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Abstract

Language models (LMs) can be directed to001
perform target tasks by using labeled exam-002
ples or natural language prompts. But se-003
lecting examples or writing prompts can be004
challenging—especially in tasks that involve005
unusual edge cases, demand precise artic-006
ulation of nebulous preferences, or require007
an accurate mental model of LM behavior.008
We propose to use LMs themselves to guide009
the task specification process. In this pa-010
per, we introduce generative active task elic-011
itation (GATE): a learning framework in012
which models elicit and infer intended behav-013
ior through free-form, language-based interac-014
tion with users. We study GATE in three do-015
mains: email validation, content recommen-016
dation, and moral reasoning, corresponding to017
three common scenarios where task specifi-018
cation is hard. In preregistered experiments,019
we show that LMs prompted to perform GATE020
(e.g., by generating open-ended questions or021
synthesizing informative edge cases) elicit re-022
sponses that are often more informative than023
user-written prompts or labels. Users report024
that interactive task elicitation requires less ef-025
fort than prompting or example labeling and026
surfaces considerations that they did not antic-027
ipate on their own. Our findings suggest that028
LM-driven elicitation can be a powerful tool029
for aligning models to complex human prefer-030
ences and values.031

1 Introduction032

The complexity of human preferences makes them033

challenging to encode in machine learning sys-034

tems. Consider the problem of designing a rec-035

ommendation system for songs or websites: first,036

system builders must develop a formal model of037

the potential factors influencing user preferences;038

second, users must describe their preferences in a039

format that a learning algorithm can use to make040

future recommendations. Each of these steps re- 041

quires mental effort and continual refinement by 042

users and system builders. Until recently, the 043

dominant approach in machine learning has spec- 044

ified preferences using examples: users first label 045

a dataset with examples of the desired model be- 046

havior, then train a machine learning model on 047

this dataset. This strategy has seen widespread 048

use across diverse tasks, including image classifi- 049

cation and question answering (Krizhevsky et al., 050

2012; Devlin et al., 2019). In more recent years, 051

this paradigm has changed with the advent of in- 052

struction following methods (Brown et al., 2020a): 053

by pre-training langauge models (LMs) on large- 054

scale text corpora, it is possible to induce de- 055

sired behaviors by conditioning only on natural 056

language task specifications, in tasks as diverse as 057

code generation and text summarization. 058

However, this progress has also accentuated the 059

challenges described above: complex behaviors 060

require an increasing amount of prompt engineer- 061

ing or dataset design to overcome the imprecision 062

of natural language and prevent models from mis- 063

understanding or misgeneralizing from spurious 064

features of prompts or examples. For example, a 065

user who says they enjoy reading tennis articles 066

could either be interested in the competitive ten- 067

nis circuit or in improving their own serve. A few 068

user-provided examples of tennis-related articles 069

might fail to specify whether the user is interested 070

in broader tennis content, such as tennis-themed 071

satire. These challenges of task ambiguity (Finn 072

et al., 2018; Tamkin et al., 2022a) loom large as 073

models continue to be applied to more open-ended 074

tasks and higher-stakes domains. 075

To address these challenges, we propose to use 076

models themselves to help convert human prefer- 077

ences into automated decision-making systems. In 078

this paper, we introduce generative active task 079

elicitation (GATE), a learning framework in which 080

models elicit and infer user preferences through 081
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Figure 1: Generative Active Task Elicitation (GATE) elicits user preferences through interactive, free-form
questions, which can then be used in downstream decision-making. Unlike non-interactive elicitation ap-
proaches (e.g., prompting), which rely entirely on the human to elucidate their preferences, generative elicitation
is better able to probe nuances of human preferences. Unlike active learning approaches, generative elicitation can
ask more generic, free-form questions. The three parts of this figure illustrate: (A) Fuzzy user preferences: A user
wishes to translate their fuzzy preferences for how a task should be performed into a specification for a machine
learning model. This is challenging because users lack perfect introspection, preferences can be difficult to specify
in language, the specification needs to anticipate tricky real-world edge cases, and models may misgeneralize from
provided examples or instructions. (B) Task elicitation: We consider various ways of eliciting these fuzzy pref-
erences from users, including non-interactive prompting, active learning, and generative elicitation (GATE). (C)
Evaluation: We evaluate methods on a held-out test set, scoring how well a language model predicted the true
decisions made by the user.
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open-ended interaction. We describe several tech-082

niques for leveraging LMs to perform GATE—for083

example, by asking informative open-ended ques-084

tions or generating edge cases for users to label.085

We then evaluate these methods in three domains086

where task specification is hard. People can often087

fail to articulate their personal preferences, their088

moral values, or struggle to formulate task that089

requires expert knowledge. Thus, we study the090

problems of content recommendation, moral rea-091

soning, and email validation respectively. 1 In092

pre-registered experiments, we find that LM-based093

task elicitation often yields more accurate models094

than existing prompting or active learning tech-095

niques while requiring comparable (or less) men-096

tal effort from users and surfacing novel consider-097

ations.098

In summary, this paper introduces a new learn-099

ing framework (GATE), a family of methods that100

perform GATE using pre-trained language mod-101

els, and experimental evidence showing that these102

methods outperform existing prompting and label-103

ing methods. Our results show that interactive,104

language-based task elicitation is a flexible and105

powerful tool for building personalized models,106

capable of overcoming many challenges inherent107

in prompt- and example-based methods.108

2 Learning as Task Elicitation109

2.1 The Task Elicitation Framework110

We study the problem of efficiently training a ma-111

chine learning model to perform a task of interest.112

Throughout this paper, we use task to refer generi-113

cally to any function f : x 7→ y that maps inputs x114

to outputs y. When building a personalized web-115

site recommendation system, for example, x are116

websites and y are user preference scores for that117

website. Because different users may prefer dif-118

ferent content, each user’s individual preferences119

specify a distinct task: content recommendation120

for Pat and content recommendation for Avery are121

different tasks within the domain of content rec-122

ommendation (Ziegler et al., 2020). To build such123

a model, we must collect some task specification124

from a human user (e.g., revealing what websites125

they are interested in). As noted above, current126

learning approaches admit a wide variety of speci-127

1While this paper focuses on language-based elicitation
procedures, we note that generative active task elicitation is
modality-agnostic and could be applied to other settings (e.g.,
speech-based or multimodal models).

fication types, including collections of labeled ex- 128

amples, natural language instructions, or combi- 129

nations of the two. What makes one type of spec- 130

ification preferable to another? Ideally, we would 131

like specifications that are both (1) easy for hu- 132

mans to create and (2) informative to learners, en- 133

abling them to model human preferences accu- 134

rately. Abstractly, we seek a framework for gather- 135

ing and learning from specifications that optimizes 136

an objective: 137

α · specification cost

+β · human–predictor alignment
(1) 138

where specification cost measures human time 139

and mental effort, human–predictor alignment 140

measures the extent to which model choices agree 141

with choices the human would have made, and α 142

and β tradeoff between the two. To formalize this, 143

let Hf denote a human user whose preferences are 144

represented by a function f . We wish to design 145

an elicitation policy E that interacts with Hf to 146

produce a task specification s. This specification 147

may then be input to a learning algorithm to pro- 148

duce a model f̂(s). Then, letting C(·) denote a 149

scalar measure of specification cost, and A(·, ·) 150

denote a measure of alignment between two pre- 151

dictors, we wish to minimize (in expectation over 152

the population of human users): 153

EHf
Es∼E(Hf )

