manipulation.563

References564

Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang565
Wang, Tieniu Tan, and Jing Shao. 2023. Bevbert:566
Multimodal map pre-training for language-guided567
navigation. In Proceedings of the IEEE/CVF Interna-568
tional Conference on Computer Vision, pages 2737–569
2748.570

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,571
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen572
Gould, and Anton Van Den Hengel. 2018. Vision-573
and-language navigation: Interpreting visually-574
grounded navigation instructions in real environ-575
ments. In Proceedings of the IEEE conference on576
computer vision and pattern recognition, pages 3674–577
3683.578

Meghan Booker, Grayson Byrd, Bethany Kemp, Au-579
rora Schmidt, and Corban Rivera. 2024. Embod-580
iedrag: Dynamic 3d scene graph retrieval for effi-581
cient and scalable robot task planning. arXiv preprint582
arXiv:2410.23968.583

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej584
Halber, Matthias Niebner, Manolis Savva, Shuran585
Song, Andy Zeng, and Yinda Zhang. 2017. Matter-586
port3d: Learning from rgb-d data in indoor environ-587
ments. In International Conference on 3D Vision588
(3DV).589

Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiao-590
dan Liang, and Kwan-Yee K. Wong. 2024. Mapgpt:591
Map-guided prompting with adaptive path planning592
for vision-and-language navigation. In Proceedings593
of the 62nd Annual Meeting of the Association for594
Computational Linguistics.595

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid,596
and Ivan Laptev. 2021. History aware multimodal597
transformer for vision-and-language navigation. Ad-598
vances in neural information processing systems,599
34:5834–5847.600

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, 601
Cordelia Schmid, and Ivan Laptev. 2022a. Learn- 602
ing from unlabeled 3d environments for vision-and- 603
language navigation. In European Conference on 604
Computer Vision, pages 638–655. Springer. 605

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, 606
Cordelia Schmid, and Ivan Laptev. 2022b. Think 607
global, act local: Dual-scale graph transformer for 608
vision-and-language navigation. In Proceedings of 609
the IEEE/CVF Conference on Computer Vision and 610
Pattern Recognition, pages 16537–16547. 611

Bowen Cheng, Ishan Misra, Alexander G Schwing, 612
Alexander Kirillov, and Rohit Girdhar. 2022. 613
Masked-attention mask transformer for universal im- 614
age segmentation. In Proceedings of the IEEE/CVF 615
conference on computer vision and pattern recogni- 616
tion, pages 1290–1299. 617

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 618
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 619
Akhil Mathur, Alan Schelten, Amy Yang, Angela 620
Fan, et al. 2024. The llama 3 herd of models. arXiv 621
preprint arXiv:2407.21783. 622

Darren Edge, Ha Trinh, Newman Cheng, Joshua 623
Bradley, Alex Chao, Apurva Mody, Steven Truitt, 624
and Jonathan Larson. 2024. From local to global: A 625
graph rag approach to query-focused summarization. 626
arXiv preprint arXiv:2404.16130. 627

Sheng Fan, Rui Liu, Wenguan Wang, and Yi Yang. 2025. 628
Navigation instruction generation with bev percep- 629
tion and large language models. In European Confer- 630
ence on Computer Vision, pages 368–387. Springer. 631

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna 632
Rohrbach, Jacob Andreas, Louis-Philippe Morency, 633
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, 634
and Trevor Darrell. 2018. Speaker-follower mod- 635
els for vision-and-language navigation. Advances in 636
neural information processing systems, 31. 637

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, 638
and Jianfeng Gao. 2020. Towards learning a generic 639
agent for vision-and-language navigation via pre- 640
training. In Proceedings of the IEEE/CVF conference 641
on computer vision and pattern recognition, pages 642
13137–13146. 643

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 644
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 645
trow, Akila Welihinda, Alan Hayes, Alec Radford, 646
et al. 2024. Gpt-4o system card. arXiv preprint 647
arXiv:2410.21276. 648

Aishwarya Kamath, Peter Anderson, Su Wang, Jing Yu 649
Koh, Alexander Ku, Austin Waters, Yinfei Yang, Ja- 650
son Baldridge, and Zarana Parekh. 2023. A new 651
path: Scaling vision-and-language navigation with 652
synthetic instructions and imitation learning. In Pro- 653
ceedings of the IEEE/CVF Conference on Computer 654
Vision and Pattern Recognition, pages 10813–10823. 655

