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ABSTRACT

Learning generalizable speech representations for unseen samples in different do-
mains has been a challenge with ever increasing importance to date. Although
contrastive learning has been a prominent class of representation learning ap-
proaches, the state-of-the-art (SOTA) contrastive learning methods were found
to have limited ability for learning unseen out-of-domain speech representations.
This paper presents SynCLR, a synthesis framework for contrastive learning of
speech representations that can be generalized over unseen domains. Specifically,
instead of using data augmentation approach, SynCLR employs data synthesis
for multi-view generation. To ensure a highly-varied conditional speech distri-
bution in view generation, we design a novel diffusion-based speech synthesizer.
A new contrastive loss is also proposed to construct multiple embedding spaces,
each of which preserves view-sensitive information to reduce domain reliance for
a better disentanglement. Our experiments showed that SynCLR outperformed
the SOTA contrastive learning methods with a 21.1% relative reduction of EER in
speaker verification tested on an unseen speech corpus, and considerably reduced
50.8% relative FIDs in a challenging speech-to-image translation task given out-
of-domain test speeches.

1 INTRODUCTION

Learning representations of out-of-domain speeches, i.e., speeches from speaker, speaking style, or
content unseen in training, is a challenging problem that heavily relies on the model’s generalization
ability. Towards learning generalized representations, a majority of the prior works (Oord et al.,
2018; Tian et al., 2020) studied contrastive methods, which are designated to pull the positive sample
pairs together and push the negative ones apart in the high-dimensional embedding space. The recent
state-of-the-art contrastive learning methods (Chen et al., 2020b; Al-Tahan & Mohsenzadeh, 2021)
shared a common idea that employs data augmentation for view generation (Bachman et al., 2019;
Tian et al., 2020). It has been shown that view generation is useful for enhancing the robustness of
the learned representation since diverse views can lead to a better exploration of the data distribution.

However, the aforementioned contrastive learning methods are limited in their generalizability of
representations for out-of-domain speeches mainly because of two challenges: (1) The augmented
data distribution has limited diversity. Apparent degradation still emerges when encountering speech
with content, prosody or speaker unseen in training. (2) Projecting data from different views into
one single space has been demonstrated to obtain representations invariant to transformations, yet
this also makes the learning of view-sensitive and disentangled representations difficult.

To address the above challenges, we introduce a novel synthesis framework called SynCLR for con-
trastive learning of out-of-domain speech representations. The unique advantages of SynCLR can
be summarized into three points: (1) Multi-view data synthesis was used in place of data augmen-
tation for task-dependent view generation, which provides diverse views to conduct generalizable
representation learning. (2) To avoid mode collapse (Creswell et al., 2018) in the dominated GAN-
based generative models, which leads to very similar output samples from a single or few modes of
the distribution, especially in the strongly conditional generation task (e.g., speech synthesis), we
designed a diffusion-based synthesizer named SynGrad. SynGrad can be used to efficiently generate
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view-conditional speech samples, and has shown a greater synthesis variability, which is essential
for improving the robustness of speech representations. (3) To reduce the limitation of speech en-
coder applied to a specific domain, SynCLR jointly optimizes multiple view-sensitive contrastive
objectives to relate the projected embedding spaces to the input views.

Our proposed SynCLR approach was evaluated on a self-supervised speaker verification task and
a challenging supervised speech-to-image generation task to assess the efficiency and the gener-
alization ability of SynCLR in learning out-of-domain speech representations. Finally, SynCLR
outperformed the SOTA contrastive learning methods with a 17.2% relative improvement of EER in
verifying unseen speakers, and considerably reduced 50.8% relative FID in a challenging speech-
to-image translation task given out-of-domain test speeches. The experimental results demonstrated
that our proposed SynCLR framework can significantly improve the out-of-domain speech repre-
sentation learning.

Our main contributions are summarized below:

• We introduce a multi-view synthesizer in the contrastive learning framework to generate
diverse yet view-controllable samples, which can improve the generalization power.

• We design a fast and high-quality waveform generative model SynGrad. SynGrad avoids
mode collapse in previous GAN-based methods and succeeds to expand data distribution
for multi-view data synthesis.

• We propose a novel contrastive learning objective to construct multiple embedding spaces,
each of which preserves view-sensitive information to reduce domain reliance for a better
disentanglement.

2 BACKGROUND: A SIMPLE CONTRASTIVE LEARNING FRAMEWORK

Contrastive learning is one of the prominent self-supervised learning approaches that learn a rep-
resentation by grouping similar data pairs and repelling dissimilar pairs on a high-dimensional em-
bedding space. It has been shown successful for learning rich representations in the speech domain.
Recently, Chen et al. (2020b) introduced a simple contrastive learning framework called SimCLR,
which produced remarkable results outperforming previous self-supervised and semi-supervised
representation learning methods. The SimCLR framework comprises four major components:

• A stochastic data augmentation operator D that generates augmented samples from a ref-
erence data sample along different views, e.g., varying speakers, prosodies, or transcripts.

• An encoder f : X 7→ H that extracts a hidden representation c ∈ H ⊆ RD from a given
speech waveform x ∈ X .

• A projector h : H 7→ Z that further maps an extracted speech feature into an embedding
space Z ⊆ RN for calculating the contrastive loss.

• A contrastive loss ` that evaluates the similarity of a positive pair of data examples relative
to n negative pairs on the embedding space.