[
α · C(s) + β ·A(f, f̂(s))

]
. (2) 154

Here, C might measure the number of words the 155

user typed to produce the specification s, while A 156

might measure model–predictor agreement at the 157

level of individual predictions from some popula- 158

tion: A(f, f̂) = Ex∥f(x) − f̂(x)∥. In general, 159

appropriate definitions of C and A are domain- 160

dependent; in this paper, our experiments com- 161

pare the alignment of different predictors at a fixed 162

cost. Evaluation of cost, alignment, and tradeoffs 163

between them are discussed more in Section 5. 164

2.2 Existing Learning Paradigms in the Task 165

Elicitation Framework 166

Several existing frameworks for learning and task 167

specification can be described within the frame- 168

work given above. Understood as task elicitation 169

procedures, existing frameworks differ along two 170

key axes (visualized in Figure 2): their level of 171

interactivity and their level of flexibility. In inter- 172

active elicitation methods, queries can change de- 173

pending on user responses (e.g., querying for the 174
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Figure 2: Axes of variation in task elicitation.

most useful information based on what is known175

thus far) while passive elicitation methods expect176

the user to provide specifications in a single shot.177

Example-based specification methods ask users to178

label a set of examples, while free-form elicitation179

approaches are less restrictive, allowing the user180

to provide a much wider range of inputs, including181

natural language instructions and explanations.182

Supervised learning: passive, example-based183

In the most common supervised learning setup,184

the elicitation policy E simply instructs the human185

user Hf to generate a collection of labeled (input,186

output) pairs, after which f̂(s) is produced by fit-187

ting or fine-tuning a learned model using standard188

algorithms. This is an example-based process be-189

cause the specification is provided via labeled ex-190

amples and is passive, as the model does not inter-191

actively query the user to label additional data.192

Active learning: interactive, example-based193

In active learning, the elicitation policy is interac-194

tive. Users first assemble a fixed pool of unlabeled195

inputs x. Next, E , selects from this pool an exam-196

ple whose label would be most informative. The197

user Hf provides a label for this example, then E198

selects the next-most-informative example, and so199

on (Cohn et al., 1994; Dagan and Engelson, 1995;200

Lewis and Gale, 1994; Settles, 2009). Finally,201

f̂(s) is trained as in supervised methods. Opti-202

mal experiment design methods (Emery and Ne-203

narokomov, 1998) may be viewed as generaliza-204

tions of this paradigm in which inputs x are gen-205

erated rather than selected. Interactive processes206

enable the model to query for examples that may207

resolve uncertainty or ambiguity in the task speci-208

fication (Tamkin et al., 2022b).209

Prompting: passive, free-form Modern pre-210

trained models allow for specifying tasks in more211

flexible ways than simply labeling examples. For212

example, models can be conditioned with a prompt213

describing the user’s intended task in natural lan-214

guage (Brown et al., 2020b), or even a mix of215

language and image inputs (Alayrac et al., 2022). 216

As with supervised learning, the labeling policy E 217

here is simply an instruction to write a natural lan- 218

guage task description (s), but the final predictor 219

f̂(s) is produced by passing s to a pre-trained lan- 220

guage model. 221

3 Generative Active Task Elicitation 222

All of the methods above have important draw- 223

backs: the burden typically falls upon the user to 224

ensure that prompts or example sets are truly com- 225

prehensive specifications of the task, as any lack 226

of clarity in the prompt could lead to task ambigu- 227

ity (Tamkin et al., 2022a), resulting in undesired 228

behavior during deployment. Resolving task am- 229

biguity by crafting better prompts is challenging 230

and time-consuming due to the difficulties of ar- 231

ticulating nebulous personal preferences and an- 232

ticipating edge cases that will emerge during de- 233

ployment time. 234

However, one quadrant of Fig. 2 is not occupied 235

by any of the aforementioned approaches: there is 236

currently no method that leverages the flexibility 237

of a free-form specification while using interac- 238

tion to resolve uncertainty. We explore whether it 239

is possible to combine the flexibility and richness 240

of prompting-based specifications with the advan- 241

tages of interactive methods such as active learn- 242

ing, by having a model interactively query users 243

for these rich specifications. We term this fam- 244

ily of methods generative active task elicitation 245

(GATE). 246

3.1 Methods for GATE 247

The effectiveness of language models (LMs) for 248

understanding and producing free-form text sug- 249

gests that they may be capable of eliciting and un- 250

derstanding user preferences. In this paper, we 251

thus experiment with a family of GATE methods in 252

which LMs serve as the backbone for both the elic- 253

itation policy E and the predictor f̂(s). See Fig- 254

ure 1 for examples. In particular, we implement 255

the elicitation policy E by prompting an LM to ask 256

the user questions while conditioning on the his- 257

tory of previous questions and answers. To make 258

predictions f̂(s), an LM is prompted to predict a 259

label conditioned on an input x and a complete 260

elicitation transcript s provided as input. We ex- 261

periment with several different information gath- 262

ering policies, realized by simply prompting an 263

LM to ask different kinds of questions: 264
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Generative active learning The LM generates265

examples for the user to label. This approach has266

the advantage of providing concrete scenarios to267

the user, including some they may not have con-268

sidered a priori. For example, for content recom-269

mendation, the LM might generate an article such270

as: Are you interested in the following article? The271

Art of Fusion Cuisine: Mixing Cultures and Fla-272

vors [...].273

Generative yes-or-no questions We restrict the274

LM to generating binary yes-or-no questions. This275

approach enables the model to elicit more abstract276

preferences while still being easy for the user to277

answer. For example, the model might probe a278

user’s preferences by asking: Do you enjoy read-279

ing articles about health and wellness?280

Generative open-ended questions The LM281

generates arbitrary questions requiring free-form282

natural language responses. This enables the LM283

to elicit the broadest and most abstract pieces of284

knowledge at the potential cost of being overly285

broad or challenging for the user to answer. For286

example, the LM might generate the question:287

What hobbies or activities do you enjoy in your288

free time[...] and why do these hobbies or activi-289

ties captivate you?290

The user is not constrained in their response in291

any of the above settings; they are free to provide292

as much detail as they want. We present example293

elicitation transcripts for each policy in Figure 8.294

4 Experiment Setup295

We consider tasks in three different domains296

to evaluate our generative active task elicitation297

methods. A common feature of these domains is298

that they do not feature a single correct behavior299

that could be learned during LM pre-training; in-300

stead, models must elicit an individual human’s301

preferences in order to make accurate predic-302

tions. We allow each human user to interact open-303

endedly with an elicitation policy E for five min-304

utes. Next, humans and learned models f̂(s) in-305

dependently label a set of held-out examples. Fi-306

nally, we measure agreement between humans and307

learned predictors. See Figure 8 for examples of308

environments and dialogues.2309

2A link to the preregistration of experiments and analyses
will be made available upon publication.

