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ABSTRACT

We propose a simple data model inspired from natural data such as text or images,
and use it to study the importance of learning features in order to achieve good
generalization. Our data model follows a long-tailed distribution in the sense that
some rare subcategories have few representatives in the training set. In this context
we provide evidence that a learner succeeds if and only if it identifies the correct
features, and moreover derive non-asymptotic generalization error bounds that
precisely quantify the penalty that one must pay for not learning features.

1 INTRODUCTION

Part of the motivation for deploying a neural network arises from the belief that algorithms that
learn features/representations generalize better than algorithms that do not. We try to give some
mathematical ballast to this notion by studying a data model where, at an intuitive level, a learner
succeeds if and only if it manages to learn the correct features. The data model itself attempts to
capture two key structures observed in natural data such as text or images. First, it is endowed with
a latent structure at the patch or word level that is directly tied to a classification task. Second, the
data distribution has a long-tail, in the sense that rare and uncommon instances collectively form a
significant fraction of the data. We derive non-asymptotic generalization error bounds that quantify,
within our framework, the penalty that one must pay for not learning features.

We first prove a two part result that quantifies precisely the necessity of learning features within the
context of our data model. The first part shows that a trivial nearest neighbor classifier performs
perfectly when given knowledge of the correct features. The second part shows it is impossible to a
priori craft a feature map that generalizes well when using a nearest neighbor classification rule. In
other words, success or failure depends only on the ability to identify the correct features and not on
the underlying classification rule. Since this cannot be done a priori, the features must be learned.

Our theoretical results therefore support the idea that algorithms cannot generalize on long-tailed
data if they do not learn features. Nevertheless, an algorithm that does learn features can general-
ize well. Specifically, the most direct neural network architecture for our data model generalizes
almost perfectly when using either a linear classifier or a nearest neighbor classifier on the top of the
learned features. Crucially, designing the architecture requires knowing only the meta structure of
the problem, but no a priori knowledge of the correct features. This illustrates the built-in advantage
of neural networks; their ability to learn features significantly eases the design burden placed on the
practitioner.

Subcategories in commonly used visual recognition datasets tend to follow a long-tailed distribution
(Salakhutdinov et al. 2011; Zhu et al., 2014; Feldman & Zhang, 2020). Some common subcate-
gories have a wealth of representatives in the training set, whereas many rare subcategories only
have a few representatives. At an intuitive level, learning features seems especially important on a
long-tailed dataset since features learned from the common subcategories help to properly classify
test points from a rare subcategory. Our theoretical results help support this intuition.

We note that when considering complex visual recognition tasks, datasets are almost unavoidably
long-tailed (Liu et al.,|2019) — even if the dataset contains millions of images, it is to be expected
that many subcategories will have few samples. In this setting, the classical approach of deriving
asymptotic performance guarantees based on a large-sample limit is not a fruitful avenue. General-
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ization must be approached from a different point of view (c.f. Feldman| (2020) for very interesting
work in this direction). In particular, the analysis must be non-asymptotic. One of our main con-
tribution is to derive, within the context of our data model, generalization error bounds that are
non-asymptotic and relatively tight — by this we mean that our results hold for small numbers of
data samples and track reasonably well with empirically evaluated generalization error.

In Section 2] we introduce our data model and in Section 3l we discuss our theoretical results. For
the simplicity of exposition, both sections focus on the case where each rare subcategory has a
single representative in the training set. Section []is concerned with the general case in which each
rare subcategory has few representatives. Section [5] provides an overview of our proof techniques.
Finally, in Section[6] we investigate empirically a few questions that we couldn’t resolve analytically.
In particular, our error bounds are restricted to the case in which a nearest neighbor classification
rule is applied on the top of the features — we provide empirical evidence in this last section that
replacing the nearest neighbor classifier by a linear classifier leads to very minimal improvement.
This further support the notion that, on our data model, it is the ability to learn features that drives
success, not the specific classification rule used on the top of the features.

Related work. By now, a rich literature has developed that studies the generalization abilities of
neural networks. A major theme in this line of work is the use of the PAC learning framework to
derive generalization bounds for neural networks (e.g. Bartlett et al.|(2017); Neyshabur et al.[(2017);
Golowich et al.[ (2018)); |Arora et al.| (2018)); Neyshabur et al.| (2018))), usually by proving a bound
on the difference between the finite-sample empirical loss and true loss. While powerful in their
generality, such approaches are usually task independent and asymptotic; that is, they are mostly
agnostic to any idiosyncrasies in the data generating process and need a statistically meaningful
number of samples in the training set. As such, the PAC learning framework is not well-tailored to
our specific aim of studying generalization on long-tailed data distributions; indeed, in such setting,
a rare subcategory might have only a handful of representatives in the training set.

After breakthrough results (e.g. Jacot et al.| (2018)); Du et al.| (2018)); |Allen-Zhu et al.| (2019); [Ji
& Telgarsky| (2019)) showed that vastly over-parametrized neural networks become kernel methods
(the so-called Neural Tangent Kernel or NTK) in an appropriate limit, much effort has gone toward
analyzing the extent to which neural networks outperform kernel methods (Yehudai & Shamir,[2019;
Wei et al., [2019; [Refinetti et al., 2021} |Ghorbani et al., 2019; 2020; Karp et al., [2021; |Allen-Zhu &
Li, 2019; 20205 L1 et al., 2020; Malach et al., [2021)). Our interest lies not in proving such a gap for
its own sake, but rather in using the comparison to gain some understanding on the importance of
learning features in computer vision and NLP contexts.

Analyses that shed theoretical light onto learning with long-tailed distributions (Feldman, 2020;
Brown et al.l 2021)) or onto specific learning mechanisms (Karp et al.l 2021) are perhaps closest
to our own. The former analyses (Feldmanl 2020} Brown et al.| [2021)) investigate the necessity of
memorizing rare training examples in order to obtain near-optimal generalization error when the data
distribution is long-tailed. Our analysis differs to the extent that we focus on the necessity of learning
features and sharing representations in order to properly classify rare instances. Like us, the latter
analysis (Karp et al., 2021} also considers a computer vision inspired task and uses it to compare
a neural network to a kernel method, with the ultimate aim of studying the learning mechanism
involved. Their object of study (finding a sparse signal in the presence of noise), however, markedly
differs from our own (learning with long-tailed distributions).

2 THE DATA MODEL

We begin with a simple example to explain our data model and to illustrate, at an intuitive level,
the importance of learning features when faced with a long-tailed data distribution. For the sake
of exposition we adopt NLP terminology such as ‘words’ and ‘sentences,” but the image-based
terminology of ‘patches’ and ‘images’ would do as well.

The starting point is a very standard mechanism for generating observed data from some underlying
collection of latent variables. Consider the data model depicted in Figure[I] We have a vocabulary
of n,, = 12 words and a set of n, = 3 concepts:

V = {potato, cheese, carrots, chicken, ...} and C = {vegetable, dairy, meat}.
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Figure 1: Data model with parameters setto L = 5, n,, = 12, n. = 3, R = 3, and ng, = 5.

The 12 words are partitioned into the 3 concepts as shown on the left of Figure [T} We also have 6
sequences of concepts of length L = 5. They are denoted by ¢y, c2, ¢35 and ¢/, ¢, 5. Sequences of
concepts are latent variables that generate sequences of words. For example

. . . . t .
[dairy, dairy, veggie, meat, veggie] sememmes [cheese, butter, lettuce, chicken, leek]

The sequence of words on the right was obtained by sampling each word uniformly at random

from the corresponding concept. For example, the first word was randomly chosen out of the dairy

concept (butter, cheese, cream, yogurt), and the last word was randomly chosen out of the vegetable

concept (potato, carrot, leek, lettuce.) Sequences of words will be referred to as sentences.

The non-standard aspect of our model comes from how we use the ‘latent-variable — observed-
datum’ process to form a training distribution. The training set in Figure[I]is made of 15 sentences
split into R = 3 categories. The latent variables ¢, ¢}, ¢4 each generate a single sentence, whereas
the latent variables c1, co, c3 each generate 4 sentences. We will refer to cq, ¢z, c3 as the familiar
sequences of concepts since they generate most of the sentences encountered in the training set. On
the other hand ¢/, ¢}, ¢4 will be called unfamiliar. Similarly, a sentence generated by a familiar
(resp. unfamiliar) sequence of concepts will be called a familiar (resp. unfamiliar) sentence. The
former represents a datum sampled from the head of a distribution while the latter represents a datum
sampled from its tail. We denote by x, ¢ the s** sentence of the 7" category, indexed so that the
first sentence of each category is an unfamiliar sentence and the remaining ones are familiar.

Suppose now that we have trained a learning algorithm on the training set described above and that
at inference time we are presented with a previously unseen sentence generated by the unfamiliar
sequence of concept ¢| = [dairy, dairy, veggie, meat, veggie]. To fix ideas, let’s say that sentence is:

x'*" = [butter, yogurt, carrot, beef, lettuce] (D

This sentence is hard to classify since there is a single sentence in the training set that has been
generated by the same sequence of concepts, namely

x1,1 = [cheese, butter, lettuce, chicken, leek] . 2)

Moreover these two sentences do not overlap at all (i.e. the i*" word of x'**' is different from the 7*"

word of x; ; for all ¢.) To properly classify x'**, the algorithm must have learned the equivalences
butter <> cheese, yogurt < butter, carrot < lettuce, and so forth. In other words, the algorithm
must have learned the underlying concepts.

Nevertheless, a neural network with a well-chosen architecture can easily succeed at such a clas-
sification task. Consider, for example, the network depicted on Figure [2} Each word of the input
sentence, after being encoded into a one-hot-vector, goes through a multi-layer perceptron (MLP
1 on the figure) shared across words. The output is then normalized using LayerNorm (Ba et al.,
2016) to produce a representation of the word. The word representations are then concatenated
into a single vector that goes through a second multi-layer perceptron (MLP 2 on the figure).
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This network, if properly trained, will learn to give similar repre- class
sentations to words that belong to the same concept. Therefore, if

it correctly classifies the train point x; ; given by @I) it will nec-

essarily correctly classify the test point x'** given by . So the /' / 1 \'\

neural network is able to classify the previously unseen sentence = L AN

x't despite the fact that the training set contains a single example

with the same underlying sequence of concepts. This comes from (norm] (rorm)
the fact that the neural network learns features and representations mel [wed) (wmed
from the familiar part of the training set (generated by the head of
the distribution), and uses these, at test time, to correctly classify
the unfamiliar sentences (generated by the tail of the distribution).
In other words, because it learns features, the neural network has no
difficulty handling the long-tailed nature of the distribution.

[ cheese, butter, lettuce, chicken, leek ]

Figure 2: A simple neural net.

To summarize, the variables L, n, n., I and ng, parametrize instances of our data model. They
denote, respectively, the length of the sentences, the number of words in the vocabulary, the number
of concepts, the number of categories, and the number of samples per category. So in the example
presented in Figurewe have L = 5, n,, = 12, n. = 3, R = 3 and ng, = 5 (four familiar sentences
and one unfamiliar sentence per category). The vocabulary V' and set of concepts C are discrete sets
with |V| = n,, and |C| = n, rendered as V = {1,...,n,} and C = {1,...,n.} for concreteness.
A partition of the vocabulary into concepts, like the one depicted at the top of Figure([I} is encoded
by a function ¢ : V — C that assigns words to concepts. We require that each concept contains the
same number of words, so that ¢ satisfies

o ({eD)] = {w €V : p(w) = c}| = nw/ne forall c € C, 3)
and we refer to such a function ¢ : V — C satisfying (3) as equipartition of the vocabulary. The set
® = {All functions ¢ from V to C that satisfy (3) }
denotes the collection of all such equipartitions, while the data space and latent space are denoted

X =VE and Z =Ck,

respectively. Elements of X" are sentences of L words and they take the form x = |21, x2,..., 2],
while elements of Z take the form ¢ = [¢1, ¢a, . . ., ¢] and correspond to sequences of concepts.

In the context of this work, a feature map refers to any function ¢) : X — F from data space to
feature space. The feature space F can be any Hilbert space (possibly infinite dimensional) and we
denote by (-, -) # the associated inner product. Our analysis applies to the case in which a nearest
neighbor classification rule is applied on the top of the extracted features. Such rule works as follow:
given a test point x, the inner products (1)(x), ¥ (y))# are evaluated for all y in the training set; the
test point x is then given the label of the training point y that led to the highest inner product.

3 STATEMENT AND DISCUSSION OF MAIN RESULTS

Our main result states that, in the context of our data model, features must be tailored (i.e. learned)
to each specific task. Specifically, it is not possible to find a universal feature map ¢ : X — F that
performs well on a collection of tasks like the one depicted on Figure[I] In the context of this work,
a task refers to a tuple

T=(¢; cl,....cp ; ci,....,cly ) € &x 21 4)

that prescribes a partition of the vocabulary into concepts, 12 familiar sequences of concepts, and R
unfamiliar sequences of concepts. Given such a task 7 we generate a training set .S as described
in the previous section. This training set contains R X n,, sentences split over I categories, and
each category contains a single unfamiliar sentence. Randomly generating the training set .S from
the task 7 corresponds to sampling

S ~ Digin

from a distribution D‘{i‘"‘ defined on the space X'#*"<rt and parametrized by the variables in
(the appendix provides an explicit formula for this distribution). We measure performance of an
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algorithm by its ability to generalize on previously unseen unfamiliar sentences. Generating an
unfamiliar sentence amounts to drawing a sample

x ~ D

from a distribution D5*' on the space X parametrized by the variables ¢, ¢/, ..., c’ in (4) that de-
termine unfamiliar sequences of concepts. Finally, associated with every task 7 we have a labelling
function fr : X — {1,..., R} that assigns the label r to sentences generated by either c,. or c/,
(this function is ill-defined if two sequences of concepts from different categories are identical, but
this issue is easily resolved by formal statements in the appendix). Summarizing our notations, for
every task 7 € ® x Z2% we have a distribution D" on the space X#*"=»!, a distribution D% on
the space X, and a labelling function f7.

