
Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents

Anonymous ACL submission

Abstract

With the remarkable advancements of large lan-001
guage models (LLMs), LLM-based agents have002
become a research hotspot in human-computer003
interaction. However, there is a scarcity of004
benchmarks available for LLM-based mobile005
agents. Benchmarking these agents generally006
faces three main challenges: (1) The ineffi-007
ciency of UI-only operations imposes limita-008
tions to task evaluation. (2) Specific instruc-009
tions within a singular application lack ade-010
quacy for assessing the multi-dimensional rea-011
soning and decision-making capacities of LLM012
mobile agents. (3) Current evaluation metrics013
are insufficient to accurately assess the process014
of sequential actions. To this end, we propose015
Mobile-Bench, a novel benchmark for evalu-016
ating the capabilities of LLM-based mobile017
agents. First, we expand conventional UI op-018
erations by incorporating 103 collected APIs019
to accelerate the efficiency of task completion.020
Subsequently, we collect evaluation data by021
combining real user queries with augmentation022
from LLMs. To better evaluate different levels023
of planning capabilities for mobile agents, our024
data is categorized into three distinct groups:025
SAST, SAMT, and MAMT, reflecting varying026
levels of task complexity. Mobile-Bench com-027
prises 832 data entries, with more than 200028
tasks specifically designed to evaluate multi-029
APP collaboration scenarios. Furthermore, we030
introduce a more accurate evaluation metric,031
named CheckPoint, to assess whether LLM-032
based mobile agents reach essential points dur-033
ing their planning and reasoning steps. Dataset034
and platform will be released in the future.035

1 Introduction036

Interacting with mobile devices using natural037

language is a long-standing pursuit in human-038

computer interaction (Bolt, 1980; Karat et al.,039

2002; Følstad and Brandtzæg, 2017). With the re-040

markable advancements in large language models041

(LLM) (Bai et al., 2022; Chowdhery et al., 2022;042

"Clock": [
 "API Command": "adb shell am start -a android.intent.action.SET_ALARM --ei
android.intent.extra.alarm.HOUR <x> --ei android.intent.extra.alarm.MINUTES <y>"

User Instruction
Set an alarm for 7:30 am.

Check If Exist
Callable API

No

Yes,Call
this API

Click

Click

Click

API Start!API command

<button>
clock open
<button>

<button>
new alarm
<button>

<button>
rolling search
<button>

<button>
alarm ready
<button>

Figure 1: For the task of “Setting an alarm for seven
thirty.”, accomplishing it solely through UI operations
requires four steps, while API calls can achieve the same
task in just one step.

Du et al., 2021; Touvron et al., 2023; Ouyang et al., 043

2022), LLM-driven agents are at the forefront, yet 044

their capability to navigate mobile application func- 045

tionalities lags behind their proficiency with web 046

pages on PCs (Yao et al., 2022). To faithfully 047

replicate a typical mobile environment, it’s imper- 048

ative to incorporate a diverse set of applications 049

and leverage authentic data, moving beyond the 050

limitations of purely simulated scenarios. The de- 051

velopment challenges in the mobile domain stem 052

from a trio of core issues: a limited understand- 053

ing of mobile interfaces, a scarcity of application 054

variety, and a lack of real-world data. 055

Due to Google’s breakthrough (Wang et al., 056

2023) in UI interface representation, LLM agent’s 057

understanding of UI pages becomes easier, leading 058

to the creation of UI platforms such as Android- 059

Env (Toyama et al., 2021) and Mobile-Env (Zhang 060

et al., 2023), which tasks are defined within indi- 061

vidual games or search engines. However, these 062

works collectively face the following challenges: 063

(1) UI actions depend on the textual descriptions 064

of interfaces, where structured text fails to capture 065

the content of graphical buttons or images which 066

can lead to wrong actions. And a single API action 067

might be equivalent to dozens of UI steps, leading 068

1

Platform&BenchMark InfoUI API&UI Real APP Real Query Multi-APP

World of Bits(Shi et al., 2017) ✓ ✗ ✗ ✗ ✗

WebShop(Yao et al., 2022) ✓ ✗ ✗ ✗ ✗

AndroidEnv(Toyama et al., 2021) ✗ ✗ ✓ ✗ ✗

MobileEnv(Zhang et al., 2023) ✓ ✗ ✓ ✗ ✗

Mobile-Bench(Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Mobile-Bench with existing LLM-based agent platforms. ‘InfoUI’ represents whether UI
information is used for interaction with the agent, ‘API&UI’ represents whether the agent’s actions include API calls
and UI interface operations, ‘Real Query’ represents whether real user queries are used, and ‘Multi-APP’ represents
whether there are tasks involving multiple applications.

