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Abstract

This paper introduces a Multi-modal Diffusion model for001
Motion Prediction (MDMP) that integrates and synchro-002
nizes skeletal data and textual descriptions of actions to003
generate refined long-term motion predictions with quan-004
tifiable uncertainty. Existing methods for motion forecast-005
ing or motion generation rely solely on either prior motions006
or text prompts, facing limitations with precision or control,007
particularly over extended durations. The multi-modal na-008
ture of our approach enhances the contextual understand-009
ing of human motion, while our graph-based transformer010
framework effectively capture both spatial and temporal011
motion dynamics. As a result, our model consistently out-012
performs existing generative techniques in accurately pre-013
dicting long-term motions. Additionally, by leveraging dif-014
fusion models’ ability to capture different modes of predic-015
tion, we estimate uncertainty, significantly improving spa-016
tial awareness in human-robot interactions by incorporat-017
ing zones of presence with varying confidence levels.018

1. Introduction019

Through collaboration and assistance, robots could sig-020
nificantly augment human capabilities across diverse sec-021
tors, including smart manufacturing, healthcare, agricul-022
ture, construction and many others. Indeed, they can com-023
plement the critical and adaptive decision-making skills024
of human workers with higher precision and consistency025
in repetitive tasks. However, one challenge prohibiting026
human-robot collaboration is the safety of workers in the027
presence of robots. To act safely and effectively together,028
continuous knowledge of future human motion and location029
in the common workspace with a measure of uncertainty is030
pivotal. This real-time awareness allows robots to adjust031
their trajectories to avoid collision and perform precise col-032
laborative tasks [5, 25, 58].033

Humans can predict future events based on their self-034
constructed models of physical and socio-cultural systems.035

Figure 1. MDMP integrates skeletal motion and text to gener-
ate long-term motion predictions with uncertainty zones, shown in
both skeletal and 3D human mesh formats.

This skill, developed from childhood through observation 036
and active participation in society, enables them to an- 037
ticipate others’ movements. Researchers are now try- 038
ing to transfer this capability often refered as ”Theory of 039
mind” [10] to machines by training them to learn similar 040
motion estimation tasks. Current methodologies fall into 041
two main categories: Human Motion Forecasting (see Sec- 042
tion 2.2) and Human Motion Generation (see Section 2.3). 043
While the former uses only a short input sequence of skele- 044
tal motion to predict its future trajectory, the latter relies ex- 045
clusively on textual prompts to generate motion sequences. 046

Despite advancements in text-to-motion models, chal- 047
lenges remain in controlling generation due to the expansive 048
action space a simple prompt can describe, which may not 049
always align with human expectations or behavior. More- 050
over, while some text-to-motion methods have been adapted 051
to perform tasks like motion editing or motion prediction by 052
conditioning their generative process on motion data during 053
sampling, our study demonstrates that, since they are only 054
fed with textual prompts during training, our method con- 055
sistently outperforms them in terms of accuracy metrics. 056

Conversely, motion prediction using past sequences is 057
a long-standing challenge that has achieved high accuracy 058
over short-term predictions but struggles with long-term 059
predictions. Even for humans, predicting someone’s im- 060
mediate future movement based on past motions is feasible, 061
but beyond one or two seconds, the multitude of possibili- 062
ties makes it nearly impossible without context. However, 063
knowledge of the intended action provides a rough idea of 064

1



CVPR
#6

CVPR
#6

CVPR 2025 Submission #6. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. SMPL [34] Meshes of MDMP Predicted motions of different scenarios. The text descriptions vertically associated to the
motions as well as the blue frames are the inputs of the model. The orange frames are the predictions, darker colors indicate later frames.

future positions, as the contextual information of the action065
guides intuition.066

In Human Robot Collaboration (HRC), there is a crucial067
need for longer-term predictions to coordinate precise in-068
teractive tasks, avoid collisions, and maintain efficient tra-069
jectory planning. As a result, our method uniquely com-070
bines and synchronizes textual and skeletal data to gener-071
ate precise, longer-term predictions. Indeed, this integra-072
tion allows for a richer, more contextually aware generation073
of motion predictions. To the best of our knowledge, this074
model is the first to be trained on a combination of both075
types of inputs to leverage context in motion.076