9



Jing Yu Koh, Harsh Agrawal, Dhruv Batra, Richard656
Tucker, Austin Waters, Honglak Lee, Yinfei Yang,657
Jason Baldridge, and Peter Anderson. 2023. Sim-658
ple and effective synthesis of indoor 3d scenes. In659
Proceedings of the AAAI Conference on Artificial660
Intelligence, volume 37, pages 1169–1178.661

Xianghao Kong, Jinyu Chen, Wenguan Wang, Hang662
Su, Xiaolin Hu, Yi Yang, and Si Liu. 2025. Con-663
trollable navigation instruction generation with chain664
of thought prompting. In European Conference on665
Computer Vision, pages 37–54. Springer.666

Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv667
Batra, and Stefan Lee. 2020. Beyond the nav-graph:668
Vision-and-language navigation in continuous envi-669
ronments. In Computer Vision–ECCV 2020: 16th670
European Conference, Glasgow, UK, August 23–28,671
2020, Proceedings, Part XXVIII 16, pages 104–120.672
Springer.673

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie,674
and Jason Baldridge. 2020. Room-across-room: Mul-675
tilingual vision-and-language navigation with dense676
spatiotemporal grounding. In Proceedings of the677
2020 Conference on Empirical Methods in Natural678
Language Processing (EMNLP), pages 4392–4412.679

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio680
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-681
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-682
täschel, et al. 2020. Retrieval-augmented generation683
for knowledge-intensive nlp tasks. Advances in Neu-684
ral Information Processing Systems, 33:9459–9474.685

Xiangyang Li, Zihan Wang, Jiahao Yang, Yaowei Wang,686
and Shuqiang Jiang. 2023. Kerm: Knowledge en-687
hanced reasoning for vision-and-language naviga-688
tion. In Proceedings of the IEEE/CVF Conference689
on Computer Vision and Pattern Recognition, pages690
2583–2592.691

Kunyang Lin, Peihao Chen, Diwei Huang, Thomas H692
Li, Mingkui Tan, and Chuang Gan. 2023. Learning693
vision-and-language navigation from youtube videos.694
In Proceedings of the IEEE/CVF International Con-695
ference on Computer Vision, pages 8317–8326.696

Rui Liu, Wenguan Wang, and Yi Yang. 2024a. Vision-697
language navigation with energy-based policy. In698
Advances in Neural Information Processing Systems.699

Rui Liu, Wenguan Wang, and Yi Yang. 2024b. Volumet-700
ric environment representation for vision-language701
navigation. In Proceedings of the IEEE/CVF Confer-702
ence on Computer Vision and Pattern Recognition,703
pages 16317–16328.704

Rui Liu, Xiaohan Wang, Wenguan Wang, and Yi Yang.705
2023. Bird’s-eye-view scene graph for vision-706
language navigation. In Proceedings of the707
IEEE/CVF International Conference on Computer708
Vision, pages 10968–10980.709

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,710
William Yang Wang, Chunhua Shen, and Anton711

van den Hengel. 2020. Reverie: Remote embodied 712
visual referring expression in real indoor environ- 713
ments. In Proceedings of the IEEE/CVF Conference 714
on Computer Vision and Pattern Recognition, pages 715
9982–9991. 716

Yanyuan Qiao, Qianyi Liu, Jiajun Liu, Jing Liu, and 717
Qi Wu. 2024. Llm as copilot for coarse-grained 718
vision-and-language navigation. In European Confer- 719
ence on Computer Vision, pages 459–476. Springer. 720

Yanyuan Qiao, Yuankai Qi, Zheng Yu, Jing Liu, and 721
Qi Wu. 2023. March in chat: Interactive prompting 722
for remote embodied referring expression. In Pro- 723
ceedings of the IEEE/CVF International Conference 724
on Computer Vision, pages 15758–15767. 725

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 726
Dario Amodei, Ilya Sutskever, et al. 2019. Language 727
models are unsupervised multitask learners. OpenAI 728
blog, 1(8):9. 729

Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik 730
Wijmans, Oleksandr Maksymets, Alexander Clegg, 731
John M Turner, Eric Undersander, Wojciech Galuba, 732
Andrew Westbury, Angel X Chang, et al. Habitat- 733
matterport 3d dataset (hm3d): 1000 large-scale 3d 734
environments for embodied ai. In Thirty-fifth Con- 735
ference on Neural Information Processing Systems 736
Datasets and Benchmarks Track (Round 2). 737

Manolis Savva, Abhishek Kadian, Oleksandr 738
Maksymets, Yili Zhao, Erik Wijmans, Bhavana 739
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra 740
Malik, et al. 2019. Habitat: A platform for embodied 741
ai research. In Proceedings of the IEEE/CVF 742
international conference on computer vision, pages 743
9339–9347. 744

