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ABSTRACT

Robustness research in machine vision faces a challenge. Many variants of
ImageNet-scale robustness benchmarks have been proposed, only to reveal that
current vision systems fail under distributional shifts. Although aiming for higher
robustness accuracy on these benchmarks is important, we also observe that simply
using larger models and larger training datasets may not lead to true robustness,
demanding further innovation. To tackle the problem from a new perspective, we
encourage closer collaboration between the robustness and 3D vision communities.
This proposal is inspired by human vision, which is surprisingly robust to environ-
mental variation, including both naturally occurring disturbances (e.g., fog, snow,
occlusion) and artificial corruptions (e.g., adversarial examples). We hypothesize
that such robustness, at least in part, arises from our ability to infer 3D geometry
from 2D retinal projections—the ability to go from images to their underlying
causes, including the 3D scene. In this work, we take a first step toward testing
this hypothesis by viewing 3D reconstruction as a pretraining method for building
more robust vision systems. We introduce a novel dataset called Geon3D, which
is derived from objects that emphasize variation across shape features that the
human visual system is thought to be particularly sensitive. This dataset enables,
for the first time, a controlled setting where we can isolate the effect of “3D shape
bias” in robustifying neural networks, and informs new approaches for increasing
robustness by exploiting 3D vision tasks. Using Geon3D, we find that CNNs
pretrained on 3D reconstruction are more resilient to viewpoint change, rotation,
and shift than regular CNNs. Further, when combined with adversarial training,
3D reconstruction pretrained models improve adversarial and common corruption
robustness over vanilla adversarially-trained models. We hope that our findings and
dataset will encourage exploitation of synergies between the robustness researchers,
3D computer vision community, and computational perception researchers in cog-
nitive science, paving a way for achieving human-like robustness under complex,
real-world stimuli conditions.

1 INTRODUCTION

Building robust vision systems is a major open problem. Tremendous efforts have been made since
adversarial examples were first reported (Szegedy et al., 2014), and yet adversarial robustness remains
perhaps the most important challenge in safe, real-world deployment of modern computer vision
systems. Ensuring robustness against more common distributional shifts such as blur and snow
also remains a significant challenge (Hendrycks & Dietterich, 2018). As clean ImageNet accuracy
saturates, the research community has developed various ImageNet-scale benchmarks to evaluate the
performance of vision models under distributional shifts such as broader viewpoint variability (Barbu
et al., 2019), style and texture change (Geirhos et al., 2018), geographic shifts (Hendrycks et al.,
2021). These benchmarks, as well as the recent algorithms that are evaluated using smaller-scale
datasets such as MNIST and CIFAR10 (Tramer & Boneh, 2019; Yan et al., 2021), reveal that current
vision systems have plenty of room for improvement in terms of robustness.

So far, robustness research in machine vision focuses on classification. Models trained for image
classification might learn to associate class labels with a limited range of surface-related cues such
as image contours, but they do not fully or explicitly reflect the relationship between 3D objects
and how they are projected to images. On the contrary, the human visual system recovers rich
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three-dimensional (3D) geometry, including objects, shapes and surfaces, from two-dimensional
(2D) retinal inputs. This ability to make inferences about the underlying scene structure from
input images—also known as analysis-by-synthesis—is thought to be critical for the robustness of
biological vision to occlusions, distortions, and lighting variations (Yuille & Kersten, 2006; Mumford,
1994).

While aiming for higher accuracy on ImageNet-scale benchmarks is important, the current landscape
of robustness research shows that we face a clear challenge (Taori et al., 2020). In fact, the consensus
seems to be that large models and large training data work well for some distribution shifts, but
nothing consistently help in all variants of ImageNet robustness benchmarks, awaiting methodological
innovation to achieve human-level robustness (Hendrycks et al., 2021). To unblock the situation, we
advocate closer collaboration between the robustness community and the 3D vision community, in
the hope of fostering new types of robustness research. This paper serves as a first step towards this
effort, where we focus on learning features to facilitate inferences about 3D object shape. Our goal
is to test the hypothesis that shape bias—learning representations that enable accurate inferences
of 3D from 2D, which we refer to as “3D shape bias”—will induce robustness. Inspired by the
robustness of the human vision, our desiderata are that such a robust system should not be easily
fooled by naturally occurring challenging viewing conditions (e.g., fog, snow, brightness) nor by
artificial image corruptions (e.g., due to adversarial attacks).

To achieve this goal, we introduce Geon3D—a novel dataset comprised of simple yet realistic shape
variations, derived from the human object recognition hypothesis called Geon Theory (Biederman,
1987). This dataset enables us to study, in a controlled setting, 3D shape bias of 3D reconstruction
models that learn to represent shapes solely from 2D supervision (Niemeyer et al., 2020). We
find that CNNs trained for 3D reconstruction are more robust to unseen viewpoints, rotation and
translation than regular CNNs. Moreover, when combined with adversarial training, 3D reconstruc-
tion pretraining improves common corruption and adversarial robustness over CNNs that only use
adversarial training. These results suggest that the Geon3D dataset provides a controlled and effective
measure of robustness, and unlike existing, commonly used datasets in this area such as CIFAR10 and
ImageNet-C, Geon3D guides novel approaches by facilitating an interface between robust machine
learning and 3D reconstruction. (Please see the Related Work section for a discussion of Geon3D in
the context of existing 3D shape datasets.)

Biological vision is not only about object classification or localization, but also about making rich
inference about the underlying causes of scenes such as 3D shapes and surfaces (Olshausen, 2013;
Yuille & Kersten, 2006; Mumford, 1994). We hope our findings and dataset will encourage the
community to tackle robustness problems through the lens of 3D inference and the perspective of
perception as analysis-by-synthesis, toward the combined goals of building machine vision systems
with human-like richness and reliability.