In this work, inspired by MDM [50] (Motion Diffu-077
sion Model) and LTD [37] (Learning Trajectory Dependen-078
cies), we propose a transformer-based diffusion model with079
a Graph Convolutional Encoder optimized for the spatio-080
temporal dynamics of motion data. A key design element is081
the use of learnable graph connectivity, as introduced by082
Mao et al. [37], to more effectively capture joint depen-083
dencies. Additionally, our Multi-modal Diffusion Model084
for Motion Predictions (MDMP) harnesses the stochastic085
nature of diffusion models to predict presence zones with086
varying confidence levels. This uncertainty measure is par-087
ticularly crucial for long-term motion predictions, where088
uncertainty grows over time. By offering a spatial under-089
standing of human presence, our model significantly en-090
hances collision avoidance, improving safety and real-time091
interaction in dynamic collaboration scenarios.092

We summarize the contributions as follows: 1) A novel093
multi-modal diffusion model trained on both textual and094
skeletal data for precise long-term motion predictions. 2)095
An uncertainty estimation method to significantly enhance096
spatial awareness and safety in HRC scenarios. 3) A graph-097
based transformer capturing spatial-temporal dynamics ef-098
fectively. 4) A comprehensive validation of uncertainty es-099
timation, with an open-source implementation.100

2. Related Work 101

In this section, we review key works that inform our ap- 102
proach. We cover Diffusion Generative Models, Human 103
Motion Forecasting, and Human Motion Generation, high- 104
lighting the advancements and limitations in each area as 105
they relate to our method. 106

2.1. Diffusion Generative Models 107

Diffusion models [18, 46, 47] are neural generative models 108
based on a stochastic diffusion process as modeled in Ther- 109
modynamics. The training process involves two phases: 110
forward and backward. The forward process takes observed 111
samples x and progressively adds Gaussian noise until the 112
original information is completely obscured. In contrast, 113
the backward or reverse process employs a neural model 114
that learns to denoise a sample from pure noise back to 115
the original data distribution p(x), hence the term Denoising 116
Diffusion Probabilistic Models [18]. DDPMs have gained 117
prominence in generative modeling, initially demonstrating 118
excellent performance in image generation, and later in con- 119
ditioned generation [9] and latent text representation [41] 120
using CLIP [44]. Recently, diffusion models have also 121
been applied to various generation tasks, such as text-to- 122
speech [43], text-to-sound [56], and text-to-video [19]. 123

While diffusion models excel in performance, a signifi- 124
cant trade-off is the lengthy inference time required for the 125
reverse process, which is impractical for real-time applica- 126
tions. However, many work such as DDIM [48] and Consis- 127
tency Models [49] tackles that issue and trade off computa- 128
tion for sample quality. Nichol et al. [40] found that instead 129
of fixing variances of distributions modeling the progres- 130
sively denoised data as a hyperparameter [18], learning it 131
would improve log-likelihood, forcing generative models to 132
capture all data distribution modes, and enable faster sam- 133
pling with minimal quality loss. Considering the paramount 134
importance of efficiency in HRC, we follow Nichol et al.’s 135
approach by learning variances and leverage the different 136
modes as a factor for uncertainty. Our method demonstrates 137
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better performance with just 50 time steps instead of 1000,138
achieving over 20 times faster inference.139

2.2. Human Motion Forecasting140

Human Motion Forecasting aims to predict future full-body141
motion trajectories in 3D space based on past observations142
from motion capture data or real-time Human Pose Esti-143
mation methods. This task is formulated as a sequence-to-144
sequence problem, using past motion segments to predict145
future motion. Deep learning methods have shown notable146
results due to their ability to learn motion patterns and un-147
derstand spatio-temporal relationships. Early methods em-148
ployed RNNs [11, 20, 26, 32, 38], then CNNs [31, 57] and149
GANs [8, 13, 17, 22, 27, 53, 60] but either accumulated er-150
rors led to unrealistic predictions or faced limitations due151
to prefixed kinematic dependencies between body joints.152
GCNs have proven effective for the task [7, 29, 30, 33, 37,153
59], considering that the human skeleton can be effectively154
modeled as a graph. Transformer-based models, leveraging155
self-attention [51] for long-range dependencies, have also156
been adopted [2, 4, 39, 54]. Considering the efficiency and157
accuracy of the previously mentioned methods, our denois-158
ing model leverages GCNs to encode joint features due to159
their effectiveness in capturing spatial patterns, and a Trans-160
former backbone in the latent space to address the temporal161
nature of motion data. However, since none of these meth-162
ods can learn contextual information from the data they are163
fed, they tend to diverge for durations beyond one second.164

