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Abstract

The sparse-group lasso performs both variable
and group selection, simultaneously using the
strengths of the lasso and group lasso. It has
found widespread use in genetics, a field that reg-
ularly involves the analysis of high-dimensional
data, due to its sparse-group penalty, which al-
lows it to utilize grouping information. However,
the sparse-group lasso can be computationally ex-
pensive, due to the added shrinkage complexity,
and its additional hyperparameter that needs tun-
ing. This paper presents a novel feature reduction
method, Dual Feature Reduction (DFR), that uses
strong screening rules for the sparse-group lasso
and the adaptive sparse-group lasso to reduce their
input space before optimization, without affecting
solution optimality. DFR applies two layers of
screening through the application of dual norms
and subdifferentials. Through synthetic and real
data studies, it is shown that DFR drastically re-
duces the computational cost under many differ-
ent scenarios.

1. Introduction
High-dimensional datasets, where the number of features
(p) is far greater than the number of observations (n) in
a matrix X ∈ Rn×p, are becoming increasingly common
with the increased rate of data collection. To handle this,
shrinkage methods, such as the lasso (Tibshirani, 1996),
elastic-net (Zou & Hastie, 2005), and SLOPE (Bogdan et al.,
2015) have been proposed and found increased use in the
machine learning community (Alaoui & Mahoney, 2015;
Michoel, 2018; Lemhadri et al., 2021; Thompson et al.,
2023). These methods shrink estimates towards zero during
optimization, enabling variable selection, to identify which
features, β ∈ Rp, have an association with the response
y ∈ Rn.
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In genetics, these methods help identify genes associated
with disease outcomes. As genes are naturally found in
groups (pathways), group selection approaches have been
proposed, that allow grouping information to be used, such
as the group lasso (Yuan & Lin, 2006), group SLOPE
(Brzyski et al., 2019), and group SCAD (Guo et al., 2015).
Applying only group shrinkage can harm convergence and
prediction, as all variables in an active group are retained,
including noise variables (Simon et al., 2013; Feser & Evan-
gelou, 2023).

This limitation led to the development of sparse-group mod-
els, such as the Sparse-group Lasso (SGL) (Simon et al.,
2013) and Sparse-group SLOPE (SGS) (Feser & Evangelou,
2023). These models can shrink variables in active groups
by applying shrinkage on both variables and groups to yield
bi-level selection. SGL has found increased popularity in
applications in the machine learning (Vidyasagar, 2014; Yo-
gatama & Smith, 2014) and healthcare (Peng et al., 2010;
Simon et al., 2013; Fang et al., 2015) communities. Sparse-
group models have been shown to have tangible benefits
by consistently outperforming the lasso and group lasso in
selection and prediction tasks (Simon et al., 2013; Feser &
Evangelou, 2023).

Suppose the variables sit in a grouping structure, with dis-
joint sets of variables G1, . . . ,Gm of sizes p1, . . . , pm. Then,
SGL is a convex combination of the lasso and group lasso
(Simon et al., 2013):

β̂sgl(λ) ∈ argmin
β∈Rp

{f(β) + λ∥β∥sgl}, (1)

where ∥β∥sgl = α∥β∥1 + (1− α)

m∑
g=1

√
pg∥β(g)∥2, (2)

such that f is a differentiable and convex loss function,
λ > 0 defines the level of shrinkage, β(g) ∈ Rpg is the
vector of coefficients in group g, and α ∈ [0, 1]. SGL has
been extended to have adaptive shrinkage through the adap-
tive sparse-group lasso (aSGL) (Poignard, 2020; Mendez-
Civieta et al., 2021) (Section 3.3).

1.1. Feature Reduction Approaches for the
Sparse-group Lasso

The strengths of SGL come with increased computational
cost, due to the additional shrinkage and the tuning of two
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hyperparameters. Typically, α is set subjectively (Simon
et al. (2013) suggest α = 0.95) and λ is tuned using cross-
validation along a path λ1 ≥ . . . ≥ λl ≥ 0. Algorithms
such as the Least Angle Regression (LARS) approach cal-
culate solutions for all possible values of λ, but are very
sensitive to multicollinearity and scale quadratically, render-
ing their use in high-dimensional settings limited (Efron
et al., 2004). Instead, feature reduction techniques, in-
cluding screening rules, can help ease the cost of fitting
a model along a path by discarding features before optimiza-
tion that would have been inactive at the optimal solution.
Whilst methods exist to discard observations (Shibagaki
et al., 2016; Zhang et al., 2017), the focus of this paper is
high-dimensional settings, in which discarding features is
more impactful on computational savings.

Feature reduction techniques are either exact or heuristic.
Exact methods strictly discard only inactive features but are
conservative, while heuristic methods discard more features
at the risk of violations. These violations are countered
by checking the Karush–Kuhn–Tucker (KKT) conditions
(Kuhn & Tucker, 1950) and adding any offending features
back into the optimization. Heuristic rules discard signifi-
cantly more variables than exact rules, providing large com-
putational savings (Tibshirani et al., 2010).

Most exact methods follow the seminal Safe Feature Elimi-
nation (SAFE) framework (El Ghaoui et al., 2010), which
has been applied to the group lasso (Bonnefoy et al., 2015)
and SGL (Ndiaye et al., 2016a). Other exact examples
include the dome test (Xiang & Ramadge, 2012), Dual
Polytope Projections (DPP) (Wang et al., 2013), and Slores
(Wang et al., 2014). The strong rule by Tibshirani et al.
(2010) provides a framework for applying heuristic reduc-
tion with single separable norms, which has been extended
to non-separable (Larsson et al., 2020) and sparse-group
norms (Feser & Evangelou, 2025). Other examples include
Sure Independence Screening (SIS) (Fan & Lv, 2008) and
the Hessian rule (Larsson & Wallin, 2024).

Aside from the exact and heuristic categories, feature reduc-
tion techniques tend to follow three forms: static, where the
feature reduction occurs only once at the start (El Ghaoui
et al., 2010; Xiang et al., 2011; Xiang & Ramadge, 2012),
dynamic, where reduction occurs iteratively (Bonnefoy et al.,
2015), and sequential, where information from the previous
solution is used (Tibshirani et al., 2010; Larsson et al., 2020;
Larsson & Wallin, 2024; Feser & Evangelou, 2025).

An exact reduction method for SGL, called GAP safe, was
proposed by Ndiaye et al. (2016a) using the SAFE frame-
work. GAP safe uses the duality gap to create feasible
regions where the active variables sit and applies reduction
on the groups and variables. Other reduction methods for
SGL include Two-layer Feature Reduction (TLFre) (exact)
(Wang & Ye, 2014), though it was shown not to be exact
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Figure 1: The improvement factor (high is best), which
measures by how many orders the screening has improved
fitting time, shown for different SGL screening methods, as
a function of α, with 95% confidence intervals. The data
was generated under a linear model with even groups of
sizes 20 (Section 4.1). The two GAP methods have very
similar values so jitter was added.

(Ndiaye et al., 2015), and sparsegl (heuristic) (Liang et al.,
2022), which applies only group-level reduction. Additional
speed-up attempts include using approximate bounds for
inactive conditions (Ida et al., 2019) and a heuristic screen-
ing rule limited to multi-response Cox modeling (Li et al.,
2022).

1.2. Contributions

In this paper, we propose a new feature reduction method
for SGL and adaptive SGL, Dual Feature Reduction (DFR),
which is based on the strong rule (Tibshirani et al., 2010) and
the sparse-group screening framework (Feser & Evangelou,
2025). DFR introduces the first bi-level strong screening
rules for SGL and the first screening rules for aSGL.

DFR applies two layers of screening, discarding inactive
groups and inactive variables within active groups. By re-
ducing the input dimensionality before optimization, DFR
enables expanded tuning regimes to be performed, including
concurrent tuning of λ and α. These benefits are achieved
without affecting solution optimality. The computational
efficiency of DFR increases the accessibility of SGL and
aSGL models, encouraging wider adoption across fields.

The GAP safe rules for SGL require computation of safe
regions, which includes a radius and center, and the dual
norm, as well as iterative screening and fitting. In contrast,
DFR needs only the dual norm and screens only once at
each path point, making it considerably less expensive, as
evidenced by our results (Figure 1).

DFR is described for SGL in Section 3 and then extended
to aSGL in Section 3.3. The proofs of the results presented
in these sections are provided in Appendix A.1 for SGL and
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Appendix B.2 for aSGL. DFR is applied to synthetic and
real data in Sections 4 and 5, where it is found to be the
state-of-the-art screening approach for SGL, outperforming
other existing methods, while still achieving the optimal
solution.

2. Preliminaries
2.1. Problem Statement

SGL is trained along a path of parameters λ1 ≥ . . . ≥ λl ≥
0. The objective is to use the solution at λk to generate a set
of candidate variables Cv(λk+1) ⊂ [p] := {1, . . . , p}, that
is a superset of the (unknown) set of active variables at λk+1,
given by Av(λk+1) := {i ∈ [p] : β̂i(λk+1) ̸= 0}. The
optimization at λk+1 (Equation 1) is then calculated using
only Cv(λk+1). If the candidate set is a small proportion
of the total input space, large computational savings are
expected.

To generate the candidate variable set, we first generate a
candidate group set (Section 3.1.1), which is then used as
a basis for constructing the candidate variable set (Section
3.1.2). This is done using the dual norm of SGL.

2.2. Dual Norm

DFR requires evaluating the dual norm of SGL, defined as
∥z∥∗sgl := sup{z⊤x : ∥x∥sgl ≤ 1}. The SGL norm can be
expressed in terms of the dual of the ϵ-norm (Ndiaye et al.,
2016a),

∥β∥sgl =

m∑
g=1

τg∥β(g)∥∗ϵg , (3)

where τg = α+ (1− α)
√
pg. The ϵ-norm, ∥x∥ϵg , applied

to a group g ∈ [m], is defined as the unique nonnegative
solution q of the equation (Burdakov, 1988)

pg∑
i=1

(|xi| − (1− ϵg)q)
2
+ = (ϵgq)

2, ϵg =
τg − α

τg
. (4)

Using this, by Ndiaye et al. (2016a), the dual norm of SGL
applied to a group g ∈ [m] can be formulated as

∥ξ(g)∥∗sgl = max
g=1,...,m

τ−1
g ∥ξ(g)∥ϵg . (5)

3. Dual Feature Reduction
DFR is first derived for SGL (Section 3.1) and then extended
to aSGL (Section 3.3). DFR is summarised for SGL and
aSGL in Table A1.