2 APPROACH

We first describe the Geon Theory, which our dataset construction relies on. Next, we explain the
data generation process used in the creation of Geon3D (§2.1), and how we train a 3D reconstruction
model (§2.2).

2.1 GEON3D BENCHMARK

The concept of Geons—or Geometric ions—was originally introduced by Biederman as the building
block for his Recognition-by-Components (RBC) Theory (Biederman, 1987). The RBC theory argues
that human shape perception segments an object at regions of sharp concavity, modeling an object as
a composition of Geons—a subset of generalized cylinders (Binford, 1971). Similar to generalized
cylinders, each Geon is defined by its axis function, cross-section shape, and sweep function. In order
to reduce the possible set of generalized cylinders, Biederman considered the properties of the human
visual system. He noted that the human visual system is better at distinguishing between straight and
curved lines than at estimating curvature; detecting parallelism than estimating the angle between
lines; and distinguishing between vertex types such as an arrow, Y, and L-junction (Ikeuchi, 2014).

Our focus in this paper is not the RBC theory or whether it is the right way to think about how we see
shapes. Instead, we wish to build upon the way Biederman characterized these Geons. Biederman
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Arch Barrel Cone Cuboid Cylinder

Truncated Cone Handle Expanded Handle Horn Truncated Pyramid

Figure 1: Examples of 10 Geon categories from Geon3D-10. The full list of 40 Geons we construct
(Geon3D-40) is provided in the Appendix.

Table 1: Latent features of Geons. S: Straight, C:
Curved, Co: Constant, M: Monotonic, EC: Ex-
pand and Contract, CE: Contract and Expand, T:
Truncated, P: End in a point, CS: End as a curved
surface

Feature Values

Axis S, C
Cross-section S, C
Sweep function Co, M, EC, CE
Termination T, P, CS

Table 2: Similar Geon categories, where only
a single feature differs out of four shape fea-
tures. “T.” stands for “Truncated”. “E.” stands
for “Expanded”.

Geon Category Difference

Cone vs. Horn Axis
Handle vs. Arch Cross-section
Cuboid vs. Cyllinder Cross-section
T. Pyramid vs. T. Cone Cross-section
Cuboid vs. Pyramid Sweep function
Barrel vs. T. Cone Sweep function
Horn vs. E. Handle Termination

proposed using two to four values to characterize each feature of Geons. Namely, the axis can be
straight or curved; the shape of cross section can be straight-edged or curved-edged; the sweep
function can be constant, monotonically increasing / decreasing, monotonically increasing and then
decreasing (i.e. expand and contract), or monotonically decreasing and then increasing (i.e. contract
and expand); the termination can be truncated, end in a point, or end as a curved surface. A summary
of these dimensions is given in Table 1.

Representative Geon classes are shown in Figure 1. For example, the “Arch” class is uniquely
characterized by its curved axis, straight-edged cross section, constant sweep function, and truncated
termination. These values of Geon features are nonaccidental—we can determine whether the axis is
straight or curved from almost any viewpoint, except for a few accidental cases. For instance, an
arch-like curve in the 3D space is perceived as a straight line only when the viewpoint is aligned in a
way that the curvature vanishes. These properties make Geons an ideal dataset to analyze 3D shape
bias and part-level robustness of vision models. For details of data preparation, see Appendix.

2.2 3D RECONSTRUCTION AS PRETRAINING

To explore advantages of direct approaches to induce shape bias in vision models, we turn our
attention to a class of 3D reconstruction models. The main hypothesis of our study is that the task of
3D reconstruction pressures the model to obtain robust representations.

Recently, there has been significant progress in learning-based approaches to 3D reconstruction,
where the data representation can be classified into voxels (Choy et al., 2016; Riegler et al., 2017),
point clouds (Fan et al., 2017; Achlioptas et al., 2018), mesh (Kato et al., 2018; Groueix et al., 2018),
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and neural implicit representations (Mescheder et al., 2019; Chen & Zhang, 2019; Park et al., 2019;
Sitzmann et al., 2019). We focus on neural implicit representations, where models learn to implicitly
represent 3D geometry in neural network parameters after training. We avoid models that require
3D supervision such as ground truth 3D shapes. This is because we are interested in models that
only require 2D supervision for training and how inductive bias of 2D-to-3D inference achieves
robustness.

Specifically, we use Differentiable Volumetric Rendering (DVR) (Niemeyer et al., 2020), which
consists of a CNN-based image encoder and a differentiable neural rendering module. We train DVR
to reconstruct 3D shapes of Geon3D-10. For more details of DVR and 3D reconstruction, we refer
the readers to the Appendix.

3 EXPERIMENTAL RESULTS

In this section, we demonstrate how 3D shape bias improves model robustness. We evaluate robustness
in terms of the Geon3D-10 classification accuracy under various image perturbations. Our 3D-shape-
biased classifier is based on the image encoder of the 3D reconstruction model (DVR) that is
pretrained to reconstruct Geon3D-10. We add a linear classification layer on top of the image
encoder, and then finetune, either just that linear layer (DVR-Last) or the entire encoder (DVR),
for Geon3D-10 classification. Notice that the inputs to all models during classification are only
RGB images. (Camera matrices are only used for the rendering module during pretraining for 3D
reconstruction.) Our baseline is a vanilla neural network (Regular) that is trained normally for
Geon3D-10 classification. To see the difference between 3D shape bias and 2D shape bias in the
sense of (Geirhos et al., 2018), we also evaluate the following models, which are hypothesized to
rely their prediction more on shape than texture. Stylized is a model trained on Stylized images
of Geons. We follow the same protocol as (Geirhos et al., 2018) by replacing the texture of each
image of Geon3D-10 by a randomly selected texture from paintings through the AdaIn style-transfer
algorithm (Huang & Belongie, 2017). Adversarially trained network (AT) is a network that uses
adversarial examples during training (Madry et al., 2018). Through extensive experiments, Zhang
& Zhu (2019) demonstrate that AT models develop 2D shape bias, which is considered to explain,
in part, the strong adversarial robustness of AT models. In our experiments, we use L∞ and L2