Given a feature space F, a feature map ¢» : X — F, and a task 7 € ® x Z2F, the expected
generalization error of the nearest neighbor classification rule on unfamiliar sentences is given by:

err(F, ¢, T)= E

train ~uDtest
S~D | x~ D

P [fT (arg r;lggW(X)ﬂ/)(y))f) # fT(X)] 1 (5)

For simplicity, if the test point has multiple nearest neighbors with inconsistent labels in the training
set (and so the arg max returns multiple training points y), we will count the classification as a
failure for the nearest neighbor classification rule. We therefore replace (3)) by the more formal (but
more cumbersome) formula

err(F,,T)= E

train test
S~DE | x~DP

P [Hy € arg r;lgg(w(X),w(y)# such that fr(y) # fT(X)] ] (6)

to make this explicit. Our main theoretical results concern performance of a learner not on a single
task 7 but on a collection of tasks T = {71, 72, . . ., TN, }» and so we define

HF0.5) = g 2 en(FnT) ™
TET

as the expected generalization error on such a collection T of tasks. As a task refers to an element
of the discrete set ® x Z2f any subset T C ® x Z2 defines a collection of tasks. Our main result
concerns the case where the collection of tasks T = ® x Z2% consists in all possible tasks that one
might encounter. For concreteness, we choose specific values for the model parameters and state the
following special case of our main theorem (Theorem [3]at the end of this section) —

Theorem 1. Let L = 9, n,, = 150, n. = 5, R = 1000 and ng, > 2. Let T = ® x Z2R_ Then
err(F, ¢, %) > 98.4%
for all feature spaces F, and all feature maps ¢ : X — F.

In other words, for the model parameters specified above, it is not possible to design a ‘task-agnostic’
feature map 1 that works well if we are uniformly uncertain about which specific task we will face.
Indeed, the best possible feature map will fail at least 98.4% of the time at classifying unfamiliar
sentences (with a nearest-neighbor classification rule), where the probability is with respect to the
random choices of the task, of the training set, and of the unfamiliar test sentence.

Interpretation: Our desire to understand learning demands that we consider a collection of tasks
rather than a single one, for if we consider only a single task then the problem, in our setting,
becomes trivial. Indeed, assume T = {77} with 7; = (¢;¢1,...,CR;c],. .., c) consists only of a
single task. With knowledge of this task we can easily construct a feature map v : X — RE"¢ that
performs perfectly. Indeed, the map

¢([$1,...,IL]) = [e¢(x1),...,e¢(xL)] (8)
that simply ‘replaces’ each word x, of the input sentence by the one-hot-encoding e, ., of its

corresponding concept will doﬂ A bit of thinking reveals that the nearest neighbor classification rule
associated with feature map (&) perfectly solves the task 7;. This is due to the fact that sentences

"'We use e; to denote the i*" basis vector of R™. So €,(z,) 18 a one-hot vector coding for the concept ¢ (x¢).
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generated by the same sequence of concepts are mapped by v to the exact same location in feature
space. As a consequence, the nearest neighbor classification rule will match the unfamiliar test
sentence x to the unique training sentence y that occupies the same location in feature space, and
this training sentence has the correct label by construction (assuming that sequences of concepts
from different categories are distinct). To put it formally:

Theorem 2. Given a task T € ® x Z*F satisfying c!. # ¢/, and c!. # c, for all r # s, there exists
a feature space F and a feature map i : X — F such that err(F, 1, T) = 0.

Consider now the case where ¥ = {77, 72} consists of two tasks. According to Theorem [2| there
exists a v that perfectly solves 77, but this ) might perform poorly on 73, and vice versa. So,
it might not be possible to design good features if we do not know a priori which of these tasks
we will face. Theorem E] states that, in the extreme case where ¥ contains all possible tasks, this
is indeed the case — the best possible ‘task-agnostic’ features 1/ will perform catastrophically on
average. In other words, features must be task-dependent in order to succeed.

To draw a very approximate analogy, imagine once again that ¥ = {77 } and that 7; represents, say,
a hand-written digit classification task. A practitioner, after years of experience, could hand-craft
a very good feature map 1 that performs almost perfectly for this task. If we then imagine the
case ¥ = {71, 72} where T; represents a hand-written digit classification task and 75 represents,
say, an animal classification task, then it becomes more difficult for a practitioner to handcraft a
feature map v that works well for both tasks. In this analogy, the size of the set T encodes the
amount of knowledge the practitioner has about the specific tasks she will face. The extreme choice
T = & x Z2R corresponds to the practitioner knowing nothing beyond the fact that natural images
are made of patches. Theorem I|quantifies, in this extreme case, the impossibility of hand-crafting a
feature map 1) knowing only the range of possible tasks and not the specific task itself. In a realistic
setting the collection of tasks ¥ is smaller, of course, and the data generative process itself is more
coherent than in our simplified setup. Nonetheless, we hope our analysis sheds some light on some
of the essential limitations of algorithms that do not learn features.

Finally, our empirical results (see Section[6) show that a simple algorithm that learns features does
not face this obstacle. We do not need knowledge of the specific task 7 in order to design a good
neural network architecture, but only of the family of tasks T = ® x Z2% that we will face. In-
deed, the architecture in Figure succeeds at classifying unfamiliar test sentences more than 99% of
the time. This probability, which we empirically evaluate, is with respect to the choice of the task,
the choice of the training set, and the choice of the unfamiliar test sentence (we use the values of
L,ny,nc and R from Theorem |1} and ng, = 6, for this experiment). Continuing with our approxi-
mate analogy, this means our hypothetical practitioner needs no domain specific knowledge beyond
the patch structure of natural images when designing a successful architecture. In sum, successful
feature design requires task-specific knowledge while successful architecture design requires only
knowledge of the task family.

Main Theorem: Our main theoretical result extends Theorem [I] l to arbitrary values of L, n,, n,
nspl and K. The resulting formula involves various combinatorial quantities. We denote by ( ) the
binomial coefficients and by { } the Stirling numbers of the second kind. Let N = {0, 1,2, ...} and

let 7,4 : N1 — N be the functions defined by v(k) := S>54! (i — 1)k; and §(k) := zLj Viks,
respectively. We then define, for 0 < ¢ < L, the sets

Sp={keN"": 4k)=n, and (<~(k)<L}.
We let S = Sy, and we note that the inclusion Sy C S always holds. Given k € NZ*1 we denote by

L+1
= (L+1)xne . .
A 1= {4 € NEFDne El iAij = ny/ne forall j and §1A” — ki forall i}
i J

the set of k-admissible matrices. Finally, we let f, g : S — R be the functions defined by

L+1
f(k) == ((nw/nc ) Z <H AlllAlQ Ai,nc!> and

A,
olk) = Wé;;)! (lﬁ'kz k4! fljl < . 2))k ) i:zj(:k) <f> {7(1)} 2

2

nw'
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respectively. With these definitions at hand, we may now state our main theorem.
Theorem 3 (Main Theorem). Let T = & x Z2E. Then

THF 0, T) > (Z f(k)G(k)> - g (1 g ) ©)

) 2 kes,
for all feature spaces F, all feature maps v : X — F, and all 0 < ¢ < L.

The combinatorial quantities involved appear a bit daunting at a first glance, but, within the context
of the proof, they all take a quite intuitive meaning. The heart of the proof involves the analysis
of a measure of concentration that we call the permuted moment, and of an associated graph-cut
problem. The combinatorial quantities arise quite naturally in the course of analyzing the graph cut
problem. We provide a quick overview of the proof in Section [5] and refer to the appendix for full
details. For now, it suffices to note that we have a formula (i.e. the right hand side of (9)) that can
be exactly evaluated with a few lines code. This formula provides a relatively tight lower bound for
the generalization error. Theorem [I]is then a direct consequence — plugging L = 9, n,, = 150,
n. = 5, R = 1000 and ¢ = 7 in the right hand side of @]} gives the claimed 98.4% lower bound.

4 MULTIPLE UNFAMILIAR SENTENCES PER CATEGORY

The two previous sections were concerned
with the case in which each unfamiliar se-
quence of concepts has a single representative
in the training set. In this section we consider
the more general case in which each unfamil-
iar sequence of concepts has n* representa-
tives in the training set. Figure [3]depicts an
example with ng, = 6 and n* = 2. This
means that each category contains a total of
ngpt = 6 sentences, and that n* = 2 of these }
sentences are generated by the unfamiliar se-

quence of concepts (the remaining four are

generated by the familiar sequence of con-  Fjgure 3: More general version of our data model.
cepts). The other parameters in this example

are L =5,n4 =12, n, =3 and R = 3.

2 hiogared 1 AioSares

€ hiodare)

Using a simple union bound, inequality (9 easily extends to this situation — the resulting formula
is a bit cumbersome so we present it in the appendix (see Theorem 7). In the concrete case where
L =9,n, =150, n. =5, R = 1000 this formula simplifies to

err(F,¢,%) >1-0.015n" —1/R  forall F and all 1, (10)

therefore exhibiting an affine relationship between the error rate and the number n* of unfamiliar
sentences per category. Note that choosing n* = 1 in leads to a 98.4% lower bound on the error
rate, therefore recovering the result from Theorem|[1} This lower bound then decreases by 1.5% with
each additional unfamiliar sentence per category in the training set.

We would like to emphasize one more time the importance of non-asymptotic analysis in the long-
tailed learning setting. For example, in inequality (T0), the difficulty lies in obtaining a value as
small as possible for the coefficient in front of n*. We accomplish this via a careful analysis of the
graph cut problem associated with our data model.

5 PROOF OUTLINE — PERMUTED MOMENT AND OPTIMAL FEATURE MAP

The proof involves two main ingredients. First, the key insight of our analysis is the realization that
generalization in our data model is closely tied to the permuted moment of a probability distribution.
To state this central concept, it will prove convenient to think of probability distributions on X as
vectors p € RY with N = |X|, together with indices 0 < 7 < N — 1 given by some arbitrary (but
fixed) indexing of the elements of data space. Then p; denotes the probability of the i*" element of
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X in this indexing. We use Sy to denote the set of permutations of {0,1,...,N — 1} and o € Sy
to refer to a particular permutation. The ' permuted moment of the probability vector p € RY is
N-1
Hi(p) := max (i/N)t Do (i) (11)
c€ESN i—0

Since involves a maximum over all possible permutations, the definition clearly does not depend
on the way the set X’ was indexed. In order to maximize the sum, the permutation ¢ must match the
largest values of p; with the largest values of (i/N)?, so the maximizing permutation simply orders
the entries p; from smallest to largest. A very peaked distribution that gives large probability to only
a handful of elements of X’ will have large permuted moment. Because of this, the permuted moment
is akin to the negative entropy; it has large values for delta-like distributions and small values for
uniform ones. From definition it is clear that 0 < H;(p) < 1 for all probability vectors p, and
it is easily verified that the permuted moment is convex. These properties, as well as various useful
bounds for the permuted moment, are presented and proven in the appendix.

Second, we identify a specific feature map, 1* : X — F*, which is optimal for a collection of tasks
closely related to the ones considered in our data model. Leveraging the optimality of 1/* on these
related tasks allows us to derive an error bound that holds for the tasks of interest. The feature map
1™ is better understood through its associated kernel, which is given by the formula

nk |{p € ®:p(xy) = p(y) forall 1 < ¢ < L}|
i || '

K'(x,y) = (@"(x), " ()7 =

(12)

Up to normalization, K*(x,y) simply counts the number of equipartitions of the vocabulary for
which sentences x and y have the same underlying sequence of concepts. Intuitively this makes
sense, for the best possible kernel must leverage the only information we have at hand. We know the
general structure of the problem (words are partitioned into concepts) but not the partition itself. So
to try and determine if sentences (x,y) were generated by the same sequence of concepts, the best
we can do is to simply try all possible equipartitions of the vocabulary and count how many of them
wind up generating (x,y) from the same underlying sequence of concepts. A high count makes it
more likely that (x,y) were generated by the same sequence of concepts. The optimal kernel K*
does exactly this, and provides a good (actually optimal, see the appendix) measure of similarity
between pairs of sentences.

For fixed x € X, the function y — K*(x,y) defines a probability distribution on data space. The
connection between generalization error, permuted moment, and optimal feature map, come from
the fact that 1

1
sup L~ efH(F. . T)] < 37 D, o (K (x ) + 7. (13)

XEX

and so, up to a small error 1/R, it is the permuted moments of K* that determine the success rate.
We then obtain the lower bound (9) by studying these moments in great detail. A simple union
bound is then used to obtain inequalities such as (10).

6 EMPIRICAL RESULTS

We conclude by presenting empirical results that complement our theoretical findings. The full
details of these experiments (training procedure, hyperparameter choices, number of experiments
ran to estimate the success rates, and standard deviations of these success rates), as well as addi-
tional experiments, can be found in Appendix [E] Codes are available athttps://github.com/
xbresson/Long_Tailed_Learning_Requires_Feature_Learning.

