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ABSTRACT

Robustness research in machine vision faces a challenge. Many variants of
ImageNet-scale robustness benchmarks have been proposed, only to reveal that
current vision systems fail under distributional shifts. Although aiming for higher
robustness accuracy on these benchmarks is important, we also observe that simply
using larger models and larger training datasets may not lead to true robustness,
demanding further innovation. To tackle the problem from a new perspective, we
encourage closer collaboration between the robustness and 3D vision communities.
This proposal is inspired by human vision, which is surprisingly robust to environ-
mental variation, including both naturally occurring disturbances (e.g., fog, snow,
occlusion) and artificial corruptions (e.g., adversarial examples). We hypothesize
that such robustness, at least in part, arises from our ability to infer 3D geometry
from 2D retinal projections—the ability to go from images to their underlying
causes, including the 3D scene. In this work, we take a first step toward testing
this hypothesis by viewing 3D reconstruction as a pretraining method for building
more robust vision systems. We introduce a novel dataset called Geon3D, which
is derived from objects that emphasize variation across shape features that the
human visual system is thought to be particularly sensitive. This dataset enables,
for the first time, a controlled setting where we can isolate the effect of “3D shape
bias” in robustifying neural networks, and informs new approaches for increasing
robustness by exploiting 3D vision tasks. Using Geon3D, we find that CNNs
pretrained on 3D reconstruction are more resilient to viewpoint change, rotation,
and shift than regular CNNs. Further, when combined with adversarial training,
3D reconstruction pretrained models improve adversarial and common corruption
robustness over vanilla adversarially-trained models. We hope that our findings and
dataset will encourage exploitation of synergies between the robustness researchers,
3D computer vision community, and computational perception researchers in cog-
nitive science, paving a way for achieving human-like robustness under complex,
real-world stimuli conditions.

1 INTRODUCTION

Building robust vision systems is a major open problem. Tremendous efforts have been made since
adversarial examples were first reported (Szegedy et al., 2014), and yet adversarial robustness remains
perhaps the most important challenge in safe, real-world deployment of modern computer vision
systems. Ensuring robustness against more common distributional shifts such as blur and snow
also remains a significant challenge (Hendrycks & Dietterich, 2018). As clean ImageNet accuracy
saturates, the research community has developed various ImageNet-scale benchmarks to evaluate the
performance of vision models under distributional shifts such as broader viewpoint variability (Barbu
et al., 2019), style and texture change (Geirhos et al., 2018), geographic shifts (Hendrycks et al.,
2021). These benchmarks, as well as the recent algorithms that are evaluated using smaller-scale
datasets such as MNIST and CIFAR10 (Tramer & Boneh, 2019; Yan et al., 2021), reveal that current
vision systems have plenty of room for improvement in terms of robustness.

So far, robustness research in machine vision focuses on classification. Models trained for image
classification might learn to associate class labels with a limited range of surface-related cues such
as image contours, but they do not fully or explicitly reflect the relationship between 3D objects
and how they are projected to images. On the contrary, the human visual system recovers rich
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three-dimensional (3D) geometry, including objects, shapes and surfaces, from two-dimensional
(2D) retinal inputs. This ability to make inferences about the underlying scene structure from
input images—also known as analysis-by-synthesis—is thought to be critical for the robustness of
biological vision to occlusions, distortions, and lighting variations (Yuille & Kersten, 2006; Mumford,
1994).

While aiming for higher accuracy on ImageNet-scale benchmarks is important, the current landscape
of robustness research shows that we face a clear challenge (Taori et al., 2020). In fact, the consensus
seems to be that large models and large training data work well for some distribution shifts, but
nothing consistently help in all variants of ImageNet robustness benchmarks, awaiting methodological
innovation to achieve human-level robustness (Hendrycks et al., 2021). To unblock the situation, we
advocate closer collaboration between the robustness community and the 3D vision community, in
the hope of fostering new types of robustness research. This paper serves as a first step towards this
effort, where we focus on learning features to facilitate inferences about 3D object shape. Our goal
is to test the hypothesis that shape bias—learning representations that enable accurate inferences
of 3D from 2D, which we refer to as “3D shape bias”—will induce robustness. Inspired by the
robustness of the human vision, our desiderata are that such a robust system should not be easily
fooled by naturally occurring challenging viewing conditions (e.g., fog, snow, brightness) nor by
artificial image corruptions (e.g., due to adversarial attacks).

