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Abstract

Normalizing flows are flexible, parameterized distributions that can be used to approximate
expectations from intractable distributions via importance sampling. However, current
flow-based approaches are limited on challenging targets where they either suffer from mode
seeking behaviour or high variance in the training loss, or rely on samples from the target
distribution, which may not be available. To address these challenges, we combine flows
with annealed importance sampling (AIS), while using the α-divergence as our objective,
in a novel training procedure, FAB (Flow AIS Bootstrap). Thereby, the flow and AIS
improve each other in a bootstrapping manner. We demonstrate that FAB can be used
to produce accurate approximations to complex target distributions, including Boltzmann
distributions, in problems where previous flow-based methods fail. We provide code for our
experiments at https://github.com/lollcat/FAB-2021.

1. Introduction

Estimating expectations with respect to target distributions that cannot be sampled from
is a challenging task with many real world applications, such as estimating equilibrium
properties of physical systems governed by the Boltzmann distribution (Lelièvre et al.,
2010). Boltzmann generators (Noé et al., 2019), which use normalizing flows to approximate
the Boltzmann distribution, are a recent approach with growing interest (Dibak et al., 2020;
Köhler et al., 2021). For challenging problems, current approaches to training Boltzmann
generators rely partly on samples from the target for training by the maximum likelihoodWu
et al. (2020). Such samples are obtained through expensive Molecular Dynamics simulations
(Leimkuhler and Matthews, 2015). Although flows can be trained without samples from
the target, current methods for this suffer from either being mode seeking or high variance
in the loss, which leads to inferior performance on challenging problems (Stimper et al.,
2021).

To address these challenges, we propose using the α-divergence with α = 2 as the training
objective, which is mass covering, and employ annealed importance sampling (AIS) to bring
the samples from the flow model closer to the target, reducing variance in the objective.
In our experiments, we apply our method, Flow AIS Bootstrap (FAB), to a 2D Gaussian
mixture distribution as well as to the “Many Well” problem and show that it outperforms
competing learning algorithms.

Although we focus on a toy problem and the Boltzmann distribution, our approach for
training flows to approximate intractable distributions is not specific to these problems,
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and can be applied to any target distribution for which an un-normalized probability den-
sity function is defined. One key application of interest that we leave for future work is
approximate inference over Bayesian posterior distributions (for example the posterior of a
Bayesian Neural Network). In the context of Bayesian inference, in terms of computational
complexity, FAB lies between Markov chain Monte Carlo, the computationally expensive
gold-standard for Bayesian inference, and Bayes-by-backprop (Blundell et al., 2015) which
provides a computationally cheaper alternative, but suffers from worse performance.

2. Background

Normalizing flows Given a random variable z with distribution q(z) a normalizing flow
(Rezende and Mohamed, 2015; Tabak and Vanden-Eijnden, 2010) uses an invertible map
F : Rd → Rd to transform z yielding the random variable x = F (z) with the distribution

q(x) = q(z) |det(JF (z))|−1 . (1)

If we parameterize F we can use this as a model to approximate a target distribution p. If the
target density p(x) is available, the flow is usually trained by minimizing the KL divergence,
which is estimated via Monte Carlo with samples from the flow model. Alternatively, we
could use the α-divergence (Zhu and Rohwer, 1995), which is defined by

Dα(p∥q) =
∫
x αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx

α(1− α)
, (2)

as an objective (Campbell et al., 2021; Müller et al., 2019). If α = 2, minimizing it corre-

sponds to minimizing the variance of the importance weights wIS(x) =
p(x)
q(x) . In contrast to

KL divergence, which is mode seeking, Dα=2(p∥q) is mass covering which is more desirable
when approximating multimodal targets. In this case, the α-divergence can be rewritten as

Dα=2(p∥q) ∝
∫

p(x)2

q(x)
dx = Eq(x)

[
wIS(x)

2
]
= Ep(x) [wIS(x)] . (3)

This objective can be estimated either with samples from p(x) or q(x). Since the integral is
dominated by regions with high p(x) and low q(x), the estimate will exhibit higher variance
if we sample from q than if we sample from p.