We specifically define the contrastive learning framework for the speech domain. Let x0 be the
reference speech, we denote an augmented speech as x̃(v)

0 ∼ D(v)(x0), where v indexes an aug-
mentation view. Then, considering other speech references x1, ...,xn, we can form a positive data
pair (x0, x̃

(v)
0 ) together with n negative pairs (x1, x̃

(v)
1 ), ..., (xn, x̃

(v)
n ) along the v-th augmentation

view. After the positive and negative pairs are obtained, the contrastive loss can be computed. A
common choice of ` is the InfoNCE loss (Oord et al., 2018):

`infoNCE(v) := − log
exp (z0

>Wvc̃
(v)
0 )

exp (z0>Wvc̃
(v)
0 ) +

∑n
i=1 exp (z0>Wvc̃

(v)
i )

, (1)

where zi = f(xi), Wv is a learnable matrix defined for the view v. Here and below, we define the
shorthand, z̃(v)i = f(x̃

(v)
i ) and c̃(v)i = h(z̃

(v)
i ). Note that Oord et al. (2018) considered different

v as different step numbers ahead of the current time index, but we can generally consider them as
different views as in (Bachman et al., 2019; Tian et al., 2020).
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Figure 1: A block diagram of the SynCLR framework. SynCLR learns multiple embedding spaces
to construct view-sensitive information. Take text-invariant embedding z1 as an example: The text-
modified synthetic sample is considered to be positive while the rest of the samples in the batch are
considered negative samples, and thus z1 represents the text-invariant information generalizable to
text-sensitive out-of-domain distribution.

Alternatively, Chen et al. (2020b) employed a normalized temperature-scaled cross entropy loss
(NT-Xent), which can be computed given a minibatch of n reference audios. Let s(u,v) :=
u>v/max(‖u‖2‖v‖2, ε) with a small positive constant ε. Considering two different augmentation
views v and v′, the n references are transformed into 2n augmented samples. Then, we compute

`NT-Xent(i, v, v
′) := − log

exp (s(z̃
(v)
i , z̃

(v′)
i )/τ)

exp (s(z̃
(v)
i , z̃

(v′)
i )/τ) +

∑
j 6=i exp (s(z̃

(v)
i , z̃

(v′)
j )/τ)

, (2)

where τ is a hyperparameter controlling the temperature. In essence, SimCLR aims at learning
efficient visual representations by maximizing agreement between differently augmented views of
the same data and maximizing difference across contrasting images. From a different aspect, Xiao
et al. (2020) proposed to capture varying and invariant factors for constructing separate embedding
spaces.

3 SYNCLR: A SYNTHESIS CONTRASTIVE LEARNING FRAMEWORK

In this paper, we propose a novel synthesis framework for contrastive learning of multi-domain
speech representations called SynCLR.

Compared with the SOTA contrastive framework described before, SynCLR has the following key
differences in learning speech representations: (1) To overcome the limitation of diversity in data
augmentation, we propose a multi-view data synthesis strategy for speech representation learning
unseen domain. SynCLR does not require a reference sample to generate augmented samples for
contrastive learning, on the contrary, the synthesizer pre-defines the conditions to synthesize a pair
of positive or negative samples for computing the contrastive loss. (2) For high-quality and diverse
speech synthesis, we introduce a novel diffusion probabilistic model named SynGrad, which guar-
antees stable training and avoids mode collapse in dominant GAN-based methods. (3) Towards
learning generalizable, view-sensitive and disentangled representation, we introduce a multi-head
embedding learning with a novel contrastive loss.

Overall, the SynCLR training procedure can be mainly divided into three stages: (i) Multi-view data
synthesis; (ii) Multi-head embedding learning; and (iii) Contrastive loss calculation. Each of these
stages is described in the following sections. We illustrate the SynCLR framework in Figure 1.
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3.1 MULTI-VIEW DATA SYNTHESIS

As data diversity is vital for generalizable representation learning, SynCLR employs a multi-view
data synthesis approach for data manipulation, denoted as a mani(·) function. By modifying the data
manipulation strategy in the contrastive learning framework, we are able to explore a more diverse
data distribution, and hence improving the generalizability of the learned representations.

Generative Model In the speech domain, high-quality, expressive and customized text-to-speech
syntheses (TTS) have been proven successful, which provides an ideal environment for flexible
multi-view contrastive learning. Existing methods are dominated by the generative adversarial net-
works (GANs), which, however, has been criticized for mode collapse and limited sample diver-
sity (Dhariwal & Nichol, 2021; Creswell et al., 2018). To encounter stable training and broaden data
distribution of synthetic samples, we employ the state-of-the-art generative model – denoising dif-
fusion probabilistic models (DDPMs) (Ho et al., 2020), which have been shown to surpass GANs in
terms of sampling quality (Dhariwal & Nichol, 2021). Yet, in order to maintain high-quality synthe-
sis, DDPMs require hundreds to thousands of steps to generate a sample (Chen et al., 2020a; Kong
et al., 2020b). To alleviate the efficiency issue, a recent work proposed bilateral denoising diffusion
models (BDDMs) (Lam et al., 2021a) to speed up DDPMs into more than 10x meanwhile remain-
ing high-fidelity speech synthesis. BDDMs mainly consist of a score network θ and a scheduling
network φ. The detailed formulation of BDDMs is presented in Appendix A.

Formally, given a generative diffusion model parameterized by a score network θ, we synthesize a
speech sample given a set of V conditions C = {c1, . . . , cV } corresponding to V views, e.g., text,
prosody, and speaker: x ∼ Diffθ(β,C), where Diffθ is the pre-trained BDDM for inference, and
β ∈ RS is the noise schedule for sampling. Figure 1 shows an example of having three views, and
{c1, c2, c3} denote the values in the text view, the prosody view, and the speaker view, respectively.