2.3. Human Motion Generation165

Instead of predicting future motion based on past sequences,166
some generative methods are conditioned on natural lan-167
guage [1, 42] to overcome this short-term issue. This ap-168
proach faces other challenges such as the vast variability of169
possible motions corresponding to the same label. How-170
ever, Text2Motion has garnered significant interest and var-171
ied successful approaches. TEMOS [42] and T2M [15] em-172
ploy a VAE to map text prompts to a latent space distri-173
bution of language and motion. MotionGPT [21] furthers174
this by proposing a unified motion-language framework.175
MDM [50] proved that diffusion models are a better can-176
didate for human motion generation, as they can retain the177
formation of the original motion sequence and thus allows178
them to easily apply more constraints during the denoising179
process. Then, LDM [6] performed the Diffusion in the la-180
tent space and MoMask [16] leveraged Masked Transform-181
ers.182

By fixing some parts of a motion sequence and filling183
in the gaps, some of these Text2Motion baselines such as184
MDM [50], MotionGPT [21] and MoMask [16] propose a185
form of ”motion editing” by forcing their models to gen-186
erate motions with preserved original data. Unlike these187
methods, which only edit motions during sampling, our ap-188

proach trains the model with both textual prompts and mo- 189
tion sequence conditioning to learn contextuality and guide 190
generation towards precise predictions. While these models 191
are compared on diversity and multi-modality metrics, our 192
goal is to minimize the distance between predictions and 193
ground-truth for accurate predictions in HRC. 194

3. Methodology 195

We now explain the architecture of our proposed MDMP 196
in detail. For an overview, please refer to Figure 3. As 197
part of the Diffusion Process MDMP progressively denoises 198
a motion sample conditioned by the input motion through 199
masking. Our architecture employs a GCN encoder to cap- 200
ture spatial joint features. We encode text prompts using 201
CLIP followed by a linear layer; the textual embedding 202
c and the noise time-step t are projected to the same di- 203
mensional latent space by separate feed-forward networks. 204
These features, summed with a sinusoidal positional em- 205
bedding, are fed into a Transformer encoder-only back- 206
bone [51]. The backbone output is projected back to the 207
original motion dimensions via a GCN decoder. Our model 208
is trained both conditionally and unconditionally on text, by 209
randomly masking 10% of the text embeddings. This ap- 210
proach balances diversity and text-fidelity during sampling. 211

Our method uses the building blocks of MDM [50], 212
but with three key differences: (1) a denoising model that 213
includes variance learning to increase log-likelihood and 214
perform uncertainty estimates, (2) the GCN encoder with 215
learnable graph connectivity, and (3) a learning framework 216
that incorporates contextuality by synchronizing skeletal in- 217
puts with initial textual inputs. 218

3.1. Problem Formulation 219

A motion sample can be represented by a temporal skele- 220
ton sequence X = {pi}Ni=1 of length N where a frame pi 221
denotes a pose that can be modeled using different joint 222
feature representations depending on the dataset (see Sec- 223
tion 4.1). The simplest form that any representation can 224
easily revert to without any loss of information is the joints’ 225
position in 3D space where pi = {x(1)i, ..., x(J)i} with 226
joints x(j)i ∈ RM=3 and J being the total number of joints. 227
Some parameterizations use rotation matrices (M = 9), 228
angle-axis (M = 4), or quaternion (M = 4) to represent 229
each joint, some also include information such as angular 230
and/or linear velocity. 231

3.2. The Variational Diffusion Process 232

A Diffusion model can be described as a Markovian Hierar- 233
chical Variational Auto-Encoder [35] with a constant latent 234
dimension. During training, we draw X0 from the data dis- 235
tribution, and at each time step t, the fixed encoder adds lin- 236
ear Gaussian noise centered around the output of the previ- 237
ous latent sample Xt−1 until its distribution becomes a stan- 238

3



CVPR
#6

CVPR
#6

CVPR 2025 Submission #6. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. (Left) Architecture of MDMP. The denoising model takes as input a motion sample Xt = {pit}Ni=1 from the previous latent
distribution, the diffusion time step t and the conditioning parameters: Y = {pi}ni=1 with n < N the motion input sequence and c the
textual embedding encoded by CLIP [44]. At each time step, MDMP outputs a prediction of the final motion X̂0 along with V0, the
variance of each predicted joint feature. (Right) Overview of the Diffusion Process. On top is the denoising Process, where the Sampling
starts from t = T and recursively calls MDMP and uses the output along with Xt to diffuse back to Xt−1 by calculating µθ,t and Σθ,t.

dard Gaussian at the final time step T . Hence, the Gaussian239
encoder is parameterized with mean µt(Xt) =

√
αtXt−1240

and variance Σt(Xt) = (1− αt)I:241

q(Xt|Xt−1) = N (Xt;
√
αtXt−1, (1− αt)I) (1)242

243

q(X1:T |X0) =

T∏
t=1

q(Xt|Xt−1) (2)244

Inspired by Nichol et al. [40], we use a cosine scheduler245
for βt and αt = 1−βt such that βt, αt ∈ [0, 1]. αt is slowly246
decreasing, so that for T = 1000, αt is small enough to say247
that XT ∼ N (0, I).248

