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ABSTRACT
Most of the compressive sensing literature in signal pro-

cessing assumes that the noise present in the measurement
has an adversarial nature, i.e., it is bounded in a certain
norm. At the same time, the randomization introduced in
the sampling scheme usually assumes an i.i.d. model where
rows are sampled with replacement. In this case, if a sample
is measured a second time, it does not add additional
information. For many applications, where the statistical
noise model is a more accurate one, this is not true anymore
since a second noisy sample comes with an independent
realization of the noise, so there is a fundamental difference
between sampling with and without replacement. Therefore,
a more careful analysis must be performed. In this short
note, we illustrate how one can mathematically transition
between these two noise models. This transition gives rise
to a weighted LASSO reconstruction method for sampling
without replacement, which numerically improves the solu-
tion of high-dimensional compressive imaging problems.

Index Terms— LASSO, sparse regression, compressed
sensing, statistical noise, non-uniform sampling

I. INTRODUCTION

High-dimensional sparse recovery problems have been
subject to intensive study over the last decades [1]. The
reason is that sparsity naturally arises in real signals. Conse-
quently, there have been various analysis perspectives. Many
works in the signal processing literature and adjacent areas
of mathematics have addressed the challenges arising from
inherent structure in the measurements by often considering
a very general noise model. Indeed, usually the noise is
considered to be bounded – the so-called adversarial noise
model – and no statistical model is assumed [1]. At the same
time, many works in the statistics literature have focused on
the effects of statistical noise on the reconstruction accuracy,
but mainly focused on generic measurement designs, e.g.,
with (sub-)Gaussian entries [2]. Nevertheless, the resulting

theories are closely related. In particular, there is a relation-
ship between the restricted isometry property (RIP), used
in the former, and the restricted eigenvalue (RE) property,
used for the analysis of the latter [3]. A subtle difference
between random and deterministic noise, however, arises for
measurement matrices sampled from a fixed measurement
system. Such a scenario is naturally related to applications in
magnetic resonance imaging (MRI), the first motivation for
compressive sensing, where a suitable measurement system
is the Fourier basis [4]. Consequently, such measurement
systems have been studied in a number of works concerning
theory and application [5], [6], [7], [8]. A challenge in
the analysis of the solution of the high-dimensional sparse
problem is that the underlying image is typically not sparse
in the standard basis, but rather in a different dictionary,
e.g., wavelets. As shown in [7], [9], this can be addressed
by sampling with replacement from a distribution with larger
density for small frequencies. Namely, in combination with
an appropriate preconditioning matrix, this sampling strategy
allows to overcome potential coherence issues – see Theorem
2 – which then implies recovery guarantees via the standard
sparse recovery theory.

The large density for small frequencies has the effect
that these frequencies are typically observed multiple times
among the measurements. However, it has been argued that
one should nevertheless sample without replacement and
hence just ignore these multiple occurrences [1, Chapter 12].
The reason is that deterministic noise could just be the same
for multiple observations of the same measurement, implying
that repeated observations are not guaranteed to add infor-
mation. This situation fundamentally changes for random
noise models: Observing a measurement twice entails that
each occurrence has independent noise, so it does make a
difference how often a measurement is observed.

Contribution: In this note, we argue that an adjusted sam-
pling without replacement may be the scheme of choice be-
cause it is equivalent to a sampling scheme with replacement



and exhibits better numerical performance. We illustrate this
phenomenon numerically with problems inspired by MRI
reconstruction problems.

II. LASSO
Let Ω ⊂ [N ] be an index set. For a measurement matrix

AΩ ∈ Rm×N , whose rows aT1 , . . . , a
T
m are sampled from

an underlying matrix A ∈ RN×N , e.g., the discrete Fourier
matrix, and a data vector b = (b1, . . . bm) ∈ Rm, we are
interested in the high dimensional regression model

b = AΩx0 + ε, N ≫ m, (1)

where x0 ∈ RN is s0-sparse and the noise vector ε ∼
N (0, σ2Im×m) is assumed to be standard Gaussian dis-
tributed with independent components εi and standard devi-
ation σ > 0.