4.1 Domains and datasets 310

We consider three different domains correspond- 311

ing to roughly three common scenarios where task 312

specification is difficult. 313

Content Recommendation Users often fail to 314

fully specify personal preferences. Thus, we con- 315

sider the domain of online article recommenda- 316

tions, where user preferences vary widely. Mod- 317

els are evaluated on their ability to predict whether 318

a user would like to read a given held-out arti- 319

cle. These test cases are taken from popular on- 320

line newspaper and magazine articles collected by 321

the authors, from which we take the website name, 322

article title, and a short description. 323

Moral Reasoning Moral preferences can be 324

deeply personal and hard to articulate. Thus, as 325

a test-bed for eliciting moral values, we consider 326

the question of when (if ever) it is ethical to steal a 327

loaf of bread. During evaluation, models are pre- 328

sented with textual descriptions of scenarios and 329

asked to predict whether users will judge it appro- 330

priate to steal a loaf of bread. These test cases are 331

constructed manually by the authors. 332

Email Verification Finally, specification is dif- 333

ficult in situations requiring specialized knowl- 334

edge. For example, in software engineering, de- 335

velopers need to anticipate and account for many 336

edge cases. In particular, we focus on speci- 337

fying requirements for email address validation, 338

where people have varied preferences over how 339

long emails can be, how many subdomains they 340

may possess, and which special characters are al- 341

lowed, among other factors. Models are evaluated 342

on their agreement with users about the validity of 343

a set of held-out emails; this test set is again man- 344

ually constructed by the authors. 345

4.2 Human interaction 346

Human participants in these experiments were re- 347

cruited from English-speaking users of Prolific. 348

For the email validation task, we additionally re- 349

cruited participants from several computer science 350

programs at US universities. We recruited 20–30 351

participants for each domain-method pair (6 elic- 352

itation methods across 3 domains), for a total of 353

388 participants. Participants were paid an av- 354

erage of $12/hr. Our experiments received IRB 355

approval, and all participants consented to having 356

their data used for our experiments. The break- 357

down of the number of participants allocated to 358

5



each scenario and method can be found in Ap-359

pendix B.1. Details of the user interface used in360

experiments may be found in Appendix B.2.361

4.3 Modeling details362

We use the GPT-4 model (gpt-4-0613 snap-363

shot; OpenAI, 2023) to both elicit user preferences364

(as an elicitation policy E) and make predictions365

based on the elicited preferences (as a predictor366

f̂(s)). We additionally run experiments on Mix-367

tral, an open-source LM, in Appendix C.3. To368

elicit user preferences, we prompt GPT-4 with a369

domain description and the current interaction his-370

tory, and ask it to generate an informative but easy-371

to-answer edge case (for generative active learn-372

ing) or question (for generative yes-or-no ques-373

tions and generative open-ended questions). To374

make predictions, we prompt GPT-4 with the task375

specification s and a test sample x and ask it to376

generate a prediction for the test sample. The full377

text of the prompts can be found in Appendix A.378

4.4 Baseline methods379

We compare GATE with several baseline ap-380

proaches for specifying tasks. Here, the elicita-381

tion policy E is not parameterized by an LM, but382

constructed by the user or based on a pool of real383

examples.384

Supervised learning We consider supervised385

learning as a baseline, as described in Section 2.2.386

We randomly present participants with questions387

from a large pool of examples and ask them to388

annotate up to the five-minute time limit. We389

study this approach exclusively in the content rec-390

ommendation domain because pools of examples391

are not readily available in the other two domains.392

We use the Microsoft News Dataset (Wu et al.,393

2020) as our pool for this domain, a dataset of394

160k news articles with descriptions. The license395

terms for research use of this dataset can be found396

at https://github.com/msnews/MIND/397

blob/master/MSRLicense_Data.pdf.398

We use the data consistent with the terms in “1)399

Use Rights”.400

Pool-based active learning As a baseline ac-401

tive learning approach, we consider a pool-based402

active learning approach, as described in Sec-403

tion 2.2. For the elicitation policy, we use the404

diversity-based sampling approach of Margatina405

et al. (2023); we first cluster the examples using a406

Sentence-BERT embedding model (Reimers and407

Gurevych, 2019) into 15 different clusters, then 408

iteratively ask questions from each cluster in a 409

round-robin fashion, up until the five-minute time 410

limit.3 This baseline is intended to capture the dif- 411

ficulty of selecting informative examples from a 412

pool of unlabeled examples relative to generating 413

informative examples from scratch. As with su- 414

pervised learning, we study this approach exclu- 415

sively in content recommendation. 416

User-written prompts As a baseline that does 417

not use interactive elicitation, we ask participants 418

to write a short paragraph describing their pref- 419

erences for the task. We then use the text of this 420

paragraph to prompt a LM to make decisions. This 421

baseline is intended to capture the difficulty of 422

specifying preferences in writing, both in terms of 423

the effort it takes to write the paragraph and dif- 424

ficulty of writing a paragraph that fully specifies 425

one’s preferences. 426

4.5 Evaluation and metrics 427

We measure how well models can predict the 428

probability that users will answer questions a cer- 429

tain way, which we call p(correct). Specifically, 430

we prompt the model with the interaction history 431

s as a single test case, then ask the model to out- 432

put a real-valued probability that a user would an- 433

swer “yes” to the test case (e.g. the probability the 434

user likes an article for content recommendation), 435

which we call pLM . This probability is outputted 436

in token space as a number between 0.0 and 1.0, 437

similar to past work (Branwen, 2020; Lin et al., 438

2022). The exact prompts we use for predicting 439

probabilities can be found in Appendix A.2. 440

We define p(correct) as the probability the 441

model assigns to the user-preferred answer. For 442

example, if pLM = 0.8 for a given question, then 443

p(correct) would be 0.8 if the user’s answer were 444

“yes” to the same question, and 0.2 if the user’s 445

answer was “no”. 446

We use this metric instead of accuracy because 447

we found modeling the uncertainty in (our esti- 448

mate of) user’s preferences was a more informa- 449

tive metric than predicting exact user decisions. In 450

pilot experiments prompting the LM to predict bi- 451

3Margatina et al. (2023) explored several different popu-
lar active learning sampling approaches for in-context learn-
ing (including random, uncertainty, and diversity sampling)
and found little difference in empirical performance between
them. We also ran exploratory model-model experiments
in our domains and found no significant difference between
these three sampling strategies. See details in Appendix D.
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Figure 3: Across three domains, our LM-prompting implementations of GATE are generally able to elicit
human preferences beyond baseline supervised learning, active learning, or human-written prompts. We
measure the Area Under the “∆p(correct) vs. Interaction time” Curve, which gives us a time-normalized metric
for how well (and how quickly) each elicitation method is at aligning with human preferences. While GATE
methods generally outperform the baseline methods as well as no interaction (represented by a ∆p(correct) of 0),
we are only able to establish statistical significance between GATE and baselines in the content recommendation
and email verification domains. * indicates a statistically significant difference (p < 0.05).