to UI’s inefficiency. (2) Their tasks are far removed069

from real-world task scenarios encountered in daily070

use, which require cooperation between multiple071

applications, with user commands being ambigu-072

ous and not specifying target applications. (3) The073

evaluation of tasks should not solely rely on LLM,074

instead, an objective quantitative metric should be075

employed.076

In fact, voice assistants on mobile phones can077

meet most of users’ daily needs, yet they do not078

interact directly with UI interfaces but operate by079

invoking the APIs (Qin et al., 2023) behind applica-080

tions. As shown in Figure 1, in mobile applications,081

APIs are more efficient than UI interfaces; a single082

API call can be equivalent to multiple UI opera-083

tions to achieve the same outcome. However, a084

single API is insufficient for more complex tasks,085

especially when user commands are unclear, neces-086

sitating reliance on LLMs to interpret user intent.087

Therefore, an agent capable of utilizing both UI088

and APIs would be best suited for the job. Simul-089

taneously, it requires strategizing the selection and090

sequence of applications usage, with human over-091

sight merely focusing on reviewing the outcomes,092

a function that voice assistants currently lack(Wen093

et al., 2023a,b). In this light, we develop a com-094

bination of API and UI actions to circumvent the095

limitations of UI interfaces, each action can be096

chosen between UI interactions and API calls; all097

tasks begin from the mobile HOME page rather098

than from the launch page of a specific application,099

enabling the agent to determine single or multiple100

applications it will use; queries in the task are gath-101

ered from real users, and instruction generation102

is only applied to some complex ones which un-103

dergo rigorous manual review; we draw inspiration104

from objective metrics in software automation test-105

ing, named CheckPoint, and have made necessary106

adjustments to accommodate the unpredictable se-107

mantic outputs of LLMs. Above all, we propose a 108

mobile phone environment that includes a platform 109

supporting both API and UI interactions, and a cor- 110

responding dataset with multi-APP tasks. Table 1 111

presents a comparison among recent platforms and 112

benchmark work based on API and UI. 113

Our contributions are summarized as follows: 114

(1) To the best of our knowledge, we are the first 115

to establish a running platform for LLM-based mo- 116

bile agents that simultaneously supports both UI 117

and API calls. 118

(2) We propose an evaluation dataset containing 119

diverse tasks for multi-APP interactions. Our tasks 120

starting from the home page are more appropriate 121

for testing the planning capabilities for agents.Our 122

dataset and platform will be released soon. 123

(3) We introduce a new category-based evalua- 124

tion metric to assess the task completion capabili- 125

ties of the agent in the context of both UI and API 126

interactions. 127

2 Related Work 128

2.1 Mobile Platforms 129

Prior to the emphasis on LLM-based agents, re- 130

search efforts were directed towards RL-based 131

agents, exemplified by the Android-Env platform 132

(Toyama et al., 2021). This open-source platform 133

tailored for reinforcement learning experiments 134

within the Android ecosystem, successfully tested 135

various RL-based agents like DDPG (Zhang and 136

Van Huynh, 2023), D4PG (Barth-Maron et al., 137

2018), MPO (Abdolmaleki et al., 2018), DQN 138

(Mnih et al., 2015), IMPALA (Espeholt et al., 139

2018) and R2D2 (Kapturowski et al., 2018). 140

But recently, more significant research has fo- 141

cused on LLM-based agents. According to the 142

differences in their task environments, these can be 143

categorized into the following three aspects: 144

1) For mobile tasks. Platforms like AutoDroid, 145

2

DroidBot-GPT, GPT-Droid, and WebShop (Wen146

et al., 2023a,b; Liu et al., 2023b; Yao et al., 2022)147

create an interactive environment enabling LLMs148

to engage with mobile tasks, and generate human-149

like operations for automation test. Mobile-Env150

(Zhang et al., 2023) is specifically designed to eval-151

uate agents’ capabilities in handling multi-step in-152

teractions.153

2) For PC Tasks. Researchers developed Tool-154

lama (Qin et al., 2023) to evaluate the capabilities155

to use tools and API calls. AgentBench (Liu et al.,156

2023a) presents a standardized Agent task evalua-157

tion architecture with strong decoupling and scal-158

ability. PPTC Benchmark (Guo et al., 2023) pro-159

posed to evaluate the ability of LLM-based agents160

on PowerPoint tasks.161

3) Other Methods. Toolformer (Schick et al.,162

2023) and HuggingGPT (Shen et al., 2023) evalu-163

ate LLM’s capability to master tools.164

2.2 Benchmarks for LLM agents165

To assess agents’ proficiency in understanding user166

interfaces, a diverse dataset covering various tasks167

is crucial. The widely used RICO dataset (Deka168

et al., 2017) is commonly employed for this pur-169

pose, with Screen2Vec (Li et al., 2021) utilizing it170

to evaluate agent performance.171

However, due to the absence of specific stan-172

dards for evaluating agent performance, efforts173

have focused on designing evaluation frameworks.174

PPTC Benchmark (Guo et al., 2023) devised 279175

multi-round dialogue tasks for PPT file operations.176

DroidTask (Wen et al., 2023a) and various un-177

named datasets (Liu et al., 2023b; Wen et al.,178

2023b) covering various mobile applications have179

also been established. Additionally, Screen2Words180

used a sampling method to sample screens from the181

RICO-SCA (Li et al., 2020) dataset and hired pro-182

fessional annotators to generate English summaries183

for these screens (Wang et al., 2021).184

Current evaluation standards align with vari-185

ous works.ToolBench Proposes Win Rate gauges186

the model’s solution quality against benchmarks187

like RoBERTa (Liu et al., 2019), GPT-3 (Brown188

et al., 2020), PaLM (Chowdhery et al., 2023),189

OPT (Zhang et al., 2022), ChatGPT (Bubeck190

et al., 2023) and GPT-4 (OpenAI, 2023). Mobile-191

Env (Zhang et al., 2023) evaluates agent per-192

formance based on the completion status, aver-193

age steps, and average rewards in WikiHow tasks.194

PPTC Benchmark (Guo et al., 2023) uses Turn-195

based and Session-based accuracy. Android in the196

Wild (Rawles et al., 2023) makes use of Out-of- 197

distribution Generalization. Overall, metrics such 198

as success rate, episode length, and match score 199

are currently the most commonly employed. 200

3 Our Environment 201

3.1 Mobile-Bench Benchmark 202

Data collection. The queries in the dataset are 203

divided into the following three categories: 204

• SAST: Single-App-Single-Task. A real 205

dataset containing only one task text, includ- 206

ing single-task operations such as opening and 207

closing APP, such as "Help me open the map". 208

• SAMT: Single-App-Multi-Task. A real 209

dataset containing multiple task texts, as well 210

as constructed single-APP data. A complex 211

multi-task on single APP, such as "Help me 212

open the map, and navigate to Eiffel Tower.". 213

• MAMT: Multi-App-Multi-Task. Constructed 214

multi-APP data, complete a complex multi- 215

task, such as "Help me search for the latest 216

technology news and share it with friends." 217

SAST and SAMT are directly derived from real 218

voice requests processed by the voice assistants 219

loaded on the mobile phone. We select a subset 220

of this query collection, primarily filtering out the 221

portion that requires voice assistant processing and 222

involves multimodal tools. Additionally, querys 223

that exceed permissions or involve privacy are also 224

filtered out. 225

Since there are fewer multi-APP tasks in real 226

data and the quality is not high, refer to Toollama 227

(Qin et al., 2023) method, we use GPT-4 to con- 228

struct MAMT data. We randomly sample 6 appli- 229

cations from the entire application collection, and 230

then provide some examples of real multi-APP data 231

to prompt GPT-4 to select 2-4 applications to gener- 232

ate tasks. By integrating real and constructed data, 233

we create the final dataset. An example of data is 234

shown in Figure 2. 235

APP & API collection. To ensure task compre- 236

hensiveness, we select not only the applications 237

included in SAST and SAMT but also the most 238

popular free applications from each category in 239

the APPStore. Obtaining the API is to analyze the 240

package of each application to obtain its external 241

reserved interface (Desnos and Gueguen, 2011). 242

The advantage of this is that the obtained API is 243

3

ID: 3
Query:
 I want to book a flight from Beijing to Shanghai next
Friday. Are there any recommended flights?
APP:
 Amap & (Ctrip Travel | Qunar)
CheckPionts:
• Package:
 com.autonavi.minimap & (ctrip.android.view | com.Qunar)
• Key phrase:
 [flight, Beijing, Shanghai, next Friday]
• API:

• adb shell am start -n
com.autonavi.minimap/com.autonavi.-
map.activity.SplashActivity

• adb shell am start -a androidintent.action.VIEW -
damapuri://route/plan/?dname=Shanghai
com.autonavi.mini-map

Figure 2: A test case in MAMT. & stands for conjunc-
tion check, CC; | stands for disjunction check, DC; []
stands for sequential check, SC. The package Check-
Point pass when actions history include either Amap and
Ctrip Travel, or Amap and Qunar. Key phrase Check-
Point come from the orange parts in the case.

naturally classified for the application. Since the244

description of the API in the decompilation result245

is not as detailed as the development document, we246

use the ADB(Android Debug Bridge) command to247

verify the feasibility of the API one by one. Ow-248

ing to its debugging properties, system-level APIs249

can also be invoked normally, allowing access to250

functions such as checking the battery status and251

performing memory cleaning. For more specific252

application names and categories, please refer to253

Appendix B.3254

Dataset statistics. Including several default ap-255

plications within the system, we collected a total256

of 29 applications. For applications, we collected a257

total of 103 usable APIs, which primarily serve258

the following functions: system calls, opening259

pages, closing pages, searching for information,260

viewing details, and controlling device switches.261

These functions are summarized into the following262

main aspects: page switch, details view, broadcast,263

search. In Table 2, we have tabulated the number264

of APIs and the functional categories covered by265

APIs, categorized by the type of APP. We orga-266

nized the available APIs and APP descriptions for267

each APP, and generated an APP list as the basis268

for selecting applications, shown in Appendix B.3.269

In the Mobile-Bench dataset, we collected a total270

of 332, 300, 200 queries for SAST, SAMT, and271

MAMT. We sort out the APIs actually used by each272

task in real voice requests. Provide the these API273

APP Category API Quantity APP Number API Functions
Travel Transportation 5 3 ①, ②, ④

Audiovisual Vision 15 5 ①, ②, ③, ③

Social Communication 3 1 ①, ②, ④

Fashion Shopping 14 6 ①, ④

Information News 11 4 ①, ②, ④

Practical Tool 38 8 ①, ②, ③, ④, ⑤

Home Life 5 1 ①, ⑤

Book Reading 7 2 ①, ②, ④

Universal Buttons 5 0 ⑤

Table 2: Our dataset covers nine major categories of
applications, and we compared them based on the API
function.The above API functions can be summarized
into five categories: ①Page Navigation, ②Viewing De-
tails, ③Playback, ④Searching, and ⑤System Calls.