To achieve this goal, we introduce Geon3D—a novel dataset comprised of simple yet realistic shape
variations, derived from the human object recognition hypothesis called Geon Theory (Biederman,
1987). This dataset enables us to study, in a controlled setting, 3D shape bias of 3D reconstruction
models that learn to represent shapes solely from 2D supervision (Niemeyer et al., 2020). We
find that CNNs trained for 3D reconstruction are more robust to unseen viewpoints, rotation and
translation than regular CNNs. Moreover, when combined with adversarial training, 3D reconstruc-
tion pretraining improves common corruption and adversarial robustness over CNNs that only use
adversarial training. These results suggest that the Geon3D dataset provides a controlled and effective
measure of robustness, and unlike existing, commonly used datasets in this area such as CIFAR10 and
ImageNet-C, Geon3D guides novel approaches by facilitating an interface between robust machine
learning and 3D reconstruction. (Please see the Related Work section for a discussion of Geon3D in
the context of existing 3D shape datasets.)

Biological vision is not only about object classification or localization, but also about making rich
inference about the underlying causes of scenes such as 3D shapes and surfaces (Olshausen, 2013;
Yuille & Kersten, 2006; Mumford, 1994). We hope our findings and dataset will encourage the
community to tackle robustness problems through the lens of 3D inference and the perspective of
perception as analysis-by-synthesis, toward the combined goals of building machine vision systems
with human-like richness and reliability.

2 APPROACH

We first describe the Geon Theory, which our dataset construction relies on. Next, we explain the
data generation process used in the creation of Geon3D (§2.1), and how we train a 3D reconstruction
model (§2.2).

2.1 GEON3D BENCHMARK

The concept of Geons—or Geometric ions—was originally introduced by Biederman as the building
block for his Recognition-by-Components (RBC) Theory (Biederman, 1987). The RBC theory argues
that human shape perception segments an object at regions of sharp concavity, modeling an object as
a composition of Geons—a subset of generalized cylinders (Binford, 1971). Similar to generalized
cylinders, each Geon is defined by its axis function, cross-section shape, and sweep function. In order
to reduce the possible set of generalized cylinders, Biederman considered the properties of the human
visual system. He noted that the human visual system is better at distinguishing between straight and
curved lines than at estimating curvature; detecting parallelism than estimating the angle between
lines; and distinguishing between vertex types such as an arrow, Y, and L-junction (Ikeuchi, 2014).

Our focus in this paper is not the RBC theory or whether it is the right way to think about how we see
shapes. Instead, we wish to build upon the way Biederman characterized these Geons. Biederman
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Figure 1: Examples of 10 Geon categories from Geon3D-10. The full list of 40 Geons we construct
(Geon3D-40) is provided in the Appendix.

Table 1: Latent features of Geons. S: Straight, C:
Curved, Co: Constant, M: Monotonic, EC: Ex-
pand and Contract, CE: Contract and Expand, T:
Truncated, P: End in a point, CS: End as a curved
surface

Feature Values

Axis S, C
Cross-section S, C
Sweep function Co, M, EC, CE
Termination T, P, CS

Table 2: Similar Geon categories, where only
a single feature differs out of four shape fea-
tures. “T.” stands for “Truncated”. “E.” stands
for “Expanded”.