Annealed importance sampling AIS begins by sampling from an initial proposal
distribution x0 ∼ p0 = q, being the flow in our case, and then transitions via MCMC
through a sequence of intermediate distributions, p1 to pN−1, to produce samples xN−1

closer to the target distribution pN = p (Neal, 2001). Each transition Tj is a Markov
chain that leaves the intermediate distribution pj invariant. AIS conventionally returns the
importance weights for the samples, which are in the form

wAIS(x
(i)) =

p̃1 (x0)

p0 (x0)

p̃2 (x1)

p̃1 (x1)
· · · p̃N−1 (xN−2)

p̃N−2 (xN−2)

p̃N (xN−1)

p̃N−1 (xN−1)
(4)

where x(i) = xN−1 and we indicate that the probability density functions may be unnor-
malized with p̃. They exhibit variance reduction compared to their counterparts wIS(x).
Hamiltonian Monte Carlo (HMC) provides a suitable choice of transition operator for chal-
lenging problems (Neal, 1995).

2



Bootstrap Your Flow

3. Normalizing Flow Annealed Importance Sampling Bootstrap

FAB, defined in Algorithm 1, uses log(Dα=2(p∥q)) as a training objective. Furthermore,
we introduce AIS into the training loop, improving the gradient estimator for minimising
Dα=2(p∥q) by writing the loss function to train the flow as an expectation over p(x), and
estimating it with the samples and importance weights generated by AIS with the flow as
the initial distribution. If we plug in (4) in (3), compute the expectation over p(x) through
AIS and use Jensen’s inequality, we obtain our loss

L(θ) = log

L∑
l=1

exp
(
log w̄

(l)
AIS +

(
log p(x̄

(l)
AIS)− log q(x̄

(l)
AIS)

))
, (5)

where θ are the flow’s parameter and w̄AIS and x̄AIS have blocked gradients1. This method
obtains the benefit of bootstrapping, where AIS is used to improve the flow by improved
estimation of the loss’s gradient, which is used to update the flow. This in turn improves
AIS by improving its initial distribution. The effective sample size of the trained flow model,
which may be limited e.g. through expressiveness constraints of the specific flow, can also
be improved by using AIS after training.

Algorithm 1: FAB for minimisation of Dα=2(p∥q)
Set target p
Initialise proposal q parameterized by θ
for iteration = 1, M do

Sample batch x
(1:L)
q , log q(x

(1:L)
q ) from q

Generate batch x
(1:L)
AIS , logw

(1:L)
AIS from AIS seeded with x

(1:L)
q , log q(x

(1:L)
q )

Calculate FAB loss: L(θ)
Perform gradient descent on L(θ)

end

4. Experiments

4.1. Mixture of Gaussians Problem

We begin with a simple two dimensional mixture of Gaussians target distribution. To
estimate expectations Ep(x) [f(x)] with our proposal distribution, we set f(x) to be the toy

quadratic function f(x) = aT (x− 2b) + 2 (x− 2b)T C (x− 2b) , where the elements of a,
b and C are sampled from a unit Gaussian and then fixed for the problem. This allows us
to inspect the bias and variance of estimates of the expectation of this toy function, as a
further measure of performance. We compare FAB2 to flows trained through minimisation

1. We only want to calculate the gradient with respect to the log(Dα=2(p∥q)), and not with respect to the
importance weights and samples generated by AIS, which are also a function of the flow’s parameters.

2. For all experiments, we use FAB with only 2 intermediate AIS distributions. For the transition operator
between AIS distributions we use HMC with 1 outer step and 5 inner steps.
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of KLD3, as well as Stochastic Normalizing Flows (SNFs) (Wu et al., 2020). Like FAB,
SNFs also combine flows with stochastic sampling methods such as MCMC, but instead
focus on improving the flow’s expressive power. The SNF is trained with the KL divergence
as well. For all models we choose real NVP (Dinh et al., 2017) as the flow architecture.

In Figure 1 we see that FAB allows us to train a flow that captures the shape of the
target distribution well, while the flow and SNF trained with KLD both fail, capturing
only a subset of the modes. Table 14 shows that with FAB the trained flow may be used
for accurate computation of expectations with respect to the target, while the alternative
approaches yield highly biased estimates.