nary yes/no decisions, we found this resulted in452

skewed predictions where the LM would predict453

one of ‘yes’ or ‘no’ for the entire test set, per-454

haps due to miscalibration of the model’s implicit455

decision threshold. Furthermore, at the time of456

writing, token probabilities for GPT-4 were not457

available via the OpenAI API. That said, we also458

discuss and report a classification-based metric in459

Appendix C.2.460

Given p(correct), we compute:461

Area under the p(correct)-time curve We do462

not just care about the total information elicited,463

but about how quickly good information is elicited.464

That is to say, if two methods arrived at the same465

p(correct) at the end of five minutes, we want to466

reward the method that arrived a higher p(correct)467

faster. To do this, we compute the average change468

in p(correct) after every minute of human elici-469

tation time (conditioning on the state of the tran-470

script at that time). This produces a curve where471

the x-axis is time, and the y-axis is the average472

change in p(correct). By taking the total area be-473

neath this curve (AUC), we reward methods that474

arrive at higher p(correct) faster.475

Rating of perceived effort across elicitation476

policies In addition to these performance-based477

metrics, we also ask users to rate how difficult478

they found the elicitation process to be. Specifi-479

cally, we asked users “How mentally demanding480

was writing your answer?” in the non-interactive-481

elicitation setting, and “How mentally demanding482

was interacting with the chatbot?” in all elic- 483

itation settings (which include all other settings 484

from Section 2.2). The “mentally demanding” 485

wording was taken from the NASA TLX (Hart and 486

Staveland, 1988). The question was assessed via a 487

Likert scale from 1 (Very Little) to 7 (Very High). 488

We also consider several additional questions to 489

assess other usability tradeoffs. See Appendix E 490

for the full list. 491

5 Results 492

Evaluation results are shown in Figures 3 and 4. 493

Additional results, including sample conversa- 494

tions, can be found in Appendix C. Additional 495

analyses can be found in Appendix D.3. Our re- 496

sults show that GATE methods... 497

...are successfully able to elicit human prefer- 498

ences. GATE improves over no elicitation, where 499

the model is prompted to make decisions before 500

any user interaction. This is the case across all do- 501

mains studied (a positive score in Figure 3), with 502

significance at the 0.05 level for all but the email 503

domain, where only generative active learning was 504

significant. 505

...are comparable to or better than other elic- 506

itation methods. In the majority of settings (7 out 507

of 9), GATE elicitation methods improve over user- 508

written prompts. In particular, generative yes/no 509

questions improve over user-written prompts in 510

every setting studied (although we lack enough 511

power to assess significance in the moral reason- 512

ing domain). Furthermore, in the content recom- 513

7



Figure 4: Left: GATE methods are equally or less mentally demanding than other methods. We plot the
perceived mental demand across methods and domains (higher = greater mental demand). Right: Language
model elicitation does not shift human preferences. We plot the proportion of participants who answered "yes"
to each test question, comparing no LM interaction (user-written prompts) to LM interaction (GATE) elicitation.
The red line is the y = x curve, which serves as a guideline to see how well humans’ no-LM interaction preferences
align with their preferences post-LM interaction (if they align perfectly, the points should fall along this curve).
We see that the points generally hover around this curve.

mendation setting, GATE elicitation methods (par-514

ticularly generative open-ended questions) signifi-515

cantly improve over supervised learning and pool-516

based active learning.517

...are equally or less mentally demand-518

ing than user-written prompts. As shown519

in Figure 4 (left), users generally find interactive520

elicitation methods to be less mentally demanding,521

especially ones that involve labeling samples or522

answering yes/no questions, than non-interactive523

prompting.524

525

We additionally run some of the settings using526

an open-source LM, Mixtral, which can be found527

in Appendix C.3. Our results show that Mix-528

tral performs comparably to GPT-4, indicating that529

open-source models can be used in place of GPT-4530

for GATE.531

6 Other Related Work532

A fundamental challenge across many fields is533

how to obtain information about people’s nebu-534

lous thoughts, preferences, and goals (Ericsson535

and Simon, 1980; Henderson et al., 1995; Chris-536

tel and Kang, 1992; Zowghi and Coulin, 2005;537

Pacheco et al., 2018). Many works attempt to538

computationally describe or query human prefer-539

ences, through bandits, Bayesian methods, inverse540

reinforcement learning, generative modeling, and541

more (Robbins, 1952; Yue et al., 2012; Chajewska542

et al., 2000; Emery and Nenarokomov, 1998; Ng543

et al., 2000; Hadfield-Menell et al., 2016; Mulla544

and Gharpure, 2023; Zhu and Bento, 2017). Most545

relevant to our work is active learning, which cen- 546

ters on how models can choose useful data points 547

to learn from (Lewis and Catlett, 1994; Settles and 548

Craven, 2008; Settles, 2009; Houlsby et al., 2011; 549

Tamkin et al., 2022b). We extend this line of inves- 550

tigation to the generative setting, clarifying user 551

intent by querying a user with generated examples 552

and questions. 553

7 Discussion and Conclusion 554

We introduced the GATE framework to interac- 555

tively elicit preferences from human users with 556

free-form queries and answers. We presented ini- 557

tial evidence that LMs can successfully imple- 558

ment GATE to elicit human preferences (some- 559

times) more accurately and with less effort than 560

supervised learning, active learning, or prompting- 561

based approaches. There are many ways to ex- 562

pand on our implementation of GATE: Future work 563

may explore more principled methods for elicita- 564

tion, for example, integrating explicit notions of 565

uncertainty. Second, larger models may be more 566

capable elicitors: future work can explore scal- 567

ing laws for elicitation. Finally, many real-world 568

tasks such as software design and legal/medical 569

decision-making present a richer set of constraints 570

and edge cases. These applications thus offer a 571

rich space of possible extensions of GATE. 572

Ethical Considerations 573

Our work presents several potential ethical bene- 574

fits and risks. 575

There are many potential benefits of machines 576

that can better elicit and understand human prefer- 577
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ences. For example, by making it easier for soft-578

ware designers to incorporate nuanced user prefer-579

ences, GATE may empower people with rare pref-580

erences or preferences that have historically not581

been considered when building software systems.582

In addition, improving the effort-performance ra-583

tio, especially by requiring less user typing, may584

help make language models more accessible to585

users with less time, familiarity with language586

models, or physical ability to use such systems.587

However, this direction carries risks as well.588

In particular, work on thin slicing (Ambady and589

Rosenthal, 1992) has demonstrated that small590

amounts of information about a user can some-591

times be used to predict a broader range of per-592

sonal characteristics, raising potential privacy con-593

siderations. The interactive nature of GATE also594

risks increasing automation bias (Goddard et al.,595

2012), where users place undue weight on a596

model’s predictions. However, further work is597

necessary to establish if or when these risks are598

more significant for GATE than for prompting-599

based approaches to steering language models.600

Limitations601

In this work, our exploration of GATE methods has602

been limited prompt-based approaches, and no ex-603

plicit optimization of the objective in Equation (2).604

Future work can examine different ways of imple-605

menting free-form interactive querying, including606

approaches that might combine explicit optimiza-607

tion with the flexibility of language models.608

In our human experiments (Section 5), we did609

not have the budget to survey a massive num-610

ber of humans for human experiments. Thus, we611

were unable to establish statistical significance of612

GATE above baselines in certain domains. Further-613

more, our sample of humans may be biased, as all614

of them speak English and are from the United615

States. This means that we have likely not cap-616

tured the full spectrum of human preferences.617

Finally, we would like note that our moral rea-618

soning domain is very simplistic, and may be un-619

able to capture all the nuances of human moral620

preference. This paper also does not endorse621

aligning to every potential human preference, un-622

derstanding there are ethical risks to doing so.623

Overall, designers of public-facing systems that624

make decisions may wish to implement safeguards625

against allowing anyone to specify moral judg-626

ments. (While this paper is not an endorsement627

of any particular moral preference, it provides a628

framework for understanding the nuances of a par- 629

ticular set of preferences. Once a particular stan- 630

dard, or set of standards, has been decided upon, 631

we would like the systems to ideally fully com- 632

prehend the nuances of the standard, to be in full 633

alignment with that standard.) 634
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A GATE Prompts 807