based adversarial training. InfoDrop (Shi et al., 2020) is a recently proposed model that induces
2D shape bias by decorrelating each layer’s output with texture. The method exploits the fact that
texture often repeats itself, and hence is highly correlated with and can be predicted by the texture
information in the neighboring regions, whereas shape-related features such as edges and contours are
less coupled at the locality of neighboring regions. To control for variation in network architectures,
we use ImageNet-pretrained ResNet18 for all models we tested. The image encoder of DVR is also
initialized using ImageNet-pretrained training for 3D reconstruction of Geons.

Background variations To quantify the effect of textured background, we prepare three versions
of Geon3D-10: black background, random textured background (Geon3D-10-RandTextured), and
correlated background (Geon3D-10-CorrTextured). For Geon3D-10-RandTextured, we replace
each black background with a random texture image out of 10 texture categories chosen from the
Describable Textures Dataset (DTD) (Cimpoi et al., 2014).For Geon3D-10-CorrTextured, we choose
10 texture categories from DTD and introduce spurious correlations between Geon category and
texture class (i.e., each Geon category is paired with one texture class). Examples of Geon3D
with textured background are shown in Figure 3 (Right). These three versions of our dataset allow
us to analyze more realistic image conditions as well as to test robustness despite variation and
distributional shifts in textures.

3.1 3D SHAPE BIAS IMPROVES GENERALIZATION TO UNSEEN VIEWS AND REDUCES SIMILAR
CATEGORY CONFUSION

One of the crucial but often overlooked examples of 3D shape bias that human vision has is “visual
completion” (Palmer, 1999), which refers to our ability to infer portions of surface that we cannot
actually see. For instance, when we look at the top-left image in Figure 3, we automatically recognize
it as a whole cube, even though we cannot see its rear side. We view the task of 3D reconstruction as
a way to build such an ability into neural networks. In this section, we investigate how such 3D shape
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Figure 2: Accuracy per Geon category under unseen viewpoints. Even though all models perform
reasonably well, there is still a range of overall accuracy values. In addition, we see that when
networks make a mistake, it is often between similar Geon categories (see Table 2 for a list of similar
Geon categories). Regular: a baseline model; InfoDrop: a shape-biased model; AT: adversarially
trained; Stylized: a network trained on “stylized” version of Geon3D; DVR: We use pretrained
weights of the image encoder of Differentiable Volumetric Rendering (3D reconstruction model),
a 3D reconstruction model, and finetune all of its layers on the Geon3D-10 classification task.
DVR-Last refers to the version where we finetune only the last classification layer.

bias of DVR improves classification of similar Geon categories under unseen viewpoints, testing both
DVR (where we finetune all layers of the image encoder) and DVR-Last (where we finetune only the
top classification layer of the image encoder).

The results of per-category classification are shown in Figure 2. We say two Geons are similar when
there is only a single shape feature difference, as summarized in Table 2. We see that networks often
misclassify similar Geon categories. The vanilla neural network (Regular) often misclassifies “Cone”
vs. “Horn”, “Handle” vs. “Arch”, “Cuboid” vs. “Truncated pyramid”, as well as “Truncated cone” vs.
“Truncated pyramid”.The Geon pairs the InfoDrop model misclassifies include: “Arch” vs. “Handle”,
“Cyllinder” vs. “Barrel”, “Cuboid” vs. ”Cyllinder” and “Truncated pyramid” vs. “Truncated cone”,
which are all pairs with single shape feature difference.

Notably, the Stylized model, which is hypothesized to increase bias towards shape-related features,
makes a number of mistakes for similar Geon classes (i.e. “Horn” vs. “Cone”, “Cone” vs. “Truncated
pyramid”, and “Truncated cone” vs. “Truncated pyramid”), similar to the Regular model. This result
is consistent with the finding that the Stylized approach (Geirhos et al., 2018) does not necessarily
induce proper shape bias (Mummadi et al., 2020).

AT-L∞ and DVR-Last perform better than the models listed above, yet still struggle to distinguish
“Truncated Pyramid” from “Truncated Cone”, where the difference is whether the cross-section
is curved or straight (see Table 2). On the other hand, DVR successfully distinguishes these two
categories. This shows that 3D pretraining before finetuning for the task of classification facilitates
recognition of even highly similar shapes. The hardest pair for DVR is “Truncated cone” vs. “Barrel”,
but the errors the model make appear sensible (Figure 3, middle panel): For example, when the camera
points at the smaller side of the “Truncated Cone”, then there is uncertainty whether the surface
extends beyond self-occlusion by contracting (which would be consistent with the “Barrel” category)
or the surface ends at the point of self-occlusion (which would be consistent with the category
“Truncated Cone”). Indeed, when we inspected the samples of “Truncated Cone” misclassified as
“Barrel” by DVR, we found that for half of those images, the larger side of “Truncated Cone” was
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Truncated Cone Barrel

Figure 3: (Left) We humans recognize the top image as a whole cube, automatically filling in the
surfaces of its rear, invisible side, although, in principle, there are infinitely many scenes consistent
with the sense data , one of which is shown in the bottom image (Palmer, 1999). This illustrates
that certain shapes are more readily perceived by the human visual system than others. (Middle)
Examples of “Truncated Cone” that are misclassified as “Barrel” by DVR, next to “Barrel“ exemplars
shown at similar viewpoints.(Right) Example images from Geon3D-10 with textured backgrounds.

self-occluded. Future psychophysical work should quantitatively compare errors made by these
models to human behavior.