The main goal is to estimate x0 ∈ RN based on only
few data b. An omnipresent unconstrained estimator in the
literature is the LASSO [10], denoted by x̂, which is the
minimizer of

min
x∈RN

1

2m
∥AΩx− b∥22 + λ∥x∥1, (2)

where λ = λ(N,m, σ) ∈ R is a tuning parameter that
balances data fidelity and sparsity induced by the ℓ1-norm.
The following well-known oracle inequality establishes a
bound on the reconstruction error:

Theorem 1. [2, Theorem 7.13] Let x0 ∈ RN be s-sparse.
Assume that the measurement matrix satisfies the restricted
eigenvalue property over supp(x0) with parameter (κ, 3).
Then, any solution of the LASSO (2) with regularization
parameter lower bounded as λ ≥ 2∥AT

Ωε
m ∥∞ satisfies the

bound
∥x̂− x0∥2 ≤ 3

κ

√
sλ. (3)

Since the RIP implies the RE condition, the whole the-
ory for the LASSO can be translated for matrices that
satisfy the RIP, which is a more common property in
the signal processing literature. For a subsampled Fourier
matrix 2∥AT

Ωε
m ∥∞ ≤ σ√

m
(2 +

√
12 logN) := λ0, with high

probability, see, e.g., [11, Lemma B.3.].
As mentioned in the introduction, when the underlying

signal is not sparse in the canonical basis, but should rather
be sparsified by the use of a different basis, the sampling
strategy needs to compensate for that by using a variable
density scheme together with a preconditioning operator.
This reduces the local coherence of the overall measurement
system – a notion studied in, e.g., [9], [7]. In particular, the
following result on the number of required measurements,
i.e., to fulfill the RIP, can be established.

Theorem 2. [9, Theorem 1] Let Φ = {φj}Nj=1 and Ψ =
{ψk}Nk=1 be orthonormal bases of CN . Assume the local
coherence of Φ with respect to Ψ is pointwise bounded by the

function κ, that is sup
1≤k≤N

|⟨φj , ψk⟩| ≤ κj . Let s ≳ log(N),

suppose

m ≳ δ−2∥κ∥22s log3(s) log(N), (4)

and choose m (possibly not distinct) indices j ∈ Ω ⊂ [N ]
i.i.d. from the probability measure ν on [N ] given by ν(j) =
κ2
j

∥κ∥2
2
. Consider the matrix A ∈ Cm×N with entries

Aj,k = ⟨φj , ψk⟩, j ∈ Ω, k ∈ [N ], (5)

and consider the diagonal matrix D = diag(d) ∈ CN with
dj = ∥κ∥2/κj . Then with probability at least 1−N−c log3(s),
the restricted isometry constant δs of the preconditioned
matrix 1√

m
DA satisfies δs ≤ δ.

In the theorem above, the local coherence appears also
in the sampling scheme and it dictates how the measure-
ment matrix should be created by employing a non-uniform
sampling strategy. For example, in the MRI setting, if the
underlying image is sparsified with a wavelet transform [4],
here denoted by T , then, estimates in the local coherence
sup

1≤k≤N
|⟨φj , ψk⟩| [9] show that the sampling scheme, dic-

tated by the probability measure ν(j) =
κ2
j

∥κ∥2
2

, will be given
by a (non-uniform) subsampled discrete Fourier matrix FΩ,
which is commonly employed in MRI [12]. In this case,
the measurement operator A will be given by A = FΩT .
Theorem 2 says that such operator constitutes a bounded
orthonormal system with respect to the uniform measure
provided that the set of rows Ω is sampled with replacement.
As a consequence, some rows are sampled several times
and then discarded with high probability. The goal here is
to show how to use this additional information, combined
with a sampling without replacement strategy, in order to
get a more precise LASSO solution in the case the noise is
assumed to follow a statistical distribution.

III. SAMPLING WITH REPLACEMENT VS.
SAMPLING WITHOUT REPLACEMENT

We consider two ways for selecting an index set Ω ⊂ [N ]
of size m independently at random with respect to a prob-
ability measure ν on [N ]. This means that every sampling
point ωi ∈ Ω, i ∈ [m], is selected with probability P(ωi =
k) = ν(k). The first way is sampling with replacement.
In this scenario all sampling points ω1, . . . , ωm are chosen
independently at random with respect to ν allowing sampling
points to be chosen more than once, i.e. ωi = ωj is possible.

Sampling without replacement assures that the sampling
points ω1, . . . , ωm are different from each other. When we
sample the point ωi we compare if there is a j ̸= i with
ωi = ωj . In this case we sample the point ωi again until it
differs from ω1, . . . , ωi−1.