3.1. Sparse-group Lasso

3.1.1. GROUP REDUCTION

To generate a candidate group set, the KKT stationarity
conditions (Kuhn & Tucker, 1950) are used, providing con-
ditions for an inactive group. For SGL, they are given by, for
a group g ∈ [m] at λk+1 (using the ϵ-norm representation
in Equation 3)

0 ∈ ∇gf(β̂(λk+1)) + τgλk+1Θg,k+1, (6)

where Θg,k+1 = ∂∥β̂(λk+1)∥∗ϵg is the subgradient of the
dual norm of the ϵ-norm at λk+1. The subgradient for an
inactive group g (at zero) can be expressed by the unit ball
of the dual norm (Schneider & Tardivel, 2022):

Θ0
g,k+1 := ∂∥0∥∗ϵg =

{
x ∈ Rpg : ∥x∥ϵg ≤ 1

}
.

Plugging the unit ball into Equation 6 and applying the
ϵ-norm, the subgradient can be canceled out, so the KKT
conditions can be written as

∥∇gf(β̂(λk+1))∥ϵg = τgλk+1∥Θ0
g,k+1∥ϵg ≤ τgλk+1.

(7)
If the gradient at λk+1 were available, we could exactly
identify the active groups (Proposition 3.1).

Proposition 3.1 (Theoretical SGL group screening). For
SGL applied with any λk+1, k ∈ [l−1], the candidate group
set,

Cg(λk+1) = {g ∈ [m] : ∥∇gf(β̂(λk+1))∥ϵg > τgλk+1},

is such that Cg(λk+1) = Ag(λk+1) := {g ∈ [m] :

∥β̂(g)(λk+1)∥2 ̸= 0}.

However, as this is not possible in practice, an approxima-
tionMg is required such that

∥∇gf(β̂(λk+1))∥ϵg ≤Mg. (8)

Then, the screening rule tests whetherMg ≤ τgλk+1. If
this is found to be true, it can be concluded that Equation
7 holds and the group must be inactive. An approximation
can be found by assuming that the gradient is a Lipschitz
function of λk+1 with respect to the ϵ-norm,

∥∇gf(β̂(λk+1))−∇gf(β̂(λk))∥ϵg ≤ τg|λk+1−λk|, (9)

which is a similar assumption to that used in the lasso strong
rule (Tibshirani et al., 2010). Using the reverse triangle
inequality gives

∥∇gf(β̂(λk+1))∥ϵg ≤ ∥∇gf(β̂(λk))∥ϵg + τg(λk − λk+1)︸ ︷︷ ︸
=:Mg

,

yielding a suitable approximation Mg. Therefore, the
strong group screening rule for SGL (Proposition 3.2) can
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be formulated by pluggingMg into Equation 8: discard a
group g ∈ [m] if

∥∇gf(β̂(λk))∥ϵg ≤ τg(2λk+1 − λk). (10)

Since the Lipschitz assumption can fail, KKT checks (Sec-
tion 3.1.3) are performed to prevent violations.

Proposition 3.2 (DFR-SGL group screening). For SGL
applied with any λk+1, k ∈ [l − 1], assuming that

∥∇gf(β̂(λk+1))−∇gf(β̂(λk))∥ϵg ≤ τg|λk+1 − λk|,

for all g ∈ [m], then the candidate group set,

Cg(λk+1) = {g ∈ [m] :

∥∇gf(β̂(λk))∥ϵg > τg(2λk+1 − λk)},

is such that Ag(λk+1) ⊂ Cg(λk+1).

3.1.2. VARIABLE REDUCTION

Group screening reduces the input dimensionality, but fur-
ther reduction is possible by applying a second screening
layer to the variables in the candidate groups. For an inac-
tive variable, i /∈ Av(λk+1), i ∈ Gg, the KKT conditions
are (by Equation 1)

0 ∈ ∇if(β̂(λk+1))+λk+1αΦ
0
i,k+1+λk+1(1−α)Ψ

(g)
i,k+1,

(11)
where Φ and Ψ are the subgradients of the ℓ1 and ℓ2 norms
respectively. For an active group, the subgradient of the
ℓ2 norm is given by β̂

(g)
i /∥β̂(g)∥2, which vanishes for an

inactive variable. So,

−∇if(β̂(λk+1)) ∈ λk+1αΦ
0
i,k+1

⇐⇒ |∇if(β̂(λk+1))| ≤ λk+1α, (12)

where Φ0
i,k+1 = {x ∈ R : |x| ≤ 1}. As before, knowledge

of the gradient would lead to exact support recovery (Propo-
sition A.1). Equation 12 is similar to the strong screening
rule for the lasso (Tibshirani et al., 2010), scaled by α.
Hence, using a scaled version of Lipschitz assumption for
the lasso, the variable screening rule for SGL is formulated
in Proposition 3.3.

Proposition 3.3 (DFR-SGL variable screening). For SGL
applied with any λk+1, k ∈ [l − 1], assuming that

|∇if(β̂(λk+1))−∇if(β̂(λk))| ≤ α(λk − λk+1),

for all i ∈ Gg for g ∈ Ag(λk+1), then the candidate vari-
able set,

Cv(λk+1) = {i ∈ Gg for g ∈ Ag(λk+1) :

|∇if(β̂(λk))| > α(2λk+1 − λk)},

is such that Av(λk+1) ⊂ Cv(λk+1).

To derive Proposition 3.3, knowledge of Ag(λk+1) is
required, but this is unknown. By Proposition 3.2,
Ag(λk+1) ⊂ Cg(λk+1), and so the candidate set is used
in practice for applying Proposition 3.3. That is, the vari-
able screening rule is applied to the candidate group set.
Any violations caused by this replacement are checked for
by the KKT checks, which are performed in any case (for
any strong rule).

3.1.3. KKT CHECKS

The screening rules of DFR use several Lipschitz assump-
tions (Propositions 3.2 and 3.3), as well as replacing the
active group set by the candidate group set for the variable
screening step (Section 3.1.2). When these assumptions fail,
the screening rules can incorrectly discard active variables.
To protect against this, the KKT conditions are checked for
each variable after screening. A KKT violation occurs for
variable i ∈ Gg if

|S(∇if(β̂(λk+1)), λk+1(1− α)
√
pg)| > λk+1α, (13)

where S(a, b) = sign(a)(|a| − b)+ is the soft-thresholding
operator (see Appendix A.2 for the derivation). A violating
variable is added back into the optimization procedure (see
Section 3.2).

3.1.4. PATH START

When fitting SGL along a path of values, λ1 ≥ . . . ≥ λl ≥
0, λ1 is often chosen to be the exact point at which the first
predictor becomes non-zero. By Ndiaye et al. (2016b) and
using the dual norm from Equation 5, this value is given by

λ1 = ∥∇f(0)∥∗sgl = max
g=1,...,m

τ−1
g ∥∇gf(0)∥ϵg .

3.2. Algorithm

The DFR algorithm is based on the sparse-group strong
screening framework, proposed by Feser & Evangelou
(2025), and is shown in Algorithm A1. The algorithm has
the following key steps for λk+1:

1. Group screening: find Cg(λk+1) using Proposition 3.2.

2. Variable screening: find Cv(λk+1) using Proposition
3.3 for i ∈ Gg \ Av(λk), g ∈ Cg(λk+1).

3. Optimization: Compute β̂Ov (λk+1) using the optimiza-
tion set Ov = Cv(λk+1) ∪ Av(λk). Perform KKT
checks to identify any violations (Section 3.1.3) and
add offending variables into Ov . Repeat this step until
no violations.

The two main computational costs of the algorithm are the
calculation of the solution, β̂, and the evaluation of the
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ϵ-norm. The former depends on the fitting algorithm, as
this framework is applicable for any SGL fitting algorithm,
with proximal and descent algorithms typically having com-
plexities of O(tp2), for t iterations (Zhao & Huo, 2023).
The latter has a worst-case cost of O(pg log pg) (Ndiaye
et al., 2016a). Tables A3 and A4 in the Appendix provide a
computational breakdown of the components of DFR.

3.3. Adaptive Sparse-group Lasso

The Adaptive Sparse-group Lasso (aSGL) applies adaptive
shrinkage in a sparse-group setting, achieving the oracle
property in a double-asymptotic framework, and has the
norm (Poignard, 2020; Mendez-Civieta et al., 2021)

∥β∥asgl = α

p∑
i=1

vi|βi|+(1−α)

m∑
g=1

wg
√
pg∥β(g)∥2, (14)

where vi and wg are adaptive weights (described in Ap-
pendix B.3). aSGL has a less straightforward connection to
the ϵ-norm that allows for the derivation of screening rules
(Proposition 3.4).

Proposition 3.4. The aSGL norm (Equation 14) can be
expressed as the ϵ-norm by

∥β∥asgl =

m∑
g=1

γg∥β(g)∥∗ϵ′g , where (15)

γg = α∥v(g)∥1 −
α

∥β̂(g)∥1

∑
i,j∈Gg,i̸=j

vj |β̂i|

+ (1− α)wg
√
pg,

ϵ′g = γ−1
g (1− α)wg

√
pg.

Proof of Proposition 3.4. Splitting up the summation term
in the variable norm yields

α

p∑
i=1

vi|βi| = α

m∑
g=1

∑
i∈Gg

vi|βi|

= α

m∑
g=1

∥β(g)∥1

(
∥v(g)∥1 −

∑
i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

)
.