Parameter Settings. We consider five parameter settings for the data model depicted in Figure
[l Each setting corresponds to a column in Table [T} In all five settings, we set the parameters
L =9,n, =150, n, = 5 and R = 1000 to the values for which the error bound (T0) holds. We
choose values for the parameters nep, and n* so that the " column of the table corresponds to a
setting in which the training set contains 5 familiar and 7 unfamiliar sentences per category. Recall
that ngp is the total number of samples per category in the training set. So the first column of the
table corresponds to a setting in which each category contains 5 familiar sentences and 1 unfamiliar


https://github.com/xbresson/Long_Tailed_Learning_Requires_Feature_Learning
https://github.com/xbresson/Long_Tailed_Learning_Requires_Feature_Learning

Published as a conference paper at ICLR 2023

Table 1: Success rate on unfamiliar test sentences.

n" =1 n* =2 n"=3 n*=4 n*=5
Nspl =6 Nspl = 7 Nspl =8 Nspl = 9 Nspl = 10

Neural network in Figure 99.8%  99.9%  99.9%  99.9%  100%
Nearest neighb. on features learned by neural net ~ 99.9%  99.9%  99.9%  99.9%  99.9%
Nearest neighb. on features extracted by 1)* 0.7% 1.1% 1.5% 1.8% 2.2%
Nearest neighb. on features extracted by ¥one—not ~ 0.6% 1.1% 1.4% 1.7% 2.1%
Theoretical upper bound (0.015n* + 1/1000) 1.6% 3.1% 4.6% 6.1% 7.6%
SVM on features extracted by ¥* 0.6% 1.5% 2.2% 3.2% 4.2%
SVM on features extracted by ¥one—hot 0.5% 1.1% 1.9% 2.8% 3.8%
SVM with Gaussian kernel 0.6% 1.1% 2.0% 2.8% 3.6%

sentence, whereas the last column corresponds to a setting in which each category contains 5 familiar
sentences and 5 unfamiliar sentences.

Algorithms. We evaluate empirically seven different algorithms. The first two rows of the table
correspond to experiments in which the neural network in Figure[2]is trained with SGD and constant
learning rate. At test time, we consider two different strategies to classify test sentences. The first
row of the table considers the usual situation in which the trained neural network is used to classify
test points. The second row considers the situation in which the trained neural network is only used
to extract features (i.e. the concatenated words representation right before MLP2). The classification
of test points is then accomplished by running a nearest neighbor classifier on these learned features.
The third (resp. sixth) row of the table shows the results obtained when running a nearest neighbor
algorithm (resp. SVM) on the features ¢/* of the optimal feature map. By the kernel trick, these
algorithms only require the values of the optimal kernel (¢)*(x), ¢* (y)) 7+, computed via (12, and
not the features ¥)* themselves. The fourth (resp. seventh) row shows results obtained when running
a nearest neighbor algorithm (resp. SVM) on features extracted by the simplest possible feature
map, that is

Yone—not ([Z15 -+, ZL]) = [€11, -+, €2, ]

where e,, denotes the one-hot-encoding of the ¢/** word of the input sentence. Finally, the last row
considers a SVM with Gaussian Kernel (also called RBF kernel).

Results. The first two rows of the table correspond to algorithms that learn features from the data;
the remaining rows correspond to algorithms that use a pre-determined (not learned) feature map.
Table |1| reports the success rate of each algorithm on unfamiliar test sentences. A crystal-clear
pattern emerges. Algorithms that learn features generalize almost perfectly, while algorithms that
do not learn features catastrophically fail. Moreover, the specific classification rule matters little.
For example, replacing MLP2 by a nearest neighbor classifier on the top of features learned by the
neural network leads to equally accurate results. Similarly, replacing the nearest neighbor classifier
by a SVM on the top of features extracted by 1/* or ¥one—not leads to almost equally poor results.
The only thing that matters is whether or not the features are learned. Finally, inequality gives
an upper bound of 0.015n* + 1/1000 on the success rate of the nearest neighbor classification
rule applied on the top of any possible feature map (including ¥* and ¥ope—not)- The fifth row of
Tablecompares this bound against the empirical accuracy obtained with ¥* and ¥opne_not, and the
comparison shows that our theoretical upper bound is relatively tight.

When n* = 1 our main theorem states that no feature map can succeed more than 1.6% of the time
on unfamiliar test sentences (fifth row of the table). At first glance this appears to contradict the
empirical performance of the feature map extracted by the neural network, which succeeds 99% of
the time (second row of the table). The resolution of this apparent contradiction lies in the order of
operations. The point here is to separate hand crafted or fixed features from learned features via
the order of operations. If we choose the feature map before the random selection of the task then
the algorithm performs poorly since it uses unlearned, task-independent features. By contrast, the
neural network learns a feature map from the training set, and since the training set is generated
by the task, this process takes place after the random selection of the task. It therefore uses task-
dependent features, and the network performs almost perfectly for the specific task that generated
its training set. But by our main theorem, it too must fail if the task changes but the features do not.
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Appendix

In Section [A] we prove a few elementary properties of the permuted moment (IT). Section [B]is
devoted to the proof of inequality (13]), which we restate here for convenience:

1
5up [1 —em(F, 9, T)] |X| };}(HQR 1 ))+E (14)

where the collection of tasks T = ® x Z2% consists in all possible tasks that one might encounter.
Inequality (T4) plays a central role in our work as it establishes the connection between the gen-
eralization error, the permuted moment, and the optimal kernel K* defined by (12). The proof is
non-technical and easily accessible. In Section |[C| we provide the following upper bound on the
permuted moment of the optimal kernel:

i Xl > Har-1 (K*(x, - (1— >k ) 2; (ggc f(k)) (15)

xEX keS,

for all 0 < ¢ < L. The proof is combinatorial in nature, and involves the analysis of a graph-cut
problem. Combining (I4) and (T3] establishes Theorem [3] In Section [D] we consider the case in
which each unfamiliar sequence of concepts has n* representatives in the training set. A simple
union bound shows that, in this situation, inequality (14) becomes

1
1-— F,, %)) H . — 16
S;IE[ err(F, 1, |X|>;( 2Rr—1 ( ))+R (16)

Combining (T6) and (T3] then provides our most general error bound, see Theorem [7} Inequality
in the main body of the paper is just a special case of Theorem [7] Finally, in Section [E| we
provide the full details of the experiments.

A PROPERTIES OF THE PERMUTED MOMENT

The permuted moment, in Section [5] was defined for probability vectors only. It will prove conve-
nient to consider the permuted moment of nonnegative vectors as well. We denote by R, = [0, +00)
the nonnegative real numbers, and by Rf the vectors with N nonnegative real entries indexed from

1 =0to7 = N — 1. The permuted moment of u € ]Rﬂf is then given by

N-1
Hi(w) = max ¥ (i/N)" .- (17)

7€y 130
where S denote the set of permutations of {0, 1,..., N — 1}. The concept of an ordering permu-

tation will prove useful in the next lemma.

Definition 1. o € Sy is said to be an ordering permutation of u € RY if

Ug(0) S Us(1) S -+ S UGN—1)- (18)
The lemma below shows that the permutation maximizing (17) is the one that sorts the entries u;
from smallest to largest.
Lemma 1. Letu € Ri\_f and let o™ be an ordering permutation of u. Then

N-1
= /N gy 19
o arggrel%f] ;(z/ ) Uo(s) (19

Proof. The optimization problem can be formulated as finding a pairing between the u;’s and
the (i/N)%’s that maximizes the sum of the product of the pairs. An ordering permutation of u
corresponds to pairing the smallest entry of u to (0/N)?, the second smallest entry to (1/N)?, the
third smallest entry to (2/N)?, and so forth. This pairing is clearly optimal. O

12
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In light of the previous lemma, we see that computing the permuted moment of a vector u can be
accomplished as follow: 1) sort the entries of u from smallest to largest; 2) compute the dot product
between this sorted vector and the vector

(&) @G e @0

Let us now focus on the case where u is a probability distribution. If u is very peaked, it must have
a large permuted moment since, after sorting, most of the mass concentrates on the high values of
(20) located on the right. On the contrary, if u is very spread, it must have small permuted moment
since it ‘wastes’ its mass on small values of (20). Because of this, the permuted moment is akin
to the negative entropy; it has large values for delta-like distributions and small values for uniform
ones.

We now show that the permuted moment is subaddiditive and one-homogeneous on ]Rf (as a con-
sequence it is convex on the set of probability vectors) and we derive some elementary ¢; and /.,
bounds. We denote by ||ul|,, the £,-norm of a vector u. In particular, if u € RY, we have

luli:=>"w  and  |ule:= max wu.
0<i<N-—1

With this notation in hand, we can now state our lemma:

Lemma 2. (i) He(u+v) < Hy(u) + He(v) forallu,v € RY.
(i) Hi(cu) = cHy(u) forallu e RY andall ¢ > 0.
(iii) Hi(u) < |lully forallu e RY.

(iv) Hi(u) < t+1||uH00 forallueRN

Proof. Properties (i) and (ii) are obvious. To prove (iii) and (iv), define w; = (i/N)* and note that

N-1 N
o<1 d = N)'| <N [ zldt=
[wloo <1 and s = ( > i ) [ =2
Then (iii) comes from H:(u) < |W||oo||u|l1 Whereas (iv) comes from Hs(u) < ||w|[1]|ullco. O

We conclude this section with a slightly more sophisticated bound that holds for probability vectors
— this bound will play a central role in Section[C]

Lemma 3. Suppose p € Rf , and suppose Ziil p; = 1. Then

N—1 AN
H.(p) (1 — Z min{p;, /\}> 1 Sforall X > 0.

Proof. Fix a A > 0 and define the vectors u and v as follow:
u; = min{p;, \} and v; = p; — min{p;, A} forall0 <i< N —1
Note that this two vectors are non-negative and sum to p. We can therefore use Lemma 2] to obtain
Hi(p) = Hi(u+v) < Hi(u) +Hi(v) < %IIHIIOO + (vl

To conclude, we note that ||ul|oo < A, and ||v]j; =1 — vaol min{p;, A\}. O

13
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B PERMUTED MOMENT OF K* AND GENERALIZATION ERROR

This section is devoted to the proof of inequality (I4). We start by recalling a few definitions. The
vocabulary, set of concepts, data space, and latent space are

V={1,...,n0}, C={1,...,n.}, X =VE and z=Cr

respectively. Elements of X are sentences of L words and they take the form x = |2, z2,..., 2],
while elements of Z take the form ¢ = [c1, ¢a,...,cr] and correspond to sequences of concepts.
We also recall that the collection of all equipartitions of the vocabulary is denoted by

& = {All functions ¢ from V to C that satisfy ¢~ ({c})| = s. forall ¢ }

where s. := n,,/n. denote the size of the concepts. Given ¢ € ®, we denote by ¢ : X — C the
function

&([xla L2, .., .’ﬂLD = [¢($1)’ 50(1'2), LX) 50(1'14)}

that operates on sentences element-wise. The informal statement “the sentence x is randomly gen-
erated by the sequence of concepts ¢’ means that x is sampled uniformly at random from the set

¢ ({c}) ={x e X: p(x) =c}. 1)

We will often do the abuse of notation of writing ¢~ (c) instead of $~!({c}). We now formally
define the sampling process associated with our main data model.

Sampling Process DM:
(i) Sample T = (¢ ; c1,...,CR; c},...,c% ) uniformly at random in T = ® x Z2%,
(i) Forr=1,..., R:
e Sample (X1, .., Xy n,,, ) uniformly at random in p~*(cl) x ... x p~1(cL).
e Sample (Xy.ny 41 - - - » Xpon,,) Uniformly at random in o~ (c,) x ... x ¢~ *(c,).
(iii) Sample x*°** uniformly at random in ¢ ~1(c}).

Step (i) of the above samplmg process consists in selecting at random a task 7 among all possible
tasks. Step (ii) consists in generating a tralmng seﬂ S € XTxnspt exactly as depicted on Figure l:
each unfamiliar sequence of concept ¢, generates n,,¢ sentences, whereas each familiar sequence
of concept ¢, generates Ny sentences (recall that the number of samples per category is ngp =
Tunt +Nfam ). Finally step (iii) consists in randomly generating an unfamiliar test sentence x'**' € X.
Without loss of generality we assume that this test sentence is generated by the unfamiliar sequence
of concept cj.

We denote by opnm the p.d.f. of the sampling process DM. This function is defined on the sample
space
Qpp = (P x C2F) x AFxnant 5 X

A sample from Qpy takes the form

— . . el /. . . . test
w*((paC17"',CR7Clv"‘acR7Xl,la"'axl,nspla"'axR,la"'va,n,pl7 X )

The test sentence

The task The training sentences

and we have the following formula for gpn

¢ (eh) Xrl @ 1<cr> Xr s) ) Lgr(ep (X
() |<1>||C|2RH< () H ) SRICY I

1%

where 1;-1(c,y and 15-1 (/) denote the indicator functions of the set ™' (c,.) and ¢~ (c,.) respec-
tively. Let us compute a few marginals of gpyr in order to verify that it is indeed the p.d.f. of the

2We refer to S as the ‘training set’. In our formalism however it is not a set, but an element of X' *"™s»t

14
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sampling process DM. Writing w = (7, S, x*"), summing over the variables S and x"*', and using
the fact that >,y 15-1(¢)(x) = |¢~!(c)|, we obtain

es 1
Z Z QDM T S xl t) = |@||C‘2R

S€C2R xteste X
This shows that each task 7 is equiprobable. Summing over the variable S gives

‘ 1 1@*1(c’)(xlm)
oom(T, S, x") = —
S;R |®[|C[2E [p=1(ch)]

This shows that, given a task 7, the test sentence x** is obtained by sampling uniformly at random
from ¢~!(c}). A similar calculation shows that, given a task 7, the train sentence X, 5 is obtained
by sampling uniformly at random from ¢ ~!(c,.) if s > 1, and from ¢~ !(c’.) if s = 1.

Given a feature space F and a feature map ¢ : X — F, we define the events Er , C §lpm as
follow:

Ery= {w € Qpwm : There exists 1 < s* < ngpy, such that

<¢(Xlest)’ w(xl,s*)>]: > <’1/)(x[55l)71/)(xhs)>]: forall2<r < Randalll <s < ’ﬂspl}. (23)

Note that this event consists in all the outcomes w = (7,.5,x"*") for which the feature map 1
associates the test sentence X" to a train point x,. ; from the first category. Since by construction,
X" belongs to the first category, E'r ,, consists in all the outcomes for which the nearest neighbor
classification rule is ‘successful’. As a consequence, when ¥ = & X Z2E the generalization error
can be expressed as

&(F, 4, F) = 1 — Ppy {Ef,w} (24)

where Ppy; denote the probability measure on 2py; induced by opy. Equation should be
viewed as our ‘fully formal’ definition of the quantity err(F, v, ¥), as opposed to the more informal
definition given earlier by equations (6) and .