Accuracy under rotation and translation (shifting pixels) CNNs are known to be vulnerable to
rotation and shifting of the image pixels (Azulay & Weiss, 2019). As shown in Table 3, our model
(DVR) pretrained with 3D reconstruction performs better than all other models under rotation and
shift even though it is not explicitly trained to defend against those attacks. We observe that DVR-Last
performs second best, indicating that this “for free” robustness to rotation and shift is largely in place
even when finetuning on the classification task is restricted to only linear decoding of the categories.

Table 3: Accuracy of shape-biased classifiers against rotation and shifting of pixels on Geon3D under
unseen viewpoints. We randomly add rotations of at most 30◦ and translations of at most 10% of the
image size in each x, y direction. We report the mean accuracy and standard deviation over 5 runs of
this stochastic procedure over the entire evaluation set.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR-LAST DVR

ROTATION 82.18(1.06) 80.76(0.69) 78.47(0.57) 87.00(0.57) 89.58(0.48) 90.44(0.30) 93.46(0.44)

SHIFT 72.28(0.43) 71.86(0.63) 61.44(0.29) 53.84(0.71) 61.50(1.11) 73.24(0.73) 76.52(0.89)

3.2 ROBUSTNESS AGAINST COMMON CORRUPTIONS

In this section, we show that, when combined with adversarial training, 3D pretrained models
(denoted as DVR+AT-L2 and DVR+AT-L∞) improve robustness against common image corruptions,
above and beyond what can be accomplished just using adversarial training. For these models, we
use adversarial training during the finetuning of the 3D reconstruction model for the Geon3D-10
classification task. Here we evaluate the effect of 3D shape bias not only in the somewhat sterile
scenario of the clean, black background images, but also using the background-textured versions
of our dataset. To do this, we train all models using Geon3D-10-RandTextured, where we replace
the black background with textures randomly sampled from DTD (see Figure 3, right panel, for
examples). During evaluation, we use unseen viewpoints.

The results are shown in Table 4. We see that starting adversarial training from DVR-pretrained
weights improves robustness across all corruption types, over what can be achieved by only either
AT-L2 or AT-L∞. DVR-AT and AT models fail on “Contrast” and “Fog”. This has been a known
issue for AT (Gilmer et al., 2019), which requires future work to explore. While Stylized performs
best under certain corruption types, we can see that DVR-AT-L2 leads to broader robustness across
the corruptions we considered.

6



Under review as a conference paper at ICLR 2022

Table 4: Accuracy of classifiers against common corruptions under unseen viewpoints. All models
are trained and evaluated on Geon3D-10 with random textured background. Pretraining on 3D shape
reconstruction using DVR leads to broader robustness relative to other models.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

INTACT 0.741 0.596 0.701 0.691 0.464 0.758 0.513
PIXELATE 0.608 0.458 0.653 0.623 0.415 0.719 0.470
DEFOCUS BLUR 0.154 0.152 0.402 0.490 0.298 0.605 0.349
GAUSSIAN NOISE 0.222 0.465 0.601 0.555 0.412 0.701 0.470
IMPULSE NOISE 0.187 0.270 0.497 0.322 0.136 0.594 0.148
FROST 0.144 0.269 0.638 0.142 0.209 0.148 0.240
FOG 0.338 0.281 0.659 0.187 0.120 0.264 0.130
ELASTIC 0.427 0.314 0.428 0.416 0.266 0.499 0.307
JPEG 0.414 0.422 0.634 0.629 0.434 0.731 0.484
CONTRAST 0.408 0.286 0.673 0.141 0.120 0.179 0.135
BRIGHTNESS 0.525 0.518 0.702 0.500 0.388 0.549 0.429
ZOOM BLUR 0.334 0.238 0.560 0.518 0.327 0.639 0.378

3.3 ROBUSTNESS TO DISTRIBUTIONAL SHIFT IN BACKGROUNDS

In this section, we evaluate network’s robustness to distributional shift in backgrounds. To do
this, we train all the models on Geon3D-10-CorrTextured, where we introduce spurious correlation
between textured background and Geon category. Therefore, during training, a model can pick
up classification signal from both the shape of Geon as well as background texture. To evaluate
trained models for background shift, we prepare a test set that breaks the correlation between Geon
category and background texture class by cyclically shifting the texture class from i to i + 1 for
i = 0, ..., 9, where the class 10 is mapped to the class 0. This is inspired by (Geirhos et al., 2018),
where they create shape-texture conflicts to measure 2D shape bias in networks trained for ImageNet
classification. However, in our case, distributional shift from training to test set is designed to isolate
and better measure shape bias by fully disentangling the contributions of texture and shape.

The results are shown in Table 5. We see that 2D shape biased models all perform worse than the
3D shape-biased model (DVR+AT-L∞). Combining AT with 3D pretraining improves classification
accuracy more than 10 % with respect to the best performing variant of AT.

Interestingly, comparing randomized vs. correlated background experiments reveals a stark difference
between the two commonly used perturbations in adversarial training (L2 vs. L∞). Unlike our
analysis with uncorrelated, randomized backgrounds, we find that adversarial training using L2 norm
completely biases the model towards texture (no apparent shape bias) when such spurious correlation
between texture and shape category exists.