SAST SAMT MAMT
0.0

0.2

0.4

0.6

0.8

1.0

(a)API&UI, UI task ratio

API & UI
UI

SAST SAMT MAMT
0

100

200

300

400

500

600

700

800

(b)Checkpoints number

Package
Key phrase
Api

Figure 3: The API&UI, UI task ratio(a) and Check-
Points number(b). (a)In SAST and SAMT, API&UI
task ratio is 85%, in MAMT, it is 100%. (b)Numbers of
various CheckPoints: In the three types of data, tasks
that require API usage account for 31.2% of the total.

as an example to GPT-4 for instruction generation. 274

In order to ensure that there are a sufficient number 275

of tasks in the dataset that include steps to call API, 276

we calculated ratio of tasks calling API, shown in 277

Figure 3(a). This approach ensures that we have 278

sufficient data to analyze the role of APIs in task 279

completion. 280

Quality verification. (Bolotova-Baranova et al., 281

2023) The initial test data originates from software 282

automation tests, but some complex data points are 283

generated by GPT-4. To ensure the quality of our 284

dataset, we randomly sampled 100 data points from 285

each of the SAST, SAMT, and MAMT, resulting in 286

a total of 300 quality test data. We conducted cross- 287

source validation to verify the feasibility of these 288

CheckPoints. The specific formula for calculation 289

is as follows: 290

Overlap(CP1, CP2) =
|CP1 ∩ CP2|

|CP1|
(1) 291

CP1,CP2 representing the CheckPoint sequences 292

generated by CPinstruction and CPHuman, respec- 293

4

tively. In Table 3, we list the human evaluation294

results for three types of data. From the table, it295

can be observed that a higher proportion of terminal296

data corresponds to better data quality. However,297

all MAMT data is generated by instructions, its298

quality does not exhibit an unacceptable gap com-299

pared to SAST. See appendix B.1 for more analysis.300

Statistical values SAST SAMT MAMT Total
CPinstruction 395 546 513 1454
CPHuman 412 598 623 1633
CPinstruction ∩ Human 372 466 412 1250
Overlap 0.94 0.85 0.80 0.86

Table 3: Human Evaluation Results

301

3.2 Test Platform302

Overview Mobile-Bench is designed as a univer-303

sal interaction platform that supports hybrid API304

and UI interactions. Users are able to construct305

their own evaluation data following a fixed for-306

mat, yet they must adhere to our prescribed eval-307

uation method. As shown in Figure 4 users can308

interact with the environment using the following309

commands.310

• Start: Open the test environment and load the311

preset snapshot using this command. Each test312

case must start from the same environment.313

• Stop: Stop the test environment and end test.314

• Close: Close the test environment and Save315

the test process and results.316

• Check: Capture a screenshot snapshot of the317

current test environment.318

• ReSet: Load a previously saved environment319

snapshot into the test environment.320

Observation space To enable the agent to read321

information on the android emulator in a human-322

like manner, we use Appium to obtain page infor-323

mation. Following the method described in (Wang324

et al., 2023), we convert XML to HTML, as the325

training data for LLMs is predominantly sourced326

from the Internet, which includes numerous HTML327

files. Therefore, we believe that LLM has a better328

understanding of HTML than XML. Given the tree329

structure of XML, we initially convert the XML330

into a tree format and subsequently transform the331

nodes that need to be displayed to the agent into332

HTML. The agent simulates human interaction333

with smartphones, performing three major oper-334

ations: click, input, and scroll. Humans visually335

User Instruction

Agent

APP List

×N
User Instruction

Interaction

1.
2.

30.

API List
1. 2. m.

· Start
· Stop
· Close
· Check
· ReSet

Amap
Ctrip Travel
Qunar

Figure 4: Test Platform Overview

identify which elements can be clicked or receive 336

input, and use their fingers to determine if they 337

can scroll the screen. Therefore, we provide the 338

agent with elements that are visible and scrollable. 339

Due to the limit on context length, we only convert 340

the information required by the agent in XML to 341

HTML: 342

• Type: HTML element categories inherited di- 343

rectly from XML formatted information. 344

• ID: “ID” inherits from the XML “resource-id” 345

attribute, uniquely identifying the existence of 346

an element. 347

• Package: the package name of the current 348

application. 349

• Class: the class of the element, such as Im- 350

ageView, TextView. 351

• Description&text: describe the function and 352

shape of the element. 353

• Clickable&Scrollable: whether the element 354

is clickable and scrollable. 355

• Bounds: if the element is scrollable, this at- 356

tribute will be present and scope the scroll 357

component, such as: 358

[xi, yi] [xj, yj] 359

The scrollable rectangle ranges from [xi, yi] 360

to [xj , yj]. 361

And, there is an example of HTML element: 362

<button package="com.ximalaya.ting.android" 363

class="android.widget.Button" clickable="true"> 364

message </button> 365

Action space Our Mobile-Bench imitates human 366

behavior in using mobile and summarizes three 367

actions (Zhang et al., 2023) and imitates the process 368

of calling the API on the test platform (Sengupta 369

et al., 2023): 370

5

• Click: simulate real user click actions by pass-371

ing in specific elements.372

• Scroll: simulate real user scrolling actions by373

tapping - dragging - releasing.374

• Input: simulate real user input actions by375

clicking-typing.376

• API Call: Launch an activity or send an intent377

by invoking an API through ADB (Android378

Debug Bridge) commands.379

3.3 Evaluation Method380

CheckPoint. Automated test CheckPoint cover-381

age (Bajunaid and Menascé, 2018) is a test metric382

for the software execution process. It cannot assist383

in checking the software results, but it can visually384

inspect whether the software runs in the specified385

unit sequence. During data construction, we supply386

APPs and APIs, which naturally serve as detec-387

tion indicators. Additionally, we incorporated a388

CheckPoint to verify if the UI operation correctly389

clicks on the intended element. After sorting out390

the above CheckPoints, we constructed the follow-391

ing three CheckPoints:392

• Package: the unique package name corre-393

sponding to the application. Checking the394

package can determine whether the correct395

application is used.396

• Key phrase: the keyword extracted from the397

query, represents key steps in the UI execution398

process.399

• API: API commands that need to be called400

during the execution process.401

To evaluate the agent’s selection and execution ca-402

pabilities, we divide the inspection granularity into403

two levels: CheckPointl1 - whether it uses the cor-404

rect application, and CheckPointl2 - whether it fol-405

lows the predefined paths to complete the task. For406

CheckPointl1, we check the number of correctly407

called package. For CheckPointl2, we check the408

number of correctly called package, Key phrase,409

Api. For CheckPoints, we identify three logical410

relationships: sequential, conjunctive, and disjunc-411

tive checks. These correspond to the instability412

of LLM output and its tendency for synonym sub-413

stitution. The calculation formula for "sequential414

check" is as follows:415

ScoreSequen =
|
∑

Str∈SC∩AH Str|
|
∑

Str∈SC Str|
(2)416

SI represent Sequential Check Set and AH repre-417

sent Actions History. The calculation formulas for418

conjunctive checks is as follows: 419

Scoreconjun =

{
1, if ∀str ∈ CC ∈ AH

0, otherwise
(3) 420

CC represent Conjunctive Check Set. The calcula- 421

tion formulas for disjunctive checks is as follows: 422

Scoredisjun =

{
1, if ∃str ∈ DC ∧ str ∈ AH

0, otherwise
(4) 423

DC represent Disjunctive Check Set. The 424

weighted sum of the above three scores will be 425

the final CheckPoint coverage rate. 426

As shown in Figure 3, the number of Key phrase 427

CheckPoints is significantly higher than that of 428

packages, , indicating the need for more semantic 429

information to ensure tasks are completed step-by- 430

step. Analyzing the dataset from a proportional 431

perspective, we find that the distributions of the 432

three types of CheckPoints are 0.212, 0.493, 0.294, 433

with Key phrase CheckPoints remaining the most 434

predominant method of checking. 435

In general, a test case should include at least the 436

following contents: ID, Query, APP List, Check- 437

Points(Package, Key phrase, API). Figure 2 is a 438

test case that contains the above three CheckPoints. 439

PassRate. (Qin et al., 2023) We assess an agent’s 440

human-computer interaction capabilities by calcu- 441

lating the proportion of queries successfully com- 442

pleted within the specified step limits. During this 443

process, we organized the emulator’s current state. 444

Subsequently, GPT-4 evaluates the task comple- 445

tion status. We computed the percentage of pass 446

tasks, yielding a PassRate as an indicator of agent’s 447

human-computer interaction capabilities. 448

Average steps. (Zhang et al., 2023) We quan- 449

tified the step size required by Mobile-Bench to 450

complete tasks as a metric for evaluating the effi- 451

ciency of the agent. In Mobile-Bench, a ’step’ is 452

defined as the completion of a UI operation or the 453

execution of an API call. 454

4 Experiment 455

4.1 Baseline Model 456

Our model’s architecture, illustrated in Algorithm 457

1, begins by obtaining the smartphone’s UI infor- 458

mation in XML format through Appium and trans- 459

forms it into HTML format through a heuristic 460

algorithm. Subsequently, as illustrated in Figure 5 461

6

Check Point Action History

Overall Plan

Clock Video

Concrete Step

API List

HTML Before

HTML After

Search The
API List

Thought
Generation

Compare
current status

Action Status

Yes No

Yes,Finished

Output!