This allows the aSGL norm to be written in terms of the
groups

∥β∥asgl =

m∑
g=1

[(
∥v(g)∥1 −

∑
i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

)
α∥β(g)∥1

+ (1− α)wg
√
pg∥β(g)∥2

]
. (16)

Setting

γg = α∥v(g)∥1 −
α
∑

i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

+ (1− α)wg
√
pg,

ϵ′g =
(1− α)wg

√
pg

γg
,

allows Equation 16 to be written in terms of the ϵ-norm

∥β∥asgl =

m∑
g=1

γg∥β(g)∥∗ϵ′g .

Through this connection, the aSGL norm admits a direct
link to SGL (Equation 3), allowing the DFR-SGL rules to
be used for aSGL by replacing τg with γg and ϵg with ϵ′g in
the ϵ-norm (Appendices B.2.1 and B.2.2). The connection
is further sharpened theoretically: Lemma 3.5 guarantees
that the γg term in Equation 15 will always exist, even under
inactive groups. Lemma 3.6 guarantees that the represen-
tation of aSGL as the ϵ-norm correctly reduces to the SGL
ϵ-norm representation under constant weights.

Lemma 3.5. Under an inactive group g /∈ Ag, i.e. β(g) ≡
0, the γg term in Equation 15 exists.

Lemma 3.6. Under v ≡ 1 and w ≡ 1 in Equation 15, for
each g ∈ [m], γg = τg and ϵ′g = ϵg .

Algorithm A1 is also applicable for aSGL, using the corre-
sponding aSGL equations (Algorithm A2).

3.3.1. KKT CHECKS

The KKT checks for aSGL are also similar to those for
SGL (Section 3.1.3): a KKT violation occurs for a variable
i ∈ Gg if

|S(∇if(β̂(λk+1)), λk+1(1− α)wg
√
pg)| > λk+1viα.

(17)

3.3.2. PATH START

To find the path start for aSGL, the dual norm cannot be
used, since all groups are zero at this point. As a result, γg
exists only in limit for β(g) ≡ 0 (Lemma 3.5). A solution
can instead be found using a similar approach to that of
Simon et al. (2013) for SGL, where the point is found by
solving the piecewise quadratic, for each g ∈ [m],∥∥∥S (X(g)⊤y/n, λgv

(g)α
)∥∥∥2

2
− pgw

2
g(1− α)2λ2

g = 0,

where X(g) ∈ Rn×pg is the design matrix for only group
g and v(g) ∈ Rpg contains the penalty weights for the vari-
ables in group g. Then, choosing λ1 = maxg λg gives the
path start point.
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Figure 2: The input proportion for the screening methods
applied to synthetic data, as a function of α, with 95%
confidence intervals.

4. Numerical Results
In this section, the efficiency and robustness of DFR is
evaluated through the analysis of synthetic data that capture
different data characteristics. As the purpose of screening
rules is to reduce the dimensionality of the input space and,
as a result, reduce the computational cost, the following two
metrics are used for evaluation:

• Improvement factor = no screen time / screen time,
quantifies by how many orders the screening has im-
proved the fitting time (high is best).

• Input proportion = Ov/p, measures how much of the
input space was used in the optimization (low is best).

DFR is compared with the existing SGL screening rules
sparsegl (Liang et al., 2022) and GAP safe (Ndiaye et al.,
2016a). sparsegl, in contrast to DFR, performs only a sin-
gle layer of group screening. This rule is also based on
the strong framework of Tibshirani et al. (2010), but uses
a different Lipschitz assumption, which applies only the
ℓ2 group norm, rather than the full SGL norm (as is the
case for DFR). On the other hand, GAP safe is an exact
feature reduction method for SGL that can be implemented
dynamically or sequentially under linear regression (Ndiaye
et al., 2016a). GAP safe has many different implementation
forms, and we are presenting the two versions that provided
the best results in our studies. Appendix C provides detailed
descriptions of these two methods with Table A1 showing a
summary of all rules considered.

Throughout the analyses, the SGL optimization for DFR and
sparsegl is performed using the Adaptive Three Operator
Splitting (ATOS) (Pedregosa & Gidel, 2018) algorithm, as
it can be easily adapted for use with different sparse-group
penalties (by simply swapping out the proximal operators),
providing flexibility. However, DFR can be used with any fit-
ting algorithm, including Block Coordinate Descent (BCD)
(Qin et al., 2013).

0 5 10 15 20

Signal strength

0

5

10

15

20

Im
pr

ov
em

en
tf

ac
to

r

0 5 10 15 20

Signal strength

0.00

0.05

0.10

0.15

0.20

0.25

In
pu

tp
ro

po
rt

io
n

DFR-SGL
DFR-SGL BCD

DFR-aSGL
sparsegl

GAP dynamic
GAP sequential

Figure 3: The improvement factor (left) and input proportion
(right) for the screening methods applied to synthetic data,
as a function of the signal strength, with 95% confidence
intervals.

4.1. Analysis of Synthetic Data

The synthetic data was generated using a linear model, y =
Xβ + ϵ, where X ∼ N (0,Σ) ∈ R200×1000, with noise
ϵ ∼ N (0, 1) and where β is a sparse vector with the signal
sampled from N (0, 4) (signal strength of zero). For X,
correlation was applied inside each group, such that Σi,j =
ρ = 0.3 for i and j in the same group. The variables were
placed in even groups of sizes 20, with 0.2 group sparsity
proportion (20% of the groups are active) and 0.2 variable
sparsity proportion inside the active groups. The models
were fit along a 50-length path, starting at λ1 = λmax (as
defined by Section 3.1.4 for SGL and Section 3.3.2 for
aSGL), and terminating at 0.1λ1. Each simulation case was
repeated 100 times and the results are averaged across these
repetitions, unless otherwise stated. Simulation and model
implementation information can be found in Table D.2.

Comparison to GAP Safe Rules Comparing DFR to the
GAP safe rules, under both varying α and signal strength, it
is evident that the improvement factor is significantly supe-
rior for DFR compared to both the dynamic and sequential
GAP rules (Figures 1 and 3). In fact, although the input pro-
portion of DFR and GAP safe are of similar levels (Figures
2 and 3), the cost of calculating safe regions appears to nul-
lify any gain in dimensionality reduction. This comparison
shows that the two reduction approaches (heuristic vs exact)
arrive at very similar results (the screened sets), but DFR
achieves this with greater computational efficiency.

For all values of α, DFR considerably reduces the input
space, with the screening efficiency a linearly decreasing
function (Figure 2). Under values of α close to zero, SGL
is forced to pick more variables within a group as active,
limiting the potential reduction of the input space. In such
scenarios, the second screening layer becomes less crucial,
evidenced by the similar performances of all approaches.
Approaching the commonly used value of α = 0.95 shows
the clear strengths of DFR. The screening methods are all
relatively unaffected by the signal strength (Figure 3).
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Figure 4: The improvement factor (left) and input proportion
(right) for the strong rules applied to synthetic data, as a
function of p, with 95% confidence intervals.
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Figure 5: The improvement factor for the strong rules ap-
plied to synthetic data, as a function of the sparsity propor-
tion (left) and data correlation (right), with 95% confidence
intervals.

Comparison to BCD The GAP safe rules are imple-
mented using BCD while DFR uses ATOS. In Figures 1
and 3, DFR has also been implemented using BCD, demon-
strating similar performance to ATOS, showing that the
choice of fitting algorithm has little impact on the gain from
screening.

Increasing Dimensionality The benefits of DFR over
sparsegl are observed under varying p (Figure 4), peaking
around p = 1000. With groups of fixed sizes of 20, their
relative size proportion to p changes, suggesting an optimal
grouping regime around p = 1000 for screening. For small

Table 1: The improvement factor for the strong rules applied
to synthetic interaction data under the linear model, with
standard errors. The parameters of the data were set as
p = 400, n = 80, and m = 52 groups of sizes in [3, 15].
The interaction input dimensionality was pO2

= 2111 and
pO3 = 7338, with no interaction hierarchy imposed. The
sparsity proportion of interaction variables was set to 0.3
(with the same signal as the marginal effects).

Interaction

Method Order 2 Order 3

DFR-aSGL 137.3± 12.0 54.0± 10.7
DFR-SGL 44.3± 2.4 23.6± 3.1
sparsegl 7.4± 0.9 1.2± 0.3
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Figure 6: The input proportion for the strong rules applied to
synthetic data, as a function of the sparsity proportion (left)
and data correlation (right), with 95% confidence intervals.
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Figure 7: The improvement factor of DFR-aSGL under
different weights b1 = b2, shown for the linear (left) and
logistic (right) models, with 95% confidence intervals.

p, few large groups dominate, limiting the potential to screen
out groups, while for large p, many small groups reduce the
impact of group screening.

Additional explorations of increased dimensionality in-
cluded the analysis of interaction terms (Table 1 and Ap-
pendix D.5). In this setting, all possible interactions of
order 2 and 3 within each group were included. DFR pro-
vides large computational savings when fitting interactions,
especially compared to sparsegl, which under order 3 in-
teractions provides only marginal improvements. These
savings make it more feasible for sparse-group models to
be used in interaction detection problems. Such challenges
are frequently seen in the field of genetics, where gene-gene
and gene-environment relationships are useful discoveries
(D’Angelo et al., 2009; Zemlianskaia et al., 2022).

Robustness For the remainder of the section, the variables
were placed in m = 22 uneven groups of sizes in [3, 100] to
gain additional insights into the robustness of DFR. Earlier,
DFR was found to be robust under varying signal strength
and α. We further observe that DFR is also robust to the data-
generating parameters of signal sparsity (variable and group
sparsity proportions varied together) and group correlation
in X (Figures 5 and 6).