Then, during both training and inference, we use MDMP249
(see Fig 3) as the decoder—conditioned at each step by the250
previously mentioned inputs Y and c—to progressively de-251
noise Xt from a standard Gaussian. Instead of predicting252
the noise ϵ0 as formulated in DDPM [18], we follow [45]253
and [50] and predict the signal itself along with its vari-254
ance: X̂0, V0 = MDMP(Xt, t, Y, c)255

Then we use this prediction X̂0 along with the current256
Xt to diffuse back to the posterior mean:257

µθ,t−1 =

√
αt(1− ᾱt−1)Xt +

√
ᾱt−1(1− αt)X̂0

1− ᾱt
(3)258

259

with ᾱt =

t∏
s=1

αs. (4)260

We use the simple objective from [18] to train our model:261

Lsimple = EX0∼q(X0|c,Y ),t∼[1,T ]

[
∥X0 − X̂0∥2

]
(5)262

One subtlety is that Lsimple provides no learning signal for 263
variances, as Ho et al. [18] chose to fix the variance rather 264
than learn it. However, in our framework, we leverage 265
learned variances to generate presence zones with varying 266
confidence levels to help ensure safety in HRC scenarios. 267

3.3. Learning the Variances of the Denoising process 268

To learn the reverse process variances, our model outputs a 269

vector V0 of the same shape as X̂0, and-following Nichol et 270
al. [40]—we parameterize the variance as an interpolation 271
between βt and β̃t in the log domain by turning this output 272
V0 into Σθ,t as follows: 273

Σθ,t = exp(V0 log βt + (1− V0) log β̃t) (6) 274
275

with β̃t :=
1− ᾱt−1

1− ᾱt
βt. (7) 276

Then, we leverage the reparameterization trick xt = 277
ᾱtx0 +

√
1− ᾱtϵ with ϵ ∼ N (0, I) to sample from an 278

arbitrary step of the forward noising process and estimate 279
the variational lower bound (VLB). As mentioned ear- 280
lier, the diffusion model can be thought of as a VAE [23] 281
where q represents the encoder and pθ(xt−1|xt) = 282
N (xt−1;µθ,t,Σθ,t) is the decoder, so we can write: 283

LVLB := L0 + L1 + . . .+ LT−1 + LT (8) 284
285

L0 := − log pθ(x0|x1) (9) 286
287

Lt−1 := DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt)) (10) 288
289

LT := DKL(q(xT |x0)∥p(xT )) (11) 290
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Finally, with q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI)291
we estimate Lt−1 and approximate LVLB with the expecta-292
tion Et,X0,ϵ[Lt−1].293

Since Lsimple does not depend on Σθ,t, we define a new294
hybrid objective: Lhybrid = Lsimple + λLVLB295

Conversely to Nichol et al. [40], we apply a clamping on296
V0 to prevent NaN values during the calculation of LVLB.297

3.4. Encoding the joint features with GCNs298

To encode the spatial pose features, we leverage GCNs [52].299
Instead of relying on a predefined sparse graph, we fol-300
low Mao et al. [37] and learn the graph connectivity dur-301
ing training, thus essentially learning the dependencies be-302
tween the different joint trajectories. To this end, we use a303
fully-connected graph with N nodes, N being the length304
of the predicted sequence. The strength of the edges in305
this graph is represented by the weighted adjacency matrix306
A ∈ RN×N . The graph convolutional encoder/decoder then307
takes as input a matrix H(in) ∈ RN×F , where in our case308
F is the number of body joint features. Given the input a309
matrix H(in), the adjacency matrix A and a set of trainable310

weights W ∈ RF×F̂ , a graph convolutional layer outputs a311
matrix of the form: H(out) = AH(in)W . All operations are312
differentiable with respect to both the adjacency matrix A313
and the weight matrix W , which allows training on both.314

3.5. Predicting Uncertainty315

To derive an effective uncertainty index for each joint pre-316
diction over time, we explore three different approaches317
which we evaluate and compare in Section 4.4:318
• Mode Divergence: This approach measures the variabil-319

ity between multiple motion sequences generated from320
the same input. We compute several predictions in par-321
allel, calculate the standard deviation of these sequences,322
and use this as the uncertainty index.323