The goal of this section is to prove inequality , which, in light of is equivalent to

1
sup Ppm [Eflz;} |X| Z Hop—1 (K™ (x, -)) + R (25)
which in turn equivalent to
1
P [E ] H ) J 26
2 P[] < gy X e (€700 2

K pos. semi-def.
where the event Fi is defined by

Ex = {w € Qpnm ¢ There exists 1 < s* < ng, such that

K(x® %, o) > K(x*, x,,) forall2 < r < Randall 1 < s < nspl} @7)

and where the supremum is taken over all kernels K : X x X — R which are symmetric positive
semidefinite. We will actually prove a slightly stronger result, namely

1
sup P [E} H N+ = (28)
K:XXE%R PMTK |X\Z 2r-1 (K7 (x, ) R
Kis symmetric

where the supremum is taken over all functions K : X x X — R that satisfy K (x,y) = K(y,x)
forall (x,y) € X x X. The rest of the section is devoted to proving .

In Subsection [B.T| we start by considering a simpler data model — for this simpler data model we
are able to show that the function ¥* implicitly defined by is the best possible feature map (we
actually only work with the associated kernel K*, and never need ¢* itself). We also show that
the success rate is exactly equal to the permuted moment of K* — see Theorem [4] which is is the
central result of this section. In the remaining subsections, namely Subsection and Subsection
we leverage the bound obtained for the simpler data model in order to obtain bound (28) for the
main data model. These two subsections are mostly notational. The core of the analysis takes place
in Subsection [B.1}

15
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B.1 A SIMPLER DATA MODEL

We start by presenting the sampling process associated with our simpler datamodel.

Sampling Process SDM:

(i) Sample ¢ uniformly at random in . Sample c;, co, . .., ciy1 uniformly at random in Z.

(ii) For 1 <r <t + 1: Sample x, uniformly at random in ¢~ 1(c,.).

test

(iii) Sample x'**! uniformly at random in ¢ ~*(cy).

The function

QSDM(SD;Cla"';CtJrl;le"’aXtJrl;X

lesl) = 1 T 1¢71(Cr)(x7‘) 19571(01)()(&8[)
[@flC|+t o= (er)l o= (er)]
(29)
on Qgpy = @ x CtHL x X**2 is the p.d.f. of the above sampling process. We use Pspyy to denote
the probability measure on {2spy induced by this function. The identity in the next theorem is the
central result of this section.
Theorem 4. Let IC denote the set of all symmetric functions from X x X to R. Then

1
sup Pspum [K(x’est,xl) > K(x"*",x,) forall2 <r <t+ 1} = Kq] E Hi(Ky) (30)
KeK
xeX

r=1

In (30), K stands for the function K (x, -). Theorem [4]establishes an intimate connection between
the permuted moment and the ability of any fixed feature map (or equivalently, any fixed kernel)
to generalize well in our framework. The sampling process considered in this theorem involves
two points, x**" and x;, generated by the same sequence of concepts c1, and ¢ ‘distractor’ points
Xa, ..., X1 generated by different sequences of concepts. Success for the kernel K means cor-
rectly recognizing that x'** is more ‘similar’ to x; than any of the distractors, and the success rate in
precisely quantifies its ability to do so as a function of the number ¢ of distractors. The theorem
shows that the probability of success for the best possible kernel at this task is exactly equal to the
averaged t'"-permuted moment of K7, so it elegantly quantifies the generalization ability of the best
possible fixed feature map in term of the permuted moment. We also provide an explicit construc-
tion for a kernel K (x,y) that achieves the supremum in (30) — First, choose a kernel e(x,y) that
satisfies

(1) e(x,y) #e(x,2z) forallx,y,z € X withy # z.
(i) 0 <e(x,y) <lforallx,y € X.

and then define the following perturbation
K(xy) = K*(x,y) + £(x,y)/(25:|9]) (31)

of K*. Any such kernel is a maximizer of the optimization problem in (30), so we may think of
perturbations of K* as bona-fide optimal.

The rest of this subsection is devoted to the proof of Theorem [} and we also show, in the course of
the proof, that (31)) is a maximizer of the optimization problem in (30). We use K to denote the set
of all symmetric functions from &’ x X’ to R. We will refers to such functions as ‘kernel’ despite the
fact that these functions are not necessarily positive semi-definite.

Proving Theorem [ requires that we study the following optimization problem:
Maximize €(K):=Pgps {K(Xte“,xl) > K(x*, x,) forall 2 < r <t + 1} (32)
over all kernels K € K. (33)
We recall the definition of the optimal kernel,
1 € d:p(zy) = foralll1 <¢< L
K y) = [{p € ®: o) sogz) < (< LY 34

where s. = n,,/s. denotes the size of a concept. We start with the following simple lemma:
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Lemma 4. The function KX(-) = K*(x,-) is a probability distribution on X.

Proof. First note that K can be written as

1L Hpc®:p(x) =0}
K* = — = 1 35
(oy) = 7 @) SL|¢,| > He=¢)) (3)
pe®
Since  maps exactly s. words to each concept ¢ € {1,...,n.}, we have that
Hx € X: $(x) =c}| = st forall c € C. (36)
Therefore
> K y) = gt 2 2 Listwroton = 777 3 Y €2 6(¥) = 460} =1
yeX pedyecX ped
O

We now show that the marginal of the p.d.f. ospy is related to K*.

test

Lemma S. Forall x;,...,X¢y1 and X' in X we have

1
. . test\ __ * test
E E E QSDM(SD7C15"-7CIS+17X17~- y X415 X eY) |X|t+1K (Xlaxe?)'
pEP c1€C ci41€C

Proof. 1dentity can be expressed as ]cﬁ_l(c)| = sL forall ¢ € C. As a consequence, definition
(29) of ospm (w) simplifies to

t+1
ospm(w) = « (H 1; ) L1 (ey) (X*) (37
where the constant « is given by
B 1 B 1 B 1
|D|[C[tHisETD|pplt D LD @l x| SE

In the above we have used the fact that |C| = n% and |X| = nL. We then note that the identity
lw—l(c)( ) = l{tp(x)fc} 1mphes

Y Lo =Y Lippg=e) = 1 (38)

ceC ceC
> (1¢71<c)<x) 1¢71<c)(y)) =Y (1{¢><x>:c} 1{¢<y>:c}> = lpm=ery (39
ceC ceC
for all x,y € X. Summing over the variables ¢, . . ., c;11 We obtain
t+1
D D esomw) =a} e Y ( ten (1) Lpmaen () ] 1¢1<c,w><xr))
c1€C Ct+1€c c1€C ctHeC r=2

t+1
=« Z ( Cl) ) 1@1(C1)(XteSl)> Z cee Z (H 1; 5=1(c,) Xr )

c1eC c2eC ciy1€C
= @ Lp(x)=p(xe)}
where we have used (38) and (39) to obtain the last equality. Summing the above over the variable
o gives K*(xq,x") /[x [+, O

The next lemma provides a purely algebraic (as opposed to probabilistic) formulation for the func-
tional ¢(K) defined in (32).

17
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Lemma 6. The functional € : IC — R can be expressed as

@(K) _ ﬁ Z ZK*(X,}’) <{Z€X:K(X,Z) <K(X7Y)}> ) (40)

xeX yeX |X|

Proof. Let g : X'™2 x K — {0, 1} be the indicator function defined by

1 if K(x"™xy) > K(x*',x,) forall2<r <t+1

test
X1,...,X X K)= 3
9( 15 y Xt+15 ’ ) {0 otherwise

Let w denote the sample (¢; €1, ..., Crp1; X1, - -+, Xpt1; X)

variables of w, we have

. Since g only depends on the last t+2

¢(K) = Pspar [K(x‘est,xl) > K(x*,x,) forall 2 < r < { + 1} 1)

:Z Z Z Z Z Z g(x1, ..y Xer 1, X K) 0spm(w) (42)

pEP c1€C c+1€C x1€EX Xt41E€EX xSleX

SN g xen XK [ YN Y ssomlw) | @3

x1EX Xt41€EX xEX peEd c1eC cip1€C

. 1 * s
- Z Z Z g(x1,. ., X1, XL K) X[+ K" (31, %) (@4)

X1EX X¢4+1EX xteX

:% Z Z K (x1, X ﬁ Z Z g(x1, .., xp11, X K) 45)

X1 EX xleste X X2EX Xt4+1EX

where we have used Lemma[5]to go from (43)) to (44)). Writing the indicator function g as a product
of indicator functions,

t+1

test
g(Xl, ey X1, X S 7K) = H 1{K(xlcsl7xl)>K(xlcsl7x7‘)}
r=2

we obtain the following expression for the term appearing between parentheses in (@3):

t+1
1 1

XoEX Xt 41 E€EX r=2 \x,€X

t
1
= W (Z 1{K(x‘°*‘,x1)>K(xlc*‘,z)}>

zcX

_ (l{z €EX: K(x‘e“,;(c'o > K(X“’“,z)}>t

Changing the name of variables x'*', x; to x,y gives (40). O

We now use expression (40) for €(K') and reformulate optimization problem (32))-(33) into an equiv-
alent optimization problem over symmetric matrices. Putting an arbitrary ordering on the set X
(starting with ¢ = 0) and denoting by K7; the value of the kernel K on the pair that consists of the

it" and j*" element of X, we see that optimization problem (32)-(33) can be written as

N—-1N-1 . t
C 1 ! € |N]: Ki < Ki .
Maximize €(K) = - DI (H] (V] N 'JH) (46)
i=0 j=0
over all symmetric matrices K € RVXN (G

18
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In the above we have used the letter N to denote the cardinality of X, that is N = nlLu, and we
have used the notation [N] = {0,1,..., N — 1}. Before solving the matrix optimization problem
(@06)-(7), we start with a simpler vector optimization problem. Let p* be a probability vector, that

isp* € Rf with Zfil p; = 1, and consider the optimization problem:

N-1 ., t
N L U4 ;
Maximize g(v) = p; (|{] € [ ]NUJ < /Uj}| ) (48)
j=0
over all vector v € RY. 49)

Recall from Definition [T] that an ordering permutation of a vector v is a permutation that sorts its
entries from smallest to largest. We will say that two vectors v, w € R” have the same ordering if
there exist o € Sy which is ordering for both v and w. The following lemma is key — it shows
that the optimization problem #8)—{9) has a simple solution.

Lemma 7. The following identity

sup e(v) = Hi(p")
veRN

holds. Moreover, the supremum is achieved by any vector v € RY that has mutually distinct entrie
and that has the same ordering than p*.

Proof. Let Distinct(R™) denote the vectors of R” that have mutually distinct entries. We will first
show that

sup e(v) = sup e(v). (50)
veRN veDistinct(RY)
To do this we show that for any v € R¥, there exists w € Distinct(R”) such that
{j' € [N]: vy <v;}| < {4 € [N]:wj <w,} forall0 < j < N —1. (51)

There are many ways to construct such a w. One way is to simply set w; = o~ 1(j) for some
permutation o that orders v. Indeed, note that o~ (jj) provides the position of v; in the sequence of
inequality (18). Therefore if v;; < v; we must have that o' (j") < o~!(j). This implies

{7/ €NT:vp <vy c{j € [N]:o7'(j") <o™'(j)}  forallj € [N]

which in turn implies (5T)).

Because of (50) we can now restrict our attention to v € Distinct(RY). Note that if v €
Distinct(RY), then it has a unique ordering permutation o,

Ve (0) < Ve (1) < Vo (2) < Vo (3) <... < Vo(N—1)
and, recalling that o~ (j) provide the position of v; in the above ordering, we clearly have that
[{i" € INT =} < v}l =07 (j).

Therefore, if v € Distinct(RY) and if o denotes its unique ordering permutation, ¢(v) can be
expressed as

) =35 (e <o) > (72 - jgp;m N 62

Jj=0 Jj=0

Looking at definition of the permuted moment, it is then clear that ¢(v) < H.(p*) for all
v € Distinct(RY). We then note that if v € Distinct(R) has the same ordering than p*, then its
unique ordering permutation o must also be an ordering permutation of p*. Then (52)) combined
with Lemma I|implies that ¢(v) = H,(p*). This concludes the proof. O

3That is, v; # v; forall ¢ # j.

19



Published as a conference paper at ICLR 2023

Relaxing the symmetric constraint in the optimization problem #6)-[@7) gives the following uncon-
strained problem over all N-by-N matrices:

—1N-1 .
Maximize E E: (HJ € [N]: Nu < U}|> (53)
=0 5=0

over all matrices K € RV*¥ (54)

Let us denote by K. the it" row of the matrix K* and remark that K7, is a probability vector

(because K*(x,-) is P probability distribution on X, see Lemma E]) We then note that the above
unconstrained problern decouples into N separate optimization problems of the type [@8)-@9) in
which the probability vector p* must be replaced by the probability vector K7 .. Using Lemmawe

therefore have that any K € RV <V that satisfies, foreach 0 < i < N — 1,

(a) The entries of K . are mutually distinct,

(b) K;.and K Z* have the same ordering,

must be a solution of (53)-(54). Lemma[7]also gives:

sup E(K ZHt K*

Now let ¢ € RV*N be a symmetric matrix that satisfies:

(i) €5 # ey foralli, j,7' € [N] with j # j/,
(i) 0 < e;; < 1foralli,j € [N,

and define the following perturbation of the matrix K™*:

0.5
K=K+ —— 55
el © >
Recalling definition of the kernel K™*, it is clear that for each ¢, j € [N], we have
4
;} =3 L[] for some integer £. (56)

As a consequence perturbing K* by adding to its entries quantities smaller than 1/(sZ|®|) can not
change the ordering of its rows. Therefore the kernel K defined by (53)) satisfies (b). It also satisfies
(a). Indeed, if K7; = K7, and j # j’, then we clearly have that K;; # K, ;s due to (i). On the other
hand if Kf; # Kw” then Kij # K;j due to (ii) and (56).