Table 5: Accuracy of shape-biased classifiers against distributional shift in backgrounds. Here, all
models are trained on Geon3D-10-CorrTextured (with background textures correlated with shape
categories) and evaluated on a test set where we break this correlation. See Appendix for results
using other common corruptions, where we find DVR+AT-L∞ provides broadest robustness across
the corruptions we tested.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

0.045 0.121 0.268 0.015 0.311 0.219 0.439

3.4 3D PRETRAINING IMPROVES ADVERSARIAL ROBUSTNESS

In this section, we show that 3D pretrained AT models improve adversarial robustness over vanilla
AT models. We attack our models using L∞-PGD (Madry et al., 2018), with 100 iterations and ε/10
to be the stepsize, where ε is the perturbation budget. We compare AT-L∞ and DVR+AT-L∞ for
black, randomly textured, and correlated textured backgrounds. The results are shown in Figure 4.
In the black background set, while 3D pretrained AT slightly performs worse than vanilla AT for
smaller epsilon values, it significantly robustifies AT-trained models for large epsilons. A small but
appreciable gain in robustness can be seen for the other two backgrounds types. These pattern of
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Figure 4: Robustness comparison between AT-L∞ and DVR+AT-L∞ with increasing perturbation
budget ε on three variations of Geon3D-10. We use L∞-PGD with 100 iterations and ε/10 to be the
stepsize. See Appendix for AT-L2 results, where we also find that 3D pretraining improves vanilla
AT models.

results are consistent across attack types, with DVR providing significant robustness over vanilla AT
under the L2 regime (see Appendix).

3.5 HOW IMPORTANT IS 3D INFERENCE?

In this section, we investigate the importance of causal 3D inference to obtain good representations.
That is, we explore the impact of having an actual rendering function constrain the representations
learned by a model. Our goal in this section is not to further evaluate the robustness of these features,
but to measure the efficiency of representations learned under the constraint of a rendering function
for the basic task of classification.

To isolate this effect, we compare DVR to Generative Query Networks (GQN) (Eslami et al., 2018)—
a scene representation model that can generate scenes from unobserved viewpoints—on novel
exemplars from the Geon3D-10 dataset, but using views seen during training. The crucial difference
between DVR and GQN is that GQN does not model the geometry of the object explicitly with
respect to an actual rendering function. Therefore, the decoder of GQN, which is another neural
network based on ConvLSTM, is expected to learn rendering-like operations solely from an objective
that aims to maximize the log-likelihood of each observation given other observations of the same
scene as context. To control for the difference of network architecture, we train DVR using the same
image encoder architecture as GQN, since when we used ResNet18 as an image encoder, GQN did
not converge.

Examples of generated images of Geons from GQN are shown in Figure 5 (Left). As we can see,
GQN successfully captures the object from novel viewpoints.

To assess the power of representations learned by GQN in the same way as DVR, we take the
representation network and add a linear layer on top. We then finetune the linear layer on 10-Geon
classification, while freezing the rest of the weights. We compare this model to the architecture-
controlled version of the DVR-Last model.

Since GQN can take more than one view of images, we prepare 6 models that are finetuned based on
either of {1, 2, 4, 8, 16, 32}-views. The resulting test accuracy of finetuned GQN encoders against
the number of views is shown in Figure 5 (Right). Despite the strong viewpoint generalization of
GQN, we see that finetuned GQN requires more than 2 views (i.e., 3 or 4 views) to reach the DVR
level accuracy, and only outperforms DVR after we feed more than 8 views. This suggests that the
inductive bias from 3D inference is more efficient to obtain good representations.

4 RELATED WORK AND DISCUSSIONS

3D datasets. Geon3D is smaller in scale and less complex in shape variation relative to some of
the existing 3D model datasets, including ShapeNet (Chang et al., 2015) and ModelNet (Zhirong
Wu et al., 2015). These datasets have been instrumental for recent advances in 3D computer vision
models (e.g. Niemeyer et al. (2020); Sitzmann et al. (2019)). However, at a practical level, these 3D
model datasets are not yet suitable for our goal (which is to establish whether introducing 3D shape
bias into vision models induce robustness): Even though existing learning-based 3D reconstruction
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Figure 5: Left: Example Geon images rendered from GQN based on 3 views. Right: GQN Test
Accuracy v.s. the number of views. As a reference, we also plot the 1-view DVR accuracy. Here, we
used the same architecture for the image encoders of DVR and GQN.

models can perform well when trained on a single or a very small number of categories from these
datasets, these models do not scale well with increasing number of object categories. For example,
on ShapeNet, when these models are required to learn a non-trivial number of object categories (e.g.,
10 or more) at the same time, the resulting 3D shape reconstructions degrade significantly, unable
to capture many salient aspects of shape variation across and within categories. For us, such failure
confounds inferences we can make about the role of shape bias in robustness, which is our central
question: Would a negative result be because the model does not perform well on the reconstruction
task to begin with or is it that shape bias has no benefit for robustness? We deliberately designed
Geon3D to allow us to take advantage of the state-of-the-art in learning-based 3D reconstruction
models (in this work, the DVR model): It provides a non-trivial number of distinct shape categories,
with considerable shape variation within and across categories, yet remain tractable to learn by these
existing models. As we demonstrate in this work, despite its simplicity relative to these larger datasets,
Geon3D reveals that the current vision models struggle with image corruptions and that 3D shape
bias induces robustness. Our results based on Geon3D provide compelling evidence that to achieve
robustness against distributional shifts and adversarial examples, a promising and effective approach
is to build models with 3D shape bias. In future work, we are excited to explore this hypothesis in the
context of more complex shapes and real-world objects and scenes.