• Denoising Fluctuations: Here, we measure the fluctua-324
tions during the denoising process as an uncertainty indi-325
cator. As illustrated in Figure 1 which tracks the evolution326
of the x-coordinate of key joints (head, hands, feet) from327
random noise to the final prediction, earlier steps are very328
noisy and progressively converge with more or less sta-329
bility. Significant fluctuations in the last 20 timesteps are330
used as an indicator of uncertainty.331

• Predicted Variance: The final approach uses the learned332
variance of the predicted distribution of each motion se-333
quence Σθ,0 as the uncertainty factor.334
Both the second and third methods produce outputs in335

the same dimensions as the model, including predictions336
for root height, root angular and linear velocity, as well as337
joint positions and velocities in the local reference of the338
root. To calculate a single uncertainty index for each joint339
at each timestep, we average all features associated to the340
same joint.341

4. Experiments and Results 342

In this section, we present the experimental setup and eval- 343
uation of our proposed model. We describe the dataset used 344
for training and testing, outlines and explains the choice of 345
metrics used for accuracy and uncertainty, and provide de- 346
tails on our model’s implementation. Our comprehensive 347
quantitative and qualitative evaluation, includes compari- 348
son with state-of-the-art Text2Motion baselines that pro- 349
pose Motion-Editing re-implemented for a fair comparison 350
with similar conditioning, analysis of uncertainty parame- 351
ters, and an ablation study to assess the effects of motion- 352
text fusion and architectural design choices. 353

4.1. Dataset 354

To train and evaluate our model, we use the Hu- 355
manML3D [15] dataset, which is the largest and most 356
diverse collection of scripted human motions. It com- 357
bines motion sequences from the HumanAct12 [14] and 358
AMASS [36] datasets, processed to standardize the mo- 359
tions to 20 FPS with a maximum length of 10 seconds per 360
sequence. HumanML3D comprises 14,616 motions with 361
44,970 descriptions, covering 5,371 distinct words, totaling 362
28.59 hours of motion data with an average length of 7.1s 363
and three textual descriptions per sequence. The dataset is 364
split for training and evaluation. For evaluation, we filter 365
the set to include only motions longer than 3s, allowing us 366
to condition the models on 2.5s of motion and predict at 367
least 0.5s into the future up until more than 5s for longer 368
recorded motions. After filtering, the evaluation set con- 369
tains 4,328 out of the initial 4,646 motion sequences. 370

4.2. Metrics for Accuracy and Uncertainty 371

To evaluate and compare the accuracy of our model we use 372
the Mean Per Joint Position Error (MPJPE) on 3D joint 373
coordinates, which is the most widely used metric for eval- 374
uating 3D pose errors. This metric calculates the average 375
L2-norm across different joints between the prediction and 376
ground truth. Since HumanML3D [15] pose representation 377
contains 263 redundant features per body frames including 378
joint positions, velocities and rotations we use a transfor- 379
mation process (described in the Appendix) to obtain the 380
3D joint positions in order to both calculate the MPJPE and 381
visualize the predicted sequences. 382

To further validate our method we have also added some 383
more metrics in the C.4 Section of the Appendix. First of 384
all, we have re-trained MDM [50] with skeleton data as an 385
input for a direct comparison, demonstrating the efficacy 386
of our architecture. Secondly, one issue with the MPJPE 387
is that it is biased towards one ”ground-truth sequence” 388
and thus heavily penalizes frequency or phase shifts com- 389
mon in longer-term predictions, leading to misleadingly 390
large errors even if motions remain qualitatively realis- 391
tic. Hence we compared our method with baselines on the 392
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Figure 4. (Left) Temporal evolution of error in predictions. Quantitative Results on HumanML3D over MPJPE [mm]. (Right) 3D
Plots of Motion Predictions (orange) vs Ground truth (blue). Motion Sequence example associated to textual prompt:“from a standing
position, the person slowly walks in circle, clockwise, then stops”. Paler shades represents earlier frames.

NPSS [12] metric which measures similarity in frequency393
spectra rather than absolute frame-by-frame error, making394
it better suited to assess the quality of long-term predic-395
tions by capturing perceptually relevant motion coherence.396
Finally, we report results using metrics proposed by Guo397
et al. [15], such as Frechet Inception Distance (FID), R-398
Precision, and Multimodality. However, these metrics pri-399
marily assess motion quality, semantic alignment with tex-400
tual input, and variability rather than precise spatial accu-401
racy. Additionally, they depend on pretrained feature ex-402
tractors not tailored to motion-conditioned predictions.403