No

Continue Execution Loop

F Times

Start Execution Overall Plan Generate

Check If Exist
 Callable API

Check if the task
is completed

Step1

＋

＋

×

＋

Step2.

StepF.

Action History
1. 2. k.

1. 2. m.

Exam-
ple2.
Open an
unknown
video
software

Screen
Operation

Example1.
Set
an
alarm
clock

＋

Figure 5: Baseline Model Overview

Algorithm 1 Baseline Model
Input: description of the Task, Task; APP list, LAPP ; API

list, LAPI ; max loop step, Mstep; initial thought, Tho;
Output: actions history, AH; total steps, Step; finish flag,

Finish;
1: Html← Appium(Emulator)
2: Plan← LLM(Task, LAPP)
3: Step = 0, Finish = False
4: AH = []
5: while (Step ≤Mstep)and(Finish ̸= True) do
6: Step++;
7: Html← Appium(Emulator);
8: API←LLM(Task, LAPI , AH, Tho, P lan,Html)
9: if API then

10: Action(API)
11: AH.APPend(API)
12: else
13: UI ← LLM(Task,AH, Tho, P lan,Html)
14: Action(UI)
15: AH.APPend(UI)
16: end if
17: Html← Appium(Emulator);
18: Tho← LLM(Task,AH,P lan,Html)
19: Finish← LLM(Task,AH, Tho,Html)
20: end while

leveraging the HTML, task details, and APP list,462

LLM generates a comprehensive task plan, outlin-463

ing the necessary applications and corresponding464

sub-tasks. As the collection of APIs is organized465

based on the classification of APPs, we can get the466

API set that may be used in plan.467

The task plan is executed iteratively. In each468

iteration, the model either performs an API call or469

a UI operation. After each execution, the model470

records the success or failure of the action in its471

history, generates the subsequent thought, and eval-472

uates whether the task has been completed. For the473

actual running process of an algorithm, please refer474

to the appendix C.7475

4.2 Setup 476

We evaluate four popular LLMs on the proposed 477

Mobile-Bench task set: GPT-3.5-turbo (Ouyang 478

et al., 2022), GPT-4 (Nori et al., 2023), LLaMA- 479

13B and LLaMA-70B(Touvron et al., 2023), while 480

ChatGPT-3.5 and GPT-4 are accessed through the 481

online APIs of OpenAI. The experiments are con- 482

ducted with a 3-shot in-context learning under sam- 483

pling temperature of 0.1. Recognizing that task 484

execution incurs costs, we preset different maxi- 485

mum step limits for tasks based on their difficulty 486

levels. For the three categories of SAST, SAMT, 487

and MAMT, we set the max step to 10, 20, and 50 488

respectively. Owing to the limit of budget, only 489

GPT-3.5 utilizes an interface with a context length 490

of 16K. GPT-4 uses a standard interface, which 491

necessitated compression and trimming of actions 492

history. See Appendix A for other settings. 493

4.3 Results 494

As observed in Table 4, it can be observed 495

that GPT-3.5 outperforms GPT-4 in PassRate on 496

SAMT(64%>63%), and it requires fewer steps to 497

complete the task(12.06<13.94). To investigate this 498

phenomenon, we analyze the output files and find 499

that models with poorer performance exhibit Pass- 500

Rate misjudgments: they prematurely terminate 501

even when the task is not completed. This phe- 502

nomenon is also present in LLaMA, which exhibits 503

a high PassRate (44.58%) but low CheckPoint cov- 504

erage (34.85%). At the same time, we delved 505

into why the results for MAMT are so low(15.5%, 506

26.5%). Our analysis revealed that LLMs often ex- 507

hibit greedy exploration behavior when completing 508

tasks, meaning they struggle to determine when 509

7

Indicators
LLaMA-13B LLaMA-70B GPT-3.5-turbo GPT-4

SAST SAMT MAMT SAST SAMT MAMT SAST SAMT MAMT SAST SAMT MAMT
Average #Steps 7.43 18.76 49.52 5.97 16.63 48.91 4.53 12.06 48.73 3.79 13.94 44.86
PassRate(%) 44.58 27.67 8 56.62 54 13.5 64.94 64 15.5 80.96 63 26.5
CheckPointl1(%) 46.08 43.67 28.74 56.62 61 39.98 66.75 67 43.16 81.57 72.66 61.34
CheckPointl2(%) 34.85 29.13 21.39 63.12 62.73 41.21 76.21 71.29 44.09 83.76 77.35 52.98

Table 4: Results of the agents based on different LLMs on Mobile-Bench dataset. On MAMT data, due to context
length limitations, a compression is applied to the actions history by retaining only the most recent 20 entries.

to exit the current application and transition to the510

next one. This tendency is particularly prevalent in511

certain generation tasks. Moreover, as the actions512

history increases, its ability to accurately judge task513

progress becomes increasingly challenging. For514

more detailed result, please refer to Table 7.

Settings Average #Steps CheckPointl2 PassRate

SAST(GPT-4) 3.79 83.76 80.96
SAMT(GPT-4) 13.94 77.35 63
MAMT(GPT-4) 44.86 52.98 26.5

SAST(w/o API) 6.13 72.73 74.39
SAMT(w/o API) 16.86 56.74 48
MAMT(w/o API) 49.17 31.69 9.5

Table 5: API Ablation Study based on GPT-4

515

4.4 Impact of API Calls516

API Calls can accelerate task execution, as a sin-517

gle call often replaces several sequential UI steps.518

From another perspective, the ability of the agent519

to select appropriate APIs and input parameters520

warrants further investigation. Choosing the wrong521

API may lead the task in an incorrect direction522

or require a significant number of steps to rectify.523

Therefore, in Table 5, we evaluate and analyze524

the impact of introducing APIs on task completion525

based on GPT-4.526

From Table 5, it can be seen that even in527

SAST, the PassRate has decreased by 6.57% (from528

80.96 to 74.39). Furthermore, the values for529

CheckPointsl2 exhibit a more pronounced decrease530

after API removal, with a drop exceeding 20% in531

SAMT. Simultaneously, we have observed varying532

increases in the average number of steps, which533

align with our expectations. We analyzed the re-534

sults and found that the inability to accurately scroll535

pages, inefficient exploration of page functional-536

ity, and failure to click graphical buttons are the537

primary reasons for the low efficiency of UI opera-538

tions.539

Settings Average #Steps CheckPointl1 CheckPointl2 PassRate
SAST(GPT-4) 3.63 82 79.74 76
SAST(w/o thought) 8.86 82 29.16 24
SAST(w/o plan) 3.98 76 74.54 72
SAMT(GPT-4) 13.94 63 72.66 77
SAMT(w/o thought) 19.54 63 18.31 20
SAMT(w/o plan) 17.09 52 58.02 62

Table 6: Thought and Plan Ablation Study on
SAST(subset 50) and SAMT(subset 200) based on GPT-
4

4.5 Impact of Plan and Thought 540

Since observation-thought-action is already a stan- 541

dardized process in the agent direction(Qin et al., 542

2023), and verified by experimental results, plan- 543

ning and thought before action are essential. From 544

the experimental results, we can find that without 545

the observation-thought step, the agent is almost un- 546

able to complete the task(77->20, 76->24), which 547

is because it cannot determine the next action cate- 548

gory and the current task status. In more complex 549

tasks SAMT, losing the plan has more negative 550

consequences(77->62). But they will have almost 551

no impact on CheckPointl1(82->82 63->63), be- 552

cause the application selection is almost done by 553

the API Call. 554

5 Conclusion 555

In this work we have proposed an agent capability 556

testing environment that supports API and UI inter- 557

action on mobile phone. This holds significant im- 558

portance for exploring how LLMs can be integrated 559

with mobile operating systems. Additionally, it can 560

serve as a valuable reference for developing test- 561

ing platforms for operating systems to evaluate the 562

capabilities of LLM agents. We collected and re- 563

leased a test dataset containing tasks for multiple 564

APPs, ensuring its quality through human verifica- 565

tion. Based on this data set and environment, we 566

tested the planning, decision-making and execution 567

of various LLM-based agents. Please refer to the 568

appendix ?? for the limitations of our benchmark. 569

8

6 Limitations570

While general large models exhibit strong capabil-571

ities in reasoning and planning, they tend to have572

pronounced illusions in API calls. As a result, the573

language model may become confused about the574

application’s functionality, leading to a reluctance575

to continue and complete the task. Therefore, fine-576

tuning a model for instructions is highly necessary.577

Automatic CheckPoint is a process evaluation578

metric, making it challenging to assess the quality579

of the final outcome. This depends on whether580

the agent has obtained the necessary information581

(actions) on the required pages.582

The enhancement of the agent’s capabilities re-583

lies on extensive API and SDK libraries, requiring584

substantial support from application development585

companies.586

7 Ethics Statement587

We have rigorously refined our dataset to remove588

any elements that could compromise personal pri-589

vacy, thereby guaranteeing the highest level of pro-590

tection for individual data. The evaluation of our591

work was carried out through a meticulously ran-592

domized selection of IT professionals. This pro-593

cess ensured a gender-balanced and educationally594

diverse panel, reflecting a wide spectrum of per-595

spectives and expertise.596

References597

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval598
Tassa, Remi Munos, Nicolas Heess, and Martin Ried-599
miller. 2018. Maximum a posteriori policy optimisa-600
tion. arXiv preprint arXiv:1806.06920.601