We have therefore constructed a symmetric matrix that is a solution of the optimization problem
(53)-(54). As a consequence we have

sup €(K) = sup €E(K Z’Ht K}.)
KeK KERNXN

where K should now be interpreted as the set of N-by-N symmetric matrices. The above equality
proves Theorem[d] and we have also shown that the perturbed kernel (55)) achieves the supremum.

B.2 CONNECTION BETWEEN THE TWO SAMPLING PROCESSES
In this subsection we show that the p.d.f. of Sampling Process SDM can be obtained by marginal-

izing the p.d.f. of Sampling Process DM over a subset of the variables. We also compute another
marginal of ppy that will prove useful in the next subsection. Recall that

1(C Xr 1 M Lp*l XT g) 1¢71(C/1)(Xtem)
opMm(w 5 (57)
) @MMH< 11 >|w%m
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on Qpy = @ x C2F x xFXmw+l ig the p.d.f. of the sampling process for our main data model.
Samples from Q2py; take the form

_ . . P ro.
W—(QD ;y €1,€2,C3,...,CR ; C€1,C9,C3,...,Cp |
. . . test
X1,1,X1,2,X1,3,- - - 7X1,nsp] ) cee ; XR,1,XR,2,XR3.-- 7XR,7LSP1 y X )
We separate these variables into two groups, w = (w,, wp), Where
— . . / / / N . . . test
we=(¢ ; ¢€1,C2,C3,...,CR ; C€1,C5,C3,...,Cp ; X11,X12 ; ... ; XR1,XR2 ; X )
(58)
Wy = (X1,3,X1,4, - Xlng 5 -+ 5 XR3,XRdy-->XRny) (59

The variable w, belongs to 0, = ®x 2% x X2F+1 and the variable wj, belongs to €, = X F(n=2),
Note that the variables in w, contains, among other, 2R sequences of concepts and 2 R training points
(the first and second training points of each category). Each of these 2R training points is generated
by one of the 2R sequences of concepts. So the variables involved in w,, are generated by a process
similar to the one involved in the simpler data model. The following lemma shows that p.d. f. of w,,
after marginalizing wy, is indeed ospas-

Lemma 8. For all w, € €, we have

$=1(cl) Xr 1) 1¢71(C7,)(XT?2) ]_¢71(C,1)(Xtest)
X e g (H Fite )\

wp €

Recalling the definition of ospm, and letting ¢ + 1 = 2R, we see that the above lemma states
that
Z opM (Wa, ws) = 0sDM (W) (60)
(BN 9

and Qa = QSDM-

Proof of Lemma|8| We start by reorganizing the terms involved in the product defining opy so that
the variables in w, and wy are clearly separated:

QDM( ):
|<1>||C\2R st \«p—l c’ [~ (cr)] Iw bt

To demonstrate the process, let us start by summing the above formula over the first variable of wy,
namely x; 3. Since this variable only occurs in the last term of the above product, we have:

3 () ﬁlw—l Xr 1)1¢—1(cr>(xr,2) Lp-1(ep) ()
P \<I>|\C\2R = ERICH] 6 1(ch)]

X1,3€X

I 1p-1(c,)(Xr,s) 5 Lp-1(cy)(X1,3)
e G Novt L CIY]
3<s<ng

(r:8)7#(1,3)

Since 3, Tp1(en)(X) = ¢ en)l: _ |
therefore be omltted Repeating this process for all the x,. ; that constitute w;, leads to the desired
result. H

In the next subsection we will need the marginal of ppy; with respect to another set of variables. To
this aim we write w = (w,,wq) where

We = (QD ; X1,27 X1,37 e 7X1,nsp] ; s ; XR,Qv XR,37 PRI aXR,nspl 5 XtESt) (61)

wag = (C1,...,€R 5 €1,...,CR 3 X115 ... ; XR1) (62)
Note that all the unfamiliar training points are contained in wy. The test point and the familiar
training points are in w,.. We also let Q, = & x X —D+1 and Q,; = C2F x XE,
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Lemma 9. For all w. € Q. we have
R

1
2;2 ooM (W, wa) = DR Hl1{¢(xr,2>=¢(xn3>=...=¢(xr,ns,,,)}
wga €y c r=

Proof. We reorganizing the terms involved in the product defining opys so that the variables in w,
and wy are separated:

R Nspl w 1(cr Xr g) 1"*1((: test) @ 1(c Xr 1)
eon(@) = e (111 1 H

r=1s=2

Summing the above formula over the last variable involved in wg, namely xg 1, gives

R Tl
3 » (e, ) XT s) 14/3_1(0’1)(X[e5t)
3 ool = e (HH ) ( e )

XR1€EX r=1s=2 ‘90

T Lo (xn0) Lo (1)
(H 31 )( 2 i)

r=1 XR,1€EX

The last term in the above product is equal to 1 and can therefore be omitted. Iterating this process
gives

R nsp 90*1 Xr s) 1¢71(C/1)(Xtest)
> X el = (HH ]

X1,1€EX XR1€EX r=1s=2
We then use the fact that -, cc Lp-1(c;) (x) = 1, see || together with [¢~1(c})| = s&, see
(36), to obtain
R TMupl 1( ) x )
@ 1(cr T, S
Z Z Z oom(w) |¢||C‘2R L (HH )
cieCx11€EX XR,1EX r=1s=2
We then sum over ¢, . . ., c5. Since these variables are not involved in the above formula we get

S X Y S e ey (T 5%

C’1€C C'RECXL1€X XR,1E€EX r=1s=2

R TMuspl @ I(CT) Xr S)
- e (H 11 )

r=1s=2

L
c

PSPPSR SRR S 111) ST

cieCcieC cRrECX1,1 XR,1€EX r=1s=2

R TNpl Tespl
Cr) X7 s c1 Xl 5)
|¢HC|R‘X| (HH - )(ZH e )

T’

where we have used |C|sL = nEsE = |X| to obtain the last equality. Summing over c; gives

r=2s=2 ci1eC s=2
ﬁi—[ w—l(c ) xr D) [ Kt 2)=p(x1.a)==p(x1.ny)}
|<I>HC|R\X| b et |31 (cy)[™

To obtain the last equality we have used @I) but for a product of np — 1 indicator functions instead
of just two. Iterating this process we obtain

(e (xr2)=¢(x1.3)=.. =@ (% ny )}
22 2 2 el |<I>\|C|R|X|H e

c1€C creC C,IEC C/RECXLlGX xR116X

1

Using one more time that ¢~ (c,)| = s% and |C|s} = |X| gives to the desired result. O
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6 sequences of concepts (latent variables) 15 sentences (the training set) Test point

test cogur or. carn .
= | cheese, butter, lettuce, chicken, leek A x yogurt, butter, carrot, chicken, carrot ]
= | carrot, pork,  cream, carrot, cheese | o
¢ = [ dairy, dairy ie, meat, veggie 3
= [ lettuce, chicken, butter, potato, butter | 000
¢ = | veggie, meat, e, dairy E
= | lettuce, beef, yogurt, leek, cream | -
* x5 = [ potato, lamb,  butter, potato, yogurt ]
v X = [ butter, pork, lamb, lamb,  yogurt |
= [ chicken, cheese, cream, lettuce, beef ] o
¢, = [ dairy, meat, meat, meat, dairy ] o
= [ beef. cheese, cheese, carrot, pork | 2
c; = | meat, dairy, dairy, veggic, meat | o
= [ lamb, butter, cream, potato, lamb ] <
~
= [ chicken, cream, butter, leek,  pork |
= [ chicken, cheese, cheese, yorgurt, carrot
, . . P = [ leck, pork,  cream, lamb, butter o
¢, = | meat, dairy, dairy, dairy, veggie | - =
= [ camot, lamb, cheese, pork,  yogurt > @
¢z = [ veggie, meat, dairy, meat, dairy ] : S
<
= | w
[

lettuce, chicken, cheese, chicken, yogurt
leek, chicken, butter, lamb, cheese
Figure 4: The test point x'**' and the train point x; ; are generated by the same sequence of concepts.

B.3 CONCLUSION OF PROOF

We now establish the desired upper bound (]7_8[), which we restate below for convenience:

1
;lé%PDM {EK} \X| Z Hor—1 (K*(x, ) + = (63)

where
Frx = {w € Qpwm @ There exists 1 < s* < ngpl such that

K (x*,x1,4+) > K (x*,x,.,) forall2<r < Randall1 <s < nspl} (64)

We recall that the test point x"*' is generated by the unfamiliar sequence of concepts ¢} and that it
belongs to category 1, see Figure[d] The event Ex describes all the outcomes in which the training
point most similar to x*** (where similarity is measured with respect to the kernel K') belongs to the
first category. There are two very distinct cases within the event E'i: the training point most similar
to X" can be x; 1 — this corresponds to a ‘meaningful success’ in which the learner recognizes
that x5 ; is generated by the same sequence of concepts than x"*, see Figure El Or the training
point most similar to x'*' can be one of the points x; 25 Xl ng — this corresponds to a ‘lucky
success’ because X1 2, . . ., X1,p,, are not related to x'*** (they are generated by a different sequence
of concept, see FlgureE[) To make this discussion formal, we fix a kernel K € K, and we partition
the event Ei as follow

Ex = Emeaningful U Fluck (65)

where
FBreaningtul = Ex N {w €Qpm: K (xX*x11) > K (x*,x;,,) forall2 < s < nspl}
Euk =Er N {w €Qpm: K (x*,x11) < K (x*,x1,,) forsome2 < s < nspl}
The next two lemmas provide upper bounds for the probability of the events Eneaningtut and Ejyck.

Lemma 10. ]P)DM[ meanmgful > |X| Z HQR 1 )
XEX
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Proof. Define the event
A= {UJ e pm: K (XteSt,Xlﬁl) > K (XleSt,Xr,l) forall2 <r < R}

N {w €Qpm: K (x*,x1,1) > K (x**,x,2) forall1 <r < R}.

This events involves only the first two training points of each category. On the example depicted
on Figure [Z_f], that would be the points x; ; and x; 2, the points X2 ; and X2 », and finally the points
x3,1 and x3 2. The event A consists in all the outcomes in which, among these 2R training points,
X1, is most similar to x''. We then make two key remarks. First, these 2R points are generated
by 2R distinct sequences on concepts — so if we restrict our attention to these 2R points, we are
in a situation very similar to the simpler data model pspps (i.e. we first generate 2R sequences of
concepts, then from each sequence of concepts we generate a single training point, and finally we
generate a test point from the first sequence of concepts.) We will make this intuition precise by
appealing to the fact that pgpys is the marginal of gpjs, and this will allow us to obtain a bound
for Ppa[A] in term of the permuted moment of K *. The second remark is that Eeaningful 1S clearly
contained in A, and therefore we have

Ppum [ Emeaningtut] < Ppwm[A] (66)
so an upper bound for Ppy[A] is also an upper bound for Ppn | Emeaningful]-
Let us rename some of the variables. We define dy,...,dsg, and yq,...,y2r as follow:
do,—1 =c. and ds, =c, forr=1,...,R
Yor—1 =Xp1 and  yor =Xy forr=1,...,R

On the example depicted on Figure ] that would be:

Y1 =X1,1, Y2 = X1,2, Y3 = X211, Y4 = X2,2, Y5 = X3,1, Y6 = X3,2
! ! !
d; =cy, d; =ci, d3 = cg, dy =cy, ds = c3, dg =c3

In other words, the y,’s are the first two training points of each category and the d,’s are their
corresponding sequence of concepts. With these notations it is clear that the training points y, are
generated by distinct sequences of concepts, and that the test point x***' is generated by the same
sequence of concepts than y;. Moreover the event A can now be conveniently written as

A={weQpu: K (xte“,yl) >K (x‘e“,yr) forall 2 < r < 2R}.

Let h: X241 5 R be the indicator function defined by

lest)

{1 if K (x*\y;) > K (x*,x,) forall2 <r < 2R

h .
(Y1, -5 Y2R, X 0 otherwise

We now recall the splitting w = (wq, wy) described in (58)-(59) and note that w, can be written as

wa:(@ ) d17~~~7d2R y Yi,---5¥Y2R XteSl)

Since h only depends on the variables involved in w,, and since, according to Lemma
>, 00M (Wa, ws) = ospM(Wa ), We obtain

PomlA] = > > hlyr,-- -, ¥2r,X) 0om(Wa, wh)

Wa€Na wpEN

Z h(y1,- - y2r, X*") 0spm(Wa)
wa €8

=Pspmlwa € Qa0 K (x*,y1) > K (x*)y,) forall 2 < r < 2R]

1
< Y Horo1(KR)
|X| xeX

where we have used Theorem [ in order to get the last inequality (with the understanding that
t 4+ 1 = 2R.) Combining the above bound with (66) concludes the proof. [
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We now estimate the probability of the event Ej.

1
Lemma 11. ]P)DM[Eluck] < R

Proof. For 1 <r < R, we define the events

B, = ﬂ {w € Qpu : 2£%§SPIK(XteSt’XT’S) > zgr?%);,w K(Xtestyx7./7s/)}
1<r'<R
r'#r

Note that the events B, involve only the training points with an index s > 2: these are the familiar
training points. On the example depicted on Figure ] these are the training points generated by
c1,co and cg. Let us pursue with this example. The event B; consists in all the outcomes in which
one of the points generated by c; is more similar to x'* than any of the points generated by ¢ and
cs. The event By consists in all the outcomes in which one of the points generated by co is more
similar to x'* than any of the points generated by ¢; and c3. And finally the event Bs consists
in all the outcomes in which one of the points generated by c3 is more similar to x'* than any of
the points generated by c; and co. Importantly, the test point x*** is generated by the unfamiliar
sequence of concepts ¢/, and this sequence of concept is unrelated to the sequence ¢y, c2 and cs.
So one would expect that, from simple symmetry, that

Ppom[B1) = Ppm[B2] = Pom[Bs). (67)

We will prove rigorously, for general R, using Lemma [J] from the previous subsection. But
before to do so, let us show that implies the desired upperbound on the probability of Fjyck.
First, note that Fy,x C B; and therefore

Poum[Euck] < Pom|[Bi]. (68)

Then, note that By, By and Bs are mutually disjoints, and therefore, continuing with the same
example,
Ppm[B1] + Ppm[Be2] + Ppm[Bs] = Ppm[B1 U B, U B3] <1

which, combined with and (68)), gives Ppi[Eiuck] < 1/3 as desired.