Model Architecture The architecture of the proposed end-to-end diffusion synthesizer is shown
in Figure 2, which consists of a text-to-spectrogram model FastSpeech 2 (Ren et al., 2020) and
an efficient waveform generator named SynGrad. Inspired by the recent works (Ren et al., 2020;
Kim et al., 2020) in controllable speech synthesis, we convert the input text into a sequence of
hidden variables and add variance information (i.e., duration, pitch, and energy) to generate mel-
spectrograms with multiple speech views. Follow from this, SynGrad converts the mel-spectrograms
into speeches with a noise scheduler (Lam et al., 2021a)

To provide diverse views in our contrastive learning framework, in FastSpeech 2, we employ du-
ration and pitch predictors, and embed the speaker identities into the encoded text sequence for
generating the multi-speaker view of speech.

In SynGrad, we adopt kernel predictors for location-variable convolution (Jang et al., 2021; Zeng
et al., 2021), which can capture the conditional local information, leading to a much more efficient
sampling process than those with other existing architectures, e.g., WaveGrad (Chen et al., 2020a)
and DiffWave (Kong et al., 2020b). Specifically, the kernel predictors directly learn multiple sets
of convolution kernels according to the diffusion step embedding and the synthesized spectrogram
features. These kernels can be used to perform convolution operations on the associated intervals
in the input sequence, which is superior to the traditional convolution networks in modeling the
long-term waveform dependencies.

Noise Scheduling Acceleration The sampling quality and speed of a diffusion probabilistic model
are directly related to the pre-defined noise schedule for sampling β. Ho et al. (2020) used a linear
noise schedule for sampling but it is prohibitive for efficient sampling. To solve this problem, we fol-
low Lam et al. (2021a) to use the GALR (Lam et al., 2021b) network GALRφ for noise scheduling,
i.e., starting from the hyperparameters (αS , βS), we recursively estimate βs as follows:

βs = GALRφ(xs, αs+1, βs+1), (3)

xs−1 ∼N

(
1√

1− βs

(
xs −

βs√
1− α2

s

εθ (xs, αs)

)
,

1− α2
s−1

1− α2
s

βsI

)
, (4)

where αs = αs+1/
√
βs+1, αs−1 = αs/

√
βs and εθ is a pre-trained score network. The predicted

noise schedule is then mapped to discrete step indices following (Kong et al., 2020b) for the score
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Figure 2: The pipeline of multi-view data synthesis. ⊕ denotes the element-wise addition operation,
and LR denotes the length regulator.

network conditioning on a discrete step index. In the following context of SynCLR, all βs are
assumed produced as the above.

3.2 MULTI-HEAD EMBEDDING LEARNING

As described above, data synthesis contributes to expanding the data distribution and improving
the generalizability of learned speech representation. To extract the representation vectors from
speeches, we used a neural network based encoder f : X 7→ H, from which we obtain the gen-
eral feature vi of a synthesized speech xi by mapping it into a D-dimensional embedding space
RD. Then, a v-dependent projector hv : H 7→ Z further maps the extracted general representa-
tions into an embedding space Zv corresponding to the v-th view conditioning the speech synthesis.
Here, the number of dimensions in different view-corresponded embedding spaces can also be dif-
ferent: Zv ⊆ RDv for v = 1, . . . , V . Notably, the definition of projector in SynCLR is different
from previous works, which projected every view into a single embedding space that is invariant
to all augmentations (Oord et al., 2018; Chen et al., 2020b), or projected every view into different
embedding sub-spaces that hold no direct correspondence to the V views (Xiao et al., 2020).

3.3 CONTRASTIVE LOSS

Last but not least, we compute the contrastive loss. Other than defining positive or negative samples
based on augmentation, the SynCLR framework synthesizes contrastive samples by defining varying
and invariant views for the generative model as different conditions.

Formally, we define a batch of n collections of conditions {Ci}ni=1 = {{ci,1, . . . , ci,V }}ni=1 for
synthesis, where ci,v denotes the condition values for the v-th view in the i-th collection of the batch.
Based on these conditions, we synthesize the reference samples xi ∼ Diffθ(β,Ci) for i = 1, . . . , n.
For defining the contrastive samples relative to the reference samples, we vary a specific view v to
obtain Ci\v = {ci,1, . . . , cj,v, . . . , ci,V }, which implies replacing the v-th element ci,v of Ci by
a different condition cj,v from a randomly selected collection Cj in the same batch with j 6= i.
Followed from this, we define a different set of n synthesized samples each with the v-th view
varied: x(v)

i ∼ Diffθ(β,Ci\v) for i = 1, . . . , n.

Given the synthesized speech samples, for each v, we compute n pairs of embedding vectors:
{zi,v, z(v)i }ni=1, where zi,v = hv(f(xi)) are computed from the reference samples, and z(v)i =
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hv(f(x
(v)
i )) are computed from the view-varied samples. Then, we define the contrastive loss as

`SynCLR(i) := −
V∑
v=1

log
exp (s(zi,v, z

(v)
i )/τ)

exp (s(zi,v, z
(v)
i )/τ) +

∑
j 6=i exp (s(zi,v, z

(v)
j )/τ)

, (5)

where, similar to Eq. 2, s(u,v) = u>v/max(‖u‖2‖v‖2, ε) with a small positive constant ε, and τ
is a hyperparameter controlling the temperature.