Geon Category Difference

Cone vs. Horn Axis
Handle vs. Arch Cross-section
Cuboid vs. Cyllinder Cross-section
T. Pyramid vs. T. Cone Cross-section
Cuboid vs. Pyramid Sweep function
Barrel vs. T. Cone Sweep function
Horn vs. E. Handle Termination

proposed using two to four values to characterize each feature of Geons. Namely, the axis can be
straight or curved; the shape of cross section can be straight-edged or curved-edged; the sweep
function can be constant, monotonically increasing / decreasing, monotonically increasing and then
decreasing (i.e. expand and contract), or monotonically decreasing and then increasing (i.e. contract
and expand); the termination can be truncated, end in a point, or end as a curved surface. A summary
of these dimensions is given in Table 1.

Representative Geon classes are shown in Figure 1. For example, the “Arch” class is uniquely
characterized by its curved axis, straight-edged cross section, constant sweep function, and truncated
termination. These values of Geon features arenonaccidental—we can determine whether the axis is
straight or curved from almost any viewpoint, except for a fewaccidentalcases. For instance, an
arch-like curve in the 3D space is perceived as a straight line only when the viewpoint is aligned in a
way that the curvature vanishes. These properties make Geons an ideal dataset to analyze 3D shape
bias and part-level robustness of vision models. For details of data preparation, see Appendix.

2.2 3DRECONSTRUCTION AS PRETRAINING

To explore advantages of direct approaches to induce shape bias in vision models, we turn our
attention to a class of 3D reconstruction models. The main hypothesis of our study is that the task of
3D reconstruction pressures the model to obtain robust representations.

Recently, there has been signi�cant progress in learning-based approaches to 3D reconstruction,
where the data representation can be classi�ed into voxels (Choy et al., 2016; Riegler et al., 2017),
point clouds (Fan et al., 2017; Achlioptas et al., 2018), mesh (Kato et al., 2018; Groueix et al., 2018),
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and neural implicit representations (Mescheder et al., 2019; Chen & Zhang, 2019; Park et al., 2019;
Sitzmann et al., 2019). We focus on neural implicit representations, where models learn to implicitly
represent 3D geometry in neural network parameters after training. We avoid models that require
3D supervision such as ground truth 3D shapes. This is because we are interested in models that
only require 2D supervision for training and how inductive bias of 2D-to-3D inference achieves
robustness.

Speci�cally, we use Differentiable Volumetric Rendering (DVR) (Niemeyer et al., 2020), which
consists of a CNN-based image encoder and a differentiable neural rendering module. We train DVR
to reconstruct 3D shapes of Geon3D-10. For more details of DVR and 3D reconstruction, we refer
the readers to the Appendix.

3 EXPERIMENTAL RESULTS

In this section, we demonstrate how 3D shape bias improves model robustness. We evaluate robustness
in terms of the Geon3D-10 classi�cation accuracy under various image perturbations. Our 3D-shape-
biased classi�er is based on the image encoder of the 3D reconstruction model (DVR) that is
pretrained to reconstruct Geon3D-10. We add a linear classi�cation layer on top of the image
encoder, and then �netune, either just that linear layer (DVR-Last) or the entire encoder (DVR),
for Geon3D-10 classi�cation. Notice that the inputs to all models during classi�cation are only
RGB images. (Camera matrices are only used for the rendering module during pretraining for 3D
reconstruction.) Our baseline is a vanilla neural network (Regular) that is trained normally for
Geon3D-10 classi�cation. To see the difference between 3D shape bias and 2D shape bias in the
sense of (Geirhos et al., 2018), we also evaluate the following models, which are hypothesized to
rely their prediction more on shape than texture.Stylized is a model trained on Stylized images
of Geons. We follow the same protocol as (Geirhos et al., 2018) by replacing the texture of each
image of Geon3D-10 by a randomly selected texture from paintings through the AdaIn style-transfer
algorithm (Huang & Belongie, 2017).Adversarially trained network (AT) is a network that uses
adversarial examples during training (Madry et al., 2018). Through extensive experiments, Zhang
& Zhu (2019) demonstrate that AT models develop 2D shape bias, which is considered to explain,
in part, the strong adversarial robustness of AT models. In our experiments, we useL 1 andL 2
based adversarial training.InfoDrop (Shi et al., 2020) is a recently proposed model that induces
2D shape bias by decorrelating each layer's output with texture. The method exploits the fact that
texture often repeats itself, and hence is highly correlated with and can be predicted by the texture
information in the neighboring regions, whereas shape-related features such as edges and contours are
less coupled at the locality of neighboring regions. To control for variation in network architectures,
we use ImageNet-pretrained ResNet18 for all models we tested. The image encoder of DVR is also
initialized using ImageNet-pretrained training for 3D reconstruction of Geons.