Table 1: Performance of FAB vs a flow and SNF trained with KLD on the Mixture of
Gaussians problem. For FAB all metrics are for the trained flow, while the metrics
after AIS are provided in brackets where applicable.

Model Mean log q(x), x ∼ p(x) ESS (%) Bias (%) Std (%)

FAB -5.2 70.1 (77.5) 1.2 (0.5) 5.8 (5.5)
Flow trained with KLD -14.4 0.05 99.6 19.8
SNF trained with KLD N/A 0.02 104.2 9.7

4.2. The Many Well Problem

For a more challenging problem, we test FAB against a flow trained by KLD on a 16 di-
mensional “Many Well” problem, which we create by repeating the Double Well Boltzmann
distribution from (Noé et al., 2019) 8 times. We create a hand-crafted test-set for this
problem where we place a point on each of the 256 modes of the target. In Table 2 we see
that FAB allows us to train a model that has a far superior test set log-likelihood and ESS
than training a flow with KLD. In Figure 2 where we visualise a subset of the marginal
distributions for pairs of dimensions, we see that the flow trained with FAB has captured
the shape of the target well, while the flow trained with KLD fits only a subset of the modes.

Table 2: Performance of FAB vs a flow trained by KLD on the Many Well Problem. Metrics
are provided with respect to the trained flows, while for FAB, ESS after AIS is
provided in brackets.

Model Test set mean log q(x) ESS (%)

FAB -14.5 79.6 (85.2)
Flow trained by KLD -86.2 0.01

3. For brevity we refer to a flow/SNF trained through minimisation of KL divergence, estimated with
samples from the flow/SNF, as simply being “trained with KLD”.

4. Effective sample size (ESS) for both experiments is calculated with 106 samples. Bias and standard
deviation are calculated using 100 runs of 1000 samples. We calculate the mean target log likelihood
using 10000 samples.
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Figure 1: Mixture of Gaussians problem target probability contours, overlaid with samples
from trained models. With FAB the flow captures all of the modes, while the
flow and SNF trained with KLD fit a subset of the modes.

Figure 2: Target probability contours for pairs of marginal distributions for the first four
dimensions of the 16 dimensional Many Well Problem, overlaid with samples from
trained models. With FAB the flow captures all of the marginals’ modes, while
the flow trained with KLD, fits a subset of them.
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5. Discussion

In SNFs, MCMC is combined with normalizing flows by introducing sampling layers between
the standard flow layers to improve the expressiveness of the flow (Nielsen et al., 2020; Wu
et al., 2020). They are usually trained with samples from the target and perform poorly
when trained exclusively with samples from the flow, see section 4.1. Instead, FAB focuses
on improving the training procedure. However, the two contributions are orthogonal, so
SNFs could be trained with FAB as well. Similarly, FAB works with other flow architectures
(Chen et al., 2019; Grcić et al., 2021) and base distributions (Papamakarios et al., 2017;
Stimper et al., 2021) than those we used. In Ding and Freedman (2019) AIS is applied
in the context of variational inference to improve estimation of the marginal likelihood
gradient for varitational autoencoders’ decoder. This approach may be extended by FAB
to also improve the encoder training, through minimising the FAB loss with respect to the
parameters of the encoder, with the latent posterior as the target distribution. This may be
advantageous relative to (Ding and Freedman, 2019), as well as MCMC based approaches
like (Hoffman, 2017) for training the decoder, because if the flow-based encoder can learn
a good approximation of the latent posterior, then this alleviates the requirement to run
MCMC for long in order to obtain good samples for the decoder. In neural transport
MCMC (Hoffman et al., 2019), a flow is trained via KL divergence minimisation with a
target distribution, and then is used to perform MCMC with the target in the latent space
of the flow. This improves the geometry in which MCMC takes place, allowing for better
mixing. Neural transport MCMC relies on the flow capturing the geometry of the target
distribution and can worsen sampling in the tails of the target distribution if the flow fails
to capture the target well. Thus by replacing the KL divergence training objective with
FAB training, our approach may be useful for improving the robustness of neural transport
MCMC.