We now provide a formal proof of (67). As in the proof of the previous lemma, it is convenient to
rename some of the variables. Let denote by fam,. the variable that consists in the familiar training
points from category r:

fam, = (X;2,...,Xpp,) € X

With this notation we have fam, , = x,. ;1. We now recall the splitting w = (w,, wq) described in
(61)-(62), and note that w, can be written as

we=(p; fam; ; ... ; famp ; x*%). (69)
Using Lemma 9] we have

R

Z opM (We, wa) = @ H L0 2)=p (% 8) = =3 (X n )} (70)
wa €Ny r=1
R

=« H Lig(fam, )=¢(fam, »)=...=¢(fam , , 1)} (71)
r=1
R

=« H h(p, fam,.) (72)
r=1

where « is the constant appearing in front of the product in Lemma@] anh:® x xm—1 - 10,1}
is the indicator function implicitly defined in equality (7I)-(72). With the slight abuse of notation of
viewing fam,. as a set instead of a tuple, let us rewrite the event B, as

B, = ﬂ {w € Qpy: max K(x*,x) > max K(xteS‘,X)}

xefam,. xcfam, /
1<r'<R

7! Zr
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We also define the corresponding indicator function

1 if max K(x*',x)> max K(x'*,x)

xEfam,. xefam /
g(fam,., fam,., x'*") =

0 otherwise

We now compute Ppy;(B7) (the formula for the other Ppy(B,) are obtained in a similar manner.)
Recall from that the variables involved in fam,. only appear in w.. Therefore

R
Pou(Bi] = Y Y| (Hg<faml,famr,xt°“>> oM (We, wa) (73)

WeE€ENe wg€Ny \r=2

R
Z <Hg(fam1,famr,xt“‘)> Z oM (We, wa) (74)

We €N \r=2 Wy €Ny
R
=a Z (Hg fam;, fam,, x"") ) ( H h((p,famrf)) (75)
weENe r’'=1

where we have used (72) to obtain the last equality. Let us now compare Ppy(B1) and Py (B2).
Letting Z := X"~ 1 and recalling that w, = (¢; fam; , ... , fampg ; x"%), we obtain:

R
Ppm[B1] = Z Z Z Z H g(famy, fam,., x'*") (Hh(b,fam )

ped fam, €2 fampeZ xste X | 1<r<R r'=1
r#1

R
Ppm[Bz] = Z Z Z Z H g(famy, fam,., x'*") (H h((b,fam;))

ped fam; €2 fampeZ xsteX | 1<r<R r’'=1
r#2
From the above it is clear that Ppy[B1] = Ppu[Bz] (as can be seen by exchanging the name of the
variables fam; and fam,). Similar reasoning shows that the events B,. are all equiprobable, which
concludes the proof. O

Combining Lemma[_llj] and@ together with the fact that ' = Eeorrect U Fluck, concludes the proof
of (63). Inequality (63)) implies inequality (26), which itself is equivalent to inequality (I4).

C UPPER BOUND FOR THE PERMUTED MOMENT OF K*

This section is devoted to the proof of inequality (I3]), which we state below as a theorem for con-
venience.

Theorem 5. Forall 0 < ¢ < L, we have the upper bound

MZ% (K3) (1—Zf(k)g(k)> til(k;g; f(k)>- (76)

xeX keSy
The rather intricate formula for the function § and g can be found in the main body of the paper, but
we will recall them as we go through the proof.
We also recall that the optimal kernel is given by the formula:

1 ]{go €D:p(xy) = p(ye) forall 1 <4 < L}|

K*(x,y)= =
st ||

(77)

The key insight to derive the upper bound is to note that each pair of sentences (x,y) induces
a graph on the vocabulary {1,2,...,n, }, and that the quantity

|{<p €D :p(xy) = @(yp) forall 1 < £ < L}|
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Table 2: First five rows of the Strirling triangle for the Stirling numbers {Z}

k|1 2 3 4 5
[

2 |11

3001 3 1

4 11 7 6 1
5 01 15 25 10 1

can be interpreted as the number of equipartitions of the vocabulary that do not sever any of the edges
of the graph. This graph-cut interpretation of the optimal kernel is presented in detail in Subsection
In Subsection [C.2] we derive a formula for K* which is more tractable than (77). To do this
we partition X x X into subsets on which K™* is constant, then provide a formula for the value of
K™ on each of these subsets (c.f. Lemma[I6). With this formula at hand, we then appeal to Lemma
to derive a first bound for the permuted moment of K* (c.f. Lemma[I7). This first bound is not
fully explicit because it involves the size of the subsets on which K* is constant. In section [C.3|we
appeal to Cayley’s formula, a classical result from graph theory, to estimate the size of these subsets
(c.f. Lemmal[I8)) and therefore conclude the proof of Theorem 5]

We now introduce the combinatorial notations that will be used in this section, and we recall a few
basics combinatorial facts. We denote by N = {0,1,2,...} the nonnegative integers. We use the
standard notations

n\ n! and n o n!
k) El(n — k)! ki ko, .. km/)  kilko!---kp!

for the binomial and multinomial coefficients, with the understanding that 0! = 1. We recall that
multinomial coefficients can be interpreted as the number of ways of placing n distinct objects into
m distinct bins, with the constraint that k; objects must go in the first bin, k5 objects must go in the
second bin, and so forth.

The Stirling numbers of the second kind {Z} are close relatives of the binomial coefficients. {Z}
stands for the number of ways to partition a set of n objects into & nonempty subsets. To give a
simple example, {3} = 7 because there are 7 ways to partition the set {1,2, 3,4} into two non-
empty subsets, namely:

{1yu{2,3,4},  {2ju{1,3,4},  {3tu{1,2,4},  {4fU{1,2,3},
{1,2} U {3,4}, {1,3} U{2,4}, {1,4} U {3,4}.

Stirling numbers are easily computed via the following variant of Pascal’s recurrence formulaﬂ

{n}:L {n}:l forn > 1,
1 n
n n—1 n—1
P— < < - .
{k} {k_l}-i-k{ i } for2<k<n-1

The above formula is easily derived from the definition of the Stirling numbers as providing the
number of ways to partition a set of n objects into k¥ nonempty subsets (see for example chapter 6
of ?). Table 2] shows the first few Stirling numbers.

We recall that an undirected graph is an ordered pair G = (V, E), where V is the vertex set and
Ec {{v,v'}:v,v € Vandv #v'}

is the edge set. Edges are unordered pairs of distinct vertices (so loops are not allowed.) A tree is
a connected graph with no cycles. A tree on n vertices has exactly n — 1 edges. Cayley’s formula
states that there are n™~2 ways to put n — 1 edges on n labeled vertices in order to make a tree. We
formally state this classical result below:

Lemma 12 (Cayley’s formula). There are n™~? trees on n labeled vertices.

* Alternatively, Stirling numbers can be defined through the formula {}'} = Zfzo(—l)i ( k’jz) (k=)
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C.1 GRAPH-CUT FORMULATION OF THE OPTIMAL KERNEL

In this section we consider undirected graphs on the vertex set
V:={1,2,...,nu}.

Since the data space X’ consists of sentences of length L, graphs that have at most L edges will be
of particular importance. We therefore define:

& := {All graphs on V that have at most L edges}.

In other words, & consists in all the graphs G = (V, E) whose edge set F has cardinality less or
equal to L. Since these graphs all have the same vertex set, we will often identify them with their
edge set. We now introduce a mapping between pairs of sentences containing L words, and graphs
containing at most L edges.

Definition 2. The function { : X x X — & is defined by

(xy) = |J Hze e} (78)

1<e<L
TeFEYe

The right hand side of is a set of at most L edges. Since graphs in & are identified with their
edge set, ¢ indeed define a mapping from X x X to &. Let us give a few examples illustrating how
the map ¢ works. Suppose we have a vocabulary of n,, = 10 words and sentences of length L = 6.
Consider the pair of sentences (x,y) € X x X where

x=[ 2 2 8 5 9 7 ]
y=[ 2 5 8 2 2 1 ] (79)

Then {(x,y) is the set of 3 edges

Cy)={ {25, {92, {11} }.

which indeed define a graph on ). Note that position £ = 2 and ¢ = 4 of (x,y) ‘code’ for the same
edge {2, 5}, position 5 codes for the edge {9, 2}, and position 6 codes for the edge {7,1}. On the
other hand, position 1 and 3 do not code for any edge: indeed, since 1 = y; and 3 = ys3, these
two positions do not contribute any edges to the edge set defined by (78). We will say that positions
1 and 3 are silent. We make this terminology formal in the definition below:

Definition 3. Let (x,y) € X x X. If xp = ye for some 1 < { < L, we say that position ¢ of the
pair (x,y) is silent. If x¢ # yg for some 1 < £ < L, we say that position £ of the pair (x,y) codes
for the edge {x,ye}-

)

Note that if (x,y) has some silent positions, or if multiple positions codes for the same edge, then
the graph ((x,y) will have strictly less than L edges. On the other hand, if none of these take place,
then {(x,y) will have exactly L edges. For example the pair of sentences

x=[ 1, 1 1,5 6, 7

1
y=1[ 2 3 4, 6 7, 1] (80)

does not have silent positions, and all positions code for different edges. The corresponding graph

ooy ={ {12} {L3} {14} {56} {67 (11} )

has the maximal possible number of edges, namely L. = 6 edges. From the above discussion, it is
clear that any graph with L or less edges can be expressed as {(x,y) for some pair of sentences
(x,y) € X x X. Therefore { : X x X — & is surjective. On the other hand, different pair of
sentences can be mapped to the same graph. Therefore ( is not injective. We now introduce the
following function.

Definition 4 (Number of cut-free equipartitions of a graph). The function Z : & — N is defined by :
Z(G) = {p € @ : p(v) = p(v') for all edge {v,v'} of the graph G}| (81)
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\

(a) Cut-free (b) Not cut-free

Figure 5: Two equipartitions of the same graph (each subsets of the equipartitions contain 7 vertices).
The equipartition on the left is cut-free (no edges are severed). The equipartition on the right is not
cut-free (4 edges are severed). The optimal kernel K*(x,y) can be interpreted as the number of
distinct cut-free equipartitions of the graph {(x,y) (modulo some scaling factor.)

Recall that @ is the set of maps ¢ : V — {1,...,n.} that satisfy |~ !(c)| = s. forall 1 < ¢ < n,.
Given a graph G, the quantity Z(G) can therefore be interpreted as the number of ways to partition
the vertices into n. labelled subsets of equal size so that no edges are severed (i.e. two connected
vertices must be in the same subset.) In other words, Z(G) is the number of “cut-free” equipartition
of the graph G, see Figurefor an illustration. Note that if the graph G is connected, then Z(G) = 0
since any equipartition of the graph will severe some edges. On the other hand, if the graph G has
no edges, then Z(G) = |®| since there are no edges to be cut (and therefore any equipartition is
acceptable.)

The optimal kernel K™* can be expressed as a composition of the function ¢ and Z. Indeed:

1

K (oy) = g5z 19 € @@ = plye) forall 1 < £< L} (82)
1

= [@[sE H{ped:p)=ep®)forall {v,0'} € {(x,y) }| (83)
1

= B[k Z(¢(x,y)) (84)

where we have simply used that {(x,y) := U1<g<L{{xg, Yye}} to go from to . We will
refer to (84) as the graph-cut formulation of the optlmal kernel.

We have discussed earlier that the function { : X x X — & is surjective but not injective. We
conclude this subsection with a lemma that provides an exact count of how many distinct (x,y) are
mapped by ( to a same graph G.

Lemma 13. Suppose G € & has m edges. Then
@) = HEy) € X x X2 Cx.y) = G| = m! Z - (i

Proof. Fix once and for all a graph G = (V, E) with edge set E = {ej,..., e} where m < L.
Given 0 < o < L, define the set

O, ={(x,y) € X x X : ((x,y) = G and (x,y) has exactly o non-silent positions}.

We start by noting that the set O, is empty for all @ < m: indeed, since G has m edges, at least
m positions of a pair (x,y) must be coding for edges (i.e., must be non-silent) in order to have
¢(x,y) = G. We therefore have the following partition:

L
= |J 0 and  O0,NO0y =0 ifa#d.

To conclude the proof, we need to show that

L
|Oa|:< > {O‘}m! 24 pk=  forallm < a < L. (85)

[} m
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Consider the following process to generate an ordered pair (x,y) that belong to O,: we start by
deciding which positions of (x,y) are going to be silent, and which positions are going to code for
which edge of the graph G. This is equivalent to choosing amap p : {1,...,L} — {e1,...,em, s}
where {1,..., L} denotes the L positions, eq, ..., e, denote the m edges of the graph G, and s is
the silent symbol. Choosing a map p correspond to assigning a “role” to each position: p({) = e;
means that position ¢ is given the role to code for edge ¢;, and p(¢) = s means that position ¢ is
given the role of being silent. The map p must satisfy:

lp~ts)|=L—a and pHe)#D forl<i<m (86)

because L — « position must be silent and each edge must be represented by at least one position.
The number of maps p: {1,...,L} — {ey, ..., en, s} that satisfies is equal to

(o) fof

Indeed, we need to choose the L — « positions that will be mapped to the silent symbol s: there are
( Lfa) ways of accomplishing this. We then partition the o remaining positions into /m non-empty

subsets: there are {SL} ways of accomplishing this. We finally map each of these non-empty subset
to a different edge: there are m! ways of accomplishing this.