A clear benefit of DFR over sparsegl is observed under
sparse signals. Screening rules generally have a greater im-
pact as the signal becomes sparser. However, once the signal
saturates, their effectiveness declines, leading to similar per-
formance across approaches. Under varying correlation,
DFR is more successful at reducing the input space when
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Figure 8: The improvement factor (log10 scale) of the strong
rules applied to the six real datasets, split by model type.

brca1 scheetz trust-experts adenoma celiac tumour

10−3

10−2

10−1

In
pu

tp
ro

po
rt

io
n

(l
og

1
0
)

Linear Logistic

DFR-SGL
DFR-aSGL
sparsegl

Figure 9: The input proportion (log10 scale) of the strong
rules applied to the six real datasets, split by model type.

compared to sparsegl, especially under minor correlation.
Under higher correlation, the models become less sparse,
again resulting in reduced screening importance.

Similar to the case with even groups, for uneven groups,
DFR remains relatively unaffected by the signal strength and
the choice of α, consistently achieving effective reduction.
(Figures A2 and A3).

Hyperparameter Tuning and Cross-Validation The per-
formance of DFR-aSGL was found to be robust under differ-
ent values of hyperparameters b1 and b2 (Figure 7), which
are used to define the adaptive weights (Appendix B.3).

The efficiency and robustness of DFR across different hyper-
parameters (α, b1, b2) make it a promising tool for enabling
approaches like cross-validation (CV) to tune all SGL and
aSGL hyperparameters, which is rarely done in practice.
Applying DFR with CV yields substantial computational
savings (Table A11). These findings highlight DFR’s value
in facilitating expanded tuning regimes for SGL and aSGL.

Logistic Model DFR is also effective and robust for logis-
tic models (Figures A7, A8, A9, and A10; see Appendix D.6
for further results and description of the data generation).

KKT Violations KKT violations for DFR are very rare.
Across all experiments with linear models, DFR-SGL had
only a single KKT violation (Table A9). Violations were
more common for DFR-aSGL and sparsegl, but still infre-
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Figure 10: The input proportion as a function of the shrink-
age path for the strong rules applied to the real datasets.

quent. Note that DFR-aSGL violations refer to variable
ones, and sparsegl to group ones, making it more likely to
have a variable violation. The elevated number of KKT
violations for sparsegl suggests that the group Lipschitz
assumption of DFR-SGL is more robust.

One possible explanation for the increased KKT violations
of DFR-aSGL lies in the role of the Lipschitz assumptions.
Unlike SGL, the adaptive penalties in aSGL introduce addi-
tional dependencies on hyperparameters into the Lipschitz
assumptions. This extra dependence on hyperparameters
has the potential to lead to violations.

5. Real Data Analysis
The efficiency of DFR is further evaluated through the anal-
ysis of six real datasets with different characteristics, includ-
ing response type and dimensionality. Three of the datasets,
brca1, scheetz, and trust-experts, have continuous responses,
so are fit using an SGL linear model. The former two were
also analyzed with regards to screening rules in Larsson &
Wallin (2024), and the latter in Liang et al. (2022).

The other three datasets, adenoma, celiac, and tumour, have
binary responses, so an SGL logistic model is used. The
trust-experts dataset is low-dimensional, and the other five
are high-dimensional. The models were fit along a 100-
length path, terminating at 0.2λ1, where λ1 generates the
null model. More information on the datasets and model
implementation is provided in Table D.2 and Appendix E.

For all datasets, DFR outperforms sparsegl at reducing the
computational cost (Figure 8) and input dimension (Figure
9), as well as keeping the input proportion low along the
whole path (Figure 10). Despite being most useful for high-
dimensional data, even in the case of low-dimensional data
(trust-experts), DFR improves fitting time.
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DFR-aSGL performs very well for scheetz and adenoma,
improving the computational cost by over 600 times. For
the scheetz dataset, the aSGL model had more difficulty con-
verging without screening compared to SGL, so DFR-aSGL
offered a greater advantage over DFR-SGL. For adenoma,
the active set for aSGL was smaller (Table A18), due to the
increased penalization that comes with the adaptivity. How-
ever, despite the advantage of a smaller active set, we do
still observe that DFR-aSGL was more efficient at reducing
the optimization set, with respect to the active set.

DFR is observed to aid in mitigating convergence issues for
both SGL and aSGL (Table A19). Across all datasets, DFR
encountered no failed convergences. In contrast, sparsegl
did not converge at several path points for both adenoma
and scheetz. As sparsegl only screens groups, when a group
enters the optimization set, sparsegl is forced to fit with
the full group, which can contain noise variables. Apply-
ing no screening led to SGL not converging for adenoma,
scheetz, and tumour. By drastically reducing the input space,
convergence issues caused by large datasets are resolved,
improving both computational cost and solution optimality.

6. Discussion
A novel feature reduction method for the sparse-group lasso
and adaptive sparse-group lasso, called Dual Feature Re-
duction (DFR), has been introduced, derived using the dual
norms of SGL and aSGL. DFR introduces the first bi-level
strong screening rules for SGL and the first screening rules
for aSGL. By applying two layers of reduction, DFR ef-
fectively reduces input dimensionality for optimisation and
is computationally simpler than the GAP safe rules, which
require iterative screening and fitting. In contrast, DFR
screens only once per path point, so that it adds minimal
computational overhead.

DFR first applies group-level screening, discarding inac-
tive groups, followed by variable-level reduction, where
inactive variables in active groups are removed. By dis-
carding variables that are inactive at the optimal solution,
DFR achieves significant computational savings, enabling
the SGL family of models to scale more efficiently with
increasing dimensionality and handle larger, more complex
datasets. This gain comes at no cost, as the optimal solution
is still achieved (Appendices D.4, D.6, and E.2). In fact,
by reducing the input, instances were observed where DFR
helped SGL and aSGL overcome convergence issues.

DFR proved robust across different data and model parame-
ters, achieving drastic feature reduction under all scenarios
considered. This consistently translated into large compu-
tational savings across both synthetic and real data. DFR
outperformed all other screening approaches, establishing it
as the state-of-the-art screening method for SGL and high-

lighting the benefit of bi-level screening.

Limitations Several assumptions are required to perform
two layers of feature reduction for DFR. Propositions 3.2
and 3.3 use Lipschitz assumptions which are consistent with
the strong framework (Tibshirani et al., 2010). Any breach
of assumptions is guarded against by KKT checks. Only
a single KKT violation occurred for SGL across all our
simulations and only very infrequently for aSGL. These
assumptions are a limitation of any strong rule, although
DFR carries additional assumptions over other strong rules,
which are necessary for the second layer of screening.

Code DFR is implemented in the dfr R package (Feser,
2024), available on CRAN.

Impact Statement
This paper aims to advance Machine Learning while en-
suring no disadvantage to anyone. The proposed screening
rules do not alter the solution but improve the accessibility
of SGL and aSGL for researchers with limited computa-
tional resources.
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Dual Feature Reduction for the Sparse-group Lasso and its Adaptive Variant:
Supplementary Materials

A. Sparse-group Lasso
A.1. Theory

A.1.1. GROUP REDUCTION

Proof of Proposition 3.1. To prove the two sets are equivalent, we need to prove that for any g ∈ [m] and k ∈ [l − 1],
g ∈ Ag(λk+1) ⇐⇒ g ∈ Cg(λk+1). We instead prove the contrapositive: g /∈ Cg(λk+1) ⇐⇒ g /∈ Ag(λk+1). So,

g /∈ Cg(λk+1) ⇐⇒ ∥∇gf(β̂(λk+1))∥ϵg ≤ τgλk+1, by definition of the candidate set

⇐⇒ −∇gf(β̂(λk+1)) ∈ τgλk+1Θ
0
g,k+1, as Θ0

g,k+1 =
{
x ∈ Rpg : ∥x∥ϵg ≤ 1

}
⇐⇒ 0 ∈ ∇gf(β̂(λk+1)) + τgλk+1Θ

0
g,k+1

⇐⇒ g /∈ Ag(λk+1), by the KKT conditions (Equation 6).

Proof of Proposition 3.2. To prove the candidate set is a superset of the active set, we need to prove that for any g ∈ [m] and
k ∈ [l − 1], g ∈ Ag(λk+1) =⇒ g ∈ Cg(λk+1). We instead prove the contrapositive: g /∈ Cg(λk+1) =⇒ g /∈ Ag(λk+1).
First, we rewrite the Lipschitz assumption as (using the reverse triangle inequality)

∥∇gf(β̂(λk+1))∥ϵg − ∥∇gf(β̂(λk))∥ϵg ≤ ∥∇gf(β̂(λk+1))−∇gf(β̂(λk))∥ϵg ≤ τg|λk+1 − λk|

=⇒ ∥∇gf(β̂(λk+1))∥ϵg ≤ ∥∇gf(β̂(λk))∥ϵg + τg|λk+1 − λk|. (18)

Now, as g /∈ Cg(λk+1),

∥∇gf(β̂(λk))∥ϵg ≤ τg(2λk+1 − λk).

Plugging this into Equation 18 yields

∥∇gf(β̂(λk+1))∥ϵg ≤ τg(2λk+1 − λk) + τg|λk+1 − λk|

=⇒ ∥∇gf(β̂(λk+1))∥ϵg ≤ τgλk+1

=⇒ −∇gf(β̂(λk+1)) ∈ τgλk+1Θ
0
g,k+1, as Θ0

g,k+1 =
{
x ∈ Rpg : ∥x∥ϵg ≤ 1

}
=⇒ 0 ∈ ∇gf(β̂(λk+1)) + τgλk+1Θ

0
g,k+1

=⇒ g /∈ Ag(λk+1), by the KKT conditions (Equation 6).