Y Bai, S Kadavath, S Kundu, A Askell, J Kernion,602
A Jones, A Chen, A Goldie, A Mirhoseini, C McK-603
innon, et al. 2022. Constitutional ai: Harmlessness604
from ai feedback (arxiv: 2212.08073). arxiv.605

Noor Bajunaid and Daniel A Menascé. 2018. Efficient606
modeling and optimizing of checkpointing in concur-607
rent component-based software systems. Journal of608
Systems and Software, 139:1–13.609

Gabriel Barth-Maron, Matthew W Hoffman, David Bud-610
den, Will Dabney, Dan Horgan, Dhruva Tb, Alistair611
Muldal, Nicolas Heess, and Timothy Lillicrap. 2018.612
Distributed distributional deterministic policy gradi-613
ents. arXiv preprint arXiv:1804.08617.614

Valeriia Bolotova-Baranova, Vladislav Blinov, Sofya615
Filippova, Falk Scholer, and Mark Sanderson. 2023.616

Wikihowqa: A comprehensive benchmark for multi- 617
document non-factoid question answering. In Pro- 618
ceedings of the 61st Annual Meeting of the Associa- 619
tion for Computational Linguistics (Volume 1: Long 620
Papers), pages 5291–5314. 621

Richard A Bolt. 1980. “put-that-there” voice and ges- 622
ture at the graphics interface. In Proceedings of the 623
7th annual conference on Computer graphics and 624
interactive techniques, pages 262–270. 625

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 626
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 627
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 628
Askell, et al. 2020. Language models are few-shot 629
learners. Advances in neural information processing 630
systems, 33:1877–1901. 631

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 632
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, 633
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund- 634
berg, et al. 2023. Sparks of artificial general intelli- 635
gence: Early experiments with gpt-4. arXiv preprint 636
arXiv:2303.12712. 637

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 638
Maarten Bosma, Gaurav Mishra, Adam Roberts, 639
Paul Barham, Hyung Won Chung, Charles Sutton, 640
Sebastian Gehrmann, et al. 2022. Palm: Scaling 641
language modeling with pathways. arXiv preprint 642
arXiv:2204.02311. 643

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 644
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 645
Barham, Hyung Won Chung, Charles Sutton, Sebas- 646
tian Gehrmann, et al. 2023. Palm: Scaling language 647
modeling with pathways. Journal of Machine Learn- 648
ing Research, 24(240):1–113. 649

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hi- 650
bschman, Daniel Afergan, Yang Li, Jeffrey Nichols, 651
and Ranjitha Kumar. 2017. Rico: A mobile app 652
dataset for building data-driven design applications. 653
In Proceedings of the 30th annual ACM symposium 654
on user interface software and technology, pages 655
845–854. 656

Anthony Desnos and Geoffroy Gueguen. 2011. An- 657
droid: From reversing to decompilation. Proc. of 658
Black Hat Abu Dhabi, 1:1–24. 659

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 660
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021. 661
Glm: General language model pretraining with 662
autoregressive blank infilling. arXiv preprint 663
arXiv:2103.10360. 664

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Si- 665
monyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad 666
Firoiu, Tim Harley, Iain Dunning, et al. 2018. Im- 667
pala: Scalable distributed deep-rl with importance 668
weighted actor-learner architectures. In International 669
conference on machine learning, pages 1407–1416. 670
PMLR. 671

9

Asbjørn Følstad and Petter Bae Brandtzæg. 2017. Chat-672
bots and the new world of hci. interactions, 24(4):38–673
42.674

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao,675
and Duan Nan. 2023. Pptc benchmark: Evaluating676
large language models for powerpoint task comple-677
tion. arXiv preprint arXiv:2311.01767.678

Steven Kapturowski, Georg Ostrovski, John Quan, Remi679
Munos, and Will Dabney. 2018. Recurrent experi-680
ence replay in distributed reinforcement learning. In681
International conference on learning representations.682

Clare-Marie Karat, John Vergo, and David Nahamoo.683
2002. Conversational interface technologies. The684
human-computer interaction handbook, pages 169–685
186.686

Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and687
Brad A Myers. 2021. Screen2vec: Semantic embed-688
ding of gui screens and gui components. In Proceed-689
ings of the 2021 CHI Conference on Human Factors690
in Computing Systems, pages 1–15.691

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason692
Baldridge. 2020. Mapping natural language instruc-693
tions to mobile ui action sequences. arXiv preprint694
arXiv:2005.03776.695

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-696
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,697
Kaiwen Men, Kejuan Yang, et al. 2023a. Agent-698
bench: Evaluating llms as agents. arXiv preprint699
arXiv:2308.03688.700

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-701
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,702
Luke Zettlemoyer, and Veselin Stoyanov. 2019.703
Roberta: A robustly optimized bert pretraining ap-704
proach. arXiv preprint arXiv:1907.11692.705

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo706
Chen, Boyu Wu, Xing Che, Dandan Wang, and707
Qing Wang. 2023b. Chatting with gpt-3 for zero-708
shot human-like mobile automated gui testing. arXiv709
preprint arXiv:2305.09434.710

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,711
Andrei A Rusu, Joel Veness, Marc G Bellemare,712
Alex Graves, Martin Riedmiller, Andreas K Fidje-713
land, Georg Ostrovski, et al. 2015. Human-level714
control through deep reinforcement learning. nature,715
518(7540):529–533.716

Harsha Nori, Nicholas King, Scott Mayer McKinney,717
Dean Carignan, and Eric Horvitz. 2023. Capabili-718
ties of gpt-4 on medical challenge problems. arXiv719
preprint arXiv:2303.13375.720

OpenAI. 2023. Gpt-4 technical report.721

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,722
Carroll Wainwright, Pamela Mishkin, Chong Zhang,723
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.724
2022. Training language models to follow instruc-725
tions with human feedback. Advances in Neural726
Information Processing Systems, 35:27730–27744.727

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 728
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 729
Bill Qian, et al. 2023. Toolllm: Facilitating large 730
language models to master 16000+ real-world apis. 731
arXiv preprint arXiv:2307.16789. 732

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana 733
Riva, and Timothy Lillicrap. 2023. Android in the 734
wild: A large-scale dataset for android device control. 735
arXiv preprint arXiv:2307.10088. 736

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 737
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 738
Cancedda, and Thomas Scialom. 2023. Toolformer: 739
Language models can teach themselves to use tools. 740
arXiv preprint arXiv:2302.04761. 741

Aritro Sengupta, Amit Singh, and BM Vinjit. 2023. A 742
platform independent and forensically sound method 743
to extract whatsapp data from mobile phones. Inter- 744
national Journal of Electronic Security and Digital 745
Forensics, 15(3):259–280. 746

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 747
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 748
gpt: Solving ai tasks with chatgpt and its friends in 749
huggingface. arXiv preprint arXiv:2303.17580. 750

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her- 751
nandez, and Percy Liang. 2017. World of bits: An 752
open-domain platform for web-based agents. In In- 753
ternational Conference on Machine Learning, pages 754
3135–3144. PMLR. 755