To evaluate and compare our uncertainty indices, we404
use sparsification plots, a common approach for assess-405
ing how well estimated uncertainty aligns with true er-406
rors [3, 24, 28, 55]. In our implementation, we compute407
multiple motion sequences and rank each joint’s uncer-408
tainty. By progressively removing the joints with the high-409
est uncertainty and summing the remaining error, we obtain410
the sparsification curve. The ideal reference, known as the411
”Oracle”, is based on ranking joints by their true errors. A412
well-performing and reliable uncertainty index should pro-413
duce a curve that decreases monotonically and closely fol-414
lows the oracle.415

4.3. Implementation Details 416

Our models were trained on an NVIDIA Titan V GPU over 417
1.7 days and on NVIDIA Tesla V100 GPU over 1.2 days 418
with a batch size of 64. We used 8 layers of the Trans- 419
former Encoder with 4 multi-head attention for each, sep- 420
arated by a GeLU activation function and a dropout value 421
of 0.1. The GCN layer encodes the joint features from Xt 422
into a latent dimension of 1024 when learning variances 423
and 512 without learning variances. 1024 corresponds to 424
the concatenation of the joint features of X̂0 [512] and V0 425
[512]. To encode the text, we use a frozen CLIP-ViT-B/32 426
model. Each model was trained for 600K steps, after which 427
a checkpoint was chosen that minimizes the MPJPE metric 428
to be reported. Our generative process is conditioned by a 429
motion input sequence of 50 frames which represents 2.5 430
seconds at 20FPS. We also set λ = 0.001 to prevent LVLB 431
from overwhelming Lsimple. We evaluate our models with 432
guidance-scale µ = 2.5 but as discussed in the Motion & 433
Text ablation study Section 4.4 this can be adapted for spe- 434
cific applications (eg. short/long-term predictions). 435

To evaluate the effectiveness of our multimodal fu- 436
sion approach, we compare against state-of-the-art Mo- 437
tion Editing baselines MoMask [16], MotionGPT [21] and 438
MDM [50] which are all trained on HumanML3D [15]. 439
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Figure 5. (Left) Sparsification Error Plot. Quantitative Results of the uncertainty parameters: The Mode Divergence index closely follows
the Oracle curve, indicating the strongest alignment between uncertainty estimates and true errors. (Right) Joint Position Evolution over
the Denoising Process. The position is progressively denoised until it converges to its final prediction. The fluctuations are used as a
parameter for uncertainty.

We implement their pretrained versions (open-sourced)440
and compare on the entire test set of HumanML3D us-441
ing MPJPE. Conversely to Motion Editing, to ensure a fair442
comparison setting we conditioned each baseline with only443
the same motion prequel sequence of 50 frames and com-444
pared the rest of the predicted sequence to the ground-truth.445

4.4. Quantitative & Qualitative Results446

Model Accuracy Evaluation over MPJPE: Unlike the im-447
plemented baselines MoMask [16], MotionGPT [21] and448
MDM [50] that treat motion data as a masked input during449
sampling, our model is trained to leverage it as an additional450
supervision signal, which we find to lead to significantly en-451
hances performance, especially over longer sequences. In452
Fig. 4 the temporal evolution chart shows that our model453
outperforms these baselines in accuracy, with consistently454
lower MPJPE values over time and a more gradual increase455
in error. These results are also demonstrated qualitatively456
in the 3D plots Fig. 4 (Right) (see Appendix & Video for457
more examples) where our predictions align more closely458
with the ground truth, especially towards the end of the se-459
quence. Indeed, both baselines’ outputs fail to follow the460
indicated trajectory (projection of the root joint in the XZ-461
plane) whereas our model follows the ”circle”, almost align-462
ing with the ground truth on the last frame.463

Uncertainty Parameters Evaluation: The results of464
our comparison study between the different uncertainty in-465
dices are presented in Fig. 5 (Left). The Sparsification Error466
plot (explained in 4.2) shows that the best-performing index467
is the Mode Divergence, which closely follows the Oracle468
curve, indicating a strong alignment between uncertainty469
estimates and true errors. These results are also demon-470
strated qualitatively in the video as well as in the Additional471
Experimental Results (Appendix) where we visualize the472

evolution of the zones of presence with varying confidence 473
levels based on the different uncertainty indices. For clar- 474
ity and visibility, we limit the uncertainty visualization to 475
the ”end-effector” joints—specifically the head, hands, and 476
feet—since these are the most critical in human-robot col- 477
laboration, and visualizing uncertainty for all joints would 478
create overly cluttered visuals. We calculate the mean un- 479
certainty across the x, y, and z coordinates for each key 480
joint, using this value as the radius of the sphere represent- 481
ing uncertainty around the end-effectors. 482