Background variations To quantify the effect of textured background, we prepare three versions
of Geon3D-10: black background, random textured background (Geon3D-10-RandTextured), and
correlated background (Geon3D-10-CorrTextured). For Geon3D-10-RandTextured, we replace
each black background with a random texture image out of 10 texture categories chosen from the
Describable Textures Dataset (DTD) (Cimpoi et al., 2014).For Geon3D-10-CorrTextured, we choose
10 texture categories from DTD and introduce spurious correlations between Geon category and
texture class (i.e., each Geon category is paired with one texture class). Examples of Geon3D
with textured background are shown in Figure 3 (Right). These three versions of our dataset allow
us to analyze more realistic image conditions as well as to test robustness despite variation and
distributional shifts in textures.

3.1 3D SHAPE BIAS IMPROVES GENERALIZATION TO UNSEEN VIEWS AND REDUCES SIMILAR
CATEGORY CONFUSION

One of the crucial but often overlooked examples of 3D shape bias that human vision has is “visual
completion” (Palmer, 1999), which refers to our ability to infer portions of surface that we cannot
actually see. For instance, when we look at the top-left image in Figure 3, we automatically recognize
it as a whole cube, even though we cannot see its rear side. We view the task of 3D reconstruction as
a way to build such an ability into neural networks. In this section, we investigate how such 3D shape
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Figure 2: Accuracy per Geon category under unseen viewpoints. Even though all models perform
reasonably well, there is still a range of overall accuracy values. In addition, we see that when
networks make a mistake, it is often between similar Geon categories (see Table 2 for a list of similar
Geon categories). Regular: a baseline model; InfoDrop: a shape-biased model; AT: adversarially
trained; Stylized: a network trained on “stylized” version of Geon3D; DVR: We use pretrained
weights of the image encoder of Differentiable Volumetric Rendering (3D reconstruction model),
a 3D reconstruction model, and �netune all of its layers on the Geon3D-10 classi�cation task.
DVR-Last refers to the version where we �netune only the last classi�cation layer.

bias of DVR improves classi�cation of similar Geon categories under unseen viewpoints, testing both
DVR (where we �netune all layers of the image encoder) and DVR-Last (where we �netune only the
top classi�cation layer of the image encoder).

The results of per-category classi�cation are shown in Figure 2. We say two Geons are similar when
there is only a single shape feature difference, as summarized in Table 2. We see that networks often
misclassify similar Geon categories. The vanilla neural network (Regular) often misclassi�es “Cone”
vs. “Horn”, “Handle” vs. “Arch”, “Cuboid” vs. “Truncated pyramid”, as well as “Truncated cone” vs.
“Truncated pyramid”.The Geon pairs the InfoDrop model misclassi�es include: “Arch” vs. “Handle”,
“Cyllinder” vs. “Barrel”, “Cuboid” vs. ”Cyllinder” and “Truncated pyramid” vs. “Truncated cone”,
which are all pairs with single shape feature difference.

Notably, the Stylized model, which is hypothesized to increase bias towards shape-related features,
makes a number of mistakes for similar Geon classes (i.e. “Horn” vs. “Cone”, “Cone” vs. “Truncated
pyramid”, and “Truncated cone” vs. “Truncated pyramid”), similar to the Regular model. This result
is consistent with the �nding that the Stylized approach (Geirhos et al., 2018) does not necessarily
induce proper shape bias (Mummadi et al., 2020).