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 756
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 757
Baptiste Rozière, Naman Goyal, Eric Hambro, 758
Faisal Azhar, et al. 2023. Llama: Open and effi- 759
cient foundation language models. arXiv preprint 760
arXiv:2302.13971. 761

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe- 762
orghe Comanici, Amelia Glaese, Zafarali Ahmed, 763
Tyler Jackson, Shibl Mourad, and Doina Precup. 764
2021. Androidenv: A reinforcement learning plat- 765
form for android. arXiv preprint arXiv:2105.13231. 766

Bryan Wang, Gang Li, and Yang Li. 2023. Enabling 767
conversational interaction with mobile ui using large 768
language models. In Proceedings of the 2023 CHI 769
Conference on Human Factors in Computing Systems, 770
pages 1–17. 771

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi 772
Grossman, and Yang Li. 2021. Screen2words: Au- 773
tomatic mobile ui summarization with multimodal 774
learning. In The 34th Annual ACM Symposium on 775
User Interface Software and Technology, pages 498– 776
510. 777

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, 778
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu, 779
Yaqin Zhang, and Yunxin Liu. 2023a. Empowering 780
llm to use smartphone for intelligent task automation. 781
arXiv preprint arXiv:2308.15272. 782

10

http://arxiv.org/abs/2303.08774

Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun783
Li. 2023b. Droidbot-gpt: Gpt-powered ui automation784
for android. arXiv preprint arXiv:2304.07061.785

Shunyu Yao, Howard Chen, John Yang, and Karthik786
Narasimhan. 2022. Webshop: Towards scalable real-787
world web interaction with grounded language agents.788
Advances in Neural Information Processing Systems,789
35:20744–20757.790

Bolun Zhang and Nguyen Van Huynh. 2023. Deep791
deterministic policy gradient for end-to-end commu-792
nication systems without prior channel knowledge.793
arXiv preprint arXiv:2305.07448.794

Danyang Zhang, Lu Chen, and Kai Yu. 2023. Mobile-795
env: A universal platform for training and eval-796
uation of mobile interaction. arXiv preprint797
arXiv:2305.08144.798

Susan Zhang, Stephen Roller, Naman Goyal, Mikel799
Artetxe, Moya Chen, Shuohui Chen, Christopher De-800
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.801
Opt: Open pre-trained transformer language models.802
arXiv preprint arXiv:2205.01068.803

11

A Settings804

We conduct experiments on the Android 14.0 version emulator and use Appium UiAutomator2 Driver for805

automated testing. Before each execution of a task, we load a snapshot to ensure the emulator in the same806

environment every time. For all applications, we have logged in to the account in advance to ensure that807

the full function of the application can be used. Since we tests in the real world, we filtered out any tasks808

that included payments.809

B Details of Dataset810

B.1 Dataset quality analysis811

The root cause of low-quality data often lies in the inaccuracies in the descriptions of applications.812

Additionally, ambiguity in query generation also plays a significant role. For example, in the query ”Help813

me find pictures related to Beijing”, although the user has not explicitly specified the source application,814

for a human, the expected result would likely be a search engine or a map application, as the images are815

not likely to be from the user themselves. However, for LLM, because the statement includes the word816

“pictures”, it might be reasonable for it to spend all its time searching for pictures in the gallery application,817

even though this effort would ultimately be in vain. CheckPoint coverage is calculated as the weighted818

sum of the scores for the three types of CheckPoints mentioned above.819

B.2 Prompts for Instruction Generation820

Below we list the detailed prompt for instruction generation, including single-APP-multi-task description,821

multi-APP-multi-task description.822

single-APP-multi-task description:823

You will be provided with an application with descriptions, an available API list including adb command,824

function description and parameter information. You should create 5 varied, innovative, and detailed multi825

task queries that employ this application as a tool, API can be used as an auxiliary.826

Each query should include the necessary parameters. Note that you shouldn’t ask ‘which APP to use’,827

rather, simply state your needs that can be addressed by these APPs. You should also avoid asking for828

the input parameters required by the APP call, but instead directly provide the parameter in your query.829

Those related APP and APIs have to strictly come from the provided lists.830

At the same time, you also need to provide the CheckPoint of this query, including package, key phrase831

and API. The package comes from the package corresponding to the APP to be used. Key phrase is the832

key click element or key input character that the Android emulator will perform when executing this833

query, which is used to check whether the query has been completed. Key phrase should be noun and part834

of query, should be kept as short as possible.835

Key phrase can contain multiple pieces of information, "|" means the query passes when any of the836

following texts are completed. "|" is used to separate synonymous expressions of the same noun; "&"837

indicates that the query must be passed when all texts are completed; sequential CheckPoints are stored in838

"[]", and the count increases by one for each passed element. The "ADB Command" to be used is stored839

in the API, which may also be empty.840

Deliver your response in this format:841

[{842

"id": "number"843

"query": "text"844

"APP": "APP name"845

"CheckPoint": {846

"package": "APP package name"847

"key phrase": ["text1", ...]848

"API: ["API1", ...]"849

}850

}851

12

... 852

] 853

multi-APP-multi-task description: 854

You will be provided with some APPs with descriptions, available API list including adb command, 855

function description and parameter information. You should create 3 varied, innovative, and detailed multi 856

queries that employ multi-APP as a tool, API can be used as an auxiliary. 857

Each query should include the necessary parameters. Note that you shouldn’t ask ‘which APP to use’, 858

rather, simply state your needs that can be addressed by these APPs. You should also avoid asking for 859

the input parameters required by the APP call, but instead directly provide the parameter in your query. 860

Those related APPs and APIs have to strictly come from the provided lists. You should first think about 861

possible related APP combinations, then give your query. Keep in mind that each query should call upon 862

two to four APPs. 863

At the same time, you also need to provide the CheckPoint of this query, including package, key phrase 864

and API. The package comes from the package corresponding to the APP to be used. Key phrase is the 865

key click element or key input character that the Android emulator will perform when executing this 866

query, which is used to check whether the query has been completed. Key phrase should be noun and part 867

of query, should be kept as short as possible. 868

Key phrase can contain multiple pieces of information, "|" means the query passes when any of the 869

following texts are completed. "|" is used to separate synonymous expressions of the same noun; "&" 870

indicates that the query must be passed when all texts are completed; sequential CheckPoints are stored in 871

"[]", and the count increases by one for each passed element. The "ADB Command" to be used is stored 872

in the API, which may also be empty. For different queries, overlap of related APPs should be as little as 873

possible. 874

Deliver your response in this format: 875

[{ 876

"id": "number" 877

"query": "text" 878

"APP": ["APP name1", ...] 879

"CheckPoint": { 880

"package": ["APP package name1", ...] 881

"key phrase": ["text1", ...] 882

"API: ["API1", ...]" 883

} 884

} 885

... 886

] 887

B.3 APP&API statistics 888

As can be seen from Figure 6, each functional area contains at least one application and its corresponding 889

API. These applications are sufficient to meet the daily needs of users. In other words, our simulation 890

environment is almost consistent with the real daily use environment, and it is consistent with the real 891

daily use environment. Open world information exchange. There are so many practical tools that are 892

the basic functions of mobile . They have been automatically installed and completed during system 893

installation, and standard API interfaces for tools are easier to obtain. Our next step is to increase the 894

number of APIs and SDKs for third-party applications. 895

B.4 Case study 896

CheckPoints is a group of words, including packages, key phases, and API, which represent the package 897

name, action keywords, and API instructions of the application respectively. We regularize these words 898

and action histories to check whether they select a sufficient and correct number of applications, UI 899

elements, and APIs to accomplish the given task. 900

Next, we will give an example of CheckPoints in Figure 7 and Figure 8. 901

13

 Ⅱ
 Ⅲ

 Ⅳ

 Ⅴ

 Ⅵ

 Ⅶ Ⅷ Ⅰ

(A) API
COUNT:103

(B) APP
COUNT:30

Ⅰ.Travel Transportation

5

15

3

14

11

38&5

5
7

Ⅱ.Audiovisual Vision Ⅲ.Social Communication Ⅳ.Fashion Shopping
Ⅴ.Information News Ⅵ.Practical Tool&Universal Buttons Ⅶ.Home Life Ⅷ.Book Reading

MicroBlog: 3
Topbuzz: 2

Weather: 5

Calendar: 1
Clock: 6

System: 13

Calculator: 5
Mi Video: 3

Dear Translate: 4
Duokan: 3

MIJIA: 5
Note: 3

Contacts: 4
Message: 4

Photo: 4
File Management:

Ctrip: 0
Amap: 4
Qunar: 1
Himalaya: 2
iQIYI: 4

Tik Tok: 3
JOOXMusic: 3

Theme Wallpaper: 3
App Store: 4

Dianping: 3
YOUPIN: 2

Mi Store: 1

Temu: 1
QQ: 3

Figure 6: APP classification and quantity chart: The largest category is utility tools, where we categorize fundamental
mobile applications. Their distinctive feature is the use of standard API interfaces, and the API functionality is more
comprehensive.