Uncertainty Results Interpretation: Although the De- 483
noising Fluctuations and Predicted Variance methods show 484
a general decline in their sparsification curves, the effect is 485
less pronounced, suggesting these indices are less reliable 486
for uncertainty estimation. The learned variance is sup- 487
posed to generally follow the same trends as the original 488
fixed schedule, consistently decreasing during denoising to 489
reduce stochasticity. However, its effectiveness as an uncer- 490
tainty factor is somewhat limited, as the final value, while 491
still meaningful, becomes slightly less informative. Sim- 492
ilarly, the instability of fluctuations diminishes their relia- 493
bility. In contrast, the Mode Divergence factor consistently 494
rises over time, aligning with the increasing error, making 495
it the most robust and dependable indicator (see video and 496
Appendix for visual confirmation in 3D plots). 497

Ablation Study - Motion and Text Effects: To evaluate 498
the relevance of our multi-modal contribution, we perform 499
an ablation study, presented in Table 1, comparing our stan- 500
dard approach to one where models are fed with either mo- 501
tion or textual inputs exclusively. Firstly, this study clearly 502
confirms that combining both types of inputs results in sig- 503
nificantly higher prediction accuracy. Secondly, the study 504
indicates that our model relies more heavily on motion in- 505
put sequences than textual prompts. Notably, it performs 506
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Time (seconds) 0.5s 1s 1.5s 2s 2.5s 3s 3.5s 4s 4.5s 5s 5.5s

Ours with motion & text 111.8 186.7 267.2 341.8 408.7 474.8 540.4 592.5 629.3 669.8 705.1
MDM [50] with motion & text 192.5 337.5 479.0 604.3 716.8 820.2 906.4 976.3 1025.4 1091.9 1139.6

Ours with text no motion 254.8 418.6 609.5 796.8 972.2 1105.1 1253.3 1383.8 1526.1 1624.8 1679.8
MDM [50] with text no motion 237.9 362.6 482.9 595.5 687.8 783.2 871.6 965.3 1039.6 1085.2 1143.8

Ours with motion no text 100.2 186.9 271.9 358.9 445.7 528.6 608.7 677.6 739.1 810.8 902.0
MDM [50] with motion no text 406.1 614.5 852.3 1079.3 1288.6 1503.5 1684.8 1871.9 2001.6 2187.3 2332.0

Table 1. Ablation study: MPJPE (mm) to assess Motion and Text Effects

Time (seconds) 0.5s 1s 1.5s 2s 2.5s 3s 3.5s 4s 4.5s 5s 5.5s

Encoder/Decoder: Linear 118.6 205.5 298.8 385.5 472.0 551.3 629.7 692.0 741.0 791.9 852.1
Encoder/Decoder: GCN 111.8 186.7 267.2 341.8 408.7 474.8 540.4 592.5 629.3 669.8 705.1

Learning the Variance: False 86.3 163.0 250.1 332.4 409.3 485.4 560.5 622.6 676.8 729.5 775.5
Learning the Variance: True 111.8 186.7 267.2 341.8 408.7 474.8 540.4 592.5 629.3 669.8 705.1

Diffusion Steps: 1000 104.8 192.2 280.6 360.9 438.3 482.1 553.6 617.2 653.5 702.3 745.8
Diffusion Steps: 50 111.8 186.7 267.2 341.8 408.7 474.8 540.4 592.5 629.3 669.8 705.1

Table 2. Ablation study: MPJPE (mm) to evaluate Architectural Design and Parameter Choice

slightly better without text for very short-term predictions.507
This means that our model could be used in a HRC setting508
for continuous operation between different actions, even509
without specific action context. This capability is presum-510
ably not possible with Text2Motion models, which perform511
poorly without text, as the study shows. Finally, the study512
confirms that textual information is most useful for longer-513
term predictions where the stochasticity and variability of514
potential scenarios are much higher.515

Ablation Study - Architectural Design and Parame-516
ter Choice: To assess our architectural contributions, we517
conduct a deeper analysis with additional ablation studies518
presented in Table 2. In the first study, we retrain our model519
with both the encoder and decoder composed of simple lin-520
ear layers, as in MDM [50]. The study confirms that learn-521
able graph connectivity improves the understanding of hu-522
man joint trajectory dependencies, especially for long-term523
predictions. The second study evaluates our architectural524
design that learns the variance of the motion sample distri-525
bution. Although learning variances allow diffusion mod-526
els to capture more data distribution modes with we lever-527
age for uncertainty estimates, our study shows that it only528
enhance accuracy over long-term predictions. In the final529
study, inspired by Nichol et al. [40], we significantly reduce530
the number of diffusion steps from 1000 to 50 which con-531
siderably improves the computational efficiency-pivotal for532
real-time Human-Robot Collaboration-and resulted in im-533
proved accuracy over time.534