Analysis-by-synthesis. Our proposal of using 3D inference to achieve robust vision shares the same
goal as analysis-by-synthesis (Kulkarni et al., 2015; Yuille & Kersten, 2006; Yildirim et al., 2020). In
DVR, we can see its encoder as a recognition network (Dayan et al., 1995), mapping 2D images to
their underlying shape, appearance, and pose parameters under a structured generative model based
on a neural rendering function. Even though previous work considered adversarial robustness of
variational autoencoders (Schott et al., 2018), our study is first to evaluate robustness arising from
analysis-by-synthesis type computations under 3D scenes.

5 CONCLUSION

While improving robustness accuracy on ImageNet-scale benchmarks is critical, simply using larger
models and larger training data may not be the ultimate solution. To tackle robustness problems
from a new perspective, we introduce Geon3D—a novel image and 3D model dataset in the hope
of encouraging robustness researchers to explore techniques developed in the 3D vision community
more easily. This dataset allows us to study part-level robustness and shape bias of a class of 3D
reconstruction models that only requires 2D supervision. We demonstrate that CNNs trained for
3D reconstruction improve robustness against viewpoint change and spatial transformation such
as rotation and shift. We also study other competitive models, and show that not a single model
is adequately robust to all corruption types we consider on Geon3D. From a divide-and-conquer
perspective, it is desirable to solve robustness problems associated with a simple shape dataset like
Geon3D on the way to achieving more complex object-level and scene-level robustness. Finally, we
believe that achieving near-perfect robustness on Geon3D is one of the important but simple-to-check
conditions that a reliable object recognition algorithm needs to satisfy, as it should operate based on a
fundamental understanding of the 3D structure of our world.
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REPRODUCIBILITY STATEMENT

The details of data processing as well as how to render Geon3D are provided in the Datasheet section
in Appendix. The model instances of Geon3D and an example rendering script are provided in the
supplementary materials. The training details for our experiments and reference to open-source code
are described in the Reproducibility section in Appendix.
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A DATASHEET

A line of work in psychophysics of human visual cognition have argued that the visual system exploits
certain types of shape features in inferring 3D structure and geometry. In Geon3D, by treating these
shape features as the dimensions of variation, we model 40 classes of 3D objects, and render them
from random viewpoints, resulting in an image set and their corresponding camera matrices.
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Data Preparation We construct each Geon using Blender —an open-source 3D computer graphics
software Blender (2021).

An advantage of Geons over other geometric primitives such as superquadrics Barr (1981) is that
the shape categorization of Geons is qualitative rather than quantitative. Thus, each Geon category
affords a high degree of in-class shape deformation, as long as the four defining features of each
shape class remains the same. Such flexibility allows us to construct a number of different 3D model
instances for each Geon class by expanding or shrinking the object along the x, y, or z-axis. For each
axis, we evenly sample the 11 scaling parameters from the interval [0.5, ..., 1.5] with a step size 0.1,
resulting in 1331 3D model instances for each Geon category.

Rendering and data splits We randomly sample 50 camera positions from a sphere with the object
at the origin. For each model instance, 50 images are rendered using these camera positions with
resolution of 224x224. We then split the data into train/validation/test with ratio 8:1:1 using model
instance ids, where each instance id corresponds to the scaling parameters described above. We also
make sure that all Geon categories are uniformly sampled in each of train/validation/test sets.

Dataset distribution The full Geon3D-40 (black background) will be available for download after
publication. Geon3D is distributed under the CC BY-SA 4.0 license.1 We plan to maintain different
versions of Geon3D as we extend the dataset to include more complicated objects by combining
Geon3D as parts. The authors bear all responsibility in case of violation of rights and confirmation
of the data license. Upon publication, the dataset website will become available, where we will add
structured metadata to a dataset’s meta-data page, a persistent dereferenceable identifier, and any
future updates.

How to use Geon3D Our dataset contains 40 Geon categories, where each folder contains 1331
subfolders. The name of the subfolder represents the scaling factors for the x, y, and z direction. For
example, 0.5_1.0_1.3 means the Geon model is scaled by 0.5, 1.1, and 1.3 for x, y, and z axis,
respectively. Each subfolder contains the ’rgb’ folder, ’mask’ folder, and ’pose’ folder. The ’rgb’
folder contains 50 images taken from 50 random viewpoints. The ’mask’ and ’pose’ folders are used
for 3D reconstruction tasks. An example code will be provided to demonstrate how to load these
’mask’ and ’pose’ information to do 3D reconstruction task.

Benchmarking metric Our metric for benchmarking model robustness is accuracy under different
noise types (e.g. Section 3.1, 3.2, 3.3, 3.4). Unless we achieve near-perfect accuracy on each noise
type, we don’t think robustness issues are solved on this dataset. We would like to avoid using a
single metric such as the mean robust accuracy, since such a metric inevitably obscures the intricate
differences that arise from different noise types.

List of 40 Geons In Figure 6, we provide a list of 40 Geons we have constructed. The label for
each Geon class represents the four defining shape features, in the order of “axis”, “cross section”,
“sweep function”, “termination”, as described in the main paper. We put “na” for the termination
when the sweep function is constant. We also distinguish the two termination types “c-inc” and
“c-dec” when the sweep function is monotonic. For instance, “c-inc” means that the curved surface is
at the end of the increasing sweep function, whereas “c-dec” means that the curved surface is at the
end of the decreasing sweep function. As a reference, here is the mapping between the name and the
code of 10 Geons we used in 10-Geon classification: “Arch”: c_s_c_na, “Barrel”: s_c_ec_t,
“Cone”: s_c_m_p, “Cuboid”: s_s_c_na, “Cylinder”: s_c_c_na, “Truncated cone”: s_c_m_t,
“Handle”: c_c_c_na, “Expanded Handle”: c_c_m_t, “Horn”: c_c_m_p, “Truncated pyramid”:
s_s_m_t.