A.1.2. VARIABLE REDUCTION

Proposition A.1 (Theoretical SGL variable screening). For SGL applied with any λk+1, k ∈ [l − 1], the candidate variable
set,

Cv(λk+1) = {i ∈ Gg for g ∈ Ag(λk+1) : |∇if(β̂(λk+1))| > λk+1α},

is such that Cv(λk+1) = Av(λk+1).
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Proof of Proposition A.1. The proof strategy is similar to that of Proposition 3.1. To prove the two sets are equivalent, we
need to prove that for any i ∈ Gg such that g ∈ Ag , and k ∈ [l − 1], i ∈ Av(λk+1) ⇐⇒ i ∈ Cv(λk+1). We instead prove
the contrapositive: i /∈ Cv(λk+1) ⇐⇒ i /∈ Av(λk+1). So,

i /∈ Cv(λk+1) ⇐⇒ |∇if(β̂(λk+1))| ≤ λk+1α, by definition of the candidate set

⇐⇒ −∇vf(β̂(λk+1)) ∈ λk+1αΦ
0
i,k+1, as Φ0

i,k+1 = {x ∈ R : |x| ≤ 1} ,
for i ∈ Gg, g ∈ Ag(λk+1)

⇐⇒ 0 ∈ ∇vf(β̂(λk+1)) + λk+1αΦ
0
i,k+1

⇐⇒ i /∈ Av(λk+1), by the KKT conditions (Equation 11).

Proof of Proposition 3.3. The proof strategy is similar to that of Proposition 3.2. To prove the candidate set is a superset of
the active set, we need to prove that for any i ∈ Gg such that g ∈ Ag, and k ∈ [l − 1], i ∈ Av(λk+1) =⇒ i ∈ Cv(λk+1).
We instead prove the contrapositive: i /∈ Cv(λk+1) =⇒ i /∈ Av(λk+1). First, we rewrite the Lipschitz assumption as
(using the reverse triangle inequality)

|∇if(β̂(λk+1))| ≤ |∇if(β̂(λk))|+ α|λk+1 − λk|. (19)

Now, as i /∈ Cv(λk+1),
|∇if(β̂(λk))| ≤ α(2λk+1 − λk).

Plugging this into Equation 19 yields

|∇if(β̂(λk+1))| ≤ αλk+1

=⇒ −∇if(β̂(λk+1)) ∈ αλk+1Φ
0
i,k+1, as Φ0

i,k+1 = {x ∈ R : |x| ≤ 1}

=⇒ 0 ∈ ∇if(β̂(λk+1)) + αλk+1Φ
0
i,k+1

=⇒ i /∈ Av(λk+1), by the KKT conditions (Equation 6).

A.2. KKT Checks

To determine whether a variable i ∈ Gg has been correctly discarded, the KKT stationarity conditions are checked. Equation
11 describes the condition under which a variable i ∈ Gg is inactive. Without specifying whether the group g is inactive, this
can be rewritten as (by the definition of Φ0

i,k+1)

|∇if(β̂(λk+1)) + λk+1(1− α)Ψ
(g)
i,k+1| ≤ λk+1α, (20)

where Ψ
(g)
k+1 = {x ∈ R

√
pg : ∥x∥2 ≤ 1} is the subgradient of the ℓ2 norm. To satisfy Equation 20, the unknown

subdifferential, Ψ(g)
i,k+1, is taken to be the minimum possible value. For x ∈ Ψ

(g)
k+1, we have that

∥x∥2 ≤ 1 =⇒ √
pg∥x∥2 ≤

√
pg

=⇒ ∥x∥1 ≤
√
pg by the inequality ∥x∥1 ≤

√
pg∥x∥2

=⇒ |xi| ≤
√
pg.

Hence, the values in the subdifferential are bounded by√pg . We consider the following scenarios for Equation 20:

1. ∇if(β̂(λk+1)) > λk+1(1− α)
√
pg: choose xi = −

√
pg .

2. ∇if(β̂(λk+1)) < −λk+1(1− α)
√
pg: choose xi =

√
pg .

3. ∇if(β̂(λk+1)) ∈ [−λk+1(1− α)
√
pg, λk+1(1− α)

√
pg]: choose yi =

∇if(β̂(λk+1))
λk+1(1−α)

√
pg

.
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This allows Equation 20 to be expressed using the soft-thresholding operator as

|S(∇if(β̂(λk+1)), λk+1(1− α)
√
pg)| ≤ λk+1α.

A similar derivation can be found in Simon et al. (2013) to derive conditions to check whether a group is active for SGL.

A.3. Algorithm

Algorithm A1 Dual Feature Reduction (DFR) for SGL

Input: (λ1, . . . , λl) ∈ Rl, X ∈ Rn×p, y ∈ Rn, α ∈ [0, 1]

compute β̂(λ1) using Equation 1
for k = 1 to l − 1 do
Cg(λk+1)← candidate groups from Proposition 3.2
Cv(λk+1)← candidate variables from Proposition 3.3 for i ∈ Gg \ Av(λk), g ∈ Cg(λk+1)
Ov ← Cv(λk+1) ∪ Av(λk) ▶ Optimization set
compute β̂i(λk+1), i ∈ Ov , using Equation 1
Kv ← variable KKT violations for i /∈ Ov , using Equation 13 ▶ KKT check
while card(Kv) > 0 do
Ov ← Ov ∪ Kv ▶ Optimization set
compute β̂i(λk+1), i ∈ Ov , using Equation 1
Kv ← variable KKT violations for i /∈ Ov using Equation 13 ▶ KKT check

end while
end for
Output: β̂sgl(λ1), . . . , β̂sgl(λl) ∈ Rp

A.4. Reduction to (Adaptive) Lasso and (Adaptive) Group Lasso

Under α = 1, SGL reduces to the lasso. In this case, no group screening occurs and the variable screening rule reduces to
the lasso strong rule (Tibshirani et al., 2010):

|∇if(β̂(λk))| ≤ 2λk+1 − λk.

Under α = 0, SGL reduces to the group lasso. Under this scenario, the group screening reduces to the group lasso strong
rule (Tibshirani et al., 2010):

∥∇gf(β̂(λk))∥2 ≤
√
pg(2λk+1 − λk),

and no variable screening is performed. For aSGL, the rules reduce to the adaptive lasso and adaptive group lasso:

Adaptive lasso: |∇if(β̂(λk))| ≤ vi(2λk+1 − λk) =⇒ β̂i(λk+1) = 0.

Adaptive group lasso: ∥∇gf(β̂(λk))∥ϵ′g,1 ≤ wg
√
pg(2λk+1 − λk) =⇒ β̂(g)(λk+1) ≡ 0,

where ϵ′g,1 denotes the ϵ-norm under ϵ′g = 1 (Equations 4 and 15).
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B. Adaptive Sparse-group Lasso
B.1. Derivation of the Connection to ϵ-norm

Full proof of Proposition 3.4. The adaptive SGL is given by

∥β∥asgl = α

p∑
i=1

vi|βi|+ (1− α)

m∑
g=1

wg
√
pg∥β(g)∥2.

The aim is to link this norm to the ϵ-norm, in a similar way to SGL:

∥β∥sgl =

m∑
g=1

(α+ (1− α)
√
pg)∥β(g)∥∗ϵg .

Splitting up the summation term in the adaptive lasso norm yields

α

p∑
i=1

vi|βi| = α

m∑
g=1

∑
i∈Gg

vi|βi|

= α
m∑

g=1

∑
j∈Gg

vj
∑
i∈Gg

|βi| −
∑

i,j∈Gg,i̸=j

vj |βi|


= α

m∑
g=1

∑
j∈Gg

vj
∑
i∈Gg

|βi| −
∑

i,j∈Gg,i̸=j vj |βi|∑
i∈Gg
|βi|

∑
i∈Gg

|βi|


= α

m∑
g=1

∑
i∈Gg

|βi|

∑
j∈Gg

vj −
∑

i,j∈Gg,i̸=j vj |βi|∑
i∈Gg
|βi|


= α

m∑
g=1

∥β(g)∥1

(
∥v(g)∥1 −

∑
i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

)
.

Hence

∥β∥asgl = α

p∑
i=1

vi|βi|+ (1− α)

m∑
g=1

wg
√
pg∥β(g)∥2

=

m∑
g=1

[(
∥v(g)∥1 −

∑
i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

)
α∥β(g)∥1 + (1− α)wg

√
pg∥β(g)∥2

]
. (21)

Setting

γg = α∥v(g)∥1 −
α
∑

i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

+ (1− α)wg
√
pg,

simplifies Equation 21 to

∥β∥asgl =

m∑
g=1

γg

[(
γg − (1− α)wg

√
pg

γg

)
∥β(g)∥1 +

(
(1− α)wg

√
pg

γg

)
∥β(g)∥2

]
. (22)

Setting

ϵ′g =
(1− α)wg

√
pg

γg
,

allows Equation 22 to be written in terms of the ϵ-norm

∥β∥asgl =

m∑
g=1

γg

[
(1− ϵ′g)∥β(g)∥1 + ϵ′g∥β(g)∥2

]
=

m∑
g=1

γg∥β(g)∥∗ϵ′g .
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B.1.1. LEMMA PROOFS FOR THE CONNECTION TO THE ϵ-NORM

Proof of Lemma 3.5. Under β(g) ≡ 0 for a group g /∈ Ag , the middle term in γg becomes

lim
β(g)→0

(
α
∑

i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

)
=

α(pg − 1)

pg

pg∑
i=1

vi,

so that γg still exists. This can be observed by using L’Hôpital’s rule and noting that for i ∈ Gg ,

∂

∂βi

∑
i ̸=j

vj |βi| =
∑
i ̸=j

vj ,
∂

∂βi
∥β(g)∥1 = 1.

Proof of Lemma 3.6. Under v ≡ 1 and w ≡ 1, note that

γg = α

(
pg −

∑
i,j∈Gg,i̸=j vj |βi|
∥β(g)∥1

)
+ (1− α)

√
pg

= α

(
pg −

(pg − 1)∥β(g)∥1
∥β(g)∥1

)
+ (1− α)

√
pg

= α+ (1− α)
√
pg = τg.

To understand the cross summation term, note that we are summing over each β term pg − 1 times, as the matching indices
are removed, that is (for ease of notation, we consider G1 so that the indexing here is reset from 1)∑

i,j∈G1,i̸=j

vj |βi| = |β1|v2 + . . .+ |β1|vp1
+ |β2|v1 + . . .+ |β2|vp1

+ . . .+ |βp1
|vp1−1

= (p1 − 1)|β1|+ . . .+ (p1 − 1)|βp1 |, by setting vj = 1,∀j ∈ G1, for SGL

= (p1 − 1)
∑
i∈G1

|βi| = (p1 − 1)∥β(1)∥1.