We have shown that there are ((I; ) {;}m! ways to assign roles to the positions. Let say that position
¢ is assigned the role of coding for edge {v,v'}. Then we have two choices to generate entries z;
and y,: either z, = v and y, = v’, or 2, = v’ and y, = v. Since « positions are coding for edges,
this lead to the factor 2¢ in equation . Finally, if the position / is silent, then we have n,, choices
to generate entries xy and y, (because we need to choose v € V such that x;, = y, = v) , hence the
factor n£ =< appearing in . O

C.2 LEVEL SETS OF THE OPTIMAL KERNEL

We recall that a connected component (or simply a component) of a graph is a connected subgraph
that is not part of any larger connected subgraph. Since graphs in & have at most L edges, their
components contain at most L + 1 vertices. This comes from the fact that the largest component
that can be made with L edges contains L + 1 vertices. It is therefore natural, given a vector
k= [kjl, ey kL+1] € NL+1, to define

&y := {G € & : G has exactly k; components of size 1, exactly ko components of size 2,
...,exactly kr1 components of size L+ 1} (87)

where the size of a component refers to the number of vertices it contains. We recall that N =
{0,1,2,...} therefore some of the entries of the vector k can be equal to zero. Note that components
of size 1 are simply isolated vertices. The following lemma identify which k € NZ+1! Jead to non-
empty By.

Lemma 14. The set &y is not empty if and only if k satisfies

L+1 L+1

> iki=n, and Y (i—1)k < L. (88)

i=1 =1

Proof. Suppose &y is not empty. Then there exists a graph G € & that has exactly k; components
of size 7, for 1 < ¢ < L + 1. A component of size ¢ contains ¢ vertices (by definition) and at least
i — 1 edges (otherwise it would not be connected.) Since G € & it must have n,, vertices and at
most L edges. Therefore (88) must hold.

Suppose that k € NZ*1 satisfies . Then we can easily construct a graph G on )V that has a number
of edges less or equal to L, and that has exactly k; components of size i, for 1 < ¢ < L+1. To do this
we first partition the vertices into subsets so that there are k; subsets of size ¢, for 1 <¢ < L+1. We
then put ¢ — 1 edges on each subset of size ¢ so that they form connected components. The resulting

graph has k; components of size i, for 1 < i < L+ 1, and Zf;ll(z — 1)k, edges. O
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The previous lemma allows us to partition & into non-empty subsets as follow:

6 =[] &, O£ DforallkeS, and GxNGe =0ifk £k (89)
keS

L+1 L+1
where S := {k e NiAL. Z tk; = n, and Z(z —Dk; < L} ) (90)

i=1 i=1

Recall that Z(G) count the number of equipartitions that do not severe edges of G. The next lemma
shows that two graphs that belongs to the same subset & have the same number of cut-free equipar-
titions, and it provides a formula for this number in term of the index k of the subset.

Lemma 15. Suppose k € S and define the set of admissible assignment matrices

Ne L+1
A= Ae NEFDne o N" Ay =k foralli  and Y iAij =scforallj . (91)
j=1 i=1
Then for all G € By, we have that
L+1 5
19) = Z H<Ai17Ai2>---aAin.>. 2)
A€ A i=1 : : e

Let us remark that, since 0! = 1, the multinomial coefficient ( A, LA ]: A ) appearing in 1} is
equal to 1 when k; is equal to 0. '

Poof of Lemmal(I3] Letk € S and fix once and for all a graph G € ®y. Define the set
U ={ped:p)=p@)forall edge {v,v'} of the graph G}

sothat Z(G) = |¥|. Note that a map ¢ that belongs to ¥ must map all vertices that are in a connected
component to the same concept (otherwise some edges of G would be severed.) So a map ¢ € ¥
can be viewed as assigning connected components to concepts. Given a matrix A € N(ETDX7e e
define the set:

U4 ={peU: passigns A;; components of size i to concept j, forall1 <i < L+land1 < j < n.}.
We then note that the set W 4 is empty unless the matrix A satisfies:

Ain+ Ao+ Ais+.. . +A, =k forall1 <i<L+1

Al j+245; 4343+ ...+ (L+1)Apq1,; = sc forall 1 < j < n,.

The first constraint states that the total number of connected components of size i is equal to k;
(because G € &y). The second constraint states that concept j must receive a total of s, vertices
(because ¢ € ®.) The matrices that satisfy these two constraints constitute the set Ay defined in
(9T). We therefore have the following partition of the set W:

U= wa, U, £Pif Ae Ay, UANTp=0if A#B.
AeAyx
To conclude the proof, we need to show that

L+1 k;
wal =] ( ’ ) forall A € Ay. (93)
i=1 Ai,la Ai,27 ce. 7Ai,nc

To see this, consider the k; components of size i. The number of ways to assign them to
the n. concepts so that concept j receives A;; of them is equal to the multinomial coefficient

( Air, AZI: Amu)' Repeating this reasonning for the components of each size gives l) O

We now leverage the previous lemma to obtain a formula for K*. For k € S we define

Qg = Cil(ék).
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Since ¢ : X X X — & is surjective, partition of & induces the following partition of X’ x X
XxX=) Qu#A0ifkeS and QN =0ifk#K. (94)

kes
Using the graph-cut formulation of the optimal kernel together with Lemma [[5| we therefore have
L+1
1
* —
K*(x,y) = B[ Z(¢(x,y) Z H (Az LA 2,---7141‘,716) for all (x,y) € Q.

AcAy i=1
95)
The above formula is key to our analysis. We restate it in the lemma below, but in a slightly different
format that will better suit the rest of the analysis Let §:S — R be the function defined by

L+1
f(k) == | Z H (A117A12,---7Ai7nc> 0

AEAk =1
‘We then have:

Lemma 16 (Level set decomposition of K*). The kernel K* is constant on each subsets Q. of the
partition (94). Moreover we have

K*(x,y) = f(k)/|X|  forall (x,y) € Qx and forallk € S.

Proof. The quantity |®| appearing in (95)) can be interpreted as the number of ways to assign the n,,
words to the n. concepts so that each concept receives s. words. Therefore

n Tw!
SeySeyn vy Se (se!)ne

Combined with the fact that |X'| = nL, this leads to the desired formula for K*. O

The above lemma provides us with the level sets of the optimal kernel. Together with Lemma 3] this
allows us to derive the following upper bound for the permuted moment of K*.

Lemma 17. Let Q) = X x X. The inequality

. Q 1
ZHtK (1_Z| < ) t+1<irle6}s>5f(k)>

xeX keSS’
holds for all S’ cS.

Proof. Let S’ C S and define:
1
A= K~ k
W o, O 0 Y) = oy 1)

where we have used the fact that K* is equal to f(k)/|X| on Q. We then appeal to Lemma 3] to
obtain:

- L A o

|X‘)§(Ht K ))Sm; m—Fl—Zmln{K (X7y),)\} (97)
AlX|

T |X| > > min{K*(x,y),A} (98)

xeX yeX
AlX]
= m |X| Z Z min{ K*(x,y), A\} (99)

keS (x,y)eQx

X
< %—!— X Z Z min{ K*(x,y), A} (100)
+ | |kES' (x,y)EQ
AX|
= +1 Z Z K*(x,y) (101)
t+1 |X| keSS’ (x,y) GQk
>\|X|
= — 102

kes’
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where we have use the fact that X x X = [J, s O to go from to , and the fact that
K*(x,y) < Aon Jyes i to go from (100) to (101). To conclude the proof, we simply note that
A X| = maxkes f(k) according to our definition of A. O

The bound provided by the above lemma is not fully explicit because it involves the size of level sets
Q. In the next section, we appeal to Cayley’s formula to obtain a lower bound for |Qy]|.

C.3 FOREST LOWER BOUND FOR THE SIZE OF THE LEVEL SETS

We recall that a forest is a graph whose connected components are trees (equivalently, a forest is a
graph with no cycles.) Let us define:

§:={G € & : G is aforest}.

In other words, § is the set of forestson V = {1, 2, ..., n,, } that have at most L edges. We obviously
have the following lower bound on the size of the level sets:

Q| = [ (8| = [T (BN )] (103)

In this subsection, we use Cayley’s formula to derive an explicit formula for |C (BN S)|
start with the following lemma:

Lemma 18. Letk € S, then

o LA1 /oiogy ki
T 104
|Bx N T klko! - kpiq! g < ' > Y

Proof. First we note that (104)) can be written as

LAY g, (i—2) ik
N (3 1R
B O8] = <k1,2k2,...,(L+1)kL+1) 11 ’f'<“">

We now explain the above formula. The set &y, N § consists in all the forests that have exactly k
trees of size 1, ky trees of size 2, ..., ky4 trees of size L + 1. In order to construct a forest with
this specific structure, we start by assigning the n,, vertices to L + 1 bins, with bin 1 receiving k;
vertices, bin 2 receiving 2k, vertices, ..., bin L + 1 receiving (L 4 1)ky,41 vertices. The number of
ways of accomplishing this is

Ty
ki,2kg, ... (L4 1Dkpy1)
Let us now consider the vertices in bin ¢ for some 7 > 2. We claim that there are

i iki jki(i=2)
k' \i,i,...,1

ways of putting edges on these ¢k; vertices in order to make k; trees of size i. Indeed, there are

k{, (Z ;k Z.) ways of partitioning the vertices into k; disjoint subsets of size ¢, and then, according to

Cayley’s formula, there are i~2 ways of putting edges on each of these subsets so that they form a
tree. To conclude, we remark that there is obviously only one way to to make k; trees of size 1 out
of the k; vertices in the first bin. ]

Recall that a tree on n vertices always has n — 1 edges. So a graph that belongs to &y N § has

L+1
m=>Y (i—1)k
i=1
edges since it is made of k; trees of size 1, ks trees of size 2, ..., kz41 trees of size (L +1). The fact

that all graphs in &y N § have the same number of edges allows us to to obtain an explicit formula
for [(~!(®x N §)| by combining combine Lemma [13]and[18] namely

CHBRNF)| = (,ﬁ,,@ km,jﬁ( ) ) <m, 3 ( ){ }2a L )
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This lead us to define the function g : S — R by

1 L+1
k =
a(k) <k1'k2 “kry! }_[ (

=2

where v(k) = Z(z — 1)k;.

i=1

Recalling (I03)) we therefore have that
1]
1ar

Combining the above inequality with Lemma|[I7) we obtain:

> g(k) forallk € S.

Theorem 6. The inequality

] X| > H(Ky) ( > olk) f(k)> + t%l (ggx f(k))

xEX keS’
holds for all S’ C S.

The above theorem is more general than Theorem [5| — indeed, in Theorem [5] the choice of the
subset S’ is restricted to the L + 1 candidates:

L+1 L+1
Sy = {kGNLH: Zikiznw and £<Z(i—1)ki<L} where { = 0,1,..., L.
i=1 i=1

When L = 9, n,, = 150, n. = 5 and ¢t = 1999 (these are the parameters used in Theorem EI),
choosing S’ = &7 leads to a relatively tight upper bound. When L = 15, n,, = 30, n. = 5 and
t = 5999 (these are the parameters corresponding the the second experiment of the experimental
section), choosing &’ = Sy gives a good upper bound.

D MULTIPLE UNFAMILIAR SENTENCES PER CATEGORY

In the data model depicted in Figure [T} each unfamiliar sequence of concept has a single represen-
tative in the training set. In this section we consider the more general case in which each unfamiliar
sequence of concepts has n* representatives in the training set, where

1 <n* <ngy.

An example with n* = 2 is depicted in Figure@ The variables L, 1, n¢, I, nspr and n* parametrize
instances of this more general data model, and the associated sampling process is:

Sampling Process DM2:
(i) Sample T = (¢ ; c1,...,CR; c},...,c% ) uniformly at random in T = & x Z2%,
(i) Forr=1,...,R:
e Sample (X;.1, ..., X, n+) uniformly at random in 3~ *(c.) x ... x ¢~ 1(cl).
e Sample (Xpn+41,- -, Xp,n,,) uniformly at random in ¢~ (c,) x ... x ¢~ (c,).
(ili) Sample x** uniformly at random in ¢ ~1(c}).

Our analysis easily adapts to this more general case and gives:
Theorem 7. Let T = ® x Z2E. Then

L—em(F T <n Kl— PRI ) + o (g 109

1
+ R (105)
keS,

for all feature space F, all feature map ¢ : X — F, and all 0 < { < L.
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g -
7 xu = [ cheese, butter, lettuce, chicken, leek X!t = [ yogurt, butter, carrot, chicken, carrot
ol
/ X1z = [ yogurt, cheese, carrot, pork, carrot
vy g
/ v o
o
¢, = [ dairy, dairy, veggic, meat, veggic ] & y X o= [ carrot, pork, cream, carrot,  cheese o
- o
[=]
e = | veggie, meat, dairy, veggie, dairy | o~ % Xu = [ lettuce, chicken, butter, potato, butter 2
-
A x5 = [ lettuce, beef,  yogurt, leck,  cream
Y N
Xig = [ potato, lamb,  butter, potato, yogurt
Xa1 = [ butter, pork, lamb, lamb,  yogurt ] N
/1
/ xz3 = [ cream, beef,  chicken, pork,  butter |
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Figure 6: Data Model with n* = 2 unfamiliar sentences per category. The other parameters in this
example are set to L = 5, n, = 12, n, = 3, R = 3 and ng, = 6. The points highlighted in yellow
are the ones involved in the definition of the event A1, see equation 1)

Theorem [3]in the main body of the paper can be viewed as a special case of the above theorem —
indeed, setting n* = 1 in inequality (T03)) we exactly recover ().

In order to prove Theorem [7} we simply need to revisit subsection [B.3] We denote by Qpi2 and
Ppa2 the sample space and probability measure associated with the sampling process DM2. As in
subsection given a kernel K € K, we define the event

Frx = {w € Qpmo : Thereexists 1 < s* < ngpl such that

K (x* %) ) > K (x*,x,.,) forall2<r < Randall 1 < s < nspl}.