1https://creativecommons.org/licenses/by-sa/4.0/legalcode
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c_c_c_na c_c_ce_c c_c_ce_t c_c_ec_c c_c_ec_p c_c_ec_t c_c_m_c-dec c_c_m_c-inc c_c_m_p c_c_m_t

c_s_c_na c_s_ce_c c_s_ce_t c_s_ec_c c_s_ec_p c_s_ec_t c_s_m_c-dec c_s_m_c-inc c_s_m_p c_s_m_t

s_c_c_na s_c_ce_c s_c_ce_t s_c_ec_c s_c_ec_p s_c_ec_t s_c_m_c-dec s_c_m_c-inc s_c_m_p s_c_m_t

s_s_c_na s_s_ce_c s_s_ce_t s_s_ec_c s_s_ec_p s_s_ec_t s_s_m_c-dec s_s_m_c-inc s_s_m_p s_s_m_t

Figure 6: The list of 40 Geons we constructed.

B ADDITIONAL RESULTS

B.1 ADVERSARIAL ROBUSTNESS

In Figure 7, we provide additional results for adversarial robustness, where we attack AT-L2 using
L∞-PGD. Similar to the case of AT-L∞, we see that 3D pretraining improves robustness over the
vanilla AT models for all background settings.
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Figure 7: Robustness comparison between AT-L2 and DVR+AT-L2 with increasing perturbation
budget ε on three variations of Geon3D-10. We attack our models using L∞-PGD with 100 iterations
and ε/10 to be the stepsize.

B.2 ROBUSTNESS TO COMMON CORRUPTIONS

In this section, we provide additional results for common corruptions. In Table 6, we provide the re-
sults for the black background setting. Here again we see that 3D pretraining further improves vanilla
AT models. In Table 7, we provide more detailed results of distributional shift in the backgrounds.
Even after adding image corruptions, we still see that DVR+AT performs best, confirming that 3D
shape bias from 3D pretraining complements the performance of AT to increase model robustness.

C DETAILS OF DVR 3D RECONSTRUCTION TRAINING

We provide details of the problem setup of 3D reconstruction, following (Niemeyer et al., 2020).

During training, we render an image, which is then used to minimize the RGB reconstruction loss.
To render a pixel of an image observed by a virtual camera, we need to first find the world coordinate
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Table 6: Accuracy of shape-biased classifiers against common corruptions under unseen views on
Geon3D-10 (black backgrounds).

REGULAR INFODROP STYLIZED AT-L2 ATL∞ DVR+AT-L2 DVR+AT-L∞

INTACT 0.866 0.845 0.822 0.908 0.910 0.912 0.92
PIXELATE 0.685 0.773 0.781 0.905 0.910 0.911 0.919
DEFOCUS BLUR 0.303 0.247 0.755 0.900 0.909 0.897 0.909
GAUSSIAN NOISE 0.548 0.291 0.803 0.620 0.885 0.914 0.919
IMPULSE NOISE 0.140 0.190 0.750 0.542 0.100 0.916 0.918
FROST 0.151 0.323 0.783 0.140 0.100 0.22 0.3
FOG 0.138 0.163 0.764 0.100 0.100 0.119 0.149
ELASTIC 0.612 0.635 0.617 0.628 0.664 0.645 0.655
JPEG 0.799 0.821 0.810 0.905 0.911 0.912 0.92
CONTRAST 0.510 0.180 0.772 0.163 0.258 0.213 0.335
BRIGHTNESS 0.552 0.832 0.818 0.160 0.137 0.385 0.931
ZOOM BLUR 0.475 0.462 0.748 0.891 0.917 0.902 0.92

Table 7: Accuracy of shape-biased classifiers against common corruptions under unseen views on
Geon3D-10 with textured background swap.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

INTACT 0.045 0.121 0.268 0.015 0.311 0.219 0.439
PIXELATE 0.044 0.096 0.275 0.017 0.306 0.201 0.415
DEFOCUS BLUR 0.044 0.093 0.268 0.024 0.242 0.206 0.338
GAUSSIAN NOISE 0.046 0.160 0.269 0.015 0.320 0.209 0.408
IMPULSE NOISE 0.058 0.096 0.228 0.015 0.078 0.207 0.147
FROST 0.020 0.138 0.255 0.070 0.149 0.144 0.227
FOG 0.032 0.114 0.273 0.077 0.099 0.149 0.124
ELASTIC 0.044 0.109 0.260 0.100 0.196 0.176 0.264
JPEG 0.041 0.089 0.264 0.016 0.306 0.206 0.419
CONTRAST 0.055 0.107 0.274 0.066 0.090 0.148 0.126
BRIGHTNESS 0.036 0.127 0.268 0.026 0.270 0.189 0.379
ZOOM BLUR 0.081 0.082 0.290 0.032 0.269 0.249 0.375

of the intersection of the camera ray with the object surface, and then map the world coordinate into
a RGB color.

Let u = (u1, u2) be the image coordinate of the pixel we want to render. To find the world coordinates
of the intersection, we first parameterize the points along the camera ray rp0→(u1,u2) by the distance
d to the camera origin p0 as follows:

rp0→(u1,u2)(d) = RT

(
K−1

(
u1
u2
d

)
− T

)

Here, R ∈ R3×3 is a camera rotation matrix, T ∈ R3 is a translation vector, and K ∈ R3×3 is a
camera intrinsic matrix. In the main paper, we denote cex = [R, T ], and cin = K. Here, T is the
position of the origin of the world coordinate system with respect to the camera coordinate system.
Therefore, the position of the camera origin p0 (w.r.t. the world coordinate system) is −RTT .