A.1 Elicitation Prompts 808

Below, we list the prompts we use for generat- 809

ing elicitation queries (to instantiate the elicitation 810

policy E) for the various GATE methods. 811

Generative active learning The prompt for 812

generative active learning can be found below. 813

Bracketed, italicized text are placeholders, e.g. for 814

the elicitation transcript (so far). Color-coded text 815

is domain-specific, e.g. the blue text represents 816

text for the content recommendation domain, or- 817

ange text represents text for the moral reasoning 818

domain, and the green text represents text for the 819

email validation domain. 820
Your task is to [ learn what topics a user is interested
in reading online article about. People’s interests are
broad, so you should seek to understand their interests
across many topics; in other words, go for breadth rather
than depth. Do not assume a user has given a complete
answer to any question, so make sure to keep probing
different types of interests | learn under what conditions
the user would believe it is or is not ethical to steal a
loaf of bread | learn what rules a user believes a valid
email address format must adhere to (e.g. for developing
a regex format checker) ].

Come up with a potential edge case to learn as
much information as you can about what their desired
behavior should be under different circumstances.
Make sure the edge case addresses different aspects of
the system than the edge cases that have already been
considered.

An example edge case is: [ Are you interested in
the following article? Website Name: TechTalkDaily
Title: 10 Must-Have Gadgets for 2023: A Comprehensive
Guide
Description: Discover the top 10 gadgets that will
revolutionize your daily life in 2023. From smart home
devices to the latest wearables, we’ve got you covered
with our comprehensive guide. | Situation: Is it ethical
to steal a loaf of bread if you are starving to death and
the bread would otherwise go to waste? | Should the
following email be accepted? username@example.com ]

Current cases:
[ Elicitation transcript ]

Generate the most informative edge case that,
when answered, will reveal the most about the desired
behavior beyond what has already been queried for
above. Generate the edge case in the following format,
and nothing else: "[ Are you interested in the following
article? [edge case] | Situation: [edge case] | Should the
following be accepted? [edge case] ]"

821

Generating Questions The prompt for generat- 822

ing both yes-or-no and open-ended questions can 823

be found below. Once again, bracketed, italicized 824

text are placeholders and color-coding indicates 825

text for specific domains. 826
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Your task is to [ learn what topics a user is interested
in reading online article about. People’s interests are
broad, so you should seek to understand their interests
across many topics; in other words, go for breadth rather
than depth. Do not assume a user has given a complete
answer to any question, so make sure to keep probing
different types of interests | learn under what conditions
the user would believe it is or is not ethical to steal a
loaf of bread | learn what rules a user believes a valid
email address format must adhere to (e.g. for developing
a regex format checker) ].

Previous questions:
[ Elicitation transcript ]

Generate the most informative [ yes/no question |
open-ended question ] that, when answered, will reveal
the most about the desired behavior beyond what has
already been queried for above. Make sure your question
addresses different aspects of the implementation than
the questions that have already been asked. At the same
time however, the question should be bite-sized, and not
ask for too much at once. Phrase your question in a way
that is understandable to non-expert humans; do not use
any jargon without explanation. Generate the [ yes/no
question | open-ended question ] and nothing else:

827

A.2 Decision-making Prompts828

Given an elicitation transcript, we prompt the LM829

as follows to serve as a predictor f̂(s) to make de-830

cisions about each test case.831

Content Recommendation The prompt for832

content recommendation can be found below.833

Bracketed, italicized text are placeholders, for the834

elicitation transcript and the test case sample.835

A user has a particular set of preferences over what
articles they would like to read. They have specified their
preferences below:
[ Eliciation transcript ]

Based on these preferences, would the user be in-
terested in reading the following article? Answer with a
probability between 0 and 1, where 0 means “definitely
not interested” and 1 means “definitely interested”. Only
output the probability and nothing else. If uncertain,
make your best guess.
[ Test case sample ]

836

Moral Reasoning The prompt for moral reason-837

ing can be found below. Once again, bracketed,838

italicized text are placeholders.839

A user has a particular ethical code they follow. The
following response(s) represent when this user would
believe it is ethical to steal a loaf of bread.
[ Eliciation transcript ]

"Based on these response(s), would the user be-
lieve it is ethical to steal a loaf of bread in the following
situation? Answer with a probability between 0 and 1,
where 0 means “definitely not” and 1 means “definitely
yes”. Only output the probability and nothing else. If
uncertain, make your best guess.
[ Test case sample ]

840

Email Validation The prompt for email valida- 841

tion can be found below. Once again, bracketed, 842

italicized text are placeholders. 843

A user has a particular format of emails that they believe
to be valid. The following answer(s) represent this user’s
preferences of whether these emails adhere to their
desired format.
[ Eliciation transcript ]

Based on the user’s preferences, does the following
email adhere to the user’s desired format? Answer with
a probability between 0 and 1, where 0 means “definitely
not” and 1 means “definitely yes”. Only output the
probability and nothing else. If uncertain, make your
best guess.
[ Test case sample ]

844

B Experimental Details 845

B.1 Number of Participants 846

The number of participants we recruited for our 847

study, for each elicitation method and domain, can 848

be found in the table below. 849

B.2 User Interface Details 850

Details about the UI we built for our experiments 851

can be found below. Recall that the human studies 852

proceeded in two parts: elicitation, followed by 853

decision-making. 854

B.2.1 Elicitation 855

For supervised learning, pool-based active learn- 856

ing, and the GATE methods, we had participants 857

respond to a series of queries using the chatbot in- 858

terface (Figure 5). For prompting, we had partici- 859

pants input a task description using the text-input 860

interface (Figure 6). 861

The instructions for this phase can be found be- 862

low. 863

Supervised Learning / Pool-based Active 864

Learning We present users with the follow- 865

ing instructions for both supervised learning 866

and pool-based active learning. Bracketed, 867

italicized text represent placeholders for domain- 868

specific text. [ Domain instructions ] is a 869

placeholder for the top-level instructions for 870

each domain (see Table 2). Otherwise, blue 871

text represents text for the content recommen- 872

dation domain, orange text represents text for 873

the moral reasoning domain, and green text 874

represents text for the email validation domain. 875
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Content Moral Email
Recommendation Reasoning Validation Total

Supervised learning 30 - - 30
Pool-based active learning 31 - - 31
Prompting 30 30 26 86
Generative active learning 30 30 20 80
Generative yes-or-no questions 31 30 19 80
Generative open-ended questions 31 31 19 81

Total 183 121 84 388

Table 1: Breakdown of how many participants we recruit for each domain and elicitation method.

Figure 5: Chatbot UI built for elicitation phases of GATE methods, supervised learning, and pool-based active
learning.

Figure 6: Text-input UI built for elicitation phase for prompting.
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Content We are testing a system for understanding people’s interest in reading different kinds of
online articles.

For example, you might be interested in articles about some topics, but not about others.

Moral We are testing a system for understanding people’s fuzzy intuitions and preferences.

In this experiment, we’ll be capturing your moral intuitions about the act of stealing a loaf
of bread, and whether there are certain cases where stealing may be morally permissible.

Email We are testing a system for understanding people’s fuzzy intuitions and preferences.