Hence, using wg = 1 and τg = α+ (1− α)
√
pg ,

ϵ′g =
(1− α)wg

√
pg

γg
=

(1− α)
√
pg

τg
=

τg − α

τg
= ϵg.

B.2. Theory

B.2.1. GROUP SCREENING

To derive the group screening rule for aSGL, we compare the formulations of SGL and aSGL in terms of the ϵ-norm
(Equations 3 and 15):

∥β∥sgl =

m∑
g=1

τg∥β(g)∥∗ϵg , ∥β∥asgl =

m∑
g=1

γg∥β(g)∥∗ϵ′g .

Therefore, the derivation for the group screening rule for aSGL is identical to that of SGL (Section 3.1.1) replacing τg with
γg and ∥ · ∥ϵg with ∥ · ∥ϵ′g . The group screening rule is given by: discard a group g if

∥∇gf(β̂(λk))∥ϵ′g ≤ γg(2λk+1 − λk), (23)

and is formalized in Propositions B.1 and B.2.
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Proposition B.1 (Theoretical aSGL group screening). For aSGL applied with any λk+1, k ∈ [l − 1], the candidate group
set,

Cg(λk+1) = {g ∈ [m] : ∥∇gf(β̂(λk+1))∥ϵ′g > γgλk+1},

is such that Cg(λk+1) = Ag(λk+1).

Proof. The proof is identical to that of Proposition 3.1 replacing τg with γg and ∥ ·∥ϵg with ∥ ·∥ϵ′g (see Appendix A.1.1).

Proposition B.2 (DFR-aSGL group screening). For aSGL applied with any λk+1, k ∈ [l − 1], assuming that

∥∇gf(β̂(λk+1))−∇gf(β̂(λk))∥ϵ′g ≤ γg|λk+1 − λk|,

for all g ∈ [m], then the candidate group set,

Cg(λk+1) = {g ∈ [m] : ∥∇gf(β̂(λk))∥ϵ′g > γg(2λk+1 − λk)},

is such that Ag(λk+1) ⊂ Cg(λk+1).

Proof. The proof is identical to that of Proposition 3.2 replacing τg with γg and ∥ ·∥ϵg with ∥ ·∥ϵ′g (see Appendix A.1.1).

B.2.2. VARIABLE SCREENING

The construction of the variable screening rule for aSGL is very similar to that of SGL (Section 3.1.2). The KKT stationary
conditions for aSGL for an inactive variable in an active group are (in comparison to Equation 12 for SGL)

−∇if(β̂(λk+1)) ∈ λk+1αviΦ
0
i,k+1.

Therefore, the derivation of the rule is identical, replacing α with αvi. The variable screening rule is given by: discard a
variable i if

|∇if(β̂(λk))| ≤ αvi(2λk+1 − λk), (24)

and is formalized in Propositions B.3 and B.4.

Proposition B.3 (Theoretical aSGL variable screening). For aSGL applied with any λk+1, k ∈ [l − 1], the candidate
variable set,

Cv(λk+1) = {i ∈ Gg for g ∈ Ag(λk+1) : |∇if(β̂(λk+1))| > λk+1αvi},

is such that Cv(λk+1) = Av(λk+1).

Proof. The proof is identical to that of Proposition A.1 replacing α with αvi (see Appendix A.1.2).

Proposition B.4 (DFR-aSGL variable screening). For aSGL applied with any λk+1, k ∈ [l − 1], assuming that

|∇if(β̂(λk+1))−∇if(β̂(λk))| ≤ αvi(λk − λk+1),

for all i ∈ Gg for g ∈ Ag(λk+1), then the variable candidate set,

Cv(λk+1) = {i ∈ Gg for g ∈ Ag(λk+1) : |∇if(β̂(λk))| > αvi(2λk+1 − λk)},

is such that Av(λk+1) ⊂ Cv(λk+1).

Proof. The proof is identical to that of Proposition 3.3 replacing α with αvi (see Appendix A.1.2).
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B.3. Choice of Adaptive Weights

The adaptive weights are chosen according to Mendez-Civieta et al. (2021) as

vi =
1

|q1i|b1
, wg =

1

∥q(g)1 ∥
b2
2

,

where q1 is the first principal component from performing principal component analysis on X and b1, b2 are chosen by the
user, often in the range [0, 2]. The weights are shown for b1 = b2 = 0.1 in Figure A1.
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Figure A1: The weights, (v, w), for aSGL, used in Figure 5 (right), where p = 1000, n = 200,m = 22, ρ = 0.3, b1 = b2 =
0.1, and α = 0.95.

B.4. Algorithm

Algorithm A2 Dual Feature Reduction (DFR) for aSGL

Input: (λ1, . . . , λl) ∈ Rl,X ∈ Rn×p, y ∈ Rn, α ∈ [0, 1]

compute β̂(λ1) using Equation 1, replacing the SGL norm with Equation 14
for k = 1 to l − 1 do
Cg(λk+1)← candidate groups from Equation 23
Cv(λk+1)← candidate variables from Equation 24 for i ∈ Gg \ Av(λk), g ∈ Cg(λk+1)
Ov ← Cv(λk+1) ∪ Av(λk) ▶ Optimization set
compute β̂i(λk+1), i ∈ Ov , using Equation 1, replacing the SGL norm with Equation 14
Kv ← variable KKT violations for i /∈ Ov , using Equation 17 ▶ KKT check
while card(Kv) > 0 do
Ov ← Ov ∪ Kv ▶ Optimization set
compute β̂i(λk+1), i ∈ Ov , using Equation 1, replacing the SGL norm with Equation 14
Kv ← variable KKT violations for i /∈ Ov , using Equation 17 ▶ KKT check

end while
end for
Output: β̂asgl(λ1), . . . , β̂asgl(λl) ∈ Rp
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C. Competitive Feature Reduction Approaches

Table A1: A summary of the four screening rules for SGL considered.

Rules (discard if true)

Method Type Variable Group

DFR-aSGL Heuristic |∇if(β̂(λk))| ≤ αvi(2λk+1 − λk) ∥∇gf(β̂(λk))∥ϵ′g ≤ γg(2λk+1 − λk)

DFR-SGL Heuristic |∇if(β̂(λk))| ≤ α(2λk+1 − λk) ∥∇gf(β̂(λk))∥ϵg ≤ τg(2λk+1 − λk)

sparsegl Heuristic - ∥S(∇gf(β̂(λk)), λkα)∥2 ≤
√
pg(1− α)(2λk+1 − λk)

GAP safe Exact |X⊤
i Θc|+ r∥Xi∥2 < τ Tg < (1− α)

√
pg

sparsegl sparsegl is a screening rule proposed by Liang et al. (2022) and performs a single layer of group screening. The
rule is based on the strong screening framework (Tibshirani et al., 2010) and the first order condition derived in Simon et al.
(2013), i.e., that a group g ∈ [m] is inactive if

∥S(∇gf(β̂(λk+1)), λk+1α)∥2 ≤
√
pg(1− α)λk+1.

As the gradient at k + 1 is not available, the following Lipschitz assumption on the ℓ2 norm is used:

∥S(∇gf(β̂(λk+1)), λk+1α)− S(∇gf(β̂(λk)), λkα)∥2 ≤
√
pg(1− α)|λk+1 − λk|.

This leads to the sparsegl screening rule (via the triangle inequality): discard a group g if

∥S(∇gf(β̂(λk)), λkα)∥2 ≤
√
pg(1− α)(2λk+1 − λk).

This screening rule uses a different Lipschitz assumption at the group-level (DFR: Equation 9), which in turn leads to a
different group-level rule (DFR: Equation 10). Our Lipschitz assumption is more consistent with the work of Tibshirani
et al. (2010), as the assumption is with regards to the dual norm of the full SGL norm, rather than just the group component.

GAP Safe An exact feature reduction method for SGL was proposed in Ndiaye et al. (2016a) under linear regression. The
approach makes use of the subdifferential inclusion equation of Fermat’s rule (Bauschke & Combettes, 2017):

X⊤Θ̂(λ,∥·∥sgl) ∈ ∂∥ · ∥sgl(β̂
(λ,∥·∥sgl)),

where Θ̂ is the solution to the dual formulation of Equation 1. Using this, exact (theoretical) rules are derived to determine
which variables and groups are inactive at the optimal solution. The rules are theoretical as they rely on Θ̂λ,∥·∥sgl , which is
not available in practice. Instead, a safe region is constructed that contains the optimal dual solution; in Ndiaye et al. (2016a)
it is taken as a sphere, but other regions can also be used (such as domes). Due to the strict requirements on these safe
regions, the reduction is generally more conservative.

The safe sphere is defined as B(Θc, r) with center Θc and radius r. An ideal region would be such that r is small and the
center is close to Θ̂λ,∥·∥sgl . Using this safe region, the GAP safe rules at λk+1 are derived as, for a variable i and group g,

Variable screening: |X⊤
i Θc|+ r∥Xi∥2 < τ =⇒ β̂i(λk+1) = 0.

Group screening: Tg < (1− α)
√
pg =⇒ β̂(g)(λk+1) ≡ 0,

where

Tg =

{
∥S(X⊤

g Θc, α)∥+ r∥Xg∥, if ∥X⊤
g Θc∥∞ > α,

(∥X⊤
g Θc∥∞ + r∥Xg∥ − α)+, otherwise.

The center Θc and the radius r are derived using the duality gap and are calculated at iteration t in an iterative algorithm as

Θt(β(t)) =
y −Xβ(t)

max(λk+1, ∥X⊤(y −Xβ(t))∥∗sgl)
, rt(β(t),Θt) =

√
2Pλk+1,α(β(t))−Dλk+1

(Θt)

λ2
k+1

,
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where Pλ,α and Dλ are the primal and dual objectives, and β(t) is the primal value at iteration t. The radius and center are
expensive to evaluate, so are calculated only every 10 iterations (Ndiaye et al., 2016a).