Then we solve the following optimization problem:

argmin d s.t. rp0→(u1,u2)(d) ∈ Ω (1)

where Ω is the set of points p in R3 such that fθ(p) = 0.5.

To solve for d, we start from the camera origin p0 and step along the ray until object surface is
intersected, which we can determine by evaluating the points along the ray via fθ.
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To summarize, we are given a set of object images {xi ∈ RH×W×3}ni=1, their corresponding
binary object masks {mi ∈ RH×W }ni=1, and extrinsic/intrinsic camera matrices {ci = (cexi ∈
R3×3 ×R3, cini ∈ R3×3)}ni=1. Let U0 be a set of pixel points which lie inside the ground truth object
mask and where the model predicts a depth. U1 is a set of points outside the object mask where the
model falsely predicts depth. Finally U2 is a set of points inside the object mask where the model
does not predict any depth. Then the objective is:

arg min
φ,θ,θ′

E
[ ∑
u∈U0

(||x̂u − xu||1 + λ1Lnormal(p̂u,c|z))

+ λ2
∑
u∈U1

BCE(fθ(p̂u,c|z), 0) + λ3
∑
u∈U2

BCE(fθ(prand(u),c|z), 1)
]

Here, BCE stands for Binary Cross Entropy loss, and p̂u,c = rp0→u(d̂), where d̂ is the predicted
depth, provided as a solution to the optimization problem 1. The value of prand(u),c = rp0→u(drand(u)),
where the value of drand(u) is chosen uniformly randomly on the ray to encourage occupancy for
u ∈ U2. x̂u = rθ′(p̂u,c|z) for u ∈ U0. z = gφ(x

(rand)
i ), where we take a random view x

(rand)
i from

the same object instance as xi.

Lnormal(p|z) is the normal loss, which is a geometric regularizer to encourage smooth object surface.
For a point p ∈ R3 and some object encoding z, the unit normal vector can be calculated by:

nθ(p|z) =
∇pfθ(p|z)
||∇pfθ(p|z)||2

We apply the l2 loss to minimize the difference between the normal vectors at p and p′, where p′ is in
a small neighbourhood around p. Formally,

Lnormal(p|z) = ||nθ(p|z)− nθ(p′|z)||2

for a point p ∈ R3.

D REPRODUCIBILITY: TRAINING DETAILS

We used GeForce RTX 2080Ti GPUs for all of our experiments. GQN training takes about a week
until convergence on a single GPU. DVR 3D reconstruction training takes roughly about 1.5 days on
a single GPU. The hyperparameters for 10-Geon classification, described in the main paper, were
chosen by monitoring the model convergence on the validation set.

DVR We used the code 2 open-sourced by Niemeyer et al. (2020). We followed the default
hyperparameters recommended by Niemeyer et al. (2020) for 3D reconstruction training, with the
exception of batch size, which we set 32 to fit into a single GPU memory.

Adversarial Training We used the python package 3 to perform adversarial training. For AT(L2),
we use attack steps 7, epsilon 3.0, attack lr 0.5. For AT(L∞), we use attack steps 7, epsilon 0.05,
attack lr 0.01. use best (final) PGD step as example. Both models trained for 70 epochs with batch
size 100, which was sufficient for model convergence.

GQN We used the open-source code 4 to implement our GQN. Due to the training instability, we
rescale the image size from 224 x 224 to 64 x 64.

InfoDrop We used the original author’s implementation 5.

2https://github.com/autonomousvision/differentiable_volumetric_
rendering

3https://github.com/MadryLab/robustness
4https://github.com/iShohei220/torch-gqn
5https://github.com/bfshi/InfoDrop
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Stylized To stylize Geon3D, we used the code 6 introduced by the original author of Stylized-
ImageNet Geirhos et al. (2018).

Dataset For training Geon3D image classifiers, we center and re-scale the color values of Geon3D
with µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225], which is estimated from ImageNet.
We construct the 40 3D model instances as well as the whole training data in Blender. We then
normalize the object bounding box to a unit cube, which is represented as 1.0_1.0_1.0 in the
dataset folder.

Background textures We used the following label-to-texture class mapping: {0: ’zigzagged’, 1:
’banded’, 2: ’wrinkled’, 3: ’striped’, 4: ’grid’, 5: ’polka-dotted’, 6: ’chequered’, 7: ’blotchy’, 8:
’lacelike’, 9: ’crystalline’ }. For the distributional shift experiment we used the following mapping: {
0: ’crystalline’, 1: ’zigzagged’, 2: ’banded’, 3: ’wrinkled’, 4: ’striped’, 5: ’grid’, 6: ’polka-dotted’, 7:
’chequered’, 8: ’blotchy’, 9: ’lacelike’, }. The DTD data is licensed under the Creative Commons
Attribution 4.0 License. 7

Evaluation set For all the evaluation sets in the experiment section, we used the same subset of the
test split, where we randomly pick 1000 model instance ids, and randomly sample 1 view out of 50
views for every model instance.

Gaussian Noise Defocus BlurImpulse Noise Zoom Blur Frost Fog

Elastic Transform JPEG Compression Pixelate Brightness Contrast

Figure 8: Examples of image corruptions.

We use the original author’s code 8 to generate common corruptions shown in Figure 8.

Figure 9: Examples of Stylized Geon

6https://github.com/bethgelab/stylize-datasets
7https://creativecommons.org/licenses/by/4.0/, https://www.tensorflow.org/datasets/catalog/dtd
8https://github.com/hendrycks/robustness
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