In this activity, we’re going to be looking at different strings of text and you’ll be deciding
if they look like they could be an email address or not. For example, most people would
agree that “username@domain.com” looks like an email address, while “n12z5lFEN4” does
not. However, the rules for what can be an email address can be very unusual, so what
we’re really interested in is your intuition on what an email address could look like.

Important: We are not asking you to determine the rules for a *good* email address, or
a *real (non-spam)* email address. We are simply asking about your intuition as to why
certain strings look like email addresses and certain strings do not.

Tip: in an email such as username@cs.stanford.edu, “username” is called the local-part
of the email, while “cs.stanford.edu” is the domain. Furthermore, “cs” is a subdomain,
and “edu” is a top-level domain.

Table 2: Domain-specific instructions presented to users for the elicitation phases.

[ Domain instructions ]

Try to answer in a way that accurately and com-
prehensively conveys your preferences, such that
someone reading your responses can understand and
make judgments as close to your own as possible. Feel
free to respond naturally (you can use commas, short
phrases, etc), and press [enter] to send your response.
Note that the chatbot technology is imperfect, and
you are free to avoid answering any questions that are
overly broad or uncomfortable. When interacting with
the chatbot, please avoid asking follow-up questions or
engaging in open-ended dialogue as the chatbot is unable
to respond to you.

Note: The chatbot will stop asking questions af-
ter 5 minutes, after which you can send your last
response and you will be taken to the final part of the
study.

In the final part of the study, you will give feed-
back on a test set of [ article headline and descriptions
| moral situations | email addresses ], which will enable
us to see how well a chatbot reading your responses
has learned [ what you like and dislike | your moral
preferences | your email preferences ].

876

Prompting We present users with the follow-877

ing instructions for prompting. Similar to above,878

bracketed, italicized text represent places where879

we insert domain-specific text.880

[ Domain instructions ]

To the best of your ability, please explain all de-
tails about [ your preferences of what kinds of online
articles you would like to read | your belief of when it is
moral to steal a loaf of bread | your intuition of what
makes email addresses look like email addresses ], such
that someone reading your responses can understand
and make judgments as close to your own as possible.
Try to be as detailed as possible. For example, if you
were writing a regex that accepts only email-address-like
strings, what might that regex look like? What are
permissible / non-permissible symbols and characters,
and in what positions?

Note: You will have up to 5 minutes to articulate
your preferences. Please try to submit your response
within that time. After you submit, you will be taken to
the final part of the study.

In the final part of the study, you will give feed-
back on a test set of [ article headline and descriptions
| moral situations | email addresses ], which will enable
us to see how well a chatbot reading your responses
has learned [ what you like and dislike | your moral
preferences | your email preferences ].

881

GATE methods We present users with the fol- 882

lowing instructions for the three GATE meth- 883

ods (generative active learning, generative yes-or- 884

no questions, generative open-ended questions). 885

Once again, bracketed italicized text represent 886

domain-specific text. 887
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[ Domain instructions ]

This chatbot will ask you a series of questions
about [ your preferences of what kinds of online articles
you would like to read | your belief of when it is moral
to steal a loaf of bread | your intuition of what makes
email addresses look like email addresses ]. Try to
answer in a way that accurately and comprehensively
conveys your preferences, such that someone reading
your responses can understand and make judgments
as close to your own as possible. Feel free to respond
naturally (you can use commas, short phrases, etc),
and press [enter] to send your response. Note that the
chatbot technology is imperfect, and you are free to
avoid answering any questions that are overly broad
or uncomfortable. When interacting with the chatbot,
please avoid asking follow-up questions or engaging in
open-ended dialogue as the chatbot is unable to respond
to you.

Note: The chatbot will stop asking questions af-
ter 5 minutes, after which you can send your last
response and you will be taken to the final part of the
study.

In the final part of the study, you will give feed-
back on a test set of [ article headline and descriptions
| moral situations | email addresses ], which will enable
us to see how well a chatbot reading your responses
has learned [ what you like and dislike | your moral
preferences | your email preferences ].

888

B.2.2 Decision-making889

For the decision-making phase, we presented users890

with the following instruction:891

Content Recommendation892
Please indicate whether you would like to read the follow-
ing articles: “yes” if you would, “no” if you would not.893

Moral Reasoning894

Please indicate whether you think the following situations
are morally permissible or not: “yes” if they are, “no” if
they aren’t.

895

Email Validation896
Please indicate whether you think the following strings
look like reasonably well-formatted email addresses or not:
“yes” if they do, “no” if they don’t.

897

Users are then presented with a list of test sam-898

ples, and can use radio buttons to select whether899

each test-case sample is acceptable. See Figure 7.900

C Additional Results901

C.1 Sample Transcripts902

Sample transcripts of users interacting with the903

various generative active task elicitation methods904

can be found in Figure 8.905

C.2 AUROC results906

We measure AUROC over model-generated prob-907

abilities in addition to ∆p(correct). Figure 9 is the908

analogous plot to Figure 3, but we measure the im-909

provement in AUROC instead of p(correct), over910

interaction time, rewarding methods that achieve 911

higher improvements in AUROC sooner. 912

The general trends hold from Section 5: lan- 913

guage models can elicit human preferences (be- 914

yond no interaction), and language model elicita- 915

tion is comparable or better than other elicitation 916

baselines. However, unlike the p(correct) met- 917

ric, the AUROC metric is a simple classification- 918

based metric. Due to potential miscalibration 919

in LMs, making it difficult for them to output 920

well-calibrated probabilities with the same thresh- 921

old across questions, the overall improvements in 922

this metric are lower (particularly for generative 923

open-ended questions) and the variances are much 924

higher. Thus, we see that it is harder to establish 925

statistical significance using this metric. 926

C.3 Mixtral Results 927

To test the robustness of GATE to the choice of un- 928

derlying language model (for elicitation and pre- 929

diction), and particularly to test out how well 930

open-source models perform relative to GPT-4, we 931

try to replicate some of our experiments on Mix- 932

tral (Mixtral-8x7B-Instruct-v0.1), one 933

of the state-of-the-art open-source models as of 934

February 2024. We focus on the content recom- 935

mendation setting as the one where GPT-4 mod- 936

els performed the best. Using the same prompts 937

and overall setup as for GPT-4, we test Mixtral’s 938

ability to generate open-ended questions. We sep- 939

arately test out how effective Mixtral is as an elic- 940

itor and as a predictor. Thus we have six total set- 941

tings, with three elicitation modes: 942

1. Mixtral yes-or-no questions 943

2. GPT-4 yes-or-no questions 944

3. User-written prompts 945

each of which are evaluated by two prediction 946

models: 947

1. Mixtral predictor 948

2. GPT-4 predictor 949

Results are shown in Figure 10. We find that 950

the Mixtral model performs comparably to GPT- 951

4 as both an elicitor, and as a predictor, indicating 952

that our results are robust across different choices 953

of underlying language models. This is also a 954

promising indication that open-source models can 955

be used instead of GPT-4 for preference elicita- 956

tion. 957
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Figure 7: UI for the decision-making phase.