AT-L 1 and DVR-Last perform better than the models listed above, yet still struggle to distinguish
“Truncated Pyramid” from “Truncated Cone”, where the difference is whether the cross-section
is curved or straight (see Table 2). On the other hand, DVR successfully distinguishes these two
categories. This shows that 3D pretraining before �netuning for the task of classi�cation facilitates
recognition of even highly similar shapes. The hardest pair for DVR is “Truncated cone” vs. “Barrel”,
but the errors the model make appear sensible (Figure 3, middle panel): For example, when the camera
points at the smaller side of the “Truncated Cone”, then there is uncertainty whether the surface
extends beyond self-occlusion by contracting (which would be consistent with the “Barrel” category)
or the surface ends at the point of self-occlusion (which would be consistent with the category
“Truncated Cone”). Indeed, when we inspected the samples of “Truncated Cone” misclassi�ed as
“Barrel” by DVR, we found that for half of those images, the larger side of “Truncated Cone” was
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Figure 3: (Left) We humans recognize the top image as a whole cube, automatically �lling in the
surfaces of its rear, invisible side, although, in principle, there are in�nitely many scenes consistent
with the sense data , one of which is shown in the bottom image (Palmer, 1999). This illustrates
that certain shapes are more readily perceived by the human visual system than others. (Middle)
Examples of “Truncated Cone” that are misclassi�ed as “Barrel” by DVR, next to “Barrel“ exemplars
shown at similar viewpoints.(Right) Example images from Geon3D-10 with textured backgrounds.

self-occluded. Future psychophysical work should quantitatively compare errors made by these
models to human behavior.

Accuracy under rotation and translation (shifting pixels) CNNs are known to be vulnerable to
rotation and shifting of the image pixels (Azulay & Weiss, 2019). As shown in Table 3, our model
(DVR) pretrained with 3D reconstruction performs better than all other models under rotation and
shift even though it is not explicitly trained to defend against those attacks. We observe that DVR-Last
performs second best, indicating that this “for free” robustness to rotation and shift is largely in place
even when �netuning on the classi�cation task is restricted to only linear decoding of the categories.

Table 3: Accuracy of shape-biased classi�ers against rotation and shifting of pixels on Geon3D under
unseen viewpoints. We randomly add rotations of at most 30� and translations of at most 10% of the
image size in eachx; y direction. We report the mean accuracy and standard deviation over 5 runs of
this stochastic procedure over the entire evaluation set.

REGULAR INFODROP STYLIZED AT-L 2 AT-L 1 DVR-LAST DVR

ROTATION 82:18(1 :06) 80:76(0 :69) 78:47(0 :57) 87:00(0 :57) 89:58(0 :48) 90:44(0 :30) 93.46(0 :44)
SHIFT 72:28(0 :43) 71:86(0 :63) 61:44(0 :29) 53:84(0 :71) 61:50(1 :11) 73:24(0 :73) 76.52(0 :89)

3.2 ROBUSTNESS AGAINSTCOMMON CORRUPTIONS

In this section, we show that, when combined with adversarial training, 3D pretrained models
(denoted as DVR+AT-L 2 and DVR+AT-L 1 ) improve robustness against common image corruptions,
above and beyond what can be accomplished just using adversarial training. For these models, we
use adversarial training during the �netuning of the 3D reconstruction model for the Geon3D-10
classi�cation task. Here we evaluate the effect of 3D shape bias not only in the somewhat sterile
scenario of the clean, black background images, but also using the background-textured versions
of our dataset. To do this, we train all models using Geon3D-10-RandTextured, where we replace
the black background with textures randomly sampled from DTD (see Figure 3, right panel, for
examples). During evaluation, we use unseen viewpoints.

The results are shown in Table 4. We see that starting adversarial training from DVR-pretrained
weights improves robustness across all corruption types, over what can be achieved by only either
AT-L 2 or AT-L 1 . DVR-AT and AT models fail on “Contrast” and “Fog”. This has been a known
issue for AT (Gilmer et al., 2019), which requires future work to explore. While Stylized performs
best under certain corruption types, we can see that DVR-AT-L 2 leads to broader robustness across
the corruptions we considered.
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