The above formulation combines both dynamic and sequential screening. The method can also be implemented using just
sequential screening, in which the primal values used in the calculation of the center and radius are from λk.

For both the GAP safe rules and DFR, theoretically it would be possible to exactly identify the active sets, but both instead
require approximations. While GAP safe has different implementations, we present the best performing versions in our
studies.

D. Synthetic Data Analysis
This section complements Section 4.1 by providing further information about the simulation set-up and additional results for
the synthetic data. Additional tables and figures are provided that further showcase the effectiveness of DFR, including
under a logistic model (Appendix D.6).

Notes: The GAP safe methods are only applicable under linear regression and caused computational issues under uneven
groups. Given their poor performance in the simulations considered (Figures 1, 2, and 3), they were excluded from the
remaining simulations. Additionally, note that an intercept was only applied for linear models. Applying an intercept centers
the response data, which is not applicable to a binary response. As we are interested in computational cost, not predictive
performance, adding an intercept to logistic models provides no benefit.

D.1. Metrics

The following metrics are shown in the tables in the Appendix:

• Av,Ag: the number of active variables/groups.

• Cv, Cg: the number of variables/groups in the candidate sets.

• Ov,Og: the number of variables/groups used in the optimization process. As per Algorithms A1 and A2,Ov = Cv∪Av .
However, Og is not produced as Og = Cg ∪Ag . Instead, Og are the groups for which there are variables present in Ov

to give a measure of the number groups used in the optimization.

• Kv,Kg: the number of variable/group KKT violations. DFR only checks for variable violations and sparsegl only
checks for group violations.

• Ov /Av and Og /Ag: the proportion of variables/groups used in the optimization against the number active. Defines
how efficient the rules are. A low value is best.

• Ov / p and Og / m: the variable/group input proportion, as defined in Section 4. A low value is best.

• ℓ2 distance to no screen: ℓ2 distance from the fitted values obtained with screening to without.

• IF: the improvement factor, as defined in Section 4.
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D.2. Setup

Table A2: Default model, data, and algorithm parameters for the synthetic and real data analyses.

Category Parameter Values

Synthetic Real

Model

α 0.95 0.95
b1 = b2 (aSGL only) 0.1 0.1
Path length (l) 50 100
Path termination (λl) 0.1λ1 0.2λ1

Path shape Log-linear Log-linear

Data

p 1000 -
n 200 -
m (uneven cases) 22 -
m (even cases) 50 -
Group sizes (uneven cases) [3, 100] -
Group sizes (even cases) 20 -
Signal β (signal strength of zero) N (0, 4) -
Variable sparsity 0.2 -
Group sparsity 0.2 -
Correlation (ρ) 0.3 -
Noise (ϵ) N (0, 1) -

Algorithm (ATOS/BCD)

Maximum iterations 5000 10000
Backtracking (ATOS only) 0.7 0.7
Maximum backtracking iterations (ATOS only) 100 100
Convergence tolerance 10−5 10−5

Standardization ℓ2 ℓ2
Intercept Yes for linear Yes for linear
Warm starts Yes Yes
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D.3. Runtime Breakdown

The runtime breakdowns for two cases are presented to illustrate the computational cost of screening.

Table A3: Figure 1 runtime breakdown.

Component DFR-SGL DFR-aSGL

Fitting algorithm 88% 86%
ϵ-norm evaluation 3.9% 3.6%
Group screening 3.9% 3.6%
Variable screening 0.01% 0.01%
KKT checks 0.6% 0.6%

Table A4: scheetz runtime breakdown (Figure 8).

Component DFR-SGL DFR-aSGL

Fitting algorithm 77% 65%
ϵ-norm evaluation 0.46% 0.57%
Group screening 0.46% 0.58%
Variable screening 0.01% 0.02%
KKT checks 0.2% 0.3%

D.4. Additional Results for the Linear Model
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Figure A2: The improvement factor for the strong rules applied to synthetic data, under the linear model, as a function of the
signal strength (left) and α (right), with 95% confidence intervals.
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Figure A3: The input proportion for the strong rules applied to synthetic data, under the linear model, as a function of the
signal strength (left) and α (right), with 95% confidence intervals.
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Figure A4: The input proportion of DFR-aSGL under different weights b1 = b2, shown for the linear (left) and logistic
(right) models, with 95% confidence intervals.
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D.4.1. TABLES FOR GAP SAFE SIMULATIONS

Table A5: Group screening metrics corresponding to the GAP safe simulations (Figures 1, 2, and 3) averaged over all cases
and path points, shown with standard errors.

CARDINALITY INPUT PROPORTION

METHOD Ag Cg Og Kg Og /Ag Og / m

DFR-ASGL 7.86± 0.02 10.00± 0.03 10.00± 0.03 – 1.1751± 7× 10−4 0.2001± 5× 10−4

DFR-SGL 8.16± 0.02 10.47± 0.02 10.47± 0.02 – 1.1937± 8× 10−4 0.2094± 5× 10−4

DFR-SGL BCD 8.45± 0.02 10.07± 0.02 10.07± 0.02 – 1.1893± 8× 10−4 0.2015± 4× 10−4

SPARSEGL 8.16± 0.02 11.72± 0.04 11.72± 0.04 3× 10−5 ± 2× 10−5 1.5837± 0.0111 0.2344± 7× 10−4

GAP SEQUENTIAL 8.55± 0.02 10.20± 0.02 10.20± 0.02 – 1.1934± 0.0018 0.2040± 4× 10−4

GAP DYNAMIC 8.55± 0.02 10.20± 0.02 10.20± 0.02 – 1.1917± 0.0017 0.2039± 4× 10−4

Table A6: Variable screening metrics corresponding to the GAP safe simulations (Figures 1, 2, and 3) averaged over all
cases and path points, shown with standard errors.

CARDINALITY INPUT PROPORTION

METHOD Av Cv Ov Kv Ov /Av Ov / p

DFR-ASGL 61.77± 0.22 36.70± 0.34 95.99± 0.42 0.0092± 3× 10−4 1.3464± 0.0011 0.0960± 4× 10−4

DFR-SGL 65.37± 0.22 38.30± 0.34 101.07± 0.43 0± 0 1.3576± 0.0011 0.1011± 4× 10−4

DFR-SGL BCD 72.69± 0.25 23.35± 0.09 93.11± 0.32 0.0250± 0.0054 1.3281± 0.0011 0.0931± 3× 10−4

SPARSEGL 65.41± 0.22 234.39± 0.70 234.39± 0.70 – 11.5604± 0.2001 0.2344± 7× 10−4

GAP SEQUENTIAL 73.01± 0.25 93.85± 0.33 93.85± 0.33 – 1.3292± 0.0022 0.0938± 3× 10−4

GAP DYNAMIC 73.01± 0.25 93.38± 0.33 93.38± 0.33 – 1.2927± 0.0020 0.0934± 3× 10−4

Table A7: Model fitting metrics corresponding to the GAP safe simulations (Figures 1, 2, and 3) averaged over all cases and
path points, shown with standard errors. The timing results are the average time taken to evaluate the full path on a dataset.

TIMINGS ITERATIONS ℓ2 DISTANCE FAILED CONVERGENCE

METHOD NO SCREEN (S) SCREEN (S) IF NO SCREEN SCREEN TO NO SCREEN NO SCREEN SCREEN

DFR-ASGL 659.89± 6.50 154.92± 2.39 7.01± 0.15 271.60± 2.36 174.55± 2.49 4× 10−4 ± 3× 10−6 0± 0 0± 0
DFR-SGL 685.49± 6.27 157.1± 2.24 7.98± 0.20 286.13± 2.04 185.47± 2.43 4× 10−4 ± 3× 10−6 0± 0 0± 0
DFR-SGL BCD 131.46± 1.12 32.02± 0.55 5.55± 0.08 252.26± 1.94 139.39± 1.15 2× 10−7 ± 1× 10−8 0± 0 0± 0
SPARSEGL 685.49± 6.27 275.37± 4.43 3.44± 0.08 286.13± 2.04 278.18± 2.28 4× 10−4 ± 3× 10−6 0± 0 0± 0
GAP SEQUENTIAL 0.11± 3× 10−3 0.11± 3× 10−3 0.98± 0.01 – – – –
GAP DYNAMIC 0.11± 3× 10−3 0.11± 3× 10−3 1.00± 0.01 – – – – –

D.4.2. TABLES FOR OTHER SIMULATIONS

Table A8: Group screening metrics corresponding to the other linear model simulations (Figures 4, 5, 6, A2, and A3 and
Table 1) averaged over all cases and path points, shown with standard errors.

CARDINALITY INPUT PROPORTION

METHOD Ag Cg Og Kg Og /Ag Og / m

DFR-ASGL 8.46± 0.03 10.55± 0.04 10.54± 0.04 – 1.1414± 5× 10−4 0.1968± 4× 10−4

DFR-SGL 8.51± 0.03 11.16± 0.04 11.16± 0.04 – 1.1792± 6× 10−4 0.2084± 4× 10−4

SPARSEGL 8.51± 0.03 10.25± 0.04 10.25± 0.04 8× 10−5 ± 2× 10−5 1.2191± 0.0026 0.2083± 4× 10−4
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Table A9: Varible screening metrics corresponding to the other linear model simulations (Figures 4, 5, 6, A2, and A3 and
Table 1) averaged over all cases and path points, shown with standard errors.