Our analysis is based on a combination of these sampling
methods. For that, we take another view on sampling with



replacement. Rather than drawing a fixed number of sam-
ples – which could result in different numbers of distinct
frequencies sampled depending on how often samples are
repeated – one keeps drawing samples until a total of m
distinct frequencies have been drawn. That is, the number
of draws m′ ≥ m is now a random variable. In addition
to the m different frequencies ωi observed, we also record
for each of them the number ci of how often it is sampled.
Notably, the m frequencies ωi now follow exactly the same
distribution as if they were drawn without replacement.
Consequently, it is also possible to convert a sample of
m frequencies without replacement into a sample of m′

frequencies with replacement by drawing the associated ci
from a (potentially complicated) distribution conditionally
on the m frequencies that have been sampled. This argument
has also been used in the compressed sensing literature to
explain why for worst-case noise, recovery guarantees for
frequencies with replacement imply guarantees for sampling
without replacement [1, Chapter 12].

For random noise, however, this implication cannot be
made as repeated samples in a random noise model are
affected by independent noise realizations, so one cannot
just take one measurement and repeat it ci times. The main
result of this note is that this issue can be overcome by
an appropriate reweighting in the data fidelity term of the
LASSO. More precisely, we consider the modified LASSO
given by

min
x∈RN

1

2m
∥
√
c⊙ (AΩx− b)∥22 + λ∥x∥1, (6)

We refer to this last sampling strategy as reweighted sam-
pling without replacement.

IV. MAIN RESULT

Now that we have introduced the different sampling
approaches, we state our main result.

Theorem 3. Let A ∈ RN×N and consider two random
matrices created from its rows. Firstly, AΩ′ ∈ Rm′×N is
created by sampling rows of A with replacement until m
distinct rows have been selected, secondly, AΩ ∈ Rm×N is
created by sampling m rows from A without replacement,
both according to a probability measure ν on [N ]. Moreover,
conditionally on Ω, let c ∈ Rm be a random vector of counts
such that combined with the sampling without replacement
model, it yields the sampling with replacement model –
as described in Section III. Furthermore, let

√
c be the

pointwise square root of its entries. Let b′ = AΩ′x0 + ϵ
and b = AΩx0 + ε, where x0 ∈ RN is s0-sparse, ϵ ∼
N (0, σ2 diag(c)) and ε ∼ N (0, σ2In×n). Then, the random
variables

argmin
x∈RN

∥
√
c⊙ (AΩx− b)∥22 + λ∥x∥1 and

argmin
x∈RN

∥AΩ′x− b′∥22 + λ∥x∥1
(7)

have the same probability distribution1.

Proof. In the first step we assume that a row of A occurs
twice in AΩ′ with independently and equally distributed
noise components ϵi and ϵj . We denote the two samples
of this row by ai and aj . Then,

(⟨ai, x∗ − x0⟩ − ϵi)
2 + (⟨aj , x∗ − x0⟩ − ϵj)

2

=(⟨ai, x∗ − x0⟩)2 + (⟨aj , x∗ − x0⟩)2

− 2(⟨ai, x∗ − x0⟩)2ϵi − 2(⟨aj , x∗ − x0⟩)2ϵj + ϵ2j + ϵ2i .

=2(⟨ai, x∗ − x0⟩)2 − 2(⟨aj , x∗ − x0⟩)(ϵj + ϵi) + ϵ2j + ϵ2i

=
(√

2⟨ai, x∗ − x0⟩)−
1√
2
(ϵj + ϵi)

)2

+
1√
2
(ϵj − ϵi)

2.

Similarly, if a row ai is sampled ci ∈ N times, by an
induction argument, we have

ci∑
j=1

(⟨ai, x∗ − x0⟩ − ϵj)
2

=
(√

ci⟨ai, x∗ − x0⟩ −
1

√
ci

ci∑
j=1

ϵj

)2

+

ci∑
j,k=1
j<k

1
√
ci
(ϵj − ϵk)

2

=
(√

ci
[
⟨ai, x∗ − x0⟩ −

1

ci

ci∑
j=1

ϵj
])2

+

ci∑
j,k=1
j<k

1
√
ci
(ϵj − ϵk)

2.

The calculation above shows that
ci∑

j,k=1
j<k

1
√
ci
(ϵj − ϵk)

2 + ∥
√
c⊙ (AΩx− b)∥22 (8)

and ∥AΩ′x− b′∥22 ∀x ∈ RN

have the same probabiliy distribution. Since the first term
in (8) is independent of x, the minimizer of the LASSO
objective function does not change if this first term is
ignored. Therefore, (7) holds.