ID: 7
Query:
 Open Ctrip Travel.
APP:
 Ctrip Travel
CheckPionts:
• Package:
 ctrip.android.view
• Key phrase:
 Ctrip
• API:

• ctrip.android.view/.ui.LocalAppsActivity

Figure 7: A test case in SAST.

ID: 2
Query:
 Open Himalaya and play the history.
APP:
 ximalaya
CheckPionts:
• Package:
 com.ximalaya.ting.android
• Key phrase:
 Play history | history
• API:

• com.ximalaya.ting.android/.host.activity.MainActi
vity

Figure 8: A test case in SAMT.

Figure 9 and Figure 10 is an example of a data set and action history. Note that CheckPoints only902

check successfully executed instructions in the action history. From the action history, we can see that903

the emulator successfully opened the application by API, perform tasks in ctrip package, and selected904

"air ticket", "Beijing", and "Shanghai" elements, but failed to input the correct date. According to the905

definitions of level 1 and level 2 CheckPoints, level 1 CheckPoint score counts package CheckPoints906

covered, and the score of the example is 1/1, level 2 CheckPoint score counts all CheckPoints covered,907

and the score of the example is 5/6.908

B.5 Supplementary experiments909

As can be seen from the table 7, categories with smaller average execution steps generally have higher910

success rates and CheckPoints scores. Among them, the travel transportation task has the largest average911

number of execution steps and the lowest PassRate. We can think that more complex tasks require longer912

execution steps, and the PassRate and CheckPoint score of complex tasks are lower. Travel transportation913

task contains more uncertainties and it is difficult to determine whether it is completed, so the PassRate is914

the lowest.915

14

ID: 17
Query:
 Please help me search for air tickets from Beijing to Shanghai. I plan to
leave on December 12th.
APP:
 ctrip.android.view
CheckPionts:
• Package:
 ctrip.android.view
• Key phrase:

air ticket,
Beijing,
Shanghai,
December 12th

• API:
• adb shell am start -a ctrip.android.view.flight.FlightSearchActivity

Figure 9: A test case in SAMT.

{'API call': 'adb shell am start -a ctrip.android.view.flight.FlightSearchActivity'
[Call result]:API execution successful'}
{'Action': 'click(<p package="ctrip.android.view" class="android.widget.TextView"
clickable="true">air ticket </p>)'}
{'Action': 'click(<p id="ctrip.android.view:id/a" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chengdu</p>)'}
{'Action':input(<p id="ctrip.android.view:id/a" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chengdu</p>, Beijing)'}
{'Action': 'click(<p id="ctrip.android.view:id/b" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chongqing</p>)'}
{'Action':input(<p id="ctrip.android.view:id/b" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chongqing</p>, Shanghai)'}
{'Action': '[Fail]: Invalid element input(<p id="ctrip.android.view:id/a"
package="ctrip.android.view" class="android.widget.TextView" clickable="true">
January 25th </p>, December 12th)'}
{'Action': 'click(<button id="ctrip.android.view:id/a" package="ctrip.android.view"
class="android.widget.Button" clickable="true"> search </button>)'}

Figure 10: A action history of a test case in SAMT.

APP Category Case Quantity Average #Steps PassRate(%) CheckPointl1 CheckPointl2
Travel Transportation 18 8.17 39 83 68
Audiovisual Vision 34 4.03 82 68 72
Social Communication 30 6.40 77 57 63
Fashion Shopping 35 7.97 54 63 61
Information News 24 6.46 67 83 68
Practical Tool 61 2.08 89 87 89
Home Life 46 1.67 89 72 91
Book Reading 23 4.17 78 74 84
Universal Buttons 61 1.20 98 98 99

Table 7: Results on SAST classified by APP categories

C Details for Baseline Model 916

C.1 Examples for HTML 917

Figure 11 shows the correspondence between the components in the UI page and the corresponding 918

HTML code. It is easy to find that most components have text descriptions, but the switch of the alarm 919

clock does not have a corresponding text description, and LLM will hardly think of it. To click this button, 920

therefore, component function exploration is what we need to do next. 921

C.2 Prompts for application Selection and Planning 922

You are a large language model agent stored on a mobile phone, below I will provide you with a task, the 923

environment of the current mobile phone interface(Apps information). 924

Please help me choose the correct APP to perform the task based on the Apps information. If the APP 925

you want is not available on the current page, you can go to play store and download a suitable APP. 926

On this basis, you should make a simple plan for completing the task. 927

Let’s Begin! 928

C.3 Prompts for API Selection 929

You are the greatest large language model agent stored on a mobile phone. You will be provided with a 930

API list that can be called by mobile phone, the task you need to complete, the thought about what have 931

done and what need to do now. 932

You are just the first step to interact with the phone, and your follow-up is UI interaction components. If 933

you find that there is no suitable API and the next step is UI interaction, please answer directly sorry. You 934

should not use the API to complete the work that has been completed by the UI interactive components in 935

the previous steps. 936

Your decision should consider the following factors: 937

15

<img id="com.android.deskclock:id/more" package="com.android.deskclock"

class="android.widget.ImageView" description="更多设置" clickable="true">

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 闹钟 </p>

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 时钟 </p>

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 秒表 </p>

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 计时 </p>

<div id="com.android.deskclock:id/viewpager" class="androidx.viewpager.widget.OriginalViewPager"

clickable="false" scrollable="true" bounds="[0,441][1080,2400]"> </div>

<p id="com.android.deskclock:id/time_display" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 06:00 </p>

<p id="com.android.deskclock:id/am_pm" package="com.android.deskclock" class="android.widget.TextView"

clickable="true"> 上午 </p>

<p id="com.android.deskclock:id/days_of_week" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 每天 </p>

<p id="com.android.deskclock:id/time_display" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 07:00 </p>

<p id="com.android.deskclock:id/am_pm" package="com.android.deskclock" class="android.widget.TextView"

clickable="true"> 上午 </p>

<p id="com.android.deskclock:id/days_of_week" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 周一至周五 </p>

<p id="com.android.deskclock:id/time_display" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 08:00 </p>

<p id="com.android.deskclock:id/am_pm" package="com.android.deskclock" class="android.widget.TextView"

clickable="true"> 上午 </p>

<p id="com.android.deskclock:id/days_of_week" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 周六 周日 </p>

<button id="com.android.deskclock:id/end_btn2" package="com.android.deskclock"

class="android.widget.ImageButton" description="添加闹钟" clickable="true"> </button>

Figure 11: An example for HTML. The orange box illustrates clickable elements, and the blue frame illustrates the
scrollable range.