Both the encoder network f(·) and the projectors h1(·), . . . , hV (·) are trained with the above de-
fined contrastive loss `SynCLR(i) by sampling i uniformly at each training step. After the training is
completed, given an unseen speech sample x?, we use the concatenation of V -views embeddings:
Concat([h1(f(x?)), ..., hV (f(x?))]) as the speech representation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

A majority of representation learning methods adopt a pretraining stage for expanding the general
data distribution and then finetuning to the downstream datasets. Different from these works, Syn-
CLR does not follow a pretraining & finetuning pipeline, instead, it can be directly trained on a
specific task to learn speech representations generalizable to unseen test cases without using the la-
bels for that task. The main idea is to correspondingly define the view spaces for a given task to bring
task-specific improvements. Similar to existing works (Ye et al., 2021; Nasiri & Hu, 2021; Seshadri
& Lerch, 2021), the contrastive learning approach could be incorporated into the existing down-
stream model to improve their performance. Similarly, we evaluated SynCLR on two downstream
tasks (i.e., speaker verification, speech-to-image translation) to test our hypotheses.

Multi-view data synthesis Our multi-view data synthesis pipeline consists of several neural net-
works for promoting quality, including a “variance adaptor” FastSpeech 2, a diffusion probabilistic
waveform generative model SynGrad, and a scheduling network GALR for scheduling acceleration.

We employed both single-speaker LJSpeech (Ito & Johnson, 2017) and multi-speaker LibriTTS (Zen
et al., 2019) datasets to train the speech synthesizer for view generation. For a given text input, we
generate corresponding speeches by conditioning the speech synthesizer on multiple views, e.g.,
prosody and speaker. In judgment for generalization of speech representation learning model, we
prepare both in-domain and out-of-domain testing sets. More details have been attached in Ap-
pendix E.

Learnt representations Taken time-frequency audio features (i.e. spectrograms) as input, the
speech representation learning network fenc consists of a two-layer 1-D convolution block and a
LSTM layer. It generates 1024 dimensional general embeddings from log Mel filter bank spectro-
grams. In this work, we use 2-layer MLP projection heads fproj to project the general representation
to content, prosody and speaker embedding spaces.

4.2 SPEAKER VERIFICATION

Motivation To investigate the effect of SynCLR acting as a contrastive learning approach which
could be incorporated into the existing downstream models, we conducted experiments on speaker
verification.Speaker verification (Wan et al., 2018; Lai, 2019) aims to verify whether the speakers of
a pair of utterances match. The pair may not be presented beforehand, and hence it is a challenging
open-set problem. Furthermore, testing on more noisy and diverse multi-speaker out-of-domain
speech samples is a promising path to evaluate model generalization, so that we prepared unseen
test samples from VoxCeleb1 to constitute the out-of-domain testing set.

Implementation details We implemented competitive contrastive learning approaches for com-
parison and trained speech encoder on the train-clean-100 subset of LibriTTS. Detailed configura-
tions are presented in Appendix F. Cosine similarity served as a back-end scoring method during
testing. The evaluation results are assessed in equal error rates (EER).
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Method In-domain EER (↓) Out-of-domain EER (↓)
d-vectors LibriTTS 8.23 VoxCeleb1 32.05

+infoNCE LibriTTS 8.16 VoxCeleb1 30.69
+SimCLR LibriTTS 8.02 VoxCeleb1 29.36
+SynCLR LibriTTS 7.55 VoxCeleb1 26.35

Table 1: Quantitative results of SynCLR and competitive con-
trastive approaches on speaker verification.

Quantitative Results Ex-
perimental results are shown
in Table 1. Compared with
the competing contrastive
learning approaches, our
proposed SynCLR mechanism
captured more discriminative
representations and reduced
EER by 5.7%, 4.34%, and
3.01% relative to the downstream model (i.e., d-vectors), the model incorporated with InfoNCE,
and SimCLR contrastive learning approaches during out-of-domain testing, respectively. The
proposed SynCLR had been demonstrated to be superior to previous contrastive learning objectives
and preserve better generalization in out-of-domain distribution.

4.3 SPEECH-TO-IMAGE TRANSLATION

Motivation Speech-to-image synthesis (Li et al., 2020; Wang et al., 2021) generates images that
have semantic contents corresponding to the input speech descriptions. The performance of con-
ventional speech-to-image translators, to a large extent, depends on speech representations, which
challenges a successful disentanglement of view-sensitive information to reduce domain reliance.
This thus provides a touchstone to evaluate and compare different speech representation learning
methods. What’s more, we consider an even more challenging but realistic scenario, where out-
of-domain test sets to assess the generalization abilities of different methods. During the out-of-
domain evaluation, distinctively trained speech encoders were fed with speeches with text, prosody,
or speaker unseen in training.

Implementation details Several contrastive learning methods were taken involved in speech rep-
resentation learning. Given speech representation, we chose two popular GAN-based speech-to-
image synthesis models (Li et al., 2020; Wang et al., 2021) to generate an image in the second
stage. During testing, we adopted quantitative evaluation metrics of Inception Score (IS) (Heusel
et al., 2017) and Fréchet Inception Distance (FID) (Salimans et al., 2016) both in-domain and out-
of-domain testing sets. Detailed configurations and definitions are presented in Appendix G.

Method In-domain Out-of-domain
FID(↓) IS(↑) FID(↓) IS(↑)

DirectGAN 15.48 4.96 29.76 3.73
+SimCLR 14.55 4.98 17.81 5.03
+SynCLR 11.55 5.23 14.65 5.35

S2IGAN 15.46 4.82 15.98 4.80
+SimCLR 14.77 4.76 15.43 5.17
+SynCLR 11.55 4.97 12.26 5.33

Table 2: Quantitative results of proposed Syn-
CLR method on speech-to-image generation. We
conduct experiments on two baselines DirectGAN
and S2IGAN.