To put the theorem into perspective, assume that you have
a given budget m of physical measurements that your MRI
machine can perform in the allotted time. We now have
the choice of either to sample with replacement, that is
consider a sampling trajectory that passes through certain
points multiple times – in this case, the corresponding
measurements are observed multiple times with independent
noise realizations – or to sample without replacement. In
the former case, the existing theory applies, but due to
repetitions, only a smaller number of distinct frequencies
is observed. In the latter case, one maximizes the number of
distinct frequencies, but the existing theory does not apply.

Equation (7) shows that this obstacle can be overcome by
adding a reweighting in the data fidelity term of the LASSO.
Namely, the solution of the resulting problem agrees in

1Here we assume that both problems have a unique solution which is the
case for relevant classes of full row rank AΩ, e.g., [13, Theorem 1].



distribution with the one of a problem under sampling with
replacement, where the existing theory applies. Hence, the
solution of the latter problem must be close to the true
solution with high probability, which then implies that the
same holds also for the solution of the reweighted problem
without replacement.

Interestingly, the noise added to these measurements now
has a different variance structure. It is given by εi ∼
1
ci

∑ci
j=1 ϵj with variances

Var(ϵj) =
1

ci

ci∑
j=1

Var(ϵj) = ciVar(ε) = ciσ
2.

While the components of ε are i.i.d., the variances of the
components of ϵ depend on ci, i.e., Var(ϵj) = ciσ

2.

V. NUMERICAL EXPERIMENTS
The numerical experiments are leaned on a simplified

MRI setting. For simplicity, we consider the 1d-case with
the model y = FΩx0 + ε, where FΩ ∈ C3277×8192 is
a subsampled Fourier matrix, where the rows are sampled
according to the probability measure from Theorem 2, simu-
lating the MRI acquisition process, x0 ∈ R8192 representing
the unknown image and ε ∼ CN (0, σ2Im×m) is a complex
Gaussian noise vector. For the ground truth signal we assume
a sparsity of sx = 4096. The first and the last sx

2 entries
of the unknown signal x0 are ones, the rest in between
are zeros. We apply the adjoint Haar transform, such that
x0 = T ∗z0. The sparsity of the transformed signal is sz = 3.
The relative noise is ∥ε∥2

∥FΩT∗z0∥2
≈ 6.3%.

We distinguish between sampling with replacement, sam-
pling without replacement and reweighted sampling with
replacement described in Section III with a total number
of m = 0.4N rows. In order to guarantee recovery from the
LASSO we multiply our model by a diagonal normalization
matrix D, which is defined in Theorem 2 and assures that
with high probability the normalized measurement matrix
1√
m
DFΩH

∗ satisfies the RIP, i.e., Dy = DFΩH
∗z0 +Dε.

In the reweighted sampling without replacement regime we
additionally weight the matrix with the counting vector

√
c.

We compute for different values of λ the quantities
∥ẑ(λ) − z0∥p with p ∈ {1, 2,∞}. We average over 50
independent realisations of the sample scheme and the noise.
Figure 1 shows the ℓ2 error depending on multiples of
λ0 = σ√

m
(2 +

√
12 logN) for sampling with replacement,

sampling without replacement and reweighted sampling with
replacement. The error of all three strategies decreases as λ
grows until a certain minimum is reached around λ = 10λ0
for the sampling with replacement and sampling without
replacement and λ = 35λ0 for the reweighted sampling
strategy, before the error starts to increase again. The dif-
ference of the minima can be explained with the help of
Theorem 1: Since in our combined method the entries of
the measurement matrix and the noise are larger due to
the counting vector c, a larger regularization parameter is

used and hence leads to smaller ℓ2 errors. In this sense, our
method outperforms the other ones.

Fig. 1: The ℓ2 error as a function of the regularization
parameter.

The same behavior can be observed for the ℓ1 and ℓ∞ in
Figure 2 and Figure 3. The spatial shift of the minima is due
to the inequality ∥ẑ − z0∥1 ≤

√
| supp(ẑ − z0)| · ∥ẑ − z0∥2

and [14, Theorem 1], respectively.

Fig. 2: The ℓ1 error as a function of the regularization
parameter.

Fig. 3: The ℓ∞ error as a function of the regularization
parameter.



VI. CONCLUSION
In this note we analysed the compressive imaging with

statistical noise. We developed a mathematical transition
between measurement matrices constructed via sampling
with replacement and those constructed via sampling with-
out replacement that allows to apply the theory devel-
oped for the former model also in the latter case when
a reweighted LASSO reconstruction method is used. The
resulting reweighted reconstruction approach for sampling
without replacement was shown to numerically outperform
both the sampling with replacement strategy and the sam-
pling without replacement strategy with no such reweighting.
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