5. Conclusion and Limitations 535

We present MDMP, a multimodal diffusion model that 536
learns contextuality from synchronized tracked motion se- 537
quences and associated textual prompts, enabling it to pre- 538
dict human motion over significantly longer terms than its 539
predecessors. Our model not only generates accurate long- 540
term predictions but also provides uncertainty estimates, 541
enhancing our predictions with presence zones of vary- 542
ing confidence levels. This uncertainty analysis was vali- 543
dated through a study, demonstrating the model’s capability 544
to offer spatial awareness, which is crucial for enhancing 545
safety in dynamic human-robot collaboration. Our method 546
demonstrates superior results over extended durations with 547
adapted computational time, making it well-suited for en- 548
suring safety in Human-Robot collaborative workspaces. 549

A limitation of this work is the reliance on textual de- 550
scriptions of actions, which can be a burden for real-time 551
Human-Robot Collaboration, as not every action is scripted 552
in advance. Currently, we use CLIP to embed these textual 553
descriptions into guidance vectors for our model. An inter- 554
esting future direction is to replace these descriptions with 555
images or videos captured in real time within the robotics 556
workspace. Since current Human Motion Forecasting meth- 557
ods already rely on human motion tracking data, often ob- 558
tained using RGB/RGB-D cameras, the necessary material 559
is typically already present in the workspace. Given that 560
CLIP leverages a shared multimodal latent space between 561
text and images, this approach could provide similar guid- 562
ance while being far less restrictive, making it more practi- 563
cal for dynamic and unsupervised HRC environments. 564
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[52] Petar Veličković, Guillem Cucurull, Arantxa799
Casanova, Adriana Romero, Pietro Lio, and Yoshua800
Bengio. Graph attention networks. In International801
Conference on Learning Representations (ICLR),802
2018. 5803

[53] Dong Wang, Yuan Yuan, and Qi Wang. Early action804
prediction with generative adversarial networks. IEEE805
Access, 7:35795–35804, 2019. 3806

[54] Jiashun Wang, Huazhe Xu, Medhini Narasimhan, and807
Xiaolong Wang. Multi-person 3d motion prediction808
with multi-range transformers. In Advances in Neu-809
ral Information Processing Systems (NeurIPS), pages810
6036–6049, 2021. 3811

[55] Alexander S. Wannenwetsch, Margret Keuper, and812
Stefan Roth. Probflow: Joint optical flow and uncer-813
tainty estimation. In IEEE International Conference814
on Computer Vision (ICCV), 2017. 6815

[56] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang,816
Chao Weng, Yuexian Zou, and Dong Yu. Diffsound:817
Discrete diffusion model for text-to-sound generation.818
IEEE/ACM Transactions on Audio, Speech, and Lan-819
guage Processing, 31:1720–1733, 2023. 2820

[57] Hao Yang, Chunfeng Yuan, Li Zhang, Yunda Sun,821
Weiming Hu, and Stephen J. Maybank. Sta-cnn: Con-822
volutional spatial-temporal attention learning for ac-823
tion recognition. IEEE Transactions on Image Pro-824
cessing, 29:5783–5793, 2020. 3825

[58] Dianhao Zhang, Mien Van, Pantelis Sopasakis, and 826
Seán McLoone. An nmpc-ecbf framework for dy- 827
namic motion planning and execution in vision-based 828
human-robot collaboration, 2023. 1 829

[59] Xikun Zhang, Chang Xu, and Dacheng Tao. Con- 830
text aware graph convolution for skeleton-based action 831
recognition. In 2020 IEEE/CVF Conference on Com- 832
puter Vision and Pattern Recognition (CVPR), pages 833
14321–14330, 2020. 3 834

[60] Tianhang Zheng, Sheng Liu, Changyou Chen, Jun- 835
song Yuan, Baochun Li, and Kui Ren. To- 836
wards understanding the adversarial vulnerability of 837
skeleton-based action recognition. arXiv preprint 838
arXiv:2005.07151, 2020. 3 839

11


	Introduction
	Related Work
	Diffusion Generative Models
	Human Motion Forecasting
	Human Motion Generation

	Methodology
	Problem Formulation
	The Variational Diffusion Process
	Learning the Variances of the Denoising process
	Encoding the joint features with GCNs
	Predicting Uncertainty

	Experiments and Results
	Dataset
	Metrics for Accuracy and Uncertainty
	Implementation Details
	Quantitative & Qualitative Results

	Conclusion and Limitations