Qualitatively, we find that the open model likes958

to quickly hyperfixate on a topic once a user raises959

it as a topic of interest. An example can be found960

in Appendix C.3, where Mixtral, upon learning the961

user likes post-apocalyptic fiction on the first turn,962

pivots to only asking questions related to post-963

apocalyptic fiction.964

D Model-model experiments965

D.1 Methods966

We explore whether LMs can stand-in for human967

participants, enabling faster iteration loops and968

more research in this area. We generate various969

personas (specified in natural language) for each970

domain, and prompt LMs to respond to elicitation971

queries as their persona would.972

For each domain, we construct a set of personas973

as follows:974

Content Recommendation The personas are975

constructed by providing a brief biographical976

sketch of a hypothetical person, and were also con-977

structed by the authors. A sample persona prompt978

is “Education: Medical Doctorate. Occupation:979

Junior Surgeon at a regional hospital. Hobbies:980

Running marathons, traveling, and learning new981

languages.”982

Moral Reasoning We construct a variety of per-983

sonas with a diverse array of moral perspectives,984

including Kantianism, Utilitarianism, and ethical985

egoism. A sample persona prompt is “You sub-986

scribe to a Kantian code of ethics.”987

Email Validation Personas are instantiated by 988

providing a regex to the model. The test cases 989

are constructed by the authors. A sample persona 990

prompt is “You are validating that an email ad- 991

dress adheres to a specific format (e.g. for de- 992

signing a Python regex). The gold regex is . . . 993

user@domain.co.co.co.co” 994

We prompt as the LM as follows to answer 995

questions according to their personas: 996

[Persona] Answer the question in the shortest way with
minimal additional explanation.
[Question]

997

Furthermore, in the content recommendation 998

domain, we implement three different selection 999

strategies for pool-based active learning and ex- 1000

plore their trade-offs, including random sampling 1001

(randomly selecting the next example to query), 1002

uncertainty-based sampling (selecting the exam- 1003

ple whose answer the LM is most uncertain about, 1004

i.e. the example with the highest-entropy),4 and 1005

diversity sampling (described in Section 4.5).5 1006

D.2 Results 1007

Figures 11 and 12 shows results in each domain 1008

when we use a LM to simulate humans. Because 1009

human interaction times are unavailable for these 1010

experiments, we run interactive elicitation up to 5 1011

4Note that because GPT-4 does not return logits, we use
a smaller GPT-3 text-davinci-003 model to compute
entropy over the answer distribution

5To avoid massive costs in uncertainty sampling, the pool
was pre-filtered to a sensible size of a few hundred samples
using diversity metrics. For comparability across methods,
the same pre-filtered pool was used for all three sampling
methods.
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Figure 8: Excerpts of real transcripts across the different domains and elicitation methods we investigate.
The System messages are generated by the language model, while the User messages are produced by human
participants. Overall, the model is able to generate diverse and contextually-appropriate questions in each setting.
See Sections 3.1 and 4.1 for more details on the domains and methods respectively.
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Figure 9: We plot the Area Under the “∆AUROC vs. Interaction time” Curve, which gives us a metric for
how well (and how quickly) each elicitation method is at aligning with human preferences. This plot is analogous
to Figure 3, only we are using AUROC instead of p(correct) for the alignment metric, which means that we are
not measuring uncertainty. We see the same trends hold of GATE methods (generally) beating supervised learning,
pool-based learning, and prompting approaches, while also beating no interaction (∆AUROC = 0) using this
metric. However, we see generally smaller ∆s over non-interaction using this metric, and higher variances, which
make it harder to establish statistical significance.

Figure 10: Effectiveness of Mixtral as an elicitator and
a predictor in GATE.

turns, where we use number of turns as a proxy for1012

human effort. Note that instead of measuring AUC1013

of the “∆p(correct) vs. interaction time” curve,1014

we instead measure AUC of the “∆p(correct) vs.1015

number of turns” curve.1016

Can models be used to simulate human partici-1017

pants? In Figure 13, we plot the correlation be-1018

tween human experiment results and model-model1019

experiment results for various elicitation methods.1020

For both the human experiments and the model-1021

model experiments, we compute the area under the1022

“∆p(correct) vs. number of turns” curve, in ad-1023

dition to the average change in p(correct) after 51024

turns.6 1025

We find that on both metrics we evaluate, the 1026

model-model results generally correlate with hu- 1027

man results in the content recommendation and 1028

email validation domains (methods that perform 1029

better in the model-model experiments generally 1030

also perform better in the human experiments), but 1031

not the moral reasoning domain. This could be for 1032

various reasons, including that the subtleties in hu- 1033

man moral reasoning may be difficult to capture in 1034

a single persona prompt, and difficult to simulate 1035

even with our biggest LMs. 1036

Which sampling strategy is the best for pool- 1037

based active learning? As seen in Figure 11, we 1038

experiment with three different pool-based active 1039

learning strategies (random, diversity-based, and 1040

uncertainty-based sampling), which perform com- 1041

parably, with diversity sampling perhaps perform- 1042

ing slightly better than the rest. This is in line with 1043

the findings from (Margatina et al., 2023). Thus, 1044

we use diversity sampling in our main human ex- 1045

periments. 1046

6Note that these metrics differ from we use to evaluate the
human experiments in Section 4.5 – in particular by being
turn-based instead of time-based – meaning we had to addi-
tionally compute these metrics on the human transcripts. This
is necessary here because we must ensure that the model-
model results and human results are measured along the same
metric(s).
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Assistant: What hobbies or activities do you enjoy doing in your free time, and have you ever read any articles related
to those interests?
User: I really love post apocalyptic fiction and I can’t recall reading any articles in particular
Assistant: That’s interesting! Have you ever explored any non-fiction articles or research related to post-apocalyptic
scenarios, societal collapse, or emergency preparedness?
User: no, not really
Assistant: Have you ever come across any online articles or discussions about how post-apocalyptic fiction might reflect
or influence real-world emergency planning or disaster response strategies?
User: no
Assistant: Have you ever looked into how post-apocalyptic fiction might inspire or impact emergency shelters, food
storage, or water purification methods in real-world scenarios?
User: no, but it sound interesting
...[10 turns later]...
Assistant: Have you ever encountered any post-apocalyptic fiction that highlights unique or innovative approaches to
education, healthcare, or governance in reimagined societies, and what intriguing ideas have you discovered that could
potentially be applied to enhance resilience and adaptability in real-world communities?
User: can we talk about sometthing else? Let’s chat about running. I love to run!
Assistant: That’s great to hear about your love for running! Have you ever read any articles about how running or
other physical activities can play a role in building resilience and adaptability during challenging times, either in a
post-apocalyptic scenario or in real-world emergency preparedness?
User: Interesting, but no

Figure 11: We plot the Area Under the “∆p(correct) vs. Number of Turns” Curve for model-model exper-
iments. This plot is analogous to Figure 3, only we are using LMs to simulate human users, and we are using
number of turns as a proxy for interaction time. We see the same general trends as in Figure 3: GATE methods beat
both no elicitation and pool-based active learning.

Figure 12: We plot the Area Under the “∆AUROC vs. Number of Turns” Curve for model-model experiments.
This plot is analogous to Figure 9, only we are using LMs to simulate human users, and we are using number of
turns as a proxy for interaction time. We see the same general trends as in Figure 9: GATE methods beat both no
elicitation and pool-based active learning.
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Figure 13: Predictivity of model-model for model-
human results. We match up the Area Under
“∆p(correct) vs. Number of Turns” Curve metric for
each elicitation method in each domain. We see that us-
ing the model to simulate human users is predictive of
actual human results in the content and email domains,
but not the moral domain.