Quantitative Results The experimental re-
sults are shown in Table 4.3. Rich and
high-fidelity out-of-domain speech guidance is
learned through proposed synthesis contrastive
learning framework. Compared with the two
baselines, SynCLR improved the quality of
synthetic images in terms of both IS and FID.
In out-of-domain speech-to-image translation,
IS was improved from 3.73 to 5.35 with Di-
rectGAN and from 4.80 to 5.33 with S2IGAN.
For the FID metric, SynCLR also improved the
baseline DirectGAN and S2IGAN significantly
by 50% and 23% in out-of-domain image syn-
thesis, respectively. As the data distribution
changed in unseen test set, we can witness an
increase of the inception scores compared to in-
domain evaluation.

In summary, the quantitative experimental results demonstrated that our proposed framework Syn-
CLR is efficient in learning out-of-domain speech representations and showed superiority in guiding
conditional image generation.

Qualitative Findings To further compare our proposed approach with the baselines, we attached
the synthetic images guidance in challenging out-of-domain speeches. Following the generated sam-
ples in figure 3, we have two observations: (1) For expressiveness, our method better highlighted the
main subject of the image from its background. As speech representations became more abundant,
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Base (DirectGAN) + SimCLR + SynCLR Base (S2IGAN) +SimCLR +SynCLRCUB-200: Unseen

This bird has a 
white belly and
breast, with a blue
crown and nape.

This bird has wings 
that are gray and
has a white belly.

Figure 3: Comparison of synthesized images over out-of-domain CUB dataset.

more details in synthesized images emerged. Generated depictions seemed to be dull in baselines,
while the ones guided by adding SynCLR’s learned representations in column 1st and 6th were more
colorful and vivid. (2) For realism, our approach better matched with the speech descriptions and
kept correspondence in most cases. For instance, the synthesized image in column 1st of first utter-
ance did not represent corresponding text “blue crown”, whereas the synthesized image generated
by adding SynCLR’s learned representations produced relevant images. Contrasting speech repre-
sentations contributes a lot to better understand what people say even in out-of-domain scenarios.
Additional image samples are presented in Appendix G.

4.4 ABLATION STUDY

Method Variance View In-domain Out-of-domain
T P S FID(↓) IS(↑) FID(↓) IS(↑)

SimCLR X 14.77 4.76 15.43 5.17
SimCLR X X 13.75 4.81 18.39 5.22
SimCLR X X X 11.69 4.88 14.96 5.21

SynCLR X X X 11.55 4.97 12.26 5.33

Table 3: Ablation study results of multiple views and em-
bedding spaces in contrastive learning. T, P, and S denote
text, prosody, and speaker.

Multi-View Generation We con-
duct an ablation study of multi-
ple views and embedding spaces
in contrastive learning. To intu-
itively present respective influences
on speech representation, we experi-
ment on downstream speech-to-image
generation with S2IGAN. The results
are listed in Table 3, and we have two
observations:

(1) With the increasing number of
variance views in SimCLR, the qual-
ity of synthesized images guided by both in-domain and out-of-domain speeches could be boosted.
This finding proves that expanding data distribution through multi-view generation plays a vital role
in multi-domain representation learning. Note that the additional view of prosody hurts performance
in terms of FID for out-of-domain testing mainly beacuse of the potential collapse of generative ad-
versarial networks. (2) Even encountered with similar data diversity, SynCLR achieves a 17.2% rel-
ative decreased of FID degradation in out-of-domain speeches compared with the SOTA contrastive
framework. It has been demonstrated that novel contrastive loss objective with disentangled and
view-sensitive embedding effectively contributes in learning out-of-domain speech representations.

Model MOS (↑) RTF (↓)
FastSpeech 2 + HiFi-GAN 3.91±0.31 0.007

FastSpeech 2 + Diffwave 3.66±0.06 0.219
FastSpeech 2 + WaveGrad 4.00±0.09 0.230
Ours (FastSpeech 2 + SynGrad) 4.24±0.04 0.030

Table 4: Evaluation on multi-view data synthesis with com-
peting architecture.

Deep Generative Model For the
reason that FastSpeech 2 plays a
fundamental role in including vari-
ances for multiple views generation,
we mainly conduct experiments on
the neural vocoding stage with com-
peting architecture including Wave-
Grad (Chen et al., 2020a), Dif-
fwave (Kong et al., 2020b) and HiFi-
GAN (Kong et al., 2020a). Vocoders
are conditioned on the mel-spectrograms computed from ground truth audio during training. GitHub
implementations are used for reproducibility and the configurations follow their original papers.
RTF denotes the real-time factor, that the seconds required for the vocoder to synthesize one-
second audio conditioned on mel-spectrogram synthesized by FastSpeech 2. We measure RTF on
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an NVIDIA V100 GPU, and all diffusion-based neural vocoders generate samples within 6 reverse
steps.

For easy comparison of audio quality and synthesis speed, the results are compiled and presented in
Table 4, audio samples are available in: https://synclr.github.io/. As a summary, we
have the following key findings: (1) For audio quality, SynGrad beat the strong GAN-based vocoder
HIFI-GAN in terms of speech quality, which at the same time outperformed the previous diffusion-
based generative model with short reverse steps (i.e., 6 steps) in terms of denoising ability. (2) For
inference speed, SynGrad led to 7.2x and 7.6x speed up with respect to diffusion models including
Diffwave and WaveGrad. In conclusion, the experiment result demonstrated the robustness and
superiority of SynGrad for fast and high-fidelity multi-view data synthesis. More ablation study
results are presented in Appendix E.3.

5 RELATED WORKS

5.1 CONTRASTIVE LEARNING

Contrastive learning approaches learn representations by contrasting positive pairs against the neg-
ative ones. Contrastive Predictive Coding (Oord et al., 2018) was introduced as a universal unsuper-
vised learning approach to extract useful representations from high-dimensional data. With superior
results, Chen et al. (2020b) presented a simple framework called SimCLR for an effective con-
trastive learning of visual representations. Khosla et al. (2020) extended the self-supervised batch
contrastive approach to the fully-supervised setting. Al-Tahan & Mohsenzadeh (2021) then extended
SimCLR to learn better speech representations. Distinctively, this paper presents a novel contrastive
learning framework that improves generalization ability through the multi-view data synthesis and
the multi-head embedding learning for speech representation learning.

5.2 DOMAIN GENERALIZATION

The goal of domain generalization is to learn domain-invariant representations using only the train-
ing data from the source domains. Different from unsupervised domain adaptation, target domain
data is inaccessible during the training, making the task more challenging. Our SynCLR framework
can be viewed as a self-supervised solution to the domain generalization problem. Among recent
successful methods for domain generalization, MuST (Ghiasi et al., 2021) adopt self-training to ag-
gregate labeled and unlabeled training data to learn general feature representations. Lorincz et al.
(2021) learned a better speaker identity representation by introducing an additional loss. Li et al.
(2018) simulated the meta-train and meta-test tasks in training domains to enhance the performance.
Instead of applying the aforementioned techniques, we include a contrastive learning framework in
generalization to out-of-domain speeches.

6 CONCLUSION

In this paper, we presented the success of SynCLR in learning out-of-domain speech representa-
tions. To improve the model generalization ability over unseen speeches, SynCLR adopted a speech
synthesizer to provide diverse views of data distribution. For efficiently generating view-conditional
speech samples without mode collapse, we designed a diffusion-based synthesizer named SynGrad.
In SynCLR, we define multi-head embedding spaces, in which the model learns view-disentangled
representations to promote out-of-domain generalization. Finally, the consistent and significant em-
pirical results suggested that SynCLR is superior to the previous SOTA contrastive learning meth-
ods when testing with out-of-domain samples in both the speaker verification and the challenging
speech-to-image translation tasks. All in all, the proposed SynCLR framework leads to a promising
path towards an advanced contrastive learning of out-of-domain speech representations.

9
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A DIFFUSION PROBABILISTIC MODELS

Given i.i.d. samples {x0 ∈ RD} from an unknown data distribution pdata(x0). In this section,
we introduce the theory of diffusion probabilistic model (Ho et al., 2020; Lam et al., 2021a; Song
et al., 2020a;b). First, we present diffusion and reverse process given by denoising diffusion prob-
abilistic models (DDPMs), which could be used to learn a model distribution pθ(x0) that approxi-
mates pdata(x0). Secondly, we introduce the recently proposed denoising diffusion implicit models
(DDIMs) for acceleration. Lastly, we apply bilateral denoising diffusion models (BDDMs) and
its tighter evidence lower bound (ELBO) for noise scheduling process, which is efficient in noise
schedule prediction.

Diffusion process Similar as previous work (Ho et al., 2020; Lam et al., 2021a; Song et al., 2020a),
we define the data distribution as q(x0). The diffusion process is defined by a fixed Markov chain
from data x0 to the latent variable xT :

q(x1, · · · , xT |x0) =

T∏
t=1

q(xt|xt−1), (6)

For a small positive constant βt, a small Gaussian noise is added from xt to the distribution of xt−1
under the function of q(xt|xt−1).

The whole process gradually converts data x0 to whitened latents xT according to the fixed noise
schedule β1, · · · , βT .

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (7)

Reverse process Unlike the diffusion process, reverse process is to recover samples from Gaussian
noises. The reverse process is a Markov chain from xT to x0 parameterized by shared θ:

pθ(x0, · · · , xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt), (8)

where each iteration eliminate the Gaussian noise added in the diffusion process:
p(xt|xt−1) := N (xt−1;µθ(xt, t), σθ(xt, t)

2I) (9)

Further, denoising diffusion implicit models (DDIM) (Song et al., 2020a) formulate a non-
Markovian generative process that accelerates the inference while keeping the same training pro-
cedure as denoising diffusion probabilistic models:

From pθ(x1:T ), one can generate a sample xt−1 from a sample xt−1 via:

xt−1 =
√
αt−1

(
xt −

√
1− αtε(t)θ (xt)√

αt

)
+
√

1− αt−1 − σ2
t · ε

(t)
θ (xt) + σtεt (10)
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Training For learning the score network θ, we minimize the bound of the negative log likelihood
as described above. Consider a fixed noise schedule, efficient training is optimizing a random term
of t with stochastic gradient descent:

Lt =

∥∥∥∥εθ (αtx0 +
√

1− α2
t ε

)
− ε
∥∥∥∥2
2

, ε ∼ N (0, I) (11)

With the noise schedule predictor network, score networks conditioned on discrete-time step and
continuous scalar are both possible to take different number of refinement steps for inference (Chen
et al., 2020a; Kong et al., 2020b).

Here we define some constants based on the noise schedule in the diffusion process:

lt =

t∏
i=1

√
1− βi (12)

αs = lt, αs+1 = lt+τ , t ∼ Uniform({τ, . . . , T − τ}) (13)

Where ε denotes the maximum value in a pre-defined linear schedule, and T denotes the total number
of diffusion steps.

Noise scheduling acceleration Prior distribution of noise schedule β (e.g., linear) is merely for
efficient training at an intermediate step t. Given converged score network θ and noise schedule
predictor φ, we come to derive a much more efficient noise schedule ζ for revere sampling.

For learning the noise schedule predictor φ, we apply the loss function as a KL divergence term
between the forward and the reverse distributions

L(t)
step (φ; θ) = KL(pθ(xt−1xt)‖qφ(xt−1x0)) =

1

2(1− βt − α2
t )
‖
√

1− α2
t εt −

βt√
1− α2

t

εθ(xt, αt)‖22 + Ct

Ct =
1

4
log

1− α2
t

βt
+
D

2
(

βt
1− α2

t

− 1),

(14)

where Ct is a constant that can be ignored during training.

B SCHEDULE ALIGNMENT

Firstly we compute the corresponding constants respective to diffusion and reverse process:

lt =

t∏
i=1

√
1− βi, αs =

s∏
i=1

√
1− ζi (15)

Here we search and interpolate αs between two training noise constants lt and lt+1, enforcing αs to
get closed to lt. In the end, we gain the well-mapped diffusion step tm:

tm = t+
lt − αs
lt − lt+1

if αs ∈ [ lt+1, lt ]. (16)

Where integer t represents a single pre-defined diffusion step, and s presents a single step of noise
schedule obtained through the scheduling process. Given these two reference schedules, schedule
alignment could be performed and the floating-point tm which denotes a much more efficient path
for sampling come out.

For noise predictor, we adopt a light-weight GALR network inconsistent with previous work on
parameterizing the forward and reverse processes (Lam et al., 2021a). Experimental results further
show that the predicted noise schedule ζ for a few samples could be robust enough to maintain a
high-quality generation at the reverse process.

13



Under review as a conference paper at ICLR 2022

C DATASETS

CUB200 CUB dataset (Wah et al., 2011) contains 200 classes and 11788 images in total, which
has 8855 and 2933 images for training and testing respectively. For each bird image in CUB dataset,
there are 10 speech descriptions.

LJSpeech LJSpeech (Ito & Johnson, 2017) consists of 13,100 short audio clips of a single speaker
with a total length of approximately 24 hours.

LibriTTS We use two subsets (i.e., train-clean-360 and train-clean-100) of Multi-speaker English
dataset LibriTTS (Zen et al., 2019). The train-clean-360 subset consists of 192 hours’ worth of
data, 116k utterances, 904 speakers. The train-clean-100 subset consists of audio recordings of 247
speakers with a total duration of about 54 hours.

D EVALUATION MATRIX

LS-MSE and MCD Log-mel spectrogram mean squared error(LS-MSE) and Mel-cepstral dis-
tance (MCD) (Kubichek, 1993) measure the consistency between the original waveform and the
generated waveform in the Mel-frequency domain.

PESQ and STOI Perceptual evaluation of speech quality (PESQ) (Rix et al., 2001) and The short-
time objective intelligibility (STOI) (Taal et al., 2010) assesses the denoising quality for speech
enhancement.

MOS All our Mean Opinion Score (MOS) tests are crowdsourced and conducted by native speak-
ers. We refer to the rubric for MOS scores in Protasio Ribeiro et al., and the scoring criteria has
been included in Table D for completeness. The samples are presented and rated one at a time by
the testers.

Rating Naturalness Definition

1 Bad Very annoying and objectionable dist.
2 Poor Annoying but not objectionable dist.
3 Fair Perceptible and slightly annoying dist
4 Good Just perceptible but not annoying dist.
5 Excellent Imperceptible distortions

Table 5: Ratings that have been used in evaluation of speech naturalness of synthetic and ground
truth samples.

FID FID (Salimans et al., 2016) computes the Fréchet Inception Distance between the distribu-
tions of real and generated images in the feature space of pre-trained Inception-V3 network. A
smaller FID indicates the synthetic data is more realistic and similar to the true data. We use speech
labels in the testing set to generate 10k images.

IS IS (Heusel et al., 2017) is a metric for both image quality and diversity, which is found to
correlate well with the human evaluation. In general, a larger IS indicates the generative model can
synthesize fake images with better diversity.

Cosine Similarity Cosine Similarity measures the speaker similarity of the synthetic output for
the natural samples. Embeddings of utterances from the same speaker have high cosine similarity,
while those from different speakers are far apart in the embedding space.

E MULTI-VIEW DATA SYNTHESIS

E.1 MODEL CONFIGURATION

In synthetic data manipulation models, we mainly include variance through duration prediction,
energy prediction, and speaker modification, in addition to the diverse input phoneme sequence.
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• For content manipulation, we introduce multiple text guidances and keep consistent of
remaining features.

• For prosody manipulation, we set the pitch and energy jittering from 0.8 to 1.5, as well as
the duration jittering from 0.4 to 1.2.

• For speaker manipulation, we randomly sample speaker identity from train-clean-100 sub-
set of LibriTTS in terms of speaker ID, ∀ ID ∈ {1, . . . , 850}.

FastSpeech consists of 4 feed-forward Transformer blocks both in the encoder and the mel-
spectrogram decoder. The hidden sizes of the self-attention and 1D convolution in each feed-forward
Transformer block are all set to 256. The number of attention heads is set to 2. The output linear
layer converts the 256-dimensional hidden into the 80-dimensional mel spectrogram. In the dura-
tion/energy/pitch predictor, the kernel sizes of the 1D-convolution are set to 3.

SynGrad is composed of three location-variable convolution blocks, where each block contains 4
layers, and the residual channels is set to 8. The kernel size of the location-variable convolution
is set to three, and the dilation coefficient is the factorial of 3 in each LVCNet block. The kernel
predictor is designated to be the same as that in Zeng et al. (2021), where the hidden residual channel
is set to 64. The weight normalization is applied in all convolutional layers.

GALR is a speech separation neural network for noise prediction. Following the configuration from
previous work (Lam et al., 2021b), we used a window length of 8 samples for encoding, a segment
size of 64 for segmentation and only two GALR blocks of 128 hidden dimensions.

E.2 TRAINING AND INFERENCE

Raw waveform could be transformed into mel-spectrograms, we set frame size and hop size to
1024 and 256 with respect to the sample rate 22050. Models including FastSpeech 2, SynGrad
and GALR have been trained for 15K, 1M and 10K steps until convergence, respectively, using the
Adam optimizer with β1 = 0.9, β2 = 0.98, ε = 10−9.

E.3 ABLATION STUDY

To demonstrate the validity of the proposed multi-view data synthesis configuration, we performed
an ablation study of several vital parts (i.e., Location variable convolution in 3.1, Noise scheduling
acceleration in 3.1) in neural vocoding.

The results of both subjective and objective evaluations are presented in Table 6, which show all three
novel designs contribute to the performance: 1) Removing location-variable convolution causes a
distinct degradation in generation speed and perceptual quality. 2) Replacing noise prediction with
grid search to derive a noise schedule could result in less efficient denoising.

To verify the effect of noise schedule in the settings of diffusion probabilistic models, we compare
two noise schedules conditioned on continuous noise levels and discrete noise indices respectively,
which are both obtained through noise prediction. We observe that under discrete diffusion indexes,
the synthesized samples are cleaner with less noise and the quality improves more stably. The results
demonstrate that training SynGrad with discrete noise indexes and applying schedule alignment B
with predicted noise schedule could be a better choice.

Model MOS (↑) RTF (↓) LS-MSE (↓) MCD (↓) STOI(↑) PESQ (↑)
Ground Truth 4.65±0.04 / / / / /

w/o Location variable convolution 4.08±0.05 0.081 140.8 2.3087 0.9719 3.3751
w/o Noise scheduling acceleration 3.95±0.01 0.0328 139.96 2.5832 0.9480 3.0953

Continuous level, 6 steps 3.98±0.08 0.0296 108.06 2.4957 0.9709 3.1773
Continuous level, 1000 steps 4.04±0.09 2.80 113.03 2.4899 0.9748 3.2448

Discrete index, 6 steps 4.24±0.09 0.0302 97.49 1.9662 0.9775 3.5277
Discrete index, 1000 steps 4.28±0.09 4.8185 81.69 1.9242 0.9669 3.6525

Table 6: Ablation study results of several vital components in SynGrad.
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F SPEAKER VERIFICATION

F.1 MODEL CONFIGURATION

We train the speaker verification model over train-clean-100 subset of multi-speaker English dataset
LibriTTS. The in-domain testing set consists of utterances in test-clean subset, besides we prepare
VoxCeleb1 test set following previous work (Fan et al., 2020) to further evaluate the model general-
ization to out-of-domain distribution. All the models are trained until 100K steps.

The raw waveforms have been sampled to 16000Hz and transformed into mel-spectrograms with
a window size of 0.025s and window stride of 0.01s. The speech encoder takes mel-spectrogram
as input and outputs an utterance-level fixed-dimensional embedding, which is averaged on time-
domain.

• To implement d-vectors models for speaker verification, we follow the configuration in the
original paper (Wan et al., 2018).

• For InfoNCE objective function, we explicitly define utterances from same and different
speakers to be positive and negative samples, respectively.

• For NT-Xent objective function, we randomly sample with a minibatch of N and define
the contrastive prediction task on pairs of utterances from same speaker. Unlike InfoNCE,
we would not sample negative examples explicitly but treat the other 2(N − 1) augmented
examples within a minibatch.

G SPEECH-TO-IMAGE TRANSLATION

G.1 MODEL CONFIGURATION

In additional to the the proposed contrastive objective, learning speech representation in speech-
to-image translation needs further loss functions for audio-image distillation. DirectGAN adopts
Inception-v3 pre-trained on ImageNet as the teacher image encoder, and the speech encoder would
be optimized to learn a similar feature space via teacher-student learning. S2IGAN includes joint
training of speech and image encoders, and speech representations could be optimized with the
supervision of corresponding visual information from images. Model configuration follows the
original papers.

The splitting manner for the training set and testing set follows (Reed et al., 2016). Note that we
prepare two testing sets for in-domain and out-of-domain evaluation: 1) The seen testing set is made
up of utterances from seen speakers in pre-defined prosody ranges as described in E.1. 2) The unseen
testing set consists of speakers who do not appear in any training sets, and these speeches are variant
in speaking styles (i.e., random deviation of duration, pitch, and energy).

G.2 SAMPLES

In this section, we present in-domain samples in addition to the out-of-domain evaluation of main
paper in Figure 4.
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Base (DirectGAN)

the medium sized
bird has a dark grey
color, a black
downward curved
beak, and long wings.

this large bird has a
bright orange bill, a
white colored belly,
and white eyebrows
and cheek patches

+ SimCLR + SynCLR Base (S2IGAN) + SimCLR + SynCLRCUB-200: Seen Real

Figure 4: Comparison of synthesized images over in-domain CUB dataset.
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