Such event describes all outcomes corresponding to successful classification of the test point x'°st,
For simplicity let us assume that n* = 2 (therefore matching the scenario depicted in Figure [6).
We further partition the event E'x according to which training point from the first category is most
similar to the test point:

_ 1) (2)
Ex = Emeaningful U Emeaningful U Eluck (106)
The event Erglle)amngful consists in all the outcomes where, among the points from first category, x1 1 is
the most similar to x%st, Er(nze)aningful consists in all the outcomes where, among the points from first
category, X1 o is the most similar to x%st and Ej,q consists in all the remaining cases. Formally we
have:
1
Er(ne)aningful =Ek N {w €Qpmz: K (x*,x11) > K (x'*¥,x1,2) }
N {w € Qpmz: K (x*,x1,1) > K (x**,x1,,) forall 3 <s < nspl}
2 < .
Er(ne)aningful =FEr N {w €flpmz: K (Xtebtaxl,Q) > K (Xteht,XLl) }
N €N s K (x > K (x* forall 3 < s <
w DM?2 - X, X1,2 X, X1,s or a S S S Ngpl

Fuak = FEx N {w € Qpme @ there exists 3 < s™ < ngy such that

K (XteSt’XLs*) > K (XteSt,XLs) for all 1 <s< nspl}
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Exactly as in subsection[B3] we then prove that

Ptz [ Eeuningtu] < I X| > Hapa(Kj) fori=1,2 (107)
xeX

Pomz[Euck] < %. (108)
The proof of inequality (T07) is essentially identical to the proof of Lemma[TI0] We define the event
A = {w €EQpm: K (xte“,xm) > K (xte“,xr’l) forall2 <r < R}
N {w e : K (xteS‘,xLl) > K (XteSt,Xr’g) foralll <r < R} (109)
and the event
A® = {w €Qpmz: K (x*,x12) > K (x'*,x,2) forall2<r < R}
N {w €Opmz: K (xm‘,xl)g) > K (XteSt,XT’g) foralll <r < R}

The x’s involved in the definition of the event A()) are highlighted in yellow in Figure @ Crucially
they are all generated by different sequences of concepts, except for x; 1 and x****. We can therefore
appeal to Theorem ] to obtain

Ppaz[AM)] |X\ Z Hor—1(

xeX
since there is a total of ¢ = 2R — 1 ‘distractors’ (the ‘distractors’ in Figure |§| are X1 3, X2,1, X2,3,

x3,1 and x3 3). We then use the fact Eme)a.mngful c AW to obtain |D with ¢ = 1. The case 7 = 2 is
exactly similar.

We now prove (T08). The proof is similar to the proof of Lemma([I1] For 1 < r < R, we define the
events

B, = n weDpmz:  max K(x*x,,)> max K" %)
3§S§n5pl 3S5/§nspl
1<r'<R
r' #r

By symmetry, these events are equiprobable. They also are mutually disjoints, and therefore
Ppmz[Br] < 1/R. Inequality (108) then comes from the fact that F,qc C By.

Combining (T06), (107), (T08) then gives
1

P FE K — 110
[S{lél?c DMZ{ K:| |X|erxH2R 1( )+R (110)

and, going back to the general case where n* denotes the number of representatives that each se-
quence of unfamiliar concepts has in the training set,

1
sup Poave Bk < | X| Z Hon-1 (K3) + 7 (111)

which in turn implies (T6). Combining inequalities (T5) and (T6) then concludes the proof of Theo-
rem[7}

E DETAILS OF THE EXPERIMENTS

In this section we provide the details of the experiments described in Section[6} as well as additional
experiments. Table 4] provides the results of experiments in which the parameters L, n,,, n. and R
are set to

L=9 n,=150, n.=5 R=1000.
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Table 3: Accuracy in % on unfamiliar test points (L = 9, n,, = 150, n. = 5, R = 1000).

n*=1 n*=2 n*=3 n*=4 n*=5

Nspl = 6 Nspl = 7 Nspl = 8 Nspl = 9 Nspl = 10
Neural network 99.8+0.3 999+£01 999+£01 999£0.1 100£0.1
NN on feat. extracted by neural net 99.9+0.1 999+£01 999£01 999401 99940.1
NN on feat. extracted by 1™ 0.7£0.2 1.1+0.3 1.5+0.3 1.8+0.3 22+£03
NN on feat. extracted by ¥one—hot 0.6 0.2 1.1+0.3 1.4+0.2 1.7+£0.3 2.1£0.3
Upper bound (0.015n* + 1/1000) 1.6 3.1 4.6 6.1 7.6
SVM on feat. extracted by 1)* 0.6 £0.3 1.5+04 22+£04 3.2£0.6 42+1.0
SVM on feat. extracted by Yone—hot 0.5 £ 0.1 1.1+£0.1 1.9+£0.1 2.8+0.2 3.8+0.2
SVM with Gaussian kernel 0.6 £0.1 1.1+0.1 2.0+£0.1 2.8+£0.2 3.6 £0.2

Table 4: Accuracy in % on unfamiliar test points (L = 9, n,, = 50, n. = 5, R = 1000).

n* =1 n*=2 n*=3 n*=4 n*=5

Ngpl =6 Ngpl =7 Ngpl =8 Ngpl =9 Ngpl =10
Neural network 999+0.1 999+0.1 99.9+0.1 99.94+0.1 100+£0.1
NN on feat. extracted by neural net 99.94+0.1 999+£0.1 999+0.1 99.94+0.1 99.9+£0.1
NN on feat. extracted by ¢* 24+£0.3 4.1+0.6 5.5£0.6 6.9£0.8 8.0£0.8
NN on feat. extracted by ©Yone—hot 2.0+0.3 3.4+0.5 4.8 +0.6 5.7+ 0.5 6.7+ 0.7
Upper bound (0.073n* + 1,/1000) 7.4 14.7 22.0 29.3 36.6
SVM on feat. extracted by * 22+05 5.2+0.9 8.6 £0.9 11.7£06 15.1+£1.2
SVM on feat. extracted by ¥one—hot 1.2 £ 0.1 3.5£0.2 6.4+£0.2 9.9+£0.3 13.6 £04
SVM with Gaussian kernel 2.0+£0.1 3.7£0.2 5.4+0.2 8.6 £0.3 12.1+£0.3

The parameters ng, and n* are chosen so that the training set contains 5 familiar sentences per
category, and between 1 and 5 unfamiliar sentences per category. Table [3]is identical to Table [T]in
Section[6} with the exception that it contains additional information (i.e. the standard deviations of
the obtained accuracies). The abbreviation NN appearing in Table 3] stands for ‘Nearest Neighbor’.

Table [d] provides the results of additional experiments in which the parameters L, rn.,, n. and R are
set to
L=9, n,=50, n.=5R=1000.

The parameters ngp1 and n* are chosen, as in the previous set experiments, so that the training set
contains 5 familiar sentences per category, and between 1 and 5 unfamiliar sentences per category.
The tasks considered in this set of experiments are easier due to the fact that the vocabulary is smaller
(ny = 50 instead of n,, = 150).

E.1 NEURAL NETWORK EXPERIMENTS

We consider the neural network in Figure[2] The number of neurons in the input, hidden and output
layers of the MLPs constituting the neural network are set to:

MLP 1: din = 150, dhidden = 500, dout = 10, MLP 2: dln = 90, dhidden = 2000, dout = 1000.
For each of the 10 possible parameter settings in Table [3|and Table ] we do 104 experiments. For
each experiment we generate:

o A training set containing R X ngp1 sentences.

e A test set containing 10, 000 unfamiliar sentences (10 sentences per category).
We then train the neural network with stochastic gradient descent until the training loss reaches
10~* (we use a cross entropy loss). The learning rate is set to 0.01 (constant learning rate), and the
batch size to 100. At test time, we either use the neural network to classify the test points (first row

of the tables) or we use a nearest neighbor classification rule on the top of the features extracted
by the neural network (second row of the tables). The mean and standard deviation of the 104 test
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accuracies, for each of the 10 settings, and for each of the two evaluation strategies, is reported in
the first two rows of Table[3]and Table 4l

E.2 NEAREST-NEIGHBOR EXPERIMENTS

In these experiments we use a nearest neighbor classification rule on the top of features extracted
by «* (third row of Table [3|and ) or Yone—not (fourth row). For each of the 10 possible parameter
settings in Table[3]and Table[d] we do 50 experiments. For each experiment we generate:

e A training set containing R X ngp1 sentences.

e A test set containing 1, 000 unfamiliar sentences (one sentences per category).

In order to perform the nearest neighbor classification rule on the features extracted by *, one
needs to evaluate the kernel K*(x,y) = (¢*(x),¥*(y))x+ for each pair of sentences. Computing
K*(x,y) requires an expensive combinatorial calculation which is the reason why we perform fewer
experiments and use a smaller test set than in In order to break ties, the values of K*(x,y) are
perturbed according to (3.

With the parameter setting L = 9, n,, = 50, n. = 5 and R = 1000, our theoretical lower bound for
the generalization error is

err(F, %, %) >1-0.073n* —1/R  forall F and all v, (112)

which is obtained by choosing ¢ = 6 in inequality (I05]). This lead to an upper bound of 0.073 n* +
1/R on the success rate. This upper bound is evaluated for n* ranging from 1 to 5 in the fifth row
of Table[]

E.3 SVM ON FEATURES EXTRACTED BY %one—hot AND SVM WITH GAUSSIAN KERNEL

For each of the 10 possible parameter settings in Table [3] and Table 4] we do 100 experiments. For
each experiment we generate:

e A training set containing 12 X ngp sentences.

e A test set containing 10, 000 unfamiliar sentences (10 sentences per category).

We use the feature map ¥one—not (Which simply concatenates the one-hot-encodings of the words
composing a sentence) to extract features from each sentence. These features are further normalized
according to the formula

wonefhot (X) —Pp

where p = 1/n,, (113)
p(1—p)

)2:

so that they are centered around 0 and are O(1). We then use the SVC function of Scikit-learn
Pedregosa et al| (201 1)), which itself relies on the LIBSVM library |Chang & Lin| (2011), in order to
run a soft multiclass SVM algorithm on these features. We tried various values for the parameter
controlling the ¢, regularization in the soft-SVM formulation, and found that the algorithm, on this
task, is not sensitive to this choice — so we chose C' = 1. The results are reported in the seventh
row of both tables.

We also tried a soft SVM with Gaussian Kernel
K(x,y) = e Ilx—yl?

applied on the top of features extracted by ©one—not and normalized according to . We use the
SVC function of Scikit-learn with ¢ regularization parameter set to C' = 1. For the experiments in
Table |3| (n,, = 150), the parameter  involved in the definition of the kernel was set to v = 0.25
when n* € {1,2} and to v = 0.1 when n* € {3,4,5}. For the experiments in Table {4 (n,, = 50),
it was setto v = 0.75 when n* = 1, to v = 0.1 when n* = 2, and finally to v = 0.005 when
n* € {3,4,5}.
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Table 5: Search for the hyperparameter o

a Amin (GM)  Apax (GT0) - Test Accuracy
0.001 -90.9 50, 583.3 6.1%
0.01 —81.5 32,334.9 6.1%
0.1 —56.8 15,358.7 6.6%
1.0 —22.9 4,191.5 7.6%
10 —2.5 673.4 7.2%
15 —0.138 471.7 7.0%
16 0.2 445.5 7.0%
100 4.7 86.9 5.4%
1000  4.983 15.573 5.0%

E.4 SVM ON FEATURES EXTRACTED BY ¢*

Applying a SVM on the feature extracted by 1* is equivalent to running a kernelized SVM with ker-
nel K*. A naive implementation of such algorithm leads to very poor results on our data model. For
such algorithm to not completely fail, it is important to carefully “rescale” K™* so that the eigenvalues
of the corresponding Gram matrix are well behaved. Recall that

nk |{p € ®:p(xy) = oy forall 1 < ¢ < L}|
g ||

w

K*(x,y) =

(114)

and let £ : R — R be a strictly increasing function. Since the nearest neighbor classification
rule works by comparing the values of K™ on various pairs of points, it is clear that using the
kernel K**(x,y) = £(K*(x,y)) is equivalent to using the kernel K*(x,y). In particular, choosing
&(x) :=log(1 + (nL/a)z) gives the following family of optimal kernels:

L
K (x,y) = log (1 + %K*(x,w) (115)
(0]

To be clear, all these kernels are exactly equivalent to the the kernel K* when using a nearest neigh-
bor classification rule. However, they lead to different algorithms when used for kernelized SVM.
We have experimented with various choice of the function ¢ and found out that this logarithmic
scaling works well for kernelized SVM.

For each of the 10 possible parameter settings in Table [3] and Table 4 we do 10 experiments. For
each experiment we generate:

o A training set containing R X ngp1 sentences.

e A test set containing 1, 000 unfamiliar sentences (one sentences per category).

Let us denote by x;mi", 1 < i < R X ngp), the data points in one of these training set, and by x!*™,
1 <7 < 1000, the data points in the corresponding test set. In order to run the kernelized SVM
algorithm we need to form the Gram matrices

train __ *%x [ train train test *x [ test train
Gii" =K, (x; ) X ) and Gy =K, (x; ) X ) (116)

Constructing each of these Gram matrices takes a few days on CPU. We then use the SVC function
of Scikit-learn to run a soft multiclass kernelized-SVM algorithm. We tried various values for the
parameter controlling the ¢, and found that the algorithm is not sensitive to this choice — so we
chose C' = 1. The algorithm, on the other hand, is quite sensitive to the choice of the hyperparamater
a defining the kernel K*. We experimented with various choices of o and found that choosing the
smallest « that makes the Gram matrix G'"™™" positive definite works well (note that the Gram matrix
should be positive semidefinite for the kernelized SVM method to make sense). In Table [5| we show
an example, on a specific pair of train and test selE], of how the eigenvalues of G"" and the test
accuracy depends on a.

Sthe training set and test set used in this experiment were generated by our data model with parameters
L =9,n4 =50, n. =5, R=1000, ngp1 = 8,and n* =3
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