D.3 Analysis1047

Here, we present some additional analyses to bet-1048

ter characterize the experiments.1049

How much variation there is in people’s prefer-1050

ences? Elicitation is only helpful if there is vari-1051

ation in people’s preferences; otherwise, a model1052

could simply attain maximum performance by re-1053

lying on its prior and ignoring the elicited infor-1054

mation. To quantify how much variation there is1055

in people’s preferences, we compute the entropy1056

in p(yes) for each question across participants. We1057

find that many questions have high entropy while1058

many others have little entropy, for an average en-1059

tropy of 0.77 bits. Broadly, the results validate1060

that our settings have significant variation in hu-1061

man preferences, enabling models to personalize1062

themselves based on human preferences.1063

Does language model elicitation influence user1064

preferences? Human preferences may shift1065

when interacting with language models for a vari-1066

ety of reasons. For example, past work has studied1067

auto-induced distributional shift, where machine1068

learning models shift human behavior to be eas-1069

ier to predict (Krueger et al., 2020). To investi-1070

gate whether this occurs in our experiments (or in-1071

deed if different elicitation methods induce differ-1072

ent human preferences for any other reason), we1073

compare the distribution of human labels on test1074

samples from the three GATE methods with those1075

from the user-written prompt experiments to see1076

whether interacting with language models influ-1077

ences users’ subsequent judgments. As seen in 1078

Figure 4 (right), we see no such effect. 1079

What kinds of questions did the language mod- 1080

els ask? We show a few examples of the lan- 1081

guage model questions in Figure 8. As the fig- 1082

ure shows, these questions are complex and sub- 1083

tle, often building on the previous questions, rep- 1084

resenting a broad-based knowledge of the domain 1085

as well as possible nuances therein. 1086

Why does prompting make things worse in the 1087

emails domain? In the emails domain in Fig- 1088

ure 3, we observe that user-written preferences 1089

slightly decrease performance relative to a no- 1090

elicitation baseline. While it is possible this is 1091

an effect of noise, we also observe that some par- 1092

ticipants articulated preferences that were actu- 1093

ally different from those they experienced when 1094

viewing email addresses. For example, one user 1095

wrote “an email address should finish with .com or 1096

co.uk” yet later decided that “user@domain.edu” 1097

was an acceptable email address. This indicates 1098

that users may not have a clear and comprehensive 1099

understanding of their own preferences, especially 1100

in more technical domains. 1101

Can we automate evaluation? To probe 1102

whether evaluation could be automated, we 1103

conducted experiments where we simulated dif- 1104

ferent human preferences using language models 1105

prompted with a diverse set of (automatically- 1106

generated) personas. These personas varied by 1107

domain, but generally contained information 1108

about a hypothetical person’s preferences within 1109

that the domain. For example, in the content 1110

recommendation domain, we generated brief 1111

biographical sketches of hypothetical people, 1112

including their hobbies, interests, and careers, and 1113

conditioned GPT-4 on these biographical sketches 1114

to generate answers to queries. We found that 1115

model could simulate humans well in the content 1116

recommendation and email validation domains, 1117

but not in the moral reasoning domain. This 1118

suggests that while such personas may be a useful 1119

guide in some cases, they are not yet sophisticated 1120

enough to stand in for real human participants. 1121

See Appendix D for more details. 1122
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E Human ratings of usability across1123

elicitation policies1124

E.1 Methods1125

We ask users several questions to assess usability1126

tradeoffs across elicitation policies. The follow-1127

ing are the full list of questions, which we ask at1128

different points in the experiment.1129

After elicitation but before seeing the test-cases:1130

1. How mentally demanding was interacting1131

with the chatbot? (See discussion in Sec-1132

tion 5)1133

2. To what extent did the chatbot raise issues1134

or aspects about your preferences that you1135

hadn’t previously considered?1136

3. How comprehensively do you feel the chat-1137

bot’s questions characterized your prefer-1138

ences about the task?1139

After seeing and labelling the test cases:1140

4. After seeing the examples in the second part1141

of the task, how well do you feel the answer1142

you wrote (in the first part of the task) cov-1143

ered the important issues or aspects of these1144

examples?1145

5. When performing the second part of the task,1146

to what extent did you refer back to your1147

conversation history from the first part of the1148

task?1149

6. How much experience have you had (if any)1150

with interacting with language models (e.g.1151

ChatGPT, GPT4, etc.)?1152

7. Do you have any other feedback about the1153

task?1154

The last question was free response. All other1155

questions were assessed via a Likert scale from 11156

(Very Little/Poorly) to 7 (Very High/Well) with ra-1157

dio buttons.1158

E.2 Results1159

The average ratings for the first question across1160

each elicitation method and domain can be found1161

in Figure 4. The average ratings for questions 2 –1162

5 are plotted in Figures 14 to 16.1163

From Fig. 14, we see that humans were on av-1164

erage overconfident on their ability to cover their1165

preferences in prompts, particularly in the content1166

Figure 14: Average perceived coverage of each elici-
tation method, before (above) and after (below) seeing
the test cases. Higher indicates greater coverage.

Figure 15: Extent participants perceived that each elic-
itation method drew out novel aspects of a domain that
the user had not previously considered, averaged over
each elicitation method. Higher indicates greater per-
ceived novelty.

Figure 16: Extent participants referred back to the elic-
itation transcript when labelling test cases, averaged
over each elicitation method. Higher indicates the user
more heavily relied on the elicitation transcript.
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recommendation and moral reasoning domains,1167

reflected in the average rating of their perceived1168

coverage dropping from an average of 5.3 to 3.91169

(in the content recommendation domain) and an1170

average of 5.4 to 4.8 (in the moral reasoning do-1171

main) after seeing the test cases. This indicates1172

that humans are usually not aware of their mental1173

limitations when writing prompts.1174

From Figure 15, we see that the generative elic-1175

itation methods were on average able to surface1176

more novel considerations in the moral reason-1177

ing and email validation domains than in the con-1178

tent recommendation domain, as they tend to have1179

trickier and less intuitive edge cases.1180

Finally, from Figure 16, we see the extent to1181

which users explicitly referred back to the elici-1182

tation history when making decisions on the test1183

cases. This may influence how well-aligned the1184

test case decisions are with the answers from the1185

elicitation phase. When annotating test cases, we1186

explicitly instruct participants not to follow the1187

elicitation transcript if it does not align their in-1188

tuition on a test sample (e.g. if the test sample1189

surfaced a novel consideration not accounted for1190

in the elicitation phase), though we were unable1191

to validate how well participants followed this in-1192

struction.1193

F Reproducibility1194

We will open-source all code used in creating1195

GATE methods, constructing the user interface,1196

and conducting the results and analysis. We will1197

also release the pre-registration for our experi-1198

ments. All prompts we used for querying GPT-1199

4 (and Mixtral) in the decision-making and elic-1200

itation phases, and all instructions we presented1201

to the user, can be found in the Appendix. In all1202

cases, we queried GPT-4 (or Mixtral) with temper-1203

ature 0 for replicability of experiments.1204

We also note that the model we mainly use is a1205

closed-source model whose versions are periodi-1206

cally deprecated, which may hinder reproducibil-1207

ity. However, preliminary results with Mixtral1208

indicate that open-source models are compatible1209

with GATE and a promising avenue for future ex-1210

ploration.1211
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