We proposed FAB, a novel method of combing flows with AIS in a training procedure
that allows them to improve each other in a bootstrapping manner. For future work we hope
to (1) identify how important each component of FAB is, such as the number of intermediate
AIS distributions used and the form of the loss (2) perform a rigorous benchmarking of
FAB’s performance and computational complexity relative to alternative approaches such
as MCMC, (3) explore the aforementioned connections of FAB to other recent advances in
literature, and (4) scale up FAB and apply it to to more challenging real world problems,
for example Boltzmann distributions of complex molecules.
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Appendix A. FAB derivation

FAB aims to minimise

Dα=2(p∥q) ∝
∫

p(x)2

q(x)
dx = Ep(x)

[
p(x)

q(x)

]
. (6)

We obtain a gradient estimator by differentiating Equation 6 with respect to the parameters
θ of the flow model

∇θ

[
Ep(x)

[
p(x)

qθ(x)

]]
= Ep(x)

[
∇θ

p(x)

qθ(x)

]
, (7)

where we have used the fact that since θ is independent to samples from p(x), we can move

∇θ inside the expectation. If we set f(x) = ∇θ
p(x)
qθ(x)

, we see that Equation 7 is in the form

Ep(x) [f(x)], so we can estimate it with AIS.
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With this goal in mind, during the training loop, we generate a batch of importance

weights w
(1:L)
AIS , and samples x

(1:L)
AIS using AIS, with p(x) as the target distribution and qθ(x)

as the proposal distribution. We can then obtain an importance weighted estimate of the
above gradient operator

Ep(x)

[
∇θ

p(x)

qθ(x)

]
∝
∼

L∑
l=1

w̄
(l)
AIS

[
∇θ

p(x̄
(l)
AIS)

qθ(x̄
(l)
AIS)

]
. (8)

We note that in Equation 7, qθ(x) is only differentiated through θ’s contribution to the
probability density function, and not5 via ∇θx. Therefore, in Equation 8 we take care to

block the gradient of x
(1:L)
AIS with respect to θ. We denote the blocked gradients with x̄

(l)
AIS .

Thus, we can train the proposal by minimising the surrogate “loss function”

O(θ) =
L∑
l=1

w̄
(l)
AIS

[
p(x̄

(l)
AIS)

qθ(x̄
(l)
AIS)

]
, (9)

taking care6 to block the gradient of w̄
(1:L)
AIS and x̄

(1:L)
AIS with respect to θ.

To obtain a good loss function for training it is beneficial to instead seek to write the
surrogate loss (Equation 9) in terms of log probabilities and log importance weights, because
inside the expectation the importance weights and fractions of probabilities will have high
variance. To do this we can re-write the surrogate loss as

O(θ) = exp log

L∑
l=1

w̄
(l)
AIS

[
p(x̄

(l)
AIS)

qθ(x̄
(l)
AIS)

]

= exp log
L∑
l=1

exp

(
log w̄

(l)
AIS+(

log p(x̄
(l)
AIS)− log qθ(x̄

(l)
AIS)

))
. (10)

Finally, we minimise the below loss, which by Jensen’s inequality is an upper bound of
logO(θ),

L(θ) = log
L∑
l=1

exp

(
log w̄

(l)
AIS +

(
log p(x̄

(l)
AIS)− log qθ(x̄

(l)
AIS)

))
.

(11)

We can now work with log probabilities and log importance weights, and use the “logsumexp”
trick to obtain a numerically stable estimate. Equation 11 is the exact surrogate loss im-
plemented in practice for training.

5. In Equation 7, ∇θ is inside the expectation, with x ∼ p(x) independent to θ.

6. In Equation 8, w
(1:L)
AIS is not differentiated with respect to θ, so we must block the gradient of w

(1:L)
AIS with

respect to θ, as otherwise automatic differentiation will result in an incorrect estimate of the gradient.
This is because the flow model parameters θ participate in the calculation of w

(1:L)
AIS and x

(1:L)
AIS .
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