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie 745
Huang, Nan Duan, and Weizhu Chen. 2023. En- 746
hancing retrieval-augmented large language models 747
with iterative retrieval-generation synergy. In Find- 748
ings of the Association for Computational Linguistics: 749
EMNLP 2023, pages 9248–9274. 750

Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learn- 751
ing to navigate unseen environments: Back trans- 752
lation with environmental dropout. arXiv preprint 753
arXiv:1904.04195. 754

Liuyi Wang, Zongtao He, Ronghao Dang, Mengjiao 755
Shen, Chengju Liu, and Qijun Chen. 2024. Vision- 756
and-language navigation via causal learning. In Pro- 757
ceedings of the IEEE/CVF Conference on Computer 758
Vision and Pattern Recognition, pages 13139–13150. 759

Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh 760
Birodkar, Aleksandra Faust, Izzeddin Gur, Natasha 761
Jaques, Austin Waters, Jason Baldridge, and Peter 762
Anderson. 2022. Less is more: Generating grounded 763
navigation instructions from landmarks. In Proceed- 764
ings of the IEEE/CVF Conference on Computer Vi- 765
sion and Pattern Recognition, pages 15428–15438. 766

10



Xiaohan Wang, Wenguan Wang, Jiayi Shao, and767
Yi Yang. 2023a. Lana: A language-capable navigator768
for instruction following and generation. In Pro-769
ceedings of the IEEE/CVF Conference on Computer770
Vision and Pattern Recognition, pages 19048–19058.771

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and772
Shuqiang Jiang. 2023b. Gridmm: Grid memory map773
for vision-and-language navigation. In Proceedings774
of the IEEE/CVF International Conference on Com-775
puter Vision, pages 15625–15636.776

Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu,777
Mohit Bansal, Stephen Gould, Hao Tan, and778
Yu Qiao. 2023c. Scaling data generation in vision-779
and-language navigation. In Proceedings of the780
IEEE/CVF International Conference on Computer781
Vision, pages 12009–12020.782

Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax,783
Jitendra Malik, and Silvio Savarese. 2018. Gibson784
env: Real-world perception for embodied agents. In785
Proceedings of the IEEE conference on computer786
vision and pattern recognition, pages 9068–9079.787

Quanting Xie, So Yeon Min, Tianyi Zhang, Kedi788
Xu, Aarav Bajaj, Ruslan Salakhutdinov, Matthew789
Johnson-Roberson, and Yonatan Bisk. 2024.790
Embodied-rag: General non-parametric embodied791
memory for retrieval and generation. arXiv preprint792
arXiv:2409.18313.793

Haitian Zeng, Xiaohan Wang, Wenguan Wang, and794
Yi Yang. 2023. Kefa: A knowledge enhanced and795
fine-grained aligned speaker for navigation instruc-796
tion generation. arXiv preprint arXiv:2307.13368.797

Yue Zhang and Parisa Kordjamshidi. 2023. Vln-trans:798
Translator for the vision and language navigation799
agent. arXiv preprint arXiv:2302.09230.800

Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong,801
Xiao Liang, I Eric, Chao Chang, and Yan Xu. Large802
scale image completion via co-modulated generative803
adversarial networks. In International Conference804
on Learning Representations.805

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and806
Liwei Wang. 2024. Towards learning a generalist807
model for embodied navigation. In Proceedings of808
the IEEE/CVF Conference on Computer Vision and809
Pattern Recognition, pages 13624–13634.810

Gengze Zhou, Yicong Hong, and Qi Wu. 2024. Navgpt:811
Explicit reasoning in vision-and-language naviga-812
tion with large language models. In Proceedings813
of the AAAI Conference on Artificial Intelligence,814
volume 38, pages 7641–7649.815

Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun816
Chang, and Xiaodan Liang. 2021. Soon: Scenario817
oriented object navigation with graph-based explo-818
ration. In Proceedings of the IEEE/CVF Conference819
on Computer Vision and Pattern Recognition, pages820
12689–12699.821

11


	Introduction
	Related Work
	Method
	Navigation Setups
	Constructing the Scene Description Tree
	User Demand Instruction Generation

	Experiments
	Datasets and Evaluation Metrics
	VLN Models
	Limitations of the Existing Training Data.
	Generalization Ability of NavRAG
	Comparison with SOTA Methods
	Ablation Study

	Conclusion
	Limitations