1. You need to first judge based on the UI information and actions complete whether the planned action938

has been completed.939

2. You must only choose one API that should be executed most at present to finish the first action in940

next actions.941

3. If there is no suitable API, you can just say sorry without providing any additional suggestions.942

Strings within "<>" needs to be replaced with specific parameters, you must return a fully executable943

adb command. Perhaps you can hand over this task to the UI interaction module.944

[API list]:945

[Examples]:946

"adb shell input tap <x> <y>" is strictly prohibited as an answer. Your [Answer] can only follow the947

two templates: "Yes, the most suitable API function call is [adb command]" or "Sorry, [explain]".948

Let’s Begin!949

C.4 Prompts for UI Selection950

You are a large language model agent stored on a mobile phone, You need to give the current one-step951

action that needs to be taken to complete the task. Below I will provide you with a task, a plan, the952

environment of the current mobile phone interface(UI information), action history, though about the953

current status of task completion.954

You need to select the most suitable one element and give the corresponding one action based on the UI955

information and thought. You need to first judge based on the UI information and action history whether956

the planned action has been completed. Your selection should also consider action history, and have the957

courage to try new buttons instead of the same buttons from history.958

Action can only be the following three functions:959

1. click(element)960

Click a element, only when clickable="true", the element can be clicked.961

2. input(element, text)962

When you decide to enter, you first need to select the unit by clicking.963

3. scroll [xstart, ystart][xend, yend]964

16

Scroll the screen from [xstart, ystart] to [xend, yend]. The four parameters you fill in cannot be directly 965

the same as xmin, ymin, xmax, ymax. x cannot exceed (xmin, xmax), and y cannot exceed (ymin, ymax). 966

[Examples]: 967

Remember: 968

1.Click and input have higher priority than scrolling. Scrolling is only considered when all elements of 969

the current interface are indeed irrelevant to the task. 970

2.When you fail to try repeatedly in one interface, maybe you can try to turn back to select other 971

options. 972

3.When you need to switch APPs, you need to return to the desktop first. 973

4.When input fails multiple times, you should first select it with click. 974

Let’s Begin! 975

C.5 Prompts for Thought Generation 976

You are a large language model agent stored on a mobile phone, below I will provide you with a task, 977

a plan, the environment of the current mobile phone interface before action (Previous UI information), 978

current action, the environment of the current mobile phone interface(Now UI information), action history. 979

Action history records completed operations, including click, input, scroll and API list. 980

You need to summarize these four aspects: changes in the UI page, actions that have been completed, 981

task progress, one next action. 982

[one next action] need to choose one among click, input, scroll and one API as the next action, and give 983

one and only one operation object. [One next action] strictly refer to [current action] and [action history] 984

result to do the next action. 985

[action history] are all previous historical actions, and [current action] is the current action that causes 986

the UI page to change. 987

[Examples]: 988

Let’s Begin! 989

C.6 Prompts for Task Completion 990

You are a large language model agent stored on a mobile phone, below I will provide you with a task, the 991

environment of the current mobile phone interface(UI information), historical action information. You 992

need to judge whether the current task has been completed based on the current environment and historical 993

action information. 994

C.7 Algorithm Examples 995

This is a running process of the algorithm on a test case of SAMT 996

[data]: 997

{ 998

"id": 2, 999

"query": [1000

"Play␣recent␣records␣in␣history␣with␣Himalaya." 1001

], 1002

"check_point": { 1003

"activity":[1004

"com.ximalaya.ting.android /.host.activity.MainActivity"&"com. 1005

ximalaya.ting.android.host.activity.MainActivity" 1006

], 1007

"key␣phrase": [1008

"Playing␣history" | "history␣" 1009

], 1010

"package": "com.ximalaya.ting.android" 1011

}, 1012

17

"domain": "smartApp/Ximalaya"1013

}1014

According to algorithm 1, LLM generates a plan based on the query in data as a task and a given list of1015

available applications as follows:1016

[Task]: Play recent records in history with Himalaya.1017

[app list]:1018

[1019

{1020

"name": "ctrip",1021

"function_description": "As␣an␣authoritative␣online␣travel␣1022

service␣company␣in␣the␣industry ,␣Ctrip’s␣travel␣hotel␣1023

booking␣platform␣covers␣approximately␣1.4␣million␣hotels␣1024

around␣the␣world;␣air␣ticket␣products␣cover␣more␣than␣300␣1025

international␣airlines;␣these␣airlines␣operate␣flights␣to␣1026

major␣cities␣around␣the␣world ,␣providing␣more␣than␣2␣1027

million␣Air␣routes␣connect␣more␣than␣5,000␣cities␣in␣about1028

␣200␣countries␣and␣regions ..."1029

},1030

...1031

]1032

1033

[Plan]: I should open the Himalaya app and find the "Playback␣History1034

" option in the app to view recent playback history.1035

Then the task plan is executed iteratively. In each iteration, the model accepts task, app list, action history,1036

plan, and current HTML as input, and outputs execution API calls or UI operation instructions.1037

A short example of AH(action history), thought, Html will be shown below:1038

[Action History]:1039

{’API␣call’: ’adb␣shell␣am␣start␣-n␣com.ximalaya.ting.android /.host.1040

activity.MainActivity.␣[Call␣result]:API␣execution␣successful ’}1041

{’Action ’: ’[Fail]:␣Invalid␣element␣click(<div␣id="com.ximalaya.ting.1042

android:id/xm_ad_host_count_down_click_lay_no_click_view"␣package1043

="com.ximalaya.ting.android"␣class=" android.view.View"␣description1044

="Skip␣ads"␣clickable ="true">␣␣</div >)’}1045

{’Action ’: ’click(<button␣id="com.ximalaya.ting.android:id/1046

tab_myspace_and_listen"␣package ="com.ximalaya.ting.android"␣class1047

=" android.widget.RadioButton"␣clickable ="true">␣my␣</button >)’}1048

[thought]:1049

Changes: The current page is the main page of the Ximalaya app. There1050

is no change between the previous and current pages.1051

Task progress: From the current action and action history , I am1052

currently on the main page of the Ximalaya app , ready to check the1053

play history.1054

Actions completed: From the current action and action history , I have1055

opened the Ximalaya app.1056

One next action: Click on the "play␣history" option to view the1057

recent play history.1058

[HTML]:1059

<p package="com.ximalaya.ting.android" class="android.widget.TextView1060

" clickable="true"> membership </p>1061

<p id="com.ximalaya.ting.android:id/main_tv_user_level" package="com.1062

18

ximalaya.ting.android" class="android.widget.TextView" clickable=" 1063

true"> user level </p> 1064

<p id="com.ximalaya.ting.android:id/main_tv_listen_duration_title" 1065

package="com.ximalaya.ting.android" class="android.widget.TextView 1066

" clickable="true"> Listen (minutes) </p> 1067

<p package="com.ximalaya.ting.android" class="android.widget.TextView 1068

" clickable="true"> fans </p> 1069

<p package="com.ximalaya.ting.android" class="android.widget.TextView 1070

" clickable="true"> Follow </p> 1071

<p package="com.ximalaya.ting.android" class="android.widget.TextView 1072

" clickable="true"> live </p> 1073

<button package="com.ximalaya.ting.android" class="android.widget. 1074

Button" clickable="true"> message </button > 1075

<button package="com.ximalaya.ting.android" class="android.widget. 1076

Button" clickable="true"> history </button > 1077

<button package="com.ximalaya.ting.android" class="android.widget. 1078

Button" clickable="true"> favorite </button > 1079

<button package="com.ximalaya.ting.android" class="android.widget. 1080

Button" clickable="true"> local </button > 1081

<button package="com.ximalaya.ting.android" class="android.widget. 1082

Button" clickable="true"> purchased </button > 1083

package="com.ximalaya.ting.android" class="android.widget.ImageView" 1084

description="play" clickable="true"> 1085

A example of api action or ui action will be shown below: 1086

[Action]: [adb shell am start -n com.ximalaya.ting.android /.host. 1087

activity.MainActivity] 1088

[Action]: click(<button package="com.ximalaya.ting.android" class=" 1089

android.widget.Button" clickable="true"> history </button >) 1090

After successful execution, the current action will be added to the action history, the updated HTML of 1091

the emulator will be read, and handed over to LLM to generate a new thought and determine whether the 1092

task is over. 1093

[thought]: 1094

Changes: The current page is the "My" page in the Ximalaya app. 1095

Actions Complete: I have opened the Ximalaya app and clicked the "my" 1096

button , then clicked the "play␣history" button. 1097

Task progress: The current mission progress is to view the play 1098

history. 1099

One next action: Click on the "play" item to continue playing. 1100

[Finished] No, task is not finished. 1101

19

	Introduction
	Related Work
	Mobile Platforms
	Benchmarks for LLM agents

	Our Environment
	Mobile-Bench Benchmark
	Test Platform
	Evaluation Method

	Experiment
	Baseline Model
	Setup
	Results
	Impact of API Calls
	Impact of Plan and Thought

	Conclusion
	Limitations
	Ethics Statement
	Settings
	Details of Dataset
	Dataset quality analysis
	Prompts for Instruction Generation
	APP&API statistics
	Case study
	Supplementary experiments

	Details for Baseline Model
	Examples for HTML
	Prompts for application Selection and Planning
	Prompts for API Selection
	Prompts for UI Selection
	Prompts for Thought Generation
	Prompts for Task Completion
	Algorithm Examples