CARDINALITY INPUT PROPORTION

METHOD Av Cv Ov Kv Ov /Av Ov / p

DFR-ASGL 50.95± 0.13 29.90± 0.15 78.92± 0.22 0.0297± 4× 10−4 1.4805± 0.0011 0.0634± 2× 10−4

DFR-SGL 54.40± 0.13 32.78± 0.15 85.16± 0.22 4× 10−6 ± 4× 10−6 1.5057± 0.0014 0.0676± 2× 10−4

SPARSEGL 54.42± 0.13 331.75± 0.86 331.75± 0.86 – 11.4845± 0.0882 0.2205± 5× 10−4

Table A10: Model fitting metrics corresponding to the other linear model simulations (Figures 4, 5, 6, A2, and A3 and Table
1) averaged over all cases and path points, shown with standard errors. The timing results are the average time taken to
evaluate the full path on a dataset.

TIMINGS ITERATIONS ℓ2 DISTANCE FAILED CONVERGENCE

METHOD NO SCREEN (S) SCREEN (S) IF NO SCREEN SCREEN TO NO SCREEN NO SCREEN SCREEN

DFR-ASGL 723.99± 34.04 77.00± 2.23 11.19± 0.41 415.87± 7.41 227.93± 3.51 7× 10−5 ± 5× 10−7 0± 0 0± 0
DFR-SGL 251.59± 3.93 51.73± 0.89 9.15± 0.15 413.10± 7.12 240.78± 3.78 6× 10−5 ± 5× 10−7 0± 0 0± 0
SPARSEGL 251.59± 3.93 138.18± 5.62 3.59± 0.05 413.10± 7.12 353.66± 5.79 6× 10−5 ± 5× 10−7 0± 0 0± 0

D.4.3. CROSS-VALIDATION

Table A11: The improvement factor for the strong rules applied to synthetic data, under the linear and logistic models, with
10-fold CV, with standard errors.

Method Linear Logistic

DFR-aSGL 3.9± 0.2 2.3± 0.1
DFR-SGL 4.2± 0.3 2.6± 0.1
sparsegl 2.0± 0.2 2.1± 0.1

D.5. Interaction Models
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Figure A5: The input proportion for the strong rules applied to synthetic interaction data, under the linear model, with
standard errors. The parameters of the data were set as p = 400, n = 80, and m = 52 groups of sizes in [3, 15]. The
interaction input dimensionality was pO2 = 2111 and pO3 = 7338, with no interaction hierarchy imposed. The sparsity
proportion of interaction variables was set to 0.3 (with the same signal as the marginal effects).
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D.6. Results for the Logistic Model

The data input components X, β, and ϵ for the logistic model were generated as for the linear models. The class probabilities
for the response were calculated using σ(Xβ + ϵ), where σ is the sigmoid function.

Table A12: The improvement factor for the strong rules applied to synthetic interaction data, under the logistic model,
with standard errors. The parameters of the data were set as p = 400, n = 80, and m = 52 groups of sizes in [3, 15]. The
interaction input dimensionality was pO2

= 2111 and pO3
= 7338, with no interaction hierarchy imposed. The sparsity

proportion of interaction variables was set to 0.3 (with the same signal as the marginal effects).

Interaction

Method Order 2 Order 3

DFR-aSGL 6.7± 0.4 12.2± 0.4
DFR-SGL 5.8± 0.2 8.3± 0.4
sparsegl 1.0± 0.1 2.1± 0.3
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Figure A6: The input proportion for the strong rules applied to synthetic interaction data, under the logistic model, with
standard errors. The parameters of the data were set as p = 400, n = 80, and m = 52 groups of sizes in [3, 15]. The
interaction input dimensionality was pO2

= 2111 and pO3
= 7338, with no interaction hierarchy imposed. The sparsity

proportion of interaction variables was set to 0.3 (with the same signal as the marginal effects).
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Figure A7: The improvement factor for the strong rules applied to synthetic data, under the logistic model, as a function of
the sparsity proportion (left) and data correlation (right), with 95% confidence intervals.

26



Dual Feature Reduction for SGL

0.1 0.2 0.3 0.4

Sparsity proportion

0.0

0.2

0.4

0.6

In
pu

tp
ro

po
rt

io
n

0.0 0.2 0.4 0.6 0.8

Correlation (ρ)

DFR-SGL DFR-aSGL sparsegl

Figure A8: The input proportion for the strong rules applied to synthetic data, under the logistic model, as a function of the
sparsity proportion (left) and data correlation (right), with 95% confidence intervals.
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Figure A9: The improvement factor for the strong rules applied to synthetic data, under the logistic model, as a function of
the signal strength (left) and α (right), with 95% confidence intervals.
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Figure A10: The input proportion for the strong rules applied to synthetic data, under the logistic model, as a function of the
signal strength (left) and α (right), with 95% confidence intervals.

D.6.1. TABLES FOR LOGISTIC SIMULATIONS

Table A13: Group screening metrics corresponding to the logistic model simulations (Figures A7, A8, A9, and A10 and
Table A12) averaged over all cases and path points, shown with standard errors.

CARDINALITY INPUT PROPORTION

METHOD Ag Cg Og Kg Og /Ag Og / m

DFR-ASGL 8.08± 0.01 8.55± 0.02 8.55± 0.02 – 1.0292± 6× 10−4 0.3528± 6× 10−4

DFR-SGL 8.56± 0.02 9.30± 0.02 9.30± 0.02 – 1.0554± 7× 10−4 0.3823± 7× 10−4

SPARSEGL 8.56± 0.02 8.87± 0.02 8.87± 0.02 5× 10−5 ± 2× 10−5 1.0808± 0.0029 0.3697± 7× 10−4
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Table A14: Variable screening metrics corresponding to the logistic model simulations (Figures A7, A8, A9, and A10 and
Table A12) averaged over all cases and path points, shown with standard errors.

CARDINALITY INPUT PROPORTION

METHOD Av Cv Ov Kv Ov /Av Ov / p

DFR-ASGL 79.76± 0.24 35.27± 0.10 111.79± 0.32 0.0155± 3× 10−4 1.5263± 0.0012 0.1075± 3× 10−4

DFR-SGL 84.23± 0.25 40.13± 0.12 120.84± 0.34 9× 10−6 ± 7× 10−6 1.5503± 0.0013 0.1154± 3× 10−4

SPARSEGL 84.26± 0.25 445.21± 1.05 445.21± 1.05 – 11.6349± 0.1015 0.4004± 7× 10−4

Table A15: Model fitting metrics corresponding to the logistic model simulations (Figures A7, A8, A9, and A10 and Table
A12) averaged over all cases and path points, shown with standard errors. The timing results are the average time taken to
evaluate the full path on a dataset.

TIMINGS ITERATIONS ℓ2 DISTANCE FAILED CONVERGENCE

METHOD NO SCREEN (S) SCREEN (S) IF NO SCREEN SCREEN TO NO SCREEN NO SCREEN SCREEN

DFR-ASGL 132.10± 7.21 34.75± 0.66 3.37± 0.05 125.73± 2.77 78.95± 1.10 9× 10−10 ± 2× 10−11 0± 0 0± 0
DFR-SGL 103.16± 3.37 34.27± 0.56 3.43± 0.05 141.42± 2.92 87.88± 1.30 2× 10−10 ± 8× 10−12 0± 0 0± 0
SPARSEGL 103.16± 3.37 109.93± 4.69 1.51± 0.03 141.42± 2.92 121.29± 2.11 2× 10−10 ± 3× 10−12 0± 0 0± 0
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E. Real Data Analysis
E.1. Data Description

• brca1: Gene expression data for breast cancer tissue samples.

– Response (continuous): Gene expression measurements for the BRCA1 gene.
– Data matrix: Gene expression measurements for the other genes.
– Grouping structure: Variables are grouped via singular value decomposition.

• scheetz: Gene expression data in the mammalian eye.

– Response (continuous): Gene expression measurements for the Trim32 gene.
– Data matrix: Gene expression measurements for the other genes.
– Grouping structure: Variables are grouped via singular value decomposition.

• trust-experts: Survey response data as to how much participants trust experts (e.g., doctors, nurses, scientists) to provide
COVID-19 news and information.

– Response (continuous): The trust level of each participant.
– Data matrix: Contingency table including factors about participants (e.g., age, gender, ethnicity).
– Grouping structure: The factor levels grouped into their original factors.

• adenoma: Transcriptome profile data to identify the formation of colorectal adenomas, which are the predominate
cause of colorectal cancers.

– Response (binary): Labels classifying whether the sample came from an adenoma or normal mucosa.
– Data matrix: Transcriptome profile measurements.
– Grouping structure: Genes were assigned to pathways from all nine gene sets on the Molecular Signature

Database.1

• celiac: Gene expression data of primary leucocytes to identify celiac disease.

– Response (binary): Labels classifying patients into whether they have celiac disease.
– Data matrix: Gene expression measurements from the primary leucocytes.
– Grouping structure: Genes were mapped to pathways from all nine Molecular Signature Database gene sets.1

• tumour: Gene expression data of pancreative cancer samples to identify tumorous tissue.

– Response (binary): Labels classifying whether samples are from normal or tumour tissue.
– Data matrix: Gene expression measurements.
– Grouping structure: Genes were mapped to pathways from all nine Molecular Signature Database gene sets.1

Table A16: Dataset information for the six datasets used in the real data analysis.

Dataset p n m Group sizes Type Source

brca1 17322 536 243 [1, 6505] Linear (National Cancer Institute, 1988)2

scheetz 18975 120 85 [1, 6274] Linear (Scheetz et al., 2006)2

trust-experts 101 9759 7 [4, 51] Linear (Salomon et al., 2021)3

adenoma 18559 64 313 [1, 741] Logistic (Sabates-Bellver et al., 2007)4

celiac 14657 132 276 [1, 617] Logistic (Heap et al., 2009)4

tumour 18559 52 313 [1, 741] Logistic (Pei et al., 2009; Ellsworth et al., 2013; Li et al., 2016)4

E.2. Additional Results for the Real Data
1downloaded on 08/2024 from gsea-msigdb.org/gsea/msigdb/human/collections.jsp.
2downloaded on 08/2024 from https://iowabiostat.github.io/data-sets/.
3downloaded on 08/2024 from https://github.com/dajmcdon/sparsegl.
4downloaded on 08/2024 from https://www.ncbi.nlm.nih